| A)         |                                                                  |
|------------|------------------------------------------------------------------|
| УДК 539.3  | Механика деформируемых тел. Упругость. Деформации                |
| УДК 539.38 | Различные причины деформаций. Графическое изображение деформаций |

r

## Б)

А.М. Устинов, А.А. Клопотов, Ю.Ф. Иванов, А. Д. Тересов, Е.А. Петрикова

## B)

Физико-механические свойства слоистых композитов силумин / углепластик при облучении импульсным электронным пучком поверхности металла

# Γ)

# АННОТАЦИЯ.

В статье представлены результаты испытаний на одноосное растяжение образцов слоистого композита силумин / углепластик (AK5M2/CFRP). В качестве базового материала принят силумин доэвтектического состава марки AK5M2 с облучением импульсным электронным пучком рабочей поверхности образца. Для создания слоистых композитов к поверхности силумина приклеивали углеродную однонаправленную ткань «CARBONWRAP Tape 230» производства ООО "Нанотехнологический центр композитов" (НЦК), Россия. В качестве связующего применяли двухкомпонентный эпоксидный состав «CARBONWRAP Resin 530+» производства НЦК.

Испытание образцов на одноосное растяжение осуществлялось на испытательной машине «INSTRON 3382» при скорости растяжения 0,3 мм в минуту. Эволюция полей деформаций на поверхности образцов получена при помощи цифровой оптической системы «Vic-3D» на основе метода корреляции цифровых стереоскопических изображений. По результатам испытаний построены диаграммы деформирования при одноосном растяжении образцов AK5M2/CFRP. Методами растровой электронной микроскопии получено электронно-микроскопическое изображение приповерхностного слоя силумина. Выполнен анализ структуры и её влияния на физико-механические свойства. Проведен анализ деформированного состояния образцов по картинам распределений относительных продольных и поперечных деформаций в пространстве и времени.

## Д)

КЛЮЧЕВЫЕ СЛОВА: силумин доэвтектического состава, облученная поверхность, высокоскоростная кристаллизация, скоростное охлаждение, электронный пучок, слоистый композит силумин / углепластик, деформированное состояние, поля деформаций.

## E)

## 1. ВВЕДЕНИЕ

Целью данной работы являлось экспериментальное изучение влияния облучения поверхности импульсным электронным пучком доэвтектического силумина марки AK5M2, усиленного углепластиком «*CARBONWRAP Tape 230 / Resin 530*+» на механические свойства слоистого композита AK5M2/CFRP.

Схематически структуру слоистых композитных материалов можно представить в виде «сэндвича», состоящего из слоев (структурных элементов), разделенных между собой прослойками (поверхность раздела сред), свойства которых значительно отличаются от свойств слоев [1]. Структурных элемента в образце три: силумин, углеродная ткань, эпоксидное связующее. Прослойка – граница раздела слоев, характеризуемая адгезионными свойствами. Механические свойства композитных материалов в значительной степени определяются процессами локализации деформации на границах раздела структурных элементов и прослоек [2]. В литературе внимание уделено исследованиям по определению влияния дополнительного слоя CFRP на усталостную долговечность, деформативность и другие свойства базового материала [3–6].

Модифицируя поверхность сплавов перед наклейкой *CFRP*, можно дополнительно повысить механические свойства образцов. При действии лазерного излучения на поверхности образцов металла их кристаллическая структура меняется с равновесной на искаженную, имеющую форму параллелепипеда [7].

Высокоэнергетический импульсный электронный пучок является одним из перспективных инструментов для модификации поверхностного слоя металлов и сплавов. В работах [8] показано, что облучение силумина импульсным электронным пучком сопровождается формированием в приповерхностном слое, в результате сверхскоростного нагрева и охлаждения, субмикро - нанокристаллической столбчатой структуры. В результате, созданный высокоэнергетическим облучением приповерхностный слой можно рассматривать как самостоятельную функциональную подсистему, приводящую к существенному увеличению пластичности материала [9].

