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A solution of the P versus NP problem .

( On graphs with coalitions of vertices and their isomorphism .)
It is proved in this paper that there does not exist a polynomial
algorithm and a polynomial P task for the graph isomorphism problem.
As a consequence, there does not exist a polynomial algorithm and a
polynomial P task for any problem in the class NPC. In particular, there
does not exist a polynomial algorithm and a polynomial P task for the
traveling salesman problem.
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Definitions and notations .
- if then.
- if and only if .
G(V,U) is the notation of an oriented graph.
G(V,U) is the notation of an undirected graph without loops and
multiple edges , where |V| = n, V is the set of vertices,
U is the set of edges if the graph is undirected ,
U - set of arcs if the graph is oriented .
The degree of a vertex is a number equal to the number of edges
incident to this vertex. We denote the degree of a vertex by Deg(vi) ,
where i €1,n and vie V.
Let us define a function on the set of vertices of the graph.
Let a graph G(V,U) , v;,v,€ V, where |,pc1,n and | #p.
(vi,vp) €U = f(vy,vp) =1, (v,,v,) € U =f(v,,v,) =0.
Let v,v,vk € V, where i,j,k € T.nand i #j, j#k , i#k.
We will say that v; and v; have equal links to a vertex v, if f(vi,vi)=f(v;,v).
Let G(V,U),v; €V, where i € I,n. If there exists a loop at a vertex , i.e.,
(vi,vi) € U, then let f(v;,vi) =1. That is, (vi,vi) €U —=f(v;,vi) =1 and
(vi,vi) € U =f(v;,vi) =0 . For V v,,v, € V, wherel,p € T,nand | #p,
(vi,vp) € U & (vp,v)) €U = f(v,v,) =1,
(vi,vp) € U & (vp,v) € U = f(v,vp) =-1.
(vi,vp) € U & (vp,vi) € U = f(v,v,) = 2,
(vi,vp) € U & (vp,vi) €U = f(v,v,) =0.
Let v,v,vk €V , wherei,j,k € T.nand i #j, j#k , izk . We will say that v;
and v; have equal links to vertex vy,
if f(vi,vi) = f(v;,vi) and f(vi,vi) = f(v;,v;) .

If f(v,v,) = 0, then we will say that vertices v,,v, are not connected to
each other.

Let two vertices of different graphs be given . A two-sided arrow
placed between the labels of these vertices means that the vertices
correspond to each other .G,(V ,U), G,(V ,U) , vi1,vi, €V, ¥4,V €V be
given . It is said that a one-to-one correspondence between the vertices
of vy~ Vj1 v, « V;, preserves adjacency if (viy,v,) € U & (V) ,V,)€U.
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oriented , i.e., Gy(V,U), Go(V,U) and vy ,vi, €V, ¥}y ,V;, €V .
It is said to be a one-to-one correspondence

between vertices vi; ~ V;; , vi; © ¥, preserves adjacency if
((Vie,v2) €U & (V1) €U) &

& ((vi1,via) €U & (Vj1,V) €U) &

& ((Vig, ) €U & (Vpp, ) €U) &

& ((vi2,vi1) €U & (¥, ,7;4) €U) .

We will denote by B or B(V.V) , or B(G41,G,) the mutually unambiguous
correspondence between verticesV and V . If the graphs are oriented ,
then B(G4,G,) .

A mutually unambiguous correspondence between vertices
B(G4,G, ) preserves adjacency if for Vv -~ v € B(G4,G,) and
Vv, <V, € B(G1,G,) , the mutually one-to-one correspondences
Vi Vi, Vi < V. preserves adjacency . Similarly, a mutually one-to-one
correspondence B(G4,G,) preserves contiguity if for
Vi, « ¥, € B(G1,G,) and Vi, < ¥y € B(G4,Gy),
the mutual one-to-one correspondences Vi1« Vi1, Vip < V),
preserves adjacency .

A mutually unambiguous correspondence between vertices of graphs
preserving adjacency will be denoted by B(G4,G,) .

For oriented graphs, we denote B(G4,G,) . A mutually unambiguous
correspondence B(G4,G,) that preserves adjacency will be denoted also
by the equality B(G4,G, ) = B(G1,G, ) . For oriented graphs,

B(él,éz) = B(él,éz) .

If vi = Vi€B, then we denote this by the equality
B(Vi) = Vi or B(Vi) = Vi

We will denote by B(V;,V;) the mutual-ambiguous correspondence
between subsets of vertices Vi€V, ViEV,,

Let G4(V ,U) ,G,(V,U) , |V|=n,|V|=n be given .

