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Abstract

This study delves into predictive modeling of blood pressure categories, focusing on the
United States, addressing the global health concern of hypertension. Mainly utilizing
demographic and dietary data from the CDC National Health and Nutrition Examination
Survey (NHANES) 2017-2018, aims to craft personalized management strategies. Drawing
on research emphasizing the multifaceted determinants of hypertension, we leverage the
multinomial regression model with lasso regularization as a baseline. Furthermore, the study
advances to the extreme gradient boosting (XGB) algorithm, achieving a slightly better
performance than multinomial regression. Evaluation metrics include accuracy and Area
Under the Curve (AUC) in a 10-fold cross-validation framework. The study provides possible
personal blood pressure management solution.
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1 Introduction

Hypertension, a prevalent and frequently asymptomatic health condition, persists as a global health concern,
significantly contributing to the burden of cardiovascular diseases (Forouzanfar et al. 2016). Against the
backdrop of recent advancements in data science and machine learning, this paper initiates a meticulous
investigation into the predictive modeling of blood pressure categories, specifically concentrating on the
United States. The study underscores the importance of integrating demographic and dietary information to
formulate personalized management strategies tailored to the unique health landscape of the U.S.

Contemporary research on hypertension highlights the multifaceted nature of its determinants, necessitating
a comprehensive approach to prediction and management. A seminal study by Igbal et al. (2021) emphasizes
the significance of demographic factors in predicting hypertension prevalence, underscoring the need for
nuanced models that account for individual characteristics. Additionally, the work of Johnson et al. (2009)
advocates for a personalized approach, accentuating the substantial influence of dietary habits on blood
pressure regulation.

The dataset utilized in this study originates from the Centers for Disease Control and Prevention (CDC)
National Health and Nutrition Examination Survey (NHANES), focusing specifically on the years 2017-
2018. Our dataset encompasses a comprehensive array of variables, including blood pressure measurements,
demographic profiles, nutrient intakes, diabetes indicators, and health insurance details. By integrating these
diverse factors, the study aims to delve into the intricate relationships between various determinants and
blood pressure outcomes, ultimately seeking to develop a predictive model tailored to the specific context of
blood pressure management in the United States.
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As a baseline, we employ multinomial regression with lasso regularization and 10-fold cross-validation. This
choice is motivated by the desire for a robust baseline that reflects the complexities of medical datasets,
particularly in disease prediction scenarios. Multinomial regression, incorporating lasso regularization, brings
advantages such as interpretability and the ability to handle diverse data characteristics. In further pursuit,
inspired by Islam et al. (2023) in their research on hypertension modeling in Ethiopia, we leverage the
extreme gradient boosting (XGB) algorithm to surpass the multinomial regression with lasso regularization
baseline. The adoption of these methodologies aligns with the evolving landscape of predictive modeling in
hypertension research. With a focus on predicting blood pressure categories (normal, elevated, and high), we
evaluate these models based on their accuracy and Area Under the Curve (AUC), calculated using 10-fold
cross-validation.

As we embark on this study, we draw from a rich tapestry of existing research to contribute novel insights into
the predictive modeling of blood pressure categories. Our aim extends beyond advancing the technical aspects
of machine learning applications; we seek to provide practical and personalized strategies for hypertension
management, aligning with the evolving landscape of precision medicine in cardiovascular health.

2 Data

2.1 Overview

According to the Centers for Disease Control and Prevention (2023), NHANES field operations were suspended
in March 2020 because of COVID-19. Consequently, data collection for the NHANES 2019-2020 cycle was
incomplete, rendering it non-nationally representative. In response to the disruption caused by the COVID-19
pandemic, we only use those data collected in the 2017-2018 cycle to ensure the study’s relevance and
generalizability to the U.S. civilian non-institutionalized population.

NHANES employs a complex, multistage probability design for sampling the civilian, noninstitutionalized
population in the U.S. In 2017-2018, 16,211 persons were selected from 30 survey locations, with 9,254
completing interviews and 8,704 undergoing examinations. Fach participant has a unique identification
number SEQN. To ensure representation, materials were translated into various languages, and cultural
competency training was provided to staff (Centers for Disease Control and Prevention 2020a).

In the context of this study, the most important data we selected is the examination data of blood pressure
(BPX_J), which “provides data for three consecutive blood pressure (BP) measurements and other method-
ological measurements to obtain an accurate BP. Heart rate or pulse, depending on age, are also reported
(Centers for Disease Control and Prevention 2020b).” This data contains 4 readings of systolic blood pressure
and 4 readings of diastolic blood pressure for each participant. In order to create a response variable about
blood pressure level (BPXLEVEL), we first average the 4 readings of systolic blood pressure and diastolic blood
pressure of each participant respectively. Then we follow the definition of normal, elevated, and hypertension
provided by Centers for Disease Control and Prevention (2021) to divide our average systolic blood pressure
and diastolic blood pressure into three blood pressure levels shown in table 1.