#### 2. МАТЕРИАЛЫ И МЕТОДИКА

В качестве базового материала использован силумин доэвтектического состава марки AK5M2 (Al-(4-6)Si-1.3Fe-0.5Mn-0.5Ni-0.2Ti-2.3Cu-0.8Mg-1.5Zn, вес.%). Подготовлены заготовки из силумина в форме двухсторонних пропорциональных лопаток с размерами рабочей области 50 х 9.6 х 2.65 мм (рис. 1.). Облучены образцы с двух сторон импульсным электронным пучком на установке «СОЛО» (ИСЭ СО РАН) [10] при следующих параметрах: энергия ускоренных электронов 18 кэВ, длительность импульса пучка электронов 150 мкс, количество импульсов 3, частота следования импульсов 0,3 с<sup>-1</sup>, плотность энергии пучка электронов ( $E_s$ ) 15 и 25 Дж/см<sup>2</sup>.

Для создания слоистых композитов к поверхности заготовок из силумина приклеивали углеродную однонаправленную ткань «*CARBONWRAP Tape 230*». В качестве связующего применяли двухкомпонентный эпоксидный состав «*CARBONWRAP Resin 530*». Этот клей выполнен на основе тиксотропной смеси эпоксидных смол и алифатического отвердителя. Механические характеристики клея приведены в [3]. Клей имеет прочность на сдвиг 13 МПа. Склеивание производилось при температуре 23±2°C и атмосферном давлении. Время полного набора прочности 5 суток.

Испытание образцов на растяжение осуществлялось на испытательной машине «*INSTRON 3382*» при скорости растяжения 0,3 мм в минуту. Схема испытания представлена на рисунке 2. Захваты испытательной машины обеспечивали надежное фиксирование и центрирование образцов. Распределение полей смещений на поверхности образцов в процессе одноосной деформации растяжением получено при помощи цифровой оптической системой «*Vic-3D*» на основе метода корреляции цифровых стереоскопических изображений. Измерения эволюции деформационных полей на поверхности исследуемых образцов осуществляли при помощи программы «*Vic-Snap*» на основе полученой синхронной записи изображений с двух камер (рис. 1). В результате были определены относительные продольные деформации ( $\varepsilon_{yy}$ ) вдоль оси *Y*[3].

Методом растровой электронной микроскопии на приборе «*SEM-515 Philips*» получено электронномикроскопическое изображение поверхности трещины образца композита», модифицированного облучением приповерхностного слоя силумина, разрушенного в результате испытаний на растяжение.

Геометрические параметры слоев AK5M2/*CFRP* представлены в таблице 1. Измерение толщины заготовки AK5M2 проводилось микрометром с ценой деления 0,01 мм. Толщина облученного приповерхностного слоя AK5M2 определена по масштабным микроскопическим изображениям (рис. 6, 7) полученными методом растровой электронной микроскопии. После разрушения образца клеевой слой разрушался по двум видам адгезионное (трещина по разделу слоев) и когезионное (трещина в слое клея). Адгезионное разрушение проходит не точно по разделу сред, а с одной стороны отрывая окислы с металла, а с другой тонкая часть клея остается на металле. Тонкая часть клея и интерпретируется нами, как прослойка – граница раздела слоев. Измерение ее толщины по масштабным микроскопическим изображениям полученными методом растровой электронной микроскопии. Первичное измерение толщины углеродной ткани без пропитки связующим проводилось штангенциркулем с цифровым отсчетным устройством с шагом дискретности 0,01 мм по ГОСТ 166-89. Измерения толщины ткани и слоя связующего (клея) и пограничного слоя в готовом образце проведены оптическим отсчетным микроскопом МПБ-3 с ценой деления 0,05 мм на подготовленном торце.

## 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

#### 3.1. ДИАГРАММЫ ДЕФОРМИРОВАНИЯ

По результатам испытаний построены диаграммы деформирования  $\sigma$  -  $\varepsilon$  (рис 3) при одноосном растяжении образцов AK5M2/*CFRP* на основе силумина без облучения и облученные импульсным электронным пучком при  $E_S = 15 \text{ Дж/см}^2$  и  $E_S = 25 \text{ Дж/см}^2$ . Диаграммы деформирования слоистых образцов AK5M2/CFRP для анализа и сравнения с диаграммами исходных образцов силумина были обрезаны в точке, соответствующей моменту разрушения силумина.