A graph G,(V ,U) is said to be isomorphic to a graph G,(V ,U) and
denoted by G,(V ,U) ~ G,(V ,U) if 3B(G,,G,) . Similarly for oriented
graphs ,G1 ~ G, if 3B(G1,G,)
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2. Related vertices of a graph and their properties .



Definition 1. Let a graph G(V,U) be given, |V| =n . Two vertices
v,v; € V, where v,v; € V, wherei,j €l.nand i #j, we will call them
related if they are not connected by an edge and have equal
connections to any vertex different from them and denote by v; = v;.
That is, f(v;,v;) =0 and for V v, € V,
wherek el,nand k #i,k#j, f(vi, vi) = f(v;, vi) .
Assertion 1. Given graphs , G4(V,, U,) and G,(V,, U,) , where
[Vi| =n, |Vol =nand Gy~ G, . G(V4,Uy), G,o(V,,U, ) are subgraphs
respectively of graphs G; and G, .38(G,, G,) and
3B(G, , G,) such that B(G, , G,) € B(G;, G,) . Then G, ~ G, and
B(G,, G,) preserves adjacency , i.e. B(G,, G,) = B(G,, G,) .
That is, the subgraphs G,,G, of the isomorphic graphs G , G,
constructed on the vertices which are in mutual-ambiguous
correspondence ,that retain adjacency are put in correspondence with
each other are isomorphic.
Proof .

Let G4(V1,U; ) and G,(V,,U,) be subgraphs respectively of graphs
G:(V1,U; ) and G,(V, ,U, ) satisfying the condition of the statement .

That is, V= Vi1, Via s oeey Vil V,= {Vj1,V12 y eee s Vik }.

And the one-to-one correspondence

B(G1,Ga) = {Vir = Vi1, Vo= Vio\ weey Vi Vid (1)

is a subset of B(G;, G,) = {Viy = Vi1, Via © Vi, wur, Vin = Vin} (2)
That is, B(G1 ,G,) € B(Gy, Gy) . (3)

Suppose the contrary B(G; ,G,) does not preserve adjointness .
lLe. 3{v, = v,V = v} € B(G1,G,) and

f(vip Vi) 2 f(vj, ) . (4)
On the other hand, it follows from (3) that
Vip @ Vip, Wy o vy € B(Gy, Gy) .Hence f(vy, , Vi) = f(V}, V) . (5)

But (5) contradicts (4) . The obtained contradiction proves approval .
Assertion 2 . Given Gy(V., Uj) , G,»(V,, Uy), where |V,| =n,
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|V2| =n 7V1 = {V17V2 9 ooy Vn) 7V2 = {V1’V2 y ooy Vn} . Gl and GZ
have k related vertices My = {Vi1, Vo, ..., i}, Mo = {Vj1, V0, oo, Vi
Gi~ G, . If 3B1(G4, G,) which contains B.(My, M, ), then taking in



B1(G:1, G,) instead of B1(My, M,) any B.(M,, M,) different from
Bi(M;, M,) we obtainBs(G,, G,) .
Proof .

From the condition of the statement B:(G,, G,) =
= (M1, M2)UB41(V:\ My, V,\ M,) .The subgraphs Gi:(V\\ My, Uy,) ,
Gx»(Vo\ M, , Uy,) of graphs G; and G, . It follows from statement 1 that
Gi1~ Gy and B(Giq, Gao) = B1(V\ My, Vo\ M) . Let
B1(Vi\ My, Vo)A My) = {Viker © Vit Viz @ Vijrzs oo s Vi) @ Viniod - (1)

Let us construct B,(G; , G,) by joining B1(V:\ M4, V,\ M,) one-to-one
correspondence of the vertices
B2(M1, My) = {Vp1 « Wig, Voo Vi, o, Voo Wi} (2)
We prove that B,(G; , G, ) preserves adjacency, i.e.
B2(G:, Gy) = B2(Gy, Gy) . Suppose the contrary 3 v, < ¥,
re Lk,and 3v, - ¥, € By(V:\ My, V,\ M,) such that

f(\.}pr ’ Vi) # f(vlr ’ Vj) . (3)
On the other hand, let us take Vv, i, € B1(My, My)since
f(Vig, W) = Vg, ¥)) . (4)

M1,M2 are sets of related vertices

f(Vig, i) = f(Vvpr, W),

f(Viq, ¥)) = (Vi , ) .

Hence and from (4) it follows

f(Vor , Vi) & f(Wr, V). (5)
But (5) contradicts (3) , Hence the assumption is incorrect .