Table 1: Blood Pressure Levels Divided by Systolic and Diastolic Blood Pressure

Blood Pressure Levels Systolic Blood Pressure Diastolic Blood Pressure
Normal (BPXLEVEL = 0) < 120 mmHg and < 80 mmHg
Elevated (BPXLEVEL = 1) 120-129 mmHg and < 80 mmHg
Hypertension (BPXLEVEL = 2) > 130 mmHg or > 80 mmHg

After getting the blood pressure levels (BPXLEVEL), we merged four other data from the NHANES, including
Demographic Variables and Sample Weights (DEMO_J), Dietary Interview - Total Nutrient Intakes, First
Day (DR1TOT_J), Diabetes (DIQ_J), and Health Insurance (HIQ_J), based on those participants’ unique
identification number SEQN.

Here are some description of these data:
o The Demographic Variables and Sample Weights (DEMO_J) data “provides individual, family, and
household-level information (Centers for Disease Control and Prevention 2020c).”

o The Dietary Interview - Total Nutrient Intakes, First Day (DR1TOT_J) data contains “detailed dietary
intake information from NHANES participants. The dietary intake data are used to estimate the
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types and amounts of foods and beverages (including all types of water) consumed during the 24-hour
period prior to the interview (midnight to midnight), and to estimate intakes of energy, nutrients, and
other food components from those foods and beverages (Centers for Disease Control and Prevention
2020f).”

o The Diabetes (DIQ_J) data “provides personal interview data on diabetes, prediabetes, use of insulin or
oral hypoglycemic medications, and diabetic retinopathy (Centers for Disease Control and Prevention
2020d).”

o The Health Insurance (HIQ_J) data “provides respondent-level interview data on insurance coverage,
type of insurance coverage, coverage of prescription drugs, and uninsured status during the past 12
months (Centers for Disease Control and Prevention 2020e).”

By merging data, selecting relevant predictors, and removing some of blank data entries, we got a curated
data frame with 6,125 observations and 80 variables. Detail about these 80 variables are shown in table 2.

Table 2: Variable Names and Labels in the Curated Data Frame

Name Label Source | Name Label Source

BPXLEVEL Blood pressure levels Derived BPACSZ Coded cuff size BPX_J

BPXPLS 60 sec. pulse BPX_J BPXPTY Pulse type BPX_J

RIAGENDR Gender DEMO_J RIDAGEYR Age in years at screening  DEMO_J

RIDRETH3 Race / Hispanic origin w/ DEMO_J DMDHHSIZ Total number of people in DEMO_J
NH Asian the Household

DMDHHSZA Number of children 5 years DEMO_J DMDHHSZB Number of children 6-17 DEMO_J
or younger in HH years old in HH

DMDHHSZE Number of adults 60 years DEMO_J DRITNUMF Number of foods / bever- DR1TOT_J
or older in HH ages reported

DRITKCAL Energy (kcal) DRITOT_J | DRITPROT Protein (gm) DR1TOT_J

DRITCARB Carbohydrate (gm) DRITOT_J | DRITSUGR Total sugars (gm) DR1TOT_J

DRITFIBE Dietary fiber (gm) DRITOT_J | DRITTFAT Total fat (gm) DR1TOT_J

DRITSFAT Total saturated fatty acids DR1TOT_J | DRITMFAT Total monounsaturated DR1TOT_J
(gm) fatty acids (gm)

DRI1TPFAT Total polyunsaturated DRITOT_J | DRITCHOL Cholesterol (mg) DR1TOT_J

fatty acids (gm)
DRITATOC Vitamin E as alpha- DR1TOT_J | DR1ITATOA Added alpha-tocopherol DR1TOT_J