При сравнении данных диаграмм (рис. 3) и таблицы 2, определено следующее. Диаграммы деформирования одноосного растяжения силумина без усиления и усиленного *CFRP* при разной плотности облучения электронным пучком имеют схожие формы (рис. 4-6). Модуль упругости (*E*=45 ГПа) образцов силумина усиленного *CFRP* ниже на 25 %, чем у образцов силумина (*E*=60 ГПа) без усиления, что объясняется добавлением в конструкцию *CFRP* с *E*=20 ГПа. *E<sup>кас</sup>* для образцов АК5М2/*CFRP* увеличился от 20 до 100 % и составил 16–18 ГПа и стремится к сумме модулей AK5M2 со значением 8–15 ГПа и *CFRP* со значением 20 ГПа в точке разрушения.  $\sigma^{max}$  образцов АК5М2/*CFRP* увеличились на 30–58 %. Перенос внешней нагрузки с АК5М2 ( $\sigma^{max} \approx 81$  МПа), на дополнительный слой *CFRP* ( $\sigma^{max} \approx 200$  МПа), в общем для слоистого композита AK5M2/*CFRP* увеличивает  $\sigma^{max}$  до значений 109–132 МПа. У образцов АК5М2/*CFRP*  $\varepsilon^{max}$  (0.416 – 0.537 %) на 43 - 80 % выше, чем у образцов АК5М2 (0.234 – 0.363 %), что является следствием создания слоистого композита, т.е. добавления в конструкцию *CFRP* ( $\varepsilon^{max} \approx 1.0$  %).

AK5M2/*CFRP* можно отнести к интерфейсному материалу, в котором существует блокирующая межслойная поверхность раздела. Наличие этой межслойной поверхности раздела вследствие процесса пластической релаксации в вязком блокирующем слое препятствует распространению трещины.

#### 3.2. СТРУКТУРА ПОВЕРХНОСТНОГО СЛОЯ СИЛУМИНА

Увеличение пластичности образцов, облученных импульсным электронным пучком, обусловлено существенным преобразованием структуры поверхностного слоя силумина. Выполненные исследования показывают, что в литом состоянии структура силумина AK5M2 представлена зернами твердого дисперсного раствора на основе алюминия, зернами эвтектики Al-Si, включениями кремния и интерметаллидов игольчатой формы (рис. 7, а). Деформация образца сопровождается в первую очередь, хрупким разрушением включений кремния, что инициирует разрушение образца в целом (рис. 7, b).

Облучение силумина импульсным электронным пучком приводит к плавлению поверхностного слоя толщиной до 15 мкм (рис. 8, а). Высокоскоростная кристаллизация и последующее скоростное охлаждение за счет отвода тепла в интегрально холодный объем материала сопровождается формированием в поверхностном слое структуры высокоскоростной ячеистой (столбчатой) кристаллизации, размеры кристаллитов которой изменяются в пределах (550-700) нм (рис. 8, b). Отчетливо видно, что включения вторых фаз игольчатой (пластинчатой) формы, характерные для структуры исходного состояния, в данном слое методами сканирующей электронной микроскопии не выявляются. Это, очевидно, и является одной из основных причин повышения пластичности силумина.

#### 3.3. ЭВОЛЮЦИЯ ПОЛЕЙ ДЕФОРМАЦИЙ НА ПОВЕРХНОСТИ СИЛУМИНА

Регистрация полей поверхностных деформаций образцов AK5M2/CFRP производилась со стороны базового материала AK5M2 для возможности сравнения данных и определения разницы максимальных и минимальных значений деформаций в локальных очагах. Анализ картин распределений относительных деформаций проводился до момента разрушения силумина.

Для анализа деформированного состояния образцов, при одноосном растяжении, были выбраны картины распределений относительных продольных ( $\varepsilon_{yy}$ ) (рис. 9) деформаций на поверхности в момент времени, предшествующий началу разрушения. На картинах показана рабочая часть образца с нанесенной на неё полем относительных деформаций в градации серого цвета. Для определения удлинения образца по краям рабочей области, в процессе анализа полей деформаций, установлен виртуальный (программный) тензометр с указанием общих относительных продольных деформации -  $\varepsilon$  (рис. 9, 11).