The related vertices are not adjacent . Hence for V q € 1.,k

andV v € 1.k, where q #v, {Vyq = Vg, Voy= "WEPB2, then the following is
true the equality f(Vyq , Vpy ) = f(Vq, 7y ) . Hence :

32((31, Gy) = Bi(V1\ M1, V,\ M) UB. (M4, M,).

The assertion is proved .

Assertion 3. Given graphs G,(V;, Uy), G,(V2, U,), where |Vi|=n,|V.|=n.
Mi={Vis,Vi2, eoey Vied, M= {Vj1,V0, oo, Wy}, MUE Vy, Mae V5.
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M,,M, are related vertices respectively of graphs G,,G, .
If Gi~ G, and 3B(G,,G,) such that v, = v, €B(G,, G,), where v;ieM; and V
iEM, , then all other related vertices M,\v; and M,\V; are
put in correspondence to each other in (G, G,) and |M.|=|M,],



i.e.,r=k.

Proof .
Let v, € My ,V,€ M,, and
B(G1, Ga) = {Vi = Vi ,Vior = Vi, Vipa = Vg eee s Vip(n-1) @ Vilin-n)} -

Suppose the contrary . Without violating generality suppose ,
that there exists v;,q~ Vi, € B(G1, G,) , where ge1,n-1, and
Vig=Vi , and V;, and V; are not related vertices .
Hence 3V, , where m €1,n—-1 and
(¥, Vjim) # f(Vigs, Viim) - (1)
On the other hand Vi, = Vj€ B(G1, G;) and V,,=V; . Hence and since
in B(G,, G,) there exist

Viom © lem , (a)
Viog < Vilg » (b)
Vie y; (c)
should :
f(Vi ,.ipm) ( ipq » |pm) ’ (2)
f(vl ’ lpm) = f( J ’ Jlm) ’ (3)
( |pq ’ |pm) = ( ilg » vjlm) . (4)

It follows from (2) that the left parts of (3) and (4) are equal, and from
(1) it follows that the right parts of (3) and (4) are not equal .

The obtained contradiction refutes the assumption .

Let us prove that |[M,| = |[M,]| . Suppose the contrary .Without
breaking generality, suppose that |M;| >|M;| and 3B8(G, G,),
such that v, = v, € B(Gy, G,) , where vie My, V€ M, .

Hence 3 v, < v,€ B(Gy, Gy) , where v,.€ My, V€ M,.
As shown above such an assumption leads to
a contradiction . The assertion is completely proved .

3. About a graph with five types of vertices . About a V-graph .

(About a graph with coalitions of vertices.)
3.1.Notations .
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For convenience of reasoning we introduce the notation
Let two ordered sets M, =(a;, a5, a3, a4),
M, = (by, b2, b3, bs) . Mutually unambiguous correspondence between
elements of the sets M; and M, , in which the elements occupying
equal positions are put in correspondence
we denote by M, M, or (a:, a,, as, as) < (b1, by, bs, bs) .



Thatis, ((a1, a2, a3, a4) = (b1, by, bs, bs))= (a1~ by, asx~ b,,
as < bs, a;~ b,) . Hence the following relations are true
(a1,a4) = (by,bs), (a2,a3) « (by,bs) since they establish the same and the
same correspondences between the elements .

If we consider any one-to-one correspondence
between elements of two sets M; and M, . The sets M; and M,
let us denote as unordered: M, ={a,, a,, as, a.}, M, ={b,, b,, bs, bs}.
Thatis, {a:, a2, as, as} = {b1, by, bs, bss} is any mutually unambiguous
correspondence between elements of sets M, , M, .

Let us introduce graphs of a special kind .In the indicated graphs,
vertices are partitioned into subsets of vertices . Each subset consists of
four vertices . Each of the four vertices has a property different from
the properties of the other three vertices .

This allows us to introduce the notion of vertex type . Thus, each
quadruple vertex consists of four types of vertices
These four vertices will be called a coalition of vertices or a coalition
vertex .The main property of the introduced graphs .
Mutually unambiguous correspondence between vertices of the
specified graphs , preserving adjacency, puts coalition vertices in
mutually unambiguous correspondence . In this case , the mutually
ambiguous correspondence puts the vertices of the
same type into a mutually-ambiguous correspondence .
The introduced graphs allow us to reduce the problem of isomorphism
of oriented graphs (Berge graphs) to the problem of isomorphism of
undirected graphs without loops and multiple edges . And establish the
relation between the P task
(the P task answers the question existence of a solution: Yes or No)
with the algorithm for solving the isomorphism problem of graphs
without loops and multiple edges .
3.2 Constructing a V - graph .
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Definition 2 . Consider the graphical representation of the Latin
letter V . It consists of two line segments forming an angle .
Let's transform the image of the letter V into a graph with three
vertices .
At the vertex of the angle we place the first vertex of the graph .
At the free end of the left segment we place the second vertex .