tocopherol (mg) (Vitamin E) (mg)
DRITRET  Retinol (mcg) DRITOT_J | DRITVARA Vitamin A, RAE (mcg) DRITOT_J
DRITACAR Alpha-carotene (mcg) DRITOT_J | DRITBCAR Beta-carotene (mcg) DR1TOT_J
DRITCRYP Beta-cryptoxanthin (mcg) DRITOT_J | DRITLYCO Lycopene (mcg) DR1TOT_J
DR1TLZ Lutein + zeaxanthin (mcg) DRITOT_J | DRITVB1  Thiamin (Vitamin B1) DR1TOT_J
(mg)
DR1TVB2 Riboflavin (Vitamin B2) DR1TOT_J | DRITNIAC Niacin (mg) DRITOT_J
(mg)
DR1ITVB6  Vitamin B6 (mg) DRITOT_J | DRITFOLA Total folate (mcg) DR1TOT_J
DR1TFA Folic acid (mcg) DRITOT_J | DRITFF Food folate (mcg) DR1TOT_J
DRITFDFE Folate, DFE (mcg) DRITOT_J | DRITCHL  Total choline (mg) DR1TOT_J
DR1TVB12 Vitamin B12 (mcg) DRITOT_J | DR1TB12A Added vitamin B12 (mcg) DRI1TOT_J
DRITVC  Vitamin C (mg) DRITOT_J | DR1TVD  Vitamin D (D2 + D3) DRITOT_J
(mcg)
DR1TVK Vitamin K (mcg) DRITOT_J | DRITCALC Calcium (mg) DR1TOT_J
DRITPHOS Phosphorus (mg) DRITOT_J | DR1ITMAGN Magnesium (mg) DR1TOT_J
DRITIRON Iron (mg) DRITOT_J | DRITZINC Zinc (mg) DR1TOT_J
DRITCOPP Copper (mg) DRITOT_J | DRITSODI Sodium (mg) DR1TOT_J
DRITPOTA Potassium (mg) DRITOT_J | DRITSELE Selenium (mcg) DR1TOT_J
DRITCAFF Caffeine (mg) DRITOT_J | DRITTHEO Theobromine (mg) DR1TOT_J
DRITALCO Alcohol (gm) DRITOT_J | DR1TMOIS Moisture (gm) DR1TOT_J

DR1TS040 SFA 4:0 (Butanoic) (gm) DRITOT_J | DR1TS060 SFA 6:0 (Hexanoic) (gm)  DR1TOT_J
DRITS080 SFA 8:0 (Octanoic) (gm)  DRITOT_J | DRITS100 SFA 10:0 (Decanoic) (gm) DRITOT_J
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Table 2 (Continue): Variable Names and Labels in the Curated Data Frame

Name Label Source Name Label Source

DR1TS120 SFA 12:0 (Dodecanoic) DRITOT_J | DR1TS140 SFA 14:0 (Tetradecanoic) DRITOT_J
(gm) (gm)

DR1TS160 SFA 16:0 (Hexadecanoic) DRITOT_J | DR1TS180 SFA 18:0 (Octadecanoic) DRITOT_J
(gm) (gm)

DR1TM161 MFA 16:1 (Hexadecenoic) DRITOT_J | DR1TM181 MFA 18:1 (Octadecenoic) DR1TOT_J
(gm) (gm)

DR1TM201 MFA 20:1 (Eicosenoic) DRITOT_J | DR1TM221 MFA 22:1 (Docosenoic) DR1TOT_J
(gm) (gm)

DR1TP182 PFA 182 (Octadeca- DRITOT_J | DR1TP183 PFA 183 (Octadeca- DR1TOT_J
dienoic) (gm) trienoic) (gm)

DR1TP184 PFA 18:4 (Octadecate- DRITOT_J | DR1TP204 PFA 20:4 (Eicosate- DR1TOT_J
traenoic) (gm) traenoic) (gm)

DR1TP205 PFA 20:5 (Eicosapen- DRITOT_J | DR1TP225 PFA 22:5 (Docosapen- DR1TOT_J
taenoic) (gm) taenoic) (gm)

DR1TP226 PFA 22:6 (Docosahex- DRITOT_J | DIQO10 Doctor told you have dia- DIQ_J
aenoic) (gm) betes

DIQO050 Taking insulin now DIQ_J HIQO11 Covered by health insur- HIQ_J

ance

2.2 Visualization

In this section, we present two scatterplot matrices that provide a comprehensive visual exploration of the
dataset. The first matrix focuses on demographic information, offering insights into the relationships and
distributions among key demographic variables. The second matrix encompasses macronutrient intakes.
These visualizations aim to reveal potential patterns, correlations, and trends within the dataset.

BPXLEVEL RIAGENDR RIDAGEYR

EEm I
H mu —-— (N NN
HE Bl = i

= S ]
== 1ifin

RIDRETH3

13A3Xd8

1000 -

0-

1500

|

g

[]
o -

HANIOVIY

"AIOVAd

B — ——

B == =—=—————=

5@@5-__ w r%
Homem_  sesm f P z
== == il
#: — - e ——— e e e~ l S .

Figure 1: Scatterplot Matrix of BPXLEVEL Against Some Demographic Information

In Figure 1, we utilized a color-coded scheme to represent different blood pressure levels: red for normal,
green for elevated, and blue for hypertension. By examining the relationship between blood pressure levels
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(BPXLEVEL) and gender (RIAGENDR), noteworthy patterns emerge. The plot reveals a higher prevalence of
elevated blood pressure and hypertension among male participants (coded as 1) compared to their female
counterparts (coded as 2).