Увеличение є на 25% образцов АК5М2/CFRP при  $E_S = 15 \text{ Дж/см}^2$ , относительно значений исходного образца без облучения, связано с высокими значениями  $\varepsilon^{max}_{yy}$  (+43%) по поверхности образца.

Сохранение є образцов AK5M2/CFRP при  $E_s = 25 \text{ Дж/см}^2$  связано с незначительным изменением значений  $\varepsilon^{max}_{yy}$  в пределах 1.7%.

Приложенная внешняя нагрузка перераспределялась между слоями AK5M2/CFRP в соответствии с модулями упругости и касательными модулями деформации материалов слоистого композита. Высокие показатели ( $\varepsilon^{max}$ =1.0%;  $\sigma^{max}$ =200 МПа) CFRP, по сравнению с силумином ( $\varepsilon^{max}$ =0.23%;  $\sigma^{max}$ =81 МПа), и линейная диаграмма деформирования отразилась на деформационной кривой образца AK5M2/CFRP в виде увеличения

предела прочности (112 МПа) и деформативности (0,416%), а также меньшей кривизной диаграммы деформирования и снижением модуля упругости.

Анализ эволюции деформаций слоя силумина на образцах силумина и AK5M2/CFRP показал, что на картинах  $\varepsilon_{yy}$  наблюдается существенное (68 – 115 %) увеличение максимального значения деформаций в локальных очагах упругопластической деформации на слоистом образце AK5M2/CFRP. Данный эффект объясняется сдерживанием зарождения магистральной трещины в очаге деформаций силумина, местным растяжением углеродных волокон CFRP, что давало возможность дальнейшего увеличения количественного значения деформаций в очаге.

#### 3.4. КАЧЕСТВЕННОЕ ИЗМЕНЕНИЕ ПОЛЕЙ ДЕФОРМАЦИЙ

3.4.1. Алгоритм получения картин качественного сравнения полей деформаций (рис. 11).

• Диаграмма деформирования образцов разделялась на характерные участки (упругая часть, площадка текучести – линейная зависимость; криволинейные участки преобразуются методом кусочно-линейной аппроксимации в линейные участки).

• Для анализа сохранялись картины деформаций, соответствующие концам выделенных участках. Каждая картина сохранялась в двух цветах: красном, зеленом. Предварительно для каждого участка устанавливался единый масштаб измерений шкалы значений деформаций, для совпадения значений при наложении, но иногда для лучшей выразительности картин масштаб устанавливался по максимальному и минимальному значению, вычисленному по полю деформаций.

• Для получения картин качественного сравнения полей деформаций (далее – совмещенные картины деформаций) производилось совмещение конечной картины деформации, в зеленых оттенках, на начальную картину, в красных оттенках, с 50 процентной прозрачностью.

3.4.2. Методика анализа совмещенных картин деформаций на участке.

• Оттенки красного показывают изменения поля деформаций в сторону увеличения значения деформаций в локальных очагах деформаций.

• Оттенки зеленого показывают изменения поля деформаций в сторону снижения значения деформаций в локальных очагах деформаций.

• Соприкосновение зеленой и красной области на совмещенной картине деформаций показывает движение очага деформаций от зеленого к красному, при увеличении общих деформаций образца на рассматриваемом участке диаграммы. При наблюдении соприкосновения зеленых областей и красных в областях между желтыми экстремумами, то этот процесс можно описать как стабилизация границ локального очага деформаций, т.е. ограничивание очага деформаций.

• Оттенки желтого показывают области поля с наименьшими изменениями, т.е. области, в которых изменения очень малые или отсутствуют полностью.

• Темные оттенки цветов показывают малые значения деформаций по полю, т.е. очаги с минимальными значениями деформаций.

• Светлые оттенки цветов показывают большие значения деформаций по полю, т.е. очаги с максимальными значениями деформаций.

• При совпадении экстремумов, т.е. светлых или темных пятен, они окрашиваются в желтый цвет.

