Давление гравитационного поля и вакуума определяет течение времени под поверхностью Земли.

В. Б. Беляев,

E-mail: wbelayev@yandex.ru

Давление вакуума определяется из геометрии пространства вокруг локальной гравитационной системы согласно идее А. Д. Сахарова о «метрической упругости» пространства, т. е. возникновении обобщенной силы, предотвращающей его искривление. Предполагается, что энергия, эквивалентная гравитационному дефекту масс, расходуется на деформацию вакуума. Определяется гравитационное воздействие вещества на вакуум в случае слабо гравитирующего статического центрально-симметричного распределения вещества. Противоположное по знаку давление вакуума соответствует решению уравнений Эйнштейна для такого источника гравитации. Полученная метрика используется для определения течения времени под поверхностью Земли.

1. Введение

Согласно Эйнштейну, кривизна пространства-времени отвечает за гравитацию. Сахаров [1,2] предположил, что гравитация возникает из квантовой теории поля примерно в том же смысле, что и гидродинамика или теория упругости возникает из молекулярной физики. Он считал, что кривизна пространства «приводит к «метрической упругости» пространства, т. е. к обобщенным силам, противодействующим его искривлению. Действие в геометродинамике Эйнштейна отождествляется с изменением действия квантовых флуктуаций вакуума.

Из общей теории относительности следует что гравитационная масса тел, помещенных в замкнутый объем, меньше суммы гравитационных масс этих тел, разбросанных на бесконечное расстояние. Материя, расположенная более компактно, искажает пространство в локальной области в большей степени, однако, создавая меньшую гравитационную массу по сравнению с такое же количество вещества, распределенное по большему объему [3,4]. Этот феномен объясняется передачей энергии в гравитационное поле, которое приводит к деформации пространства. Затрачивание энергии при деформации, проявляющееся в гравитационном дефекте, является проявлением его упругости. Эти свойства используются при определении воздействия гравитационного поля на вакуум и компенсирующего его давления вакуума [5-8].

Экспериментально подтверждено замедление течения времени во внешней области вблизи поверхности Земли, которое соответствует метрике Шварцшильда [9]. Мы показываем, что полученное давление вакуума соответствует решению уравнений Эйнштейна для сферического источника гравитации [7-8]. С помощью этого решения определяется течение времени в центре Земли.

2. Решение уравнений Эйнштейна для сферического источника гравитации

Общий статический, сферически симметричный линейный элемент в сферических координатах $x^i = (ct, r, \theta, \varphi)$ имеет вид

$$ds^{2} = c^{2} f(r) dt^{2} - \frac{dr^{2}}{h(r)} - r^{2} (d\theta^{2} + \sin^{2}\theta \ d\phi^{2}).$$
 (1)

при скорости света c и метрических функциях f(r) и h(r). Тензор энергии-импульса сферически симметричного распределения статического вещества с плотностью ρ и изотропным давлением p описывается диагональной матрицей

$$T_i^i = diag(c^2\rho, -p, -p, -p). \tag{2}$$

Метрические функции ищутся из уравнений Эйнштейна, которые [10] приносят выражающее закон сохранения равенство

$$\nabla_i G_k^i = \frac{dp}{dr} + \frac{p + \rho}{2f} \frac{df}{dr} = 0 \tag{3}$$

и уравнения

$$G_{t}^{t} = \frac{1}{r^{2}} \frac{d}{dr} [r(1-h)] = \chi T_{1}^{1}, \tag{4}$$

$$G_r^r = -\frac{h}{r_f} \frac{df}{dr} + \frac{1}{r^2} (1 - h) = \chi T_2^2, \tag{5}$$

где постоянная χ имеет следующее выражение:

$$\chi = \frac{8\pi\gamma}{c^4} \tag{6}$$

при гравитационной постоянной у.