Further exploration of blood pressure levels against age (RIAGEYR) exposes intriguing insights. The distribu-
tions indicate a skewed pattern, with individuals younger than 20 predominantly exhibiting normal blood
pressure levels. However, a concerning trend is observed among those around 60 years old, who are more
likely to have hypertension. Age emerges as a potential influential factor for predicting blood pressure levels
in future models.

Analyzing blood pressure levels against race (RIDRETH3) unveils distinct prevalence rates. Non-Hispanic White
individuals (coded as 3) demonstrate the highest incidence of hypertension, followed by Non-Hispanic Black
(coded as 4), Mexican American (coded as 1), and Non-Hispanic Asian (coded as 6) individuals. Categories 2
and 7, representing other Hispanic and other races (including multi-racial), exhibit the lowest hypertension
cases.
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Figure 2: Scatterplot Matrix of BPXLEVEL Against Marco Nutrient Intakes
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Figure 2 presents a scatterplot matrix investigating the potential impact of macronutrient intake, including
carbohydrates, proteins, fats, and cholesterol (United States Department of Agriculture 2022), on blood
pressure levels. Histograms of macronutrient distributions across all three blood pressure levels reveal
right-skewed patterns, suggesting no single macronutrient significantly influences blood pressure.

Notably, the analysis highlights substantial correlations among macronutrient variables. The highest cor-
relation is observed between protein intake (DR1TPROT) and dietary fat intake (DR1TTFAT), reaching 0.729.
Additional pairs, such as protein intake (DR1TPROT) and cholesterol intake (DR1TCHOL) with a correlation of
0.684, indicate potential multicollinearity among predictor variables. This observation prompts caution when
employing certain parametric modeling methods, such as multinomial regression, which may be sensitive to
multicollinearity issues.

These findings lay the groundwork for a nuanced understanding of the dataset and underscore the importance
of considering demographic and nutritional factors in predicting blood pressure levels. Subsequent sections
will delve deeper into statistical analyses and modeling techniques to derive actionable insights from the
presented visualizations.
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3 Methods

3.1 Data Preparation (One-hot encoding and train test sets spliting)

Categorical predictors often require transformation into numerical format for compatibility with many machine
learning algorithms. One-hot encoding is employed to convert categorical variables, BPACSZ (4 levels), BPXPTY
(2 levels), RIAGENDR (2 levels), RIDRETH3 (6 levels), DIQ010 (4 levels), DIQO50 (3 levels), and HIQ011 (4 levels).
This technique ensures that the categorical nature of the variables is preserved in the analysis. By applying
one-hot encoding to these categorical predictors, our data frame have 91 columns of predictors in total.

In addition to one-hot encoding, we randomly selected 80% of our data (4,900 observations) as the training
set without replacement and the rest 20% of the data (1,225 observations) as the testing set. In this way, we
can evaluate our models objectively.

3.2 Multinomial Regression with Lasso Regularization and 10-Fold Cross Validation as a
Baseline

To rigorously evaluate our model, we implement a 10-fold cross-validation strategy. This involves dividing
the dataset into 10 subsets, training and testing the model 10 times, with each subset serving as the test set
exactly once. This approach provides a robust estimate of the model’s performance.

Multinomial regression with lasso regularization is chosen as the baseline algorithm for its interpretability and
efficacy in handling diverse data characteristics. The model’s prediction for a data point x; is mathematically
expressed as:

) ePoi+BLT1i+ B2 T2+ A Bmj Tmi
; = argmax;

Yi & J Zi\r__ol ePor+B1rr1i+B2rT2i+ ..+ BmkTmi

Here, Y represents the class variable, X is the feature matrix, 8 denotes the coefficients, and IV is the number

of classes. The addition of lasso regularization to the objective function introduces a penalty term:

N-1 N-1
argmax Z log P(Y = ;| X) — A Z 1851
i=0 Jj=0

where A is the regularization parameter. With the lasso penalty, we will be able to identify which predictors
are the most influential in predicting blood pressure types.

The model’s performance is systematically assessed through accuracy and Area Under the Curve (AUC)
metrics across the 10-fold cross-validation. This thorough evaluation ensures the reliability of our multinomial
regression baseline in predicting blood pressure categories.

3.3 XGBoost Model with 10-Fold Cross Validation

XGBoost, an abbreviation for Extreme Gradient Boosting, stands out as a powerful ensemble learning method,
widely recognized for its superior predictive capabilities. The algorithm systematically constructs a collection
of weak learners, often in the form of decision trees, and amalgamates their predictions to enhance accuracy
and generalize well to unseen data.