#### 3.4.3. Результат анализа.

Выделено три вида локальных очагов деформаций по признаку стабилизации.

- 1. Нестабильные очаги деформаций, которые изменяют свое положение при малых приращениях общих деформаций образца (1\*10<sup>-3</sup> %/кадр, т.е. 0,001 % при смене 1 кадра или 0,001 % за 0,1 сек).
- 2. Метастабильные очаги деформаций изменяют свое стабильное состояние при небольших приращениях общих деформаций.
- 3. Стабильные очаги деформаций сохраняют свое стабильное состояние при больших приращениях деформаций. Появляются такие очаги из метастабильных.

Два вида очагов деформаций могут соседствовать друг с другом в один момент времени на картине деформаций. Как правило соседствуют нестабильный и метастабильный или метастабильный и стабильный

очаг. На картинах не выявлено соседство нестабильных со стабильными. Нестабильные очаги наблюдаются на начальной стадии деформирования, меняя свое положение на поверхности и значение деформации.

Так как на диаграммах деформирования (рис. 3) образцов композитов отсутствуют характерные изломы, прямые, площадки и т.д., то разбиение на 4 стадии (рис. 10) выполнено по методу кусочно-линейной аппроксимации. Первый участок ограничивается совпадением с линией, соответствующей модулю упругости, и заканчивается на значении около 20 МПа. Второй участок ограничивается верхним значением напряжений в 40 МПа. Четвертый участок ограничивается совпадением с линией, соответствующей касательному модулю деформаций в точке максимальных напряжений (точка разрушения силумина).

На рисунке 11 представлены совмещенные картины деформаций в пределах каждого участка диаграмм деформирования. На первом участке (а 0-1), между точками 0 и 1 на картинах много красных и зеленых областей размером (1-3 мм), при малом количестве желтых. Происходит качественное изменение картин полей деформаций, что связанно с началом процесса деформирования и нестабильностью локальных очагов деформаций. На втором участке (а 1-2), между точками 1 и 2 на картинах наблюдается появление метастабильных очагов, которые можно определить по проявившемся крупным зонам зеленого, красного и желтого цвета, а также скопления темного и светлого оттенка по всей площади рабочей части образца. Процесс стабилизации продолжается, что видно по присутствию ярко-красных и темно-зеленых областей. На третьем участке (а 2-3), между точками 2 и 3 на картинах продолжается процесс стабилизации очагов деформаций. На четвертом участке (а 3-4), между точками 3 и 4 на картинах по большей части рабочей области образца произошла оттенко-цветовая сепарация светло-зеленого, темно-красного цвета, что говорит о стабилизации очагов. Также на картине наблюдаются две яркие зоны локальных очагов деформаций (нижний левый угол), что является сильным ростом значений деформаций. В данной области произойдет зарождение и рост магистральной трещины при дальнейшем увеличении общих деформаций образца.

## 4. ЗАКЛЮЧЕНИЕ

Определено, что в образцах AK5M2/CFRP существенно повышаются прочностные и пластические свойства в сравнении с силумином AK5M2 с облученной импульсным электронным пучком поверхности.

При анализе эволюции поверхностных деформаций на слое силумина, приложенная внешняя нагрузка перераспределялась между слоями композита AK5M2/CFRP, что на деформационной кривой отразилось в виде увеличения предела деформативности и распрямлением кривой, что обусловлено сдерживанием локальных очагов деформаций в силумине местным растяжением углеродных волокон *CFRP* в зоне максимальных продольных деформаций силумина, т.е. в точке зарождения трещины, что давало возможность дальнейшего увеличения количественного значения деформаций в зоне концентратора без развития трещины, что выражается на картинах поверхностных продольных деформаций увеличением максимального значения деформаций в зоне локального очага деформаций.

На полях деформаций по поверхности силумина в составе слоистого композита AK5M2/CFRP наблюдаются нестабильные локальные очаги деформаций до значений напряжений около 20 МПа, далее наблюдается появление метастабильных очагов до значения напряжений 70-90 МПа, после этих значений происходит стабилизация очагов вплоть до разрушения образца.