Интегрируя (4), получаем

$$h(r) = 1 - \frac{\chi}{r} \int_0^r T_1^1 y^2 dy, \tag{7}$$

где y - переменная. Если область, в которой тензор энергии-импульса имеет ненулевое значение, ограничена радиусом a, то при $r \ge a$ имеем

$$h(r) = 1 - \frac{\chi}{r} \int_0^a T_1^1 y^2 dy. \tag{8}$$

Логарифм функции f(r) [5-8] имеет вид

$$\ln[f(r)] = \ln\left(1 - \frac{\chi}{r} \int_{0}^{r} T_{1}^{1} y^{2} dy\right) - \chi \int_{r}^{a} \frac{(T_{1}^{1} - T_{2}^{2})z}{1 - \frac{\chi}{z} \int_{0}^{z} T_{1}^{1} y^{2} dy} dz,\tag{9}$$

где г - переменная.

3. Гравитационная масса сферического распределения статического вещества

Определим гравитационную массу ограниченной сферической области или тела. Поскольку в пустой области пространства метрические коэффициенты соответствуют метрике Шварцшильда

$$ds^{2} = c^{2} \left(1 - \frac{\alpha}{r} \right) dt^{2} - \frac{1}{\left(1 - \frac{\alpha}{r} \right)} dr^{2} - r^{2} (d\theta^{2} + \sin^{2}\theta \, d\varphi^{2})$$
(10)

при

$$\alpha = \frac{2\gamma M}{c^2},\tag{11}$$

то сопоставляя ее коэффициент при dr^2 с (8), с учетом значения постоянной χ (6) получаем значение массы

$$M = \frac{4\pi}{c^2} \int_0^a T_1^1 r^2 dr \,. \tag{12}$$

Отметим, что интегрирование здесь производится при элементе объема

$$dV_c = 4\pi r^2 dr, (13)$$

соответствующего координатной системе отсчета, в то время как в собственной системе отсчета [11] данный элемент пространственного объема

$$V = \sqrt{\det\left[\frac{g_{1p}g_{1q}}{g_{11}} - g_{pq}\right]} dx^2 dx^3 dx^4$$
 (14)

при p, q = 2,3,4 есть

$$dV_p = 4\pi r^2 h^{-1/2} dr. (15)$$

Поскольку h < 1, это означает, что гравитационная масса тел, расположенных в ограниченном объеме, меньше суммы гравитационных масс этих тел, взятых по отдельности. Это различие также называется гравитационным дефектом тела. В ограниченной гравитационной системе появляется отрицательная энергия связи [12]. При сближении частиц происходит обмен энергией между материей и гравитационным полем. Энергия свободно движущейся материальной частицы [5], соответствующая первой компоненте ее вектора энергии-импульса, в пространстве-времени Шварцшильда возрастает при приближении к центру гравитации. Однако в соответствии с теоремой Биркхофа [1] гравитационная масса сферической системы остается постоянной. Это является проявлением того, что материальная частица забирает энергию у вакуума через гравитационное поле [5], что согласуется с его сжатием, то есть, возрастанием отношения собственного объема вакуума области гравитационной системы к этому объему в координатной системе. При торможении сблизившихся частиц и переходе в статическое положение выделяется энергия в виде электромагнитных и гравитационных волн, которая, покидая систему, уменьшает ее гравитационную массу.

4. Давление гравитационного поля и вакуума

Найдем вначале изменение объема пространства, вызываемое сферической массой [5]. Полагая R_V радиусом пространства, с учетом (12) и (14) получим разность между объемом в координатной системе отсчета и собственным объемом

$$\Delta V(R_V) = V^c - V^p = 4\pi \int_0^{R_V} r^2 (1 - h(r)^{-1/2}) dr.$$
 (16)

Поскольку внешнее пространство сферического тела определяется метрикой Шварцшильда, то для достаточно больших R_V ввиду (2), (6), (8), (11), (12) находим

$$\Delta V(R_{V}) = \pi \alpha R_{V}^{2}, \tag{17}$$

то есть, величина изменения объема пространства, создаваемая любым телом, ограничивается только радиусом Вселенной. Этот результат не позволяет определить упругие свойства вакуума в достаточно малой области.

Гравитационное воздействие на вакуум будет определяться как отношение разности собственных энергий, эквивалентных собственным массам двух сферических тел, отличающихся радиусом в координатной системе отсчета на малое значение, к изменению собственного объема вокруг них [5-8]. При этом предполагается, что их гравитационные массы одинаковы.