At the free end of the right segment we place the third vertex .

The vertex located at the vertex of the corner will be called
vertex of typey.

The vertex located at the free end of the left segment
will be called a vertex of type x ..

The vertex located at the end of the right segment will be called a
vertex of type z .

Let's transform the constructed graph into a graph with four vertices.

The fourth vertex will be connected by an edge only to a vertex of
type x .This fourth vertex will be called a vertex of type w .

Let's construct a graph which consists of n graphs constructed above
with four vertices . For this purpose , the image of the constructed
graph with four vertices, we repeat it n times .

Let us denote and number the vertices . The letter denoting the type
of a vertex is at the same time its denotation .

Let's number the vertices as follows .Vertices belonging to the same
graph image with four vertices will have equal numbers .

We assign an index to each vertex designation . The value
index is equal to the vertex number . Vertices of the same type
we number them sequentially from 1 to n.

The vertices of four types forming a quadruple vertex with the same
numbers will be called a coalition of vertices or vertices of the same
name .

We denote a coalition of vertices by s; , where the value i is equal to
number assigned to vertices forming this coalition and
call a coalition of vertices a coalition vertex .

The set of all coalition vertices will be denoted by S .

In a coalition vertex we define the following ordering of vertex types:
WwW,X,2,y . That is, a coalition vertex is an ordered set containing four
vertices . Thus s; = (w;,x;,z;,yi) , where i €1,n,5 = Us; .
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We connect vertices of type z by edges . That is, the vertices of type z
form a complete graph . Let us introduce three more related vertices .
Let us call them vertices of type p . We denote the set of vertices of
type p by P={p., p,, ps} . Let us connect each vertex from P by an edge
to each vertex of type z..



The edges in the graph described above will be in every graph
containing the same number of coalition vertices. Let us denote the set
of these edges by U, .

In the described graph there may be edges connecting vertices of type
X with vertices of type z . We will denote the set of these edges

1by U,,. Also, for vertices of type w,

we may introduce related vertices. For a vertex w; ,we denote by W;,
wherei €1,n,

U; is the set of edges connecting vertices from W, to vertex x; , where
iel,n,

A graph with five types of vertices x,y,z,w,p will be called a V-graph
and denote by Vg((S,P,uiW)),(U,U,,LUiU))), where |S| =n.

If |Ux| =0, then the V-graph will be called unloaded. If
|U,.| #0, then the V-graph is called loaded.

The number of coalition vertices|S| will be called the dimension of
the V-graph and denoted by R(V,,) .

If vertices related to one of the vertices of type w are added to
the V-graph, we will say that this vertex is labeled or has a label .

The set of vertices W; related to a vertex w;, where i €1,n,
we will call the label of vertex w; . |W;| - the number of vertices related
to vertex w; we will call the label value .

3.3 Properties of vertices of a V-graph .
The necessary conditions for vertices v,V , where i €1,n, v, €V,
jel,nsuch that 3B(G,(V.U) , Gy(V,U)) > v~ ¥; .
Assertion 4. Let G,(V.U), G,(V,U) , where
V={v vy, v}, V=iV, v,,... 0.}, If Gy(V,U) G,(V,U) and for a
vertex v; € V , ¥, €V3B(G, , G,) such that v~ ¥, € B(G,, G,) . Then the
degrees of the specified vertices are equal to .
Proof .
Suppose the contrary Deg(v;) # Deg(;) . Without violating generality
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let Deg(v;) >Deg(V)) .

Let {Vi1, Via,...,Vi} €V

be vertices adjacent to vertex V; .l.e. Deg(v;) =k .

On the other hand, for V | €1,k  f( v;, v;) = 1. Since
vie v, € B(Gy, Gy) , then 3v€V |, such that v~ v,€B(G;, G,).Hence
f(v;, ;) = 1. Hence Deg(V;) = k , and by assumption Deg(v;) >Deg(V;) ,



i.e. k ¢ k. The resulting contradiction proves the statement .

Assertion 5. Let G4(V , U) ,G,(V, U) ,where |V|=n, |V]| =n. VeV,
7;,€V the adjacent sets of vertices, respectively
L = {Vi1, Vigyeer,V} , L2 = {41, Vjay..., Vim} and their corresponding vertex
degree sets M, = {Deg("1),Deg(Vs,..., Deg(Vi)} ,
M, = {Deg(;1),Deg(V;),..., Deg(Vm)} .