#### БЛАГОДАРНОСТИ

Механические испытания, анализ поверхностных деформаций выполнен по Государственному заданию при финансовой поддержке Министерства образования и науки Российской Федерации (проект №. FE MN-2022-0004).

Облучение материала импульсным электронным пучком, анализ структуры поверхности разрушения осуществлено при финансовой поддержке гранта РНФ (проект № 19-19-00183, <u>https://rscf.ru/project/19-19-00183</u>).

Ж)

 $\varepsilon_{vv}$  – продольные относительные деформации, направленные вдоль оси *Y*;

 $\varepsilon^{max}_{yy}$  – максимальные продольные относительные деформации;

 $\varepsilon^{min}_{yy}$  – минимальные продольные относительные деформации;

Δε<sub>уу</sub> – разница минимальных и максимальных продольные относительные деформации;

*ε* – относительные продольные деформации рабочей области;

є<sup>*max*</sup> – максимальные относительные продольные деформации рабочей области;

θ – коэффициент деформационного упрочнения;

σ - нормальные напряжения в материале вдоль оси растяжения;

σ<sup>*max*</sup> – максимальные нормальные напряжения;

CFRP - Carbon-fiber-reinforced polymers (полимер, армированный углеродным волокном);

E – модуль упругости (Юнга), определяется как отношение  $\sigma$  к  $\varepsilon$ ;

 $E_0$ ;  $E_{15}$ ;  $E_{25}$  – модуль упругости АК5М2 соответственно необлученного – 0 Дж/см<sup>2</sup>, и облученного пучком электронов плотностью энергии  $E_s = 15$  Дж/см<sup>2</sup> и  $E_s = 15$  Дж/см<sup>2</sup>;

*Е<sup>кас</sup>* – касательный модуль деформаций

*Е*<sup>сек</sup> – секущий модуль деформаций

*E*<sub>*S*</sub> – плотность энергии пучка электронов;

Х – ось, направленная поперек приложенной нагрузки;

У-ось, направленная вдоль приложенной нагрузки;

AK5M2 - силумин доэвтектического состава (Al-(4-6)Si-1.3Fe-0.5Mn-0.5Ni-0.2Ti-2.3Cu-0.8Mg-1.5Zn, вес.%); AK5M2 / *CFRP* – слоистый композитный материал, состоящий из доэвтектического силумина марки AK5M2 и полимера, армированного углеродным волокном;

3) ЛИТЕРАТУРА

- Ochiai S., Hojo M., Schulte K. and Fiedler B. Nondimensional Simulation of Influence of Toughness of Interface on Tensile Stress-Strain Behaviour of Unidirectional Minicomposite, *Composites Part A*. 2001. 32. P. 749-761.
- 2. Псахье С.Г., Шилько Е.В., Астафуров С.В. Изучение особенностей механического отклика гетерогенных материалов с границами раздела, характеризующимися высокой деформационной способностью. *Письма в ЖТФ*. 2004. Т. 30. Вып. 6. С.45–51.
- 3. Копаница Н.О., Устинов А.М., Тришкина Л.И., Клопотов А.А., Абзаев Ю.А., Потекаев А.И. Изучение упругопластической деформации клеевого соединения сталь/углепластик методом корреляции цифровых изображений. *Деформация и разрушение*. 2018. №7. С.38–43.
- 4. Kaluża M., Hulimka J. Methacrylate adhesives to create CFRP laminate-steel joints preliminary static and fatigue tests. *Procedia Engineering*. 2017. V. 172. P. 489–496.
- 5. Heshmati M., Haghani R., Al-Emrani M. Durability of bonded FRP-to-steel joints: Effects of moisture, de-icing salt solution, temperature and FRP type, *Composites Part B*. 2017. V. 119. P. 153–167.
- Aljabar N.J., Zhao X.L., Mahaidi R. Al., Ghafoori E., Motavalli M., Powers N. Effect of crack orientation on fatigue behavior of CFRP-strengthened steel plates. *Composite Structures*. 2016. V.152. P. 295–305
- 7. Васильев С. В., Валько Н. Г., Иванов А. Ю., Ситкевич А. Л. Изменения кристаллической структуры металлов в ходе их лазерной обработки. *Инженерно-физический журнал.* 2022. Т. 95. № 3. С. 835-843.
- Yu.F. Ivanov, D.V. Zaguliaev, A.M. Glezer, V.E. Gromov, A.A. Abaturova, A.A. Leonov, A.P. Semin, R.V. Sundeev. Changes in surface structure and mechanical characteristics of Al–5 wt% Si alloy after irradiation by electron beam. *Materials Letters*. 2020. 275. 128105.
- 9. Лотков А.И., Псахье С.Г., Князева А.Г., Ляхов Н.З. Наноинженерия поверхности. Формирование неравновесных состояний в поверхностных слоях материалов методами электронно-ионноплазменных технологий. Новосибирск: СОРАН. 2008.
- Grigor'ev, S. V.; Devyatkov, V.N.; Koval, N.N. et al. Enhanced Emission during Submilli second Low Energy Electron Beam Generation in a Diode with Grid Stabilized Plasma Cathode and Open Anode Plasma Boundary. *Techn. Phys. Lett.*, 2010. 2 (36). 158–161.