Рассмотрим для случая слабой гравитации два сферических тела с одинаковой гравитационной массой в координатной системе отсчета и постоянными плотностями ρ_1 , ρ_2 , имеющих радиусы a_1, a_2 . Эта масса составит

$$M = \frac{4}{3}\pi\rho_1 a_1^3 = \frac{4}{3}\pi\rho_2 a_2^3.$$
 (18)

Определим теперь суммарную массу элементов (15) в собственной системе отсчета, то есть, собственную массу каждого из тел. Объем сферического тела в этой системе отсчета с учетом (7) есть

$$V_{\text{int}}^{p}(a) = \int_{0}^{a} 4\pi r^{2} h^{-1/2} dr = \int_{0}^{a} \frac{4\pi r^{2}}{\left(1 - \frac{\chi}{r} \int_{0}^{r} T_{1}^{1} y^{2} dy\right)^{1/2}} dr = \int_{0}^{a} \frac{4\pi r^{2}}{\left(1 - \frac{\chi}{3} c^{2} \rho r^{2}\right)^{1/2}} dr. \tag{19}$$

Разложим выражение под интегралом в степенной ряд и запишем члены, содержащие α в степени не выше пяти. Подставляя значение константы χ (6), получим

$$V_{int}^{p}(a) = \frac{4\pi}{3}a^{3} + \frac{16\pi^{2}\gamma}{15c^{2}}a^{5}\rho + \dots$$
 (20)

При слабом искривлении пространства внутри сферы:

$$\frac{\gamma \rho a^2}{c^2} \ll 1 \tag{21}$$

первые два члена этого разложения составят приблизительный объем сферического тела в собственной системе отсчета. Поскольку плотность вещества постоянна, то масса тела в этой системе отсчета или собственная масса будет

$$M^{p} = V_{int}^{p}(a)\rho. \tag{22}$$

Разница между собственными массами рассматриваемых тел с учетом (18) есть

$$\Delta M^{p} = M_{1}^{p} - M_{2}^{p} = \frac{16\pi^{2}\gamma}{15c^{2}} (a_{1}^{5}\rho_{1}^{2} - a_{2}^{5}\rho_{2}^{2}) = \frac{16\pi^{2}\gamma}{15c^{2}} a_{1}^{6}\rho_{1}^{2} \left(\frac{1}{a_{1}} - \frac{1}{a_{2}}\right).$$
 (23)

Положим $a_1 < a_2$. Ввиду одинаковости гравитационных масс обоих тел искривление пространства в области $r > a_2$, создаваемое ими, будет одинаковым. Найдем разницу между объемами в собственной системе отсчета, которые в координатной системе задаются условием $r < a_2$. Для первого тела этот объем является суммой объема самого тела и внешней области $a_1 < r < a_2$, а именно,

$$V_{1}^{p} = V_{int}^{p}(a_{1}) + V_{ext}^{p}(a_{1}, a_{2}),$$
(24)

где второй член обозначает

$$V_{ext}^{p}(a_{1}, a_{2}) = \int_{a_{1}}^{a_{2}} 4\pi r^{2} h^{-1/2} dr.$$
 (25)

Проинтегрируем его:

$$V_{ext}^{p}(a_{1}, a_{2}) = \int_{a_{1}}^{a_{2}} \frac{4\pi r^{2}}{\sqrt{1 - \frac{\alpha}{r}}} dr.$$
 (26)

Раскладывая подынтегральное выражение (26) в степенной ряд, при $\alpha / r << 1$ получим

$$V_{ext}^{p}(a_{1}, a_{2}) = \frac{4\pi}{3}(a_{2}^{3} - a_{1}^{3}) + \pi\alpha(a_{2}^{2} - a_{1}^{2}).$$
(27)