In this analysis, XGBoost is strategically employed to surpass the baseline set by Multinomial regression
with lasso regularization. The algorithm iteratively builds an ensemble by sequentially introducing weak
learners, each correcting errors made by its predecessors. To control model complexity and improve robustness,
XGBoost incorporates regularization terms.

The mathematical formulation of the XGBoost algorithm is as follows:

Given a training dataset {(z;,y;)}";, where x; represents the predictors of the ith observation and y; is the
corresponding label, XGBoost aims to learn an additive model F'(x) of the form:

M
F(z) = Z Y P ()
m=1
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Here:

o M is the number of weak learners (trees) in the ensemble.
o hy,(x) is the mth weak learner (tree).

e Ym is the weight (shrinkage) applied to the output of the mth weak learner.

The XGBoost algorithm minimizes the following objective function, which comprises a differentiable convex
loss function L(y;, Fr—1(z;) + vhm(z;)) and a regularization term Q(F,):

Loy on) = 3 Lo Fon 1 (1) + Ao () + QFo)

i=1

Here:

e L is the loss function measuring the difference between predicted values and true labels.
e F,,_1 is the additive model up to the (m-1)th iteration.

e 7, is the optimal weight for the mth weak learner.

o hp(z;) is the prediction of the mth weak learner for the ith observation.

o Q(F,,) is a regularization term controlling the model’s complexity, typically penalizing the number
of leaves in the trees and the magnitude of the weights.

The objective function is optimized in a stage-wise manner. At each stage, a new weak learner is added to
the ensemble by solving for ~,, and h,,(z;), updating the model accordingly:

Fm(x) = Fm—l(x) + 'Ymhm(x)

The optimization involves finding values for -, and the weak learner’s parameters that minimize the objective
function. This is commonly achieved using techniques like gradient boosting, iteratively fitting a weak learner
to the negative gradient of the objective function.

The performance of the XGBoost model will be assessed based on accuracy and the area under the curve
(AUC) metrics. Employing 10-fold cross-validation ensures robust estimation of these metrics across different
data subsets, enhancing the model’s reliability and generalization capabilities.

3.4 Feature Selection with XGBoost Feature Importance

One distinctive feature of XGBoost is its ability to provide valuable insights into feature importance. This
is achieved through the computation of importance scores assigned to each predictor, utilizing Gain as the
metric, which represents the improvement in accuracy attributed to a specific feature across the model’s trees
(XGBoost Developer 2022).

This analysis leverages the XGBoost-derived importance scores to discern the most influential predictors. The
incorporation of these scores aims to enhance the predictive performance of the model, resulting in improved
accuracy and AUC scores. The higher the importance score assigned to a feature, the more impactful it is
considered in the overall predictive capacity of the model.

4 Results

4.1 Multinomial Regression Model with Lasso Regularization

The Multinomial regression model was trained with various lasso regularization strengths, spanning a range
from low to high values, using a 10-fold cross-validation strategy. The model’s multinomial deviance was
documented for each regularization strength.