If Gi~ G, and 3B(G,, G,) is such that v = V,€B(G;, G,) , then
M| = |[M,| ,i.e., m =k, the sets of degrees of vertices M, , M, ,
adjacent to vertices v, V;, respectively, are equal to each other,
i.e.,, M;=M,.

Proof .
By the condition of statement G;~ G, and V; -~ V;€ B(Gy, G,), hence and
statement 4 follows |[My| = [M,]| ,i.e.k=m.

Suppose the contrary M; # M, . Then any
a one-to-one correspondence between vertices from L, and L,
will assign to each other vz € L, andV;,€ L, , where y,u € 1.k,
such that Deg(v;s) # Deg(V;,) . That is, from the assumption that
3B(G,, G,) and v; = V; € B(Gy, Gy), it follows that 3
vig= V;,€ B(G1.G,) and Deg(vig) # Deg(V;,) . And this contradicts statement
4 . The resulting contradiction proves the statement .

Definition 3. Let given Vg((S,P, UIW)),(U., Uy, ViU))),
Wi ={wii, Wiz ,...,W i1} is the label of vertex w; ,
Wi, = {wj1, Wj2 ..., Wi} is the label of vertex w;, where w; € s;, w; € s;,
s,S; € S . We will say that vertices w; ,w;, where i # j , have
different labels if k1 # k2 . If k1 = k2 we will say that
vertices w; , w; have equal labels . Similarly, we define labels if W; ,W,;
belong to different V-graphs .
We call ki= |[W;| , ki = |W,| the label value .

Definition 4. Let V,((S,P. U'W,),(U,,U,,. UiU;)). We will
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say that the vertices of the V-graph are labeled correctly if any
two labeled vertices have different labels .
Ranges of degree values of vertices
of each type in the V-graph .

Deg(x) - denotation of the degree of vertices of type x .
Deg(y) - designation of the degree of vertices of type y .
Deg(w) - denotation of the degree of vertices of type w .

N



Deg(z) - denotation of the degree of vertices of type z .
Deg(p) - denote the degree of vertices of type p .
Given Vg((S,P, UiW)),(U,U,, UiU))),. Only vertices of type x

adjacent to one or more vertices that have

degree equal to 1 since Deg(w) = 1.

Deg(x) = 2 if the V-graph is not loaded and vertices of type w

are not labeled .
Deg(x) < n+ 2 if the V-graph is loaded and vertices of type w
are not labeled .

Deg(y) = always .

Deg(w) =1 always .

Deg(z) =n+ 3 if the V-graph is unloaded, since vertices of type
z are connected by edges and to one
vertex of type y, each of them is
adjacent to each of three vertices of type p .

Deg(z) < 2n+ 3 if the V-graph is loaded , since each vertex of type
z can be adjacent to each vertex of type x .

Deg(p) =n since vertices of type p are always adjacent
only to each vertex of type z.

Hence :

2<Deg(x)sn+2

Deg(y) = 2 always .

Deg(w) = 1 always .

n+3<Deg(z)<2n+3.

Deg(p) = n always .

Assertion 6. Given Vg((S,2,UiW),(U,,U,,, Ui U})),
Vera((S,P,UIW)),(U,U,,, U1 U))). If Vigry Vg2, then any
mutual-ambiguous correspondence between vertices V1, Vyro,
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preserving contiguity , puts vertices of the same type in
correspondence with each other .

Proof .

Let Vg V2. Consider each vertex type in separately .
1)Deg(w) = 1. The degree of the other vertex types have degree
greater than 1. Hence from statement 4 follows 38(Vg1,Ver2) in which a
vertex of type w is put in correspondence to a vertex



of another type .

2) 2 < Deg(x) < n+ 2. A vertex of type x is the only vertex type
adjacent to a vertex having degree equal to 1. It follows from
statement 5 that 33(V,1,Ve2) in which a vertex of type x corresponds to
a vertex of another type..

3) Deg(y) = 2 . A vertex of type y is not adjacent to a vertex whose
degree is 1. It follows from statement 5 that 38(Vg1,Ver2) in which a
vertex of type y corresponds to a vertex of type x . The degrees of
vertices of types w,z,p cannot be equal to Deg(y) . It follows from
statement 4 that 38(Vg1,Ver) in which a vertex of type y corresponds
to a vertex of another type

4) n+ 3 < Deg(z) < 2n + 3. That is, the degree of any vertex of type z
cannot be equal to the degree of a vertex of another type .
From here and statement 4, it follows that 38(V1,Vg2) in which a
vertex of type z is put in correspondence to a vertex of another type.
5) Deg(p) = n. A vertex of type p is not adjacent to
a vertex whose degree is 1. It follows from statement 5 that 38(Vg1,Vero)
in which a vertex of type p corresponds to a vertex
of type x..