| N⁰ | Элементы композиционного образца                 | Толщина        |  |  |  |
|----|--------------------------------------------------|----------------|--|--|--|
| 1  | AK5M2                                            | 2.62 – 2.68 мм |  |  |  |
| 2  | Облученный импульсным электронным пучком         | 50 – 100 мкм   |  |  |  |
|    | приповерхностный слой силумина АК5М2             |                |  |  |  |
| 3  | Прослойка - приграничный слой эпоксидного клея,  | 10-20 мкм      |  |  |  |
|    | взаимодействующего с поверхностью силумина АК5М2 |                |  |  |  |
| 4  | Эпоксидный клей                                  | 0.3 – 0.6 мм   |  |  |  |
| 5  | Приграничный слой эпоксидного клея,              | 100 – 150 мкм  |  |  |  |
|    | взаимодействующего с поверхностью CFRP           |                |  |  |  |
| 6  | CFRP                                             | 0.6 - 0.8 MM   |  |  |  |

Таблица 1. Геометрические параметры слоистого композита AK5M2/CFRP

Таблица 2 Результаты сравнения механических величин

|                                   | <i>Es</i> [Дж/см2] |             |              |  |  |  |
|-----------------------------------|--------------------|-------------|--------------|--|--|--|
|                                   | 0                  | 15          | 25           |  |  |  |
| σ [МПа] / Эффект от облучения [%] |                    |             |              |  |  |  |
| AK5M2                             | 80.52              | 83.66 / 104 | 83.61 / 104  |  |  |  |
| AK5M2/CFRP                        | 112.32             | 109.47 / 98 | 132.19 / 118 |  |  |  |
| Эффект усиления [%]               | 140                | 131         | 158          |  |  |  |
|                                   |                    |             |              |  |  |  |
| AK5M2                             | 0.234              | 0.363 / 155 | 0.297 / 127  |  |  |  |
| AK5M2/CFRP                        | 0.416              | 0.520 / 125 | 0.537 / 129  |  |  |  |
| Эффект усиления [%]               | 178                | 143         | 181          |  |  |  |
| Е [ГПа] / Эффект от облучения [%] |                    |             |              |  |  |  |
| AK5M2                             | 60                 | 58 / 97     | 60 / 100     |  |  |  |
| AK5M2/CFRP                        | 45                 | 45 / 100    | 45 / 100     |  |  |  |
| Эффект усиления [%]               | 75                 | 77          | 75           |  |  |  |