Figure 3 helps identify the optimal A for the lasso penalty term of the multinomial regression. We aim to get
the A which minimizes the multinomial deviance. By looking at the figure, we got the smallest multinomial
deviance when A = 0.0074067 and only 43 predictors were selected by the lasso penalty, which is indicated by
the vertical dash line on the left.
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Figure 3: 10-Fold Cross Validation Findinig the Best Lasso Penalty Term
Table 3: Coefficients of Selected Predictors
Predictor  Coefficient  Coefficient  Coefficient | Predictor  Coefficient  Coefficient  Coefficient
(level 0) (level 1) (level 2) (level 0) (level 1) (level 2)
Intercept  2.2521848  -0.6889857 -1.5631991 | BPACSZ2 0.7865830  -0.4102865 -0.3762966
BPACSZ3 0.1767172  -0.1796646  0.0029475 BPACSZ5  -0.4005157  0.1731479 0.2273678
BPXPLS -0.0032227  -0.0000035  0.0032262 BPXPTY2 0.1264090 0.0395048  -0.1659138
RIAGENDR2 0.2307534  -0.1249100 -0.1058434 | RIDAGEYR -0.0368332  0.0039225 0.0329107
RIDRETH32 0.0241270 -0.0054927 -0.0186343 | RIDRETH33 0.1693800 -0.0519517 -0.1174283
RIDRETH34 -0.1006645 -0.0656122  0.1662767 RIDRETH36 -0.0342307 -0.0324576  0.0666883
DMDHHSZA 0.0403702  -0.0185643 -0.0218059 | DMDHHSZB 0.0348970  -0.0227166 -0.0121805
DMDHHSZE 0.0189516 0.0594003  -0.0783519 | DRITNUMF 0.0064755 0.0015578  -0.0080333
DR1TSUGR -0.0000212 -0.0001419  0.0001631 DRITCHOL -0.0000276  0.0000052 0.0000225
DRI1TATOC 0.0000225 0.0000252  -0.0000478 | DR1TACAR -0.0000038  0.0000000 0.0000038
DRITLYCO 0.0000002 -0.0000001 -0.0000001 | DRITNIAC -0.0000822 -0.0000403  0.0001225
DR1TVB6  -0.0030378 -0.0047378  0.0077756 DR1TVB12 -0.0018620  0.0012349 0.0006271
DR1TVC -0.0000052  0.0000135  -0.0000082 | DR1TVD 0.0074843  -0.0026119  -0.0048724
DRI1TZINC -0.0004469  0.0008037  -0.0003569 | DR1TPOTA 0.0000234  -0.0000043 -0.0000191
DR1TALCO -0.0014905 0.0015632  -0.0000727 | DR1TMOIS -0.0000438 0.0000117 0.0000322
DR1TS060 0.1333655  -0.0404757 -0.0928898 | DR1TS080 0.0251928  -0.1485159  0.1233232
DR1TS120 -0.0010639 -0.0023929  0.0034568 DR1TS180 -0.0027631 -0.0002637  0.0030268
DR1TM161 -0.0173735  0.0056004 0.0117731 DR1TM201 -0.0351797  0.0157894 0.0193903
DR1TM221 -0.0781895  0.0435119 0.0346776 DR1TP184 -0.3719599 -0.1414094 0.5133693
DR1TP204 -0.3937469  0.2857126 0.1080342 DIQO102 0.0059360  -0.0490002  0.0430642
DIQO502  -0.0978138  0.0281761 0.0696377 HIQO112  -0.0250448 -0.0130697  0.0381145
HIQO117 0.5921226  -0.3291087 -0.2630140 | HIQO119  -0.0376808  0.0126395 0.0250413

Table 3 shows all coefficients of our 43 predictors and the intercept of the model. Our multinomial model
should look like:
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exp(22521848 + 0.1767172.135}31;0323 — 0-003222737BPXPLS + = 0.0376808.13H1Q0119)

Pr(Y =0|X) = 5 ,
> izoexp(Boi + BriTepacszs + B2iTepxeLs + - - - + Ba3iTuqotts)
P (Y ]_|X) exp(—06889857 — 0-1796646(EBPACSZ3 — 0~0000035xBPXPLS + -4 0.0126395IH1Q0119)
T = = s
Z?:o exp(Boi + Prixeeacszs + P2iepxers + - - - + BaziTurqorie)
Pr(Y = 2/X) = exp(—1.5631991 + 0.0029475xpppcszs + 0.00322622ppxprs + - - - + 0.0250413xy1q0119)
Z?:o exp(Boi + Brixreacszs + S2iTepxers + - - - + BaziTurqorise) ’
where

2
Z exp(Boi + PriTepacszs + P2iTepxeLs + - - - + Ba3iTrIgor1s)
=0
=exp(2.2521848 + 0.1767172xppacszs — 0.0032227xppxprs + - - - — 0.0376808xy100119 )+
eXp(*06889857 — 0.1796646IBPA0523 — 0.00000351‘}31))(])]_3 —+ -+ 0.0126395$H1Q0119)+
exp(715631991 + 0.0029475%31:1;(}523 + 0~00322625EBPXPLS —+ e+ 0~0250413xHIQ0119)-

In our multinomial regression model, we achieved a test accuracy of 68% and the Area Under the Curve
(AUC) was calculated as 0.6791, demonstrating the model’s robust discriminative ability across multiple
classes. These results establish a baseline for our future modeling efforts, showcasing the effectiveness of the
multinomial regression approach in capturing and understanding underlying patterns within the dataset.

4.2 XGBoost Model

The XGBoost model was trained using Extreme Gradient Boosting with exact tree method, a powerful
ensemble learning method. The following hyperparameters were modified and utilized in the model:

o Learning Rate (eta): 0.005

e Subsample: 0.75

e Column Subsample: 0.8

e Maximum Depth: 10

o Number of Trees (Rounds): 35

With these hyperparameters, we used 10-fold cross-validation to get a test accuracy of 68.08163% and an
AUC of 0.6845. The test accuracy is 0.08163% higher than that of multinomial regression model with lasso
regularization, and the test AUC is 0.0054 higher than that of multinomial model. These indicate that the
XGBoost model is slightly better than multimonial regression model with lasso regularization when classifying
the blood pressure levels.

4.3 XGBoost Model with Selected Predictors

Figure 4 shows the Gain scores of the predictors used in the XGBoost model. A higher bar (higher Gain
score) represents more important the predictor is. Notably, key predictors such as RIDAGEYR (age), DMDHHSZB
(household size), and BPXPLS (pulse rate) emerged as significant contributors to the predictive power of the
model.