The degrees of the vertices of types w,z,y cannot be equal to Deg(p) .
Hence and statement 4 it follows that 38(Vg1,Vgr) in which a vertex
of type P is put in correspondence to a vertex of a different type . The
assertion is completely proved .

Assertion 7. Given Vg4((S,P,Uiw)),(U.,U,,, Ui U))),
Veo((S,P,UIW)),(U, U, U1 U))), where |S| =n,[S]| =n, |P]| =3,
|P| = 3. If Vg1~ Vg2, then VB(Vg1,Veo) puts the same-named vertices
of one graph in correspondence with the same-named vertices
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of the same type. That is, (Vg1~ Vg2) = (VB(Vg1,Ver2) =
= {811 31, 52 Bjp,e0,8in Sn} UP < P) .

Proof .

It follows from Assertion 6 that VB(V,1,Vg,) puts vertices of the same
type in correspondence to each other . It remains to prove that
if S|€S ,SJES ) where § = {wi,xi,zi,yi} ,Sj = {wj,xj,zj,yj } ) i,jEﬁ and
at least one of the relations x,« % 3, < ¥;, z; = Z;, w; = W,
belongs to B(Vg1,Ver) , then each of them belongs to B(Vg1,Vero) .



The proof will be carried out in 4 steps .For each relation, we prove that
if it belongs to B(Vg1,Vern) , then the
other three relations also belong to B(Vg1,Ver) -

1)Let %~ ,EB(Vg1,Ver2) , we need to prove that
(i = ¥y, = %, W, = W} €B(Vg, V) . Suppose the contrary
X« % € B(Vg1,Ver) , and at least one of the relations : j; = j;,
Lo B, Wi e W
does not belong to B(Vg1,Ver) .

a) Let 3 be such a B(Vg1,Vga) such that ¥« %,€B(Vg1,Ver) , but
Wi © WF/?(Vgri,Vgrz) . That iS, Xi“’ j'<j - B(Vgrl,vgrz) ,

B(w;) #w; ,B(w;) =W, , where j # j1 . Hence f(x;,w;) = f(%;,W;y) .

On the other hand f(x;,w;) # 0, and f(%;,w;;) = 0, since any vertex of
type x is adjacent only to a vertex of the same name of type w . Hence
f(x;,w;) # f(%;,w;;) . The resulting contradiction refutes assumption .

b) Let 3 B(Vg1,Vero) such that B(%) = %, but B(¥}) = 71, where j#j1.
Hence f(x;,7;) = f(%,7;1) . On the other hand a vertex of type x is adjacent
only to a vertex of the same name of type y . Hence
f(x,7) # 0, and f(¥,7) =0, i.e., f(x,7) # f(%,7;1) . The resulting
contradiction refutes the assumption .

c) Let 3 B(Vg1,Vgr) such that B() = %, but B(%) = z;;, where j #j1..
From (b) it follows that B8(y:) =¥; . Hence f(y;,2;) = f(¥;,%;1) .

On the other hand , since j; is adjacent only to a vertex of type z of
the same name, f(y,z) # 0, f(7;,21) = 0, i.e., f(i,2) # f(3;,%4) .

The resulting contradiction refutes the assumption .
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2) Let y; « ¥,€B(Vg1,Vera) , it is required to prove that
{xi « %, 2 o ; , W; « W;}€B(Vg1,Vgr) . Suppose the contrary
Jie %,€B(Vgr1,Varo) , and at least one of the relations
i X, 7 - 7, w; - W does not belong to B(Vg1,Ver) .

a) Let 3 B(Vg1,Vg) ) such that 5« 7,EB(Vgu,Ver) but

X, % € B(Vgr1,Vgra) . That is B(yi) = 7; ,B(%;) = %1 ,where
j#j1. Hence f(y;,%) = f(¥;,%1) . On the other hand , f(¥;,%;) # 0,
f(¥;,,%1) = 0, since any vertex of type y is adjacent only to a vertex of the
same name of type x . Hence f(y;,%) # f(¥;,%1) . The resulting
the contradiction refutes the assumption .

b) Let 3 B(Vg1,Vero) such that v« 3 € B(Vg1,Vgrn) ,but



z; = 7, € B(Vgn,Vgr2) That is B(3;)= ¥;, B(z) ¢ Z;where j # j1 . Hence
f()"i,zi) = f()"’j,zn) . On the other hand f(yi,zi) 0 , f()"’j,zn) =0 ,
since any vertex of type y is adjacent only to a vertex of the
same name of type z .Hence f(y;,2;) # f(¥;,2;1) . The resulting
contradiction refutes the assumption .

c) Let 3 B(Vgr1,Ver) such that B(y) = j;, but Bw;) =v;; , where j #j1, i.e. B
(w;) #w; . But in this case it follows from (a) that
B(x) = % . Hence f(x;,w;) = f(%;,w;,) . On the other hand, since a vertex of
type x is adjacent only to a vertex of the same name
of type w, f(x,w;) = 0, f(%,%;;) = 0. Hence f(x;,w;) # f(%;,w;,) .
The resulting contradiction refutes the assumption .