В результате с учетом (20) объем (24) составит

$$V_{1}^{p} = \frac{4\pi}{3}a_{2}^{3} + \frac{8\pi^{2}\gamma\rho_{1}a_{1}^{3}}{3c^{2}}(a_{2}^{2} - a_{1}^{2}) + \frac{16\pi^{2}\gamma}{15c^{2}}a_{1}^{5}\rho_{1} = \frac{4\pi}{3}a_{2}^{3} + \frac{8\pi^{2}\gamma\rho_{1}a_{1}^{3}}{15c^{2}}(5a_{2}^{2} - 3a_{1}^{2}).$$
 (28)

Область $r < a_2$ ограничивает второе тело, собственный объем которого для слабого гравитационного поля согласно (20) есть

$$\tilde{\mathbf{V}}_{1}^{p} = \mathbf{V}_{\text{int}}^{p}(a_{2}) = \frac{4\pi}{3}a_{2}^{3} + \frac{16\pi^{2}\gamma}{15c^{2}}a_{2}^{5}\rho_{2}.$$
(29)

Разность между собственными объемами, ограниченными в координатной системе радиусом a_2 , будет

$$\Delta V^{p} = V_{1}^{p} - V_{2}^{p} = \frac{8\pi^{2}\gamma\rho_{1}a_{1}^{3}}{5c^{2}}(a_{2}^{2} - a_{1}^{2}). \tag{30}$$

Определим отношение изменения собственной энергии сферического тела

$$\Delta \mathbf{E}^{P} = c^{2} \Delta M^{P} \tag{31}$$

к изменению его объема при малом $\Delta a = a_2 - a_1$ при сохранении его гравитационной массы в случае слабого гравитационного поля. Оно составит

$$\wp = \frac{\Delta E^{P}}{\Delta V^{P}} = \frac{1}{3} c^{2} \rho . \tag{32}$$

Правая и левая части этого равенства вместе совпадают с уравнением состояния вещества в ультрарелятивистском пределе [3] и с соотношением [13] между плотностью и давлением фотонного газа. С увеличением дефекта массы разность между собственным объемом сферы и ее объемом в удаленной системе координат

$$\Delta V = (V_1^p - V^c) - (V_2^p - V^c) = \Delta V^p$$
(33)

увеличивается. В теории упругости \wp соответствует давлению идеального газа. Являясь положительной, эта величина характеризует гравитационное воздействие материи на вакуум, которое заключается в его сжатии. Соответственно, давление вакуума в соответствии с идеей Сахарова о «метрической упругости» направлено в противоположную сторону и в статическом случае будет

$$p_{v} = -\wp$$
 (34)

и может рассматриваться как среднее давление вакуума внутри сферы r < a при условии, что ρ является суммарной плотностью вещества и негравитационных полей.

Рассмотрим пространство-время, описываемое метрикой

$$ds^2 = g_{ii}dx^i dx^j (35)$$

и содержащее источник гравитации с плотностью ρ , которое можно считать локально статическим с изотропным давлением. Выделим его достаточно малую сферическую область, в которой метрические коэффициенты и плотность в первом приближении могут считаться постоянными. Тогда гравитационное поле, создаваемое материей в ней, соответствует метрике (1). Предполагается, что оно может быть описано рассмотренным случаем для слабой гравитации. Будем считать сферу достаточно большой, чтобы не учитывать дискретность вещества.

Возьмем теперь пространство-время без источника гравитации в этой сфере. Его метрические коэффициенты будут слабо отличаться от g_{ij} . Перейдем к локально геодезической системе координат [3], связанной с центром этой области. Поместим затем отсутствующий источник гравитации в пустую сферу и проведем расчеты, аналогичные сделанным для сферического тела, положив радиус выделенной сферы за больший радиус. Таким образом, мы определим давление гравитационного поля \wp для данного случая. В локальной области пространства-времени, в которой источник гравитации статичен в собственной системе отсчета, давление вакуума в этой системе отсчета согласно (32) и (34) есть

$$p_{\nu} = -\frac{1}{2}c^{2}\rho. \tag{36}$$

Будучи отрицательным, оно направлено на расширение пространства. Предполагается, что именно давление вакуума является источником гравитации и входит в тензор энергии-импульса (2).