In our pursuit of refining the model and unveiling the most impactful predictors, we executed a meticulous
feature selection process. We initiated this process by systematically eliminating predictors, starting with
the least important (the one with the lowest Gain score), and subsequently assessed the impact on both
test accuracy and AUC. This methodical stepwise elimination allowed us to pinpoint a subset of predictors
that consistently upheld optimal predictive performance. During this process, we keep using the same
hyperparameters we used in the original XGBoost model with 10-fold cross validation at each step.

The results of this feature selection journey revealed a compelling trade-off between the number of predictors
and predictive accuracy. Significantly, in figure 5, the model showcased a remarkable test accuracy of
68.08163% and an AUC of 0.6857238 even with just the top 17 most important predictors. This underscores
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Figure 4: Bar Plots of Gain Score of Each Feature in the XGBoost Model

the efficiency of the selected predictors in encapsulating crucial information for the accurate prediction of
health outcomes. As indicated by the red dash line in figure 5, the model achieved the highest test accuracy
of 68.65306% and the highest AUC of 0.6887414 with the top 35 predictors.
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Figure 5: XGBoost Model Test Accuracy and AUC from 1 Predictor to 88 Predictors

Table 4 provides a comprehensive overview of the top predictors identified by the XGBoost model with test
accuracy higher than 68.08163%, presenting their corresponding threshold Gain scores, accuracy, and AUC
values. The table is thoughtfully organized, with entries sorted based on descending test accuracy, prioritizing
higher accuracy models. In cases of ties, the sorting is further refined by considering descending AUC values
and, if necessary, the top number of predictors in descending order.

Table 4: XGBoost Model Top Predictors and Performance Metrics

Number of Threshold Accuracy AUC

Top Predictors Gain Score

35 0.007949711  68.65306% 0.6887414
33 0.008132943  68.57143% 0.6879340
37 0.007893822  68.48980% 0.6860826
69 0.004570309  68.40816% 0.6855072
50 0.006381227  68.24490% 0.6868555
53 0.006278792  68.24490% 0.6855381
43 0.007424771  68.24490% 0.6842324
86 0.000273781  68.16327% 0.6854440
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Table 5 provides a summary of the performance of multinomial regression model with lasso penalty, XGBoost
model with all predictors, and XGBoost model with reduced predictors. As our focus lies on the accuracy
and AUC metrics, and, based on these, the model with the top 35 most important predictors stands out
as the preferred choice. This model exhibits higher increases in accuracy, with 0.65306% and 0.57143%
improvements compared to the multinomial regression model with lasso regularization and the XGBoost
model using all predictors, respectively. Moreover, it demonstrates a 0.0096414 and 0.0042414 increase in
AUC compared to the multinomial regression model with lasso regularization and the XGBoost model using
all predictors, respectively.

Table 5: Summary of Three Models’ Test Accuracies and AUCs

Model Test Accuracy Test AUC
Multinomial Regression with Lasso ~ 68.00000% 0.67910
XGBoost Using 91 Predictors 68.08163% 0.68450
XGBoost Using 35 Predictors 68.65306% 0.68874

Among these 35 selected predictors, there are 20 predictors selected by both the multinomial model and
the XGBoost model. These predictors are RIDAGEYR, BPXPLS, DMDHHSZB, RIAGENDR2, BPACSZ5, DR1TMOIS,
DMDHHSZE, DR1TSUGR, DR1TVC, DR1TP204, DR1TLYCO, DR1TCHOL, DR1TVB6, DR1ITACAR, DR1TM201, DR1TVB12,
DR1TVD, DR1TM221, DR1TATOC, and DR1TNUMF. Since both models selected these predictors, indicating the
importance of these predictors on predicting blood pressure levels. The other 15 predictors selected by
the XGBoost model but not the multinomial model are DR1TVK, DR1TCAFF, DR1TBCAR, DR1TLZ, DR1TCRYP,
DR1TP183, DR1TVB2, DR1TSODI, DR1TFF, DR1TPFAT, DR1TCARB, DR1TVARA, DR1TFA, DR1TCALC, and DR1TFIBE.

Our systematic approach to feature selection not only fine-tuned the model but also provided insightful
perspectives on the pivotal factors influencing its predictive power. This enhanced interpretability contributes
to a more robust and effective health outcome prediction system.

5 Conclusions

Despite the advancements made in developing predictive models, it’s crucial to acknowledge certain limitations.
One prominent drawback is the challenge of achieving high accuracy, particularly in the context of health-
related predictions. Accurate blood pressure classification is paramount for providing meaningful health
insights, and any inaccuracies in predictions could have significant implications. Notably, discrepancies in
predicting health outcomes can impact the reliability of personalized recommendations and interventions,
potentially leading to suboptimal health management.