3) Let w; = w; € B(Vg1,Vera) , it is required to prove that
{xio %, i = ¥, 2 - 4} € B(Vgr1,Vgr2) . Suppose the contrary
w; « W,EB(Vgr1,Ver2) , and at least one of the relations %~ %,
Vie ¥, 4 - % does not belong to B(Vg,Vera) -

(a) Let I B(Vg1,Vera) such that wi - w,€B(Vgq,Vero) , but
X o %,€B(Vgr,Vgro) . That is, B(W)) = w;, B(x;) = X,
Where j # j1 . Hence f(w;,%) = f(%;,%;;) . On the other hand
f(w;, %) # 0 ,f(w;,%,) = O since any vertex of type w is adjacent only to a
vertex of the same name of type x . Hence f(w;, %) # f(w,,%;,) . The
resulting contradiction refutes the assumption .

b) Let 3 B(Vg1,Vgn) such that w; w,eB(Vge,Vyr) , but
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Vi yj éB(Vgﬂ,vgrz) . That iS, B(Wi) = Wj , B()"i) = )"/j1,
where j1 #j . Then from (a) it follows that B(%;) = %, . Hence
f(x;,7) = f(%,¥;1) . On the other hand , since a vertex of type x is adjacent
only to a vertex of type y with the same name, f(x;,7;) 20, f(%,7;1) = 0.
Hence f(x;,5:) # f(%,7;1) . The resulting contradiction refutes the
assumption .

c) Let 3 B(Vg1,Vyro) such that wi w,eB(Vg, V) , but
2o Z€ B(Vgr1,Vgr2) . That is, B(W)) = w; ,B(2) = 7,
where j1 #j . Hence and (b) follows B(y;) = ;. Hence f(¥;,2:)=f(y;,%1) .
On the other hand, since a vertex of type y is adjacent only to a vertex
of type z with the same name, f(y,,z) # 0, f(¥;,41) = 0. Hence
f(7.,Z i) # f(3;,2;1) . The resulting contradiction refutes the assumption .

4) Let 2~ %, € B(Vg1,Vera) , it is required to prove that
(k= %, 7 = ¥j, Wi~ Ww;} € B(Vg,Ver) . Suppose the contrary



z; « z; €B(Vg1,Ver2) , and at least one of the relations x; < %;,
Vi = ¥;, w; = w;does not belong to B(Vg1,Ver) .

(a) Let 3 B(Vg1,Ver2) such that z 5€B(Vgi,Ver) , but
Y e )"’j éB(Vgrl,Vgrz) . That is ,B(Zi) = Zj, B(}"i) ‘35’]1
where j1 # j . Hence f(z,7;) = f(2,7;;) . On the other hand f(z,7;) # 0,
f(z,7;1) = 0, since any vertex of type z is adjacent only to a vertex of the
same name of type y . Hence f(z,y;) # f(2,7;1) . The resulting
contradiction refutes the assumption .

b) Let 3 B(Vg1,Vgr) such that z< ZEB(Vgs,Vero) , but
X~ % € B(Vgr,Ver) . That is B(z) = 2, B(%) = %, where j1 #j .
Hence and (a) follows B(y;) = 7;. Hence
X < %€ B((Vgr1,Vgra) . That is, B(x)) = ¥4, B(2;) = 7,
f(v,%) = f(¥;, 1) . On the other hand f(y;,x) 20, f(¥;,%,) = 0, since
a vertex of type y is adjacent only to a vertex of type x¥with the same
name . Hence f(y;,%;) # f(¥;,%1) . The resulting contradiction refutes
the assumption .

c) Let 3 be such a B(Vg1,Vgr) such that 2« €B(Vg1,Vero) ,
but w; - w;€ B(Vgr1,vVgr2) . That is, B(z) = z; ,B(w;) = Wy,
where j1 # j . Hence and from (b) it follows that 8(x;) = %, . Hence
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f(xi,wi) = £(¥;,%;4) .
On the other hand f(x;,w;) # 0, f(¥;,w;; ) = 0, since any vertex of type x is
adjacent only to a vertex of the same name of type w .Hence
f(x;,w;) # f(%,%;1) . The resulting contradiction refutes
the conjecture . The assertion is completely proved .
4. Immersion of an oriented graph (Berge graph)
Into an undirected graph without loops and multiple edges
V-graph .