Таблица 3 Результаты сравнения величин относительных продольных деформаций

|                                                              | Es [Дж/см2] |             |             |  |  |  |
|--------------------------------------------------------------|-------------|-------------|-------------|--|--|--|
|                                                              | 0           | 15          | 25          |  |  |  |
|                                                              |             |             |             |  |  |  |
| AK5M2                                                        | 0.542       | 0.995 / 184 | 0.635 / 117 |  |  |  |
| AK5M2/CFRP                                                   | 1.165       | 1.670 / 143 | 1.145 / 98  |  |  |  |
| Эффект усиления [%]                                          | 215         | 167         | 180         |  |  |  |
| ε <sup>min</sup> <sub>уу</sub> [%] / Эффект от облучения [%] |             |             |             |  |  |  |
| AK5M2                                                        | 0.100       | 0.085 / 85  | 0.110 / 110 |  |  |  |
| AK5M2/CFRP                                                   | 0.065       | 0.150 / 231 | 0.195 / 300 |  |  |  |
| Эффект усиления [%]                                          | 65          | 177         | 177         |  |  |  |
| Δε <sub>уу</sub> [%] / Эффект от облучения [%]               |             |             |             |  |  |  |
| АК5М2                                                        | 0.442       | 0.910 / 206 | 0.525 / 119 |  |  |  |
| AK5M2/CFRP                                                   | 1.100       | 1.520 / 138 | 0.950 / 86  |  |  |  |
| Эффект усиления [%]                                          | 249         | 167         | 181         |  |  |  |

Рис. 1. Схема регистрации изображений со спекл-картины на поверхности образца AK5M2 (а) и с поверхности образца AK5M2/*CFRP* (в). На вставках (б) и (г) представлено схематически поперечные сечения с приповерхностных областей образцов. На вставке (д) представлена микрофотография облученной приповерхностного слоя сплава: А - AK5M2; Б1 и Б2 - *CFRP*; К1 и К2 - цифровые камеры; Р – нагрузка. 1 - AK5M2; 2 - приповерхностный слой AK5M2, облученный электронным пучком; 3 - *CFRP*; 4 – слой эпоксидного связующего - матрицы; 5 - приграничный слой эпоксидного клея, взаимодействующего с поверхностью AK5M2; 6 - приграничный слой эпоксидного клея, взаимодействующего с поверхностью *CFRP*.

Рис. 2. Диаграммы деформирования AK5M2/*CFRP*: 0 Дж/см<sup>2</sup>+ *CFRP* - не облученный образец; 15 Дж/см<sup>2</sup>+ *CFRP* - образец, облученный при  $E_s = 15$  Дж/см<sup>2</sup>; 25 Дж/см<sup>2</sup>+ *CFRP* образец, облученный при  $E_s = 25$  Дж/см<sup>2</sup>.

Рис. 3. Диаграммы деформирования необлученных образцов АК5М2 (0 Дж/см<sup>2</sup>) и АК5М2/*CFRP* (0 Дж/см<sup>2</sup>+ *CFRP*)

Рис. 4. Диаграммы деформирования облученных образцов АК5М2 (15 Дж/см<sup>2</sup>) и АК5М2/*CFRP* (15 Дж/см<sup>2</sup>+ *CFRP*)

Рис. 5. Диаграммы деформирования облученных образцов АК5М2 (25 Дж/см<sup>2</sup>) и АК5М2/*CFRP* (25 Дж/см<sup>2</sup>+ *CFRP*)

Рис. 6. Поверхность разрушения необлученного АК5М2

Рис. 7. Структура поверхности разрушения AK5M2, облученного при  $E_S = 25 \text{ Дж/см}^2$ . Стрелкой указана поверхность облучения.

Рис. 8. Картины распределений  $\varepsilon_{yy}$  на поверхности силумина образцов AK5M2/*CFRP* около точки разрушения: а – образец 0 Дж/см<sup>2</sup>+*CFRP*; b – образец 15 Дж/см<sup>2</sup>+*CFRP*; с – образец 25 Дж/см<sup>2</sup>+*CFRP* 

Рис. 9. Диаграммы деформирования, разделенные на 4 участка, образцов AK5M2/*CFRP*: а – образец 0 Дж/см<sup>2</sup>+*CFRP*; b – образец 15 Дж/см<sup>2</sup>+*CFRP*; с – образец 25 Дж/см<sup>2</sup>+*CFRP*; d - графики  $\theta - \varepsilon$ .

Рис. 10. Сравнительные картины деформаций на 4-х участках образцов АК5M2/*CFRP*: а – образец 0 Дж/см<sup>2</sup>+*CFRP* 

К)











**σ, MIIa** 







# Рисунок 10