Numerous studies emphasize the importance of accuracy in health-related predictive models. For instance, a
study by Sofogianni et al. (2022) highlighted the critical role of accurate predictions in cardiovascular risk
assessment models, underscoring the potential consequences of misclassification on patient care. Additionally,
research conducted by Grover and Joshi (2014) emphasized the need for robust predictive models in chronic
disease management, as inaccuracies can compromise the effectiveness of preventive measures and early
interventions. These findings underscore the broader concern within the scientific community about the
implications of suboptimal accuracy in health-related predictions.

Addressing the aforementioned drawbacks requires a multi-faceted approach. Feature engineering, the process
of refining and creating new predictors, could enhance the models’ ability to capture intricate patterns in the
data, potentially boosting predictive performance. Additionally, acquiring more high-quality data, especially
with a focus on diverse demographic groups and health conditions, could contribute to a more comprehensive
and representative model. Exploring advanced machine learning techniques, such as deep learning methods
like neural networks, holds promise in uncovering complex relationships within the data, potentially elevating
predictive accuracy.

An exciting application of our predictive models lies in the integration with health apps, such as Apple
Health, Samsung Health, and so on. Implementing our models in these platforms could empower individuals
to receive personalized daily blood pressure suggestions based on their recorded dietary intakes, known health
conditions, and demographic information. To demonstrate, we deployed the multionomial regression model
into a website interface at https://bpmodel.ly.gd.edu.kg/, where users can input their demographic,
health, and dietary information to get a blood pressure prediction. This practical application could serve as a
proactive tool for users to manage their health more effectively, offering real-time insights and guidance.
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In conclusion, while our predictive models showcase promising results, there is ongoing work to be done in
refining their accuracy and applicability. By addressing the identified drawbacks through feature engineering,
data enrichment, and the exploration of advanced machine learning techniques, we can move closer to
developing highly reliable and impactful predictive models for blood pressure classification. The envisioned
integration with health apps presents an exciting avenue for translating our research into actionable insights,
fostering proactive health management among individuals.

6 Computational Details

The analysis was conducted using R version 4.3.2 for Windows, with the utilization of various R libraries
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/ to facilitate data
manipulation, statistical modeling, and visualization. The following R libraries were employed in this study:

caret: for classification and regression training.

dplyr: for data manipulation and summarization.

GGally: for extension to ggplot2 for correlation plots.

ggpubr: for creating publication-ready plots with ggplot2.
glmnet: for fitting generalized linear models with regularization.
grid: for arranging and combining multiple plots.

gridExtra: for arranging and combining multiple plots.

haven: for reading and writing SPSS, Stata, and SAS files.
knitr: for dynamic report generation in R Markdown.
patchwork: for arranging and combining multiple plots.

PROC: for analyzing ROC curves and assessing model performance.
tidyr: for data tidying and reshaping.

xgboost: for extreme gradient boosting.

The analyses were conducted in the RStudio integrated development environment (IDE) version “Mountain
Hydrangea” Release (583b465e, 2023-06-05) for Windows. RStudio can be downloaded at https://posit.co/.

An Intel-compatible 64-bit platform is preferred. At least 2048 MB of RAM is recommended to run the whole
script. An operating system of Windows 7 or higher or Mac OS X 10.6 or higher is preferred.

7 Reproducibility

Ensuring the reproducibility of this study is of utmost importance. The entire analysis, including data
preprocessing, model development, and result generation, is encapsulated in an RMarkdown document. The
RMarkdown file, along with the necessary BibTeX and style files, has been made available on GitHub for
easy access and replication: https://github.com/lygitdata/bpmodel/.

The RMarkdown file and its relevant files can be downloaded at the following link:
https://bpmodel.ly.gd.edu.kg/manuscript/download.zip

To reproduce the findings and generate the same results presented in this paper, follow these steps:
1. Download the Necessary Files:

o Navigate to the provided link in your browser.
e Unzip the downloaded file to a directory of your choice.

2. Open RMarkdown in RStudio:

e Ensure you have R and RStudio installed on your machine.

e Open RStudio and navigate to the directory where you unzipped the files.
o Open the RMarkdown file (manuscript.Rmd) in RStudio.

3. Install Required Packages:

e If not already installed, install the required R packages from the CRAN.
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4. Knit the Document:

o Knit the RMarkdown file to reproduce the analysis. This will execute the code chunks, perform the
analysis, and generate the final document.

By following these steps, you can recreate the entire analysis and verify the results presented in this paper.
This approach ensures transparency and allows others to validate and build upon the findings of this study.
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