Непосредственное перенесение результатов вычисления давления вакуума для слабо гравитирующей сферы в произвольную точку пространства в выбранной системе отсчета обеспечивается соблюдением постоянства физических констант, определяющих значение плотности материи, как источника гравитационного поля. Это предполагает выполнение так называемого сильного принципа эквивалентности, согласно которому в каждой точке пространства-времени в произвольном гравитационном поле можно выбрать локальноинерциальную систему координат, такую, что в достаточно малой окрестности рассматриваемой точки законы природы будут иметь форму, которая не зависит от расположения этой точки.

5. Решение уравнений Эйнштейна для сферы с давлением $p = -(1/3)c^2\rho$

При постоянной плотности и давлении, соответствующим соотношению (36), уравнения (3)-(5) имеют [7,8] решение

$$h(r) = 1 - \frac{8\pi\gamma}{3c^2} \rho r^2,\tag{37}$$

$$f(r) = const. (38)$$

Метрические функции f и h должны удовлетворять внешнему решению Шварцшильда (10)

$$f_{ext}(r) = h_{ext}(r) = 1 - \frac{\alpha}{r}$$
, $\alpha = \frac{8\pi\gamma}{3c^2}\rho a^3$, $r \ge a$. (39)

Таким образом, мы имеем граничные условия

$$f(a) = h(a) = 1 - \frac{\alpha}{a} = 1 - \frac{8\pi\gamma}{3c^2}\rho a^2,$$
(40)

и поскольку функция f является постоянной внутри сферы (38), она будет иметь значение

$$f(r) = 1 - \frac{8\pi\gamma}{3c^2}\rho a^2, \quad r \le a.$$
 (41)

Пространство-время внутри сферы следующее:
$$ds^2 = c^2 \left(1 - \frac{8\pi\gamma}{3c^2} \rho a^2 \right) dt^2 - \frac{dr^2}{1 - \frac{8\pi\gamma}{3c^2} \rho r^2} - r^2 (d\theta^2 + \sin^2\theta d\phi^2). \tag{42}$$

Полученная метрика соответствует метрике Фридмана с постоянным масштабным коэффициентом длины, с постоянной кривизны пространства

$$k = (1/3)\gamma c^2 \rho \tag{43}$$

и временем

$$\tau = \left(1 - \frac{\chi c^2}{3}\rho a^2\right)^{1/2} t. \tag{44}$$

Внутри сферы время во всех точках течет одинаково.

6. Определение течения времени под поверхностью Земли

Внутри Земля состоит из нескольких областей, плотность в которых существенно отличается, см. Рис. 1.

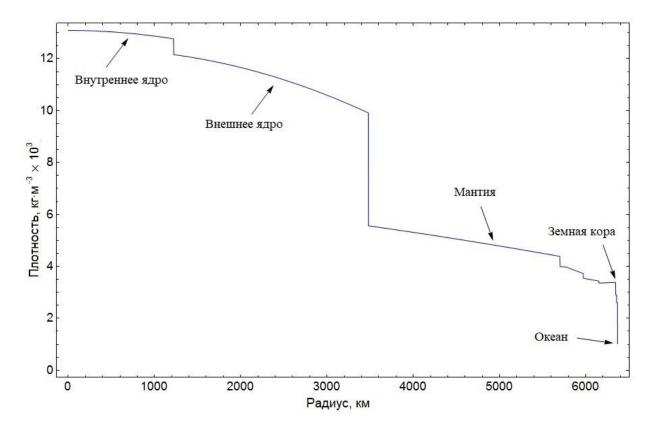


Рис. 1. График построен по данным из [14].

Определим вначале течение времени в центре Земли. Мы считаем приблизительно плотностью ядра $\rho_{\rm g}=11000~{\rm kr/m^3}$ и плотностью внешней области, включающей мантию и кору, $\rho_{\rm внеш}=4400~{\rm kr/m^3}$. В этом случае гравитационное поле внутри Земли будет представлять собой сумму полей двух сфер с плотностью и радиусами $\rho_1=\rho_{\rm внешн},\,a_1=a_{\rm Земл}=6378~{\rm km}$ и $\rho_2=\rho_{\rm g}-\rho_{\rm внешн}=6600~{\rm kr/m^3},\,a_2=a_{\rm g}=3488~{\rm km}.$ Эффект замедления времени в центре Земли будет результатом суперпозиции полей двух сфер. Ввиду (44) и (6) время в нем составит

$$\tau = \left[1 - \frac{4\pi\gamma}{3c^2} (a_1^2 \rho_1 + a_2^2 \rho_2)\right] t. \tag{45}$$

