В.А. Чуриков

ДРОБНОЕ ИНТЕГРОДИФФЕРЕНЦИРОВАНИЕ ДЕЛЬТА- ФУНКЦИИ ДИРАКА С ПОМОЩЬЮ *d*-ОПЕРАТОРА

E-mail: vachurikov@list.ru.

Аннотация. Производится дифференцирование и интегрирование δ -функции Дирака с помощью d-оператора дробного интегродифференцирования. Для этого используется разложение в степенной ряд одного из возможных предельных представлений δ -функции, который поэлементно интегродифференцируется d-оператором.

Ключевые слова. Дробный анализ, *d*-оператор, дробная производная, дробное интегрирование, дельта-функция, нормальное распределение, полиномы интегродифференцирования.

Найдём дробную производную и неопределённый интеграл, дельтафункции комплексного порядка $s=\chi+i\gamma$ с помощью d-оператора [1]. Для этого будем использовать предельное представление δ -функции через предел по параметру $\varepsilon \to 0$ нормального распределения с математическим ожиданием в нулевой точке [2]

$$\delta(x) = \lim_{\varepsilon \to 0} \frac{1}{2\sqrt{\pi\varepsilon}} e^{-\left(\frac{x}{2\sqrt{\varepsilon}}\right)^2} = \lim_{\varepsilon \to 0} \frac{1}{2\sqrt{\pi\varepsilon}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{x}{2\sqrt{\varepsilon}}\right)^{2n}$$

Здесь представлено разложение экспоненты в степенной ряд.

Производная $\delta^{-s}(x)$ и первообразная $\delta^{+s}(x)$ дробного порядка s получается с помощью действия на дельта-функцию $\delta(x)$ оператором дробного интегродифференцирования $d^{\pm s}x$, где знак минус соответствует дробному дифференцированию, а плюс – дробному интегрированию

$$\delta^{\pm s}(x) = d^{\pm s}x : \delta(x) = d^{\pm s}x : \left[\lim_{\varepsilon \to 0} \frac{1}{2\sqrt{\pi\varepsilon}} e^{-\left(\frac{x}{2\sqrt{\varepsilon}}\right)^{2}}\right] =$$

$$= d^{\pm s}x : \left[\lim_{\varepsilon \to 0} \frac{1}{2\sqrt{\pi\varepsilon}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \left(\frac{x}{2\sqrt{\varepsilon}}\right)^{2n}\right].$$

Здесь, после второго равенства дано разложение экспоненты нормального распределения в степенной ряд.

После интегродифференцирования, получим

$$\delta^{\pm s}(x) = \lim_{\varepsilon \to 0} \left[\frac{1^{\mp s}}{2\sqrt{\pi\varepsilon}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{\Gamma(2n+1)}{\Gamma(2n\pm s+1)} \left(\frac{1}{2\sqrt{\varepsilon}} \right)^{2n} x^{2n\pm s} \right] + C_{\pm s}(x) =$$

$$= 1^{\mp s} \lim_{\varepsilon \to 0} \left[\frac{x^{\pm s}}{2\sqrt{\pi\varepsilon}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{(2n)!}{\Gamma(2n\pm s+1)} \left(\frac{x}{2\sqrt{\varepsilon}} \right)^{2n} \right] + C_{\pm s}(x).$$

Здесь $C_{\pm s}(x)$ - полиномы интегродифференцирования порядка s с произвольными численными коэффициентами, которые можно приравнять к нулю [1]; $\Gamma(x)$ – гамма-функция; $1^{\mp s}$ - коэффициенты, который появляются при интегродифференцировании единица комплексного порядка $s=\chi+i\gamma$

$$1^{\mp s\{k\}} = \exp(\mp i2\pi sk) = \cos(2\pi sk) \mp i\sin(2\pi sk)$$

Если дробная производная вещественная, т. е. $i\gamma$ =0, тогда s= χ . В зависимости от значения порядка интегродифференцирования s= χ + $i\gamma$, число коэффициентов будет разным, от одного, до бесконечного счётного множества.

В случае целочисленных порядков будет по одному коэффициенту, тогда k=0. Для рациональных порядков s=r/p (p>1), тогда число коэффициентов будет конечным k=0, 1, 2, ..., p. Если порядок s иррациональный, то коэффициенты образуют бесконечное счётное множество k=0, \pm 1, \pm 2, ...

Полученные производные неопределённые интегралы можно получить аналогично, но используя другие представления для дельта-функции, которые могут приводить к другим результатам.

Литература

Чуриков В.А. Локальный d-оператор дробного дифференцирования и дробного интегрирования комплексных порядков вещественной переменной // Современное состояние и проблемы естествознания: сборник трудов всероссийской научно-практической конференции молодых учёных, аспирантов и студентов, г. Юрга, Юргинский технологический институт, 17-18 апр. 2014. — Томск: Изд-во томского политех. ун-та, -2014. — с. 283-289.

Антосик П., Микусинский Я., Сикорский Р. Теория обобщенных функций: секвенциальный подход. Москва: Мир, 1976, –312 с.