Относительная разница между промежутками времени в отсутствие гравитации и в центре Земли будет $(t_0 - \tau_{\rm ц})/t_0 = 8,05 * 10^{-10}$. Течение времени в центре будет мало отличаться от течения времени во всей области ядра. Относительная разница между показаниями часов в центре Земли и на поверхности составит $(t_{\rm пов} - \tau_{\rm ц})/t_{\rm пов} = 1,1 * 10^{-10}$. Если считать возраст Земли $T_3 = 4.54 \cdot 10^9$ лет [15], то центр Земли будет моложе ее поверхности на 1/2 года. Этот результат примерно в 5 раз меньше величины, полученной с использованием ньютоновских потенциалов [15].

Найдем, как будет меняться время в земной коре. Ее средняя плотность определена $\rho_{\rm K}=2800~{\rm kr/m^3}$. Рассмотрим гравитационное поле, создаваемое двумя сферами, одна из которых имеет радиус Земли и плотность $\rho_{\rm K}$, а масса второй равна оставшейся части Земли $M_2=2.94*10^{24}~{\rm kr}$ и ее радиусом является радиус Земли, уменьшенный на среднюю толщину коры $a_{\rm K}$. Замедление времени в этой системе в пределах коры будет суммарным результатом гравитационного поля, создаваемого первой сферой, с метрикой (42) и создаваемого второй сферой поля Шварцшильда (10):

$$\Delta \tau = \left[1 - \frac{\gamma}{c^2} \left(\frac{4\pi}{3} \alpha_1^2 \rho_{\kappa} + \frac{M_2}{r}\right)\right] \Delta t,\tag{46}$$

где расстояние до центра Земли находится в пределах $a_1 \ge r \ge a_1 - a_{\kappa}$. В пределах земной коры оно может быть переписано в виде

$$\Delta \tau = \left[1 - \frac{\gamma}{c^2} \left(\frac{4\pi}{3} a_1^2 \rho_{\kappa} + \frac{M_2}{a_1} + \frac{M_2 l}{a_1^2} \right) \right] \Delta t, \tag{47}$$

где l это расстояние до земной поверхности. Таким образом, разница промежутков времени, измеренных на поверхности Земли и в ее коре составит

$$\Delta \tau_{\Pi} - \Delta \tau_{K} = \frac{\gamma}{c^2} \frac{M_2 l}{a_3^2} \Delta \tau_{\Pi} \tag{48}$$

ввиду приближенного равенства $\Delta \tau_{\scriptscriptstyle \Pi} \approx \Delta t$. В численном выражении это будет

$$\Delta \tau_{\Pi} - \Delta \tau_{K} = (5.36 * 10^{-17} \text{ m}^{-1}) l \Delta \tau_{\Pi}. \tag{49}$$

Согласно результатам, полученным в [15] с использованием линейной зависимости времени от гравитационного потенциала численный коэффициент в этой формуле составляет около $1.1*10^{-16}~{\rm M}^{-1}$.

Большая часть земной поверхности покрыта океаном, и если в качестве плотности в (46) подставить плотность воды $\rho_{\rm B}=1020~{\rm kr/m^3}$, рассматривая ее как плотность первой сферы, то масса второй сферы составит $\widetilde{M}_2=4.86*~10^{~24}~{\rm kr}$. Разница промежутков времени на поверхности и глубине составит

$$\Delta \tau_{\Pi} - \Delta \tau_{\Gamma \Pi} = (8.86 * 10^{-17} \text{ m}^{-1}) l \Delta \tau_{\Pi}. \tag{50}$$

7. Выводы

Возможный механизм возникновения давления вакуума основан на гравитационном дефекте масс и предположении об упругости пространства в соответствии с законом сохранения энергии. Сферические источники гравитации с постоянными плотностями и одинаковыми гравитационными массами рассматриваются в сферах с одинаковым объемом в удаленной системе отсчета. Разница между собственным объемом сфер и их объемом в удаленной системе отсчета увеличивается с увеличением дефекта массы, что дает положительное давление гравитационного поля. В статическом случае давление вакуума уравновешивает воздействие гравитации на вакуум согласно теории упругости. Получено уравнение состояния для слабогравитирующей сферы в собственной системе отсчета. Оно может быть распространено на локально изотропный статический источник гравитации. Распределенная в пространстве материя возбуждает вакуум, в результате чего он приобретает ненулевое давление. Оно соответствует решению уравнений Эйнштейна, в котором течение времени одинаково во всех точках внутри сферы с постоянной плотностью и давлением. Полученную метрику можно использовать, чтобы определить ход времени в недрах Земли.

Точность определения течения времени с помощью атомных часов [16] позволяет определить эффект замедления времени под поверхностью земной коры или океана. На результат может влиять отклонение плотности от среднего в различных районах.

Литература

- 1. А. Д. Сахаров, "Вакуумные квантовые флуктуации в искривленном пространстве и теория гравитации", Докл. АН СССР, 177:1 (1967), 70–71.
- 2. S. E. Karam, Sakharov Curvature in Rowlands Duality Spacetime: Do vacuum 'spacetime forces' curve matter? J. Phys.: Conf. Cep. 1051 012017 (2018).
- 3. Л. Д. Ландау, Е. М. Лифшиц, Теория поля, 6-е издание, Наука, Москва, 1973.
- 4. Ч. Миснер, К. Торн, Дж. Уилер, Гравитация, Мир, Москва, 1977 (С. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman and Company, San-Francisco, 1973.)
- 5. В. Б. Беляев, Динамика в общей теории относительности: Вариационные методы URSS. 2017. 216 с
- 6. D. Yu. Tsipenyuk, W. B. Belyaev, Dependence of universe deceleration parameter on cosmological constant: mechanism of vacuum pressure excitation by matter. Rom. Rep. Phys. 2020;72:113.
- 7. D. Yu. Tsipenyuk, W. B. Belyaev, Homogeneous Sphere with Excited Vacuum Pressure, Applications in Extended Space Model and Cosmology. In: Dong S-H, editor. New Trends in Physical Science Research Vol. 6. Hong Kong: BP International; 2022. p. 144-155. DOI: 10.9734/bpi/ntpsr/v6/2558A
- 8. V. Belayev, (2022). The vacuum pressure inside a sphere with a substance of constant density and the corresponding space-time metric. Cambridge Open Engage. Preprint, https://www.cambridge.org/engage/coe/article-details/626268b288636c75591b4880, doi:10.33774/coe-2022-5j50g
- 9. C. W. Chou, D. B. Hume, T. Rosenband, & D. J. Wineland, Optical clocks and relativity. Science 329, 1630–1633 (2010).
- 10. P. O. Mazur, E. Mottola, Surface tension and negative pressure interior of a non-singular 'black hole'. Class. Quantum Grav. 2015;32:215024. arXiv:1501.03806
- 11. П. К. Рашевский, Риманова геометрия и тензорный анализ, 3-е изд., Наука, Москва, 1967.
- 12. D. Yu. Tsipenyuk, W. B. Belyaev, Astrophysical and microcosm's applications of 2hv photon gravitational mass, Indian J. Phys. 96, 1607–1611 (2021).
- 13. Р. Толмен, Относительность, термодинамика и космология, Наука, Москва, 1974 (R.C. Tolman, Relativity, Thermodynamics and Cosmology, Oxford: At the Clarendon Press, 1969).
- 14. A. M. Dziewonski and D. L. Anderson, Preliminary reference Earth model, Physics of the Earth and Planetary Interiors, 25 (1981) 297-356.
- 15. U. I. Uggerhøj, R. E. Mikkelsen and J. Faye, The young centre of the Earth, 2016 Eur. J. Phys. 37 035602, arXiv:1604.05507.
- 16. B. L. Schmittberger, D. R. Scherer, A review of contemporary atomic frequency standards, arXiv:2004.09987.