Definition 5.Let an unloaded V((S,P,uiW,),(U.,U,;,UiU)))
with dimension R(V) = n and an oriented graphG,(Vy,U;) , where
V.| =n .V vieV,; ,wherei &l,n with numberi,
correspond to two vertices of the same name x; € s;, z; € s;, with the
same number i, where i €T,nand s; € S . A vertex of the graph G, with
number i and vertices (w;,x;,z,y;) € S of the V-graph with the same
number i will be called homonymous . Let V,, be supplemented with
edges so that the following conditions are fulfilled .



For V v,v;€ V, wherei,jel.n, if v has a loop, then the vertices with the
same name in V x; and z; are connected by an edge ; if v; has a loop,
then the vertices with the same name in V,, x; and z; are connected by
an edge .
If it is an arc going from v; to v; , i.e.(v;,v;) € U;, then the vertices x; and
z; with the same name in Vgr are connected by an edge . If it is
an arc going from v; to v;, i.e.,(v;,v;) € Uy, then in V,, the vertices z; and
x; with the same name are connected by an edge . l.e. for
Vijel,nand i # j, the relations :
(vi,v;)) €U; & (x;,Z) €Uy,
(VJ’ ) c Ul & (XJ"Zi) EUXZ ’
(vi,v)) € U1 © (x,2) €Uy,
(vi,v)) € Up © (x5,2)) €Uy, .

The V-graph thus augmented with edges will be called
the image of the graph G(V4,U,) or the representation of the oriented
graph G,(V.,U,) as an undirected graph without loops and
multiple edges or loading an oriented graph into a V-graph and denote
by Vgr[G4(V4,U4)] .

Thus the V-graph augmented with edges will be also
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be called an immersion of an oriented graph into an undirected graph
without loops and multiple edges .

5. On the non-existence of the polynomial P problem and the

a polynomial algorithm for the graph isomorphism problem .

Assertion 8. Let oriented graphs G,(V1,U4),G,(V,,U,) be given ,
where |V.| =n, |V.| =n. Their corresponding images
Ver[G1(V1,U1),((3,P,U1 W), (U, Uy, UTU))]
Vera[G(V2,U0),((8,P,Ui Wi, (U Uy, U U3))] , where R(Vgrr) = nand R(Vgr) =
n .The oriented graphsG, , G, are isomorphic
if and only if when their images Vg1[G1] , Vg2[G,] are isomorphic .
If mutually the one-to-one correspondence between vertices G, ,G,
preserves adjacency , then the one-to-one correspondence
between coalitional vertices of V-graphs with the same name as them
Ve[Gal, Ve[ G,] also preserves adjacency . Conversely, if
mutually unambiguous correspondence between coalitional
vertices Vg 1[G1], Ve[ G-] preserves adjacency , then a mutually



the one-to-one correspondence between the vertices of graphs
G1(V1,U4) , G,(V,,U,) with the same name as them preserves adjacency .
l.e.
Gy Gy € Vg [G1(V4,Uq] Veral Ga(Va,Us)]
(Vi = Vi1 ,Vig @ Vigy oo, Vine ¥} = B(G1, Gy)) ©
& ({3u- $i1, 5127 52, «ee y Sin© gjn} S E(Vgrl[él],vgrz[az]) , where
{511,512, ee s Sin} = S, {51,552, +on , 550} = S,
{Vi1,Vi2, cee s Vin} =V, {"’11,"’]2, cee s an} =V,.
Proof .
Sufficiency .
Given Vg 1[G1(Vy,U4] VeaGo(V2,Us)] . It is required to prove that
G1(V1,U1) G5(V,,U,) and if B(Vg1 [G1(V1,U1)], Veia Go(V5,U,])
> ({311 81,5127 82, vee s Sin® Jn} then
(Vi = Vi1 ,Vi2 = Vigy ey Vin V30 = B(G1(V1,U1),G2(V2,U))) .
From Vg[G1(V4,U4] Ve[ G2(V2,U,)] and assertion 7, it follows
that
VB(ng[é1],Vgr2[éz]) = {51~ Si1, 5127 82, «ov, Sin = § JUP P,
Hence, let
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(Wis, Xie, in,2i0) © - (Wi, %1, 51,254)

(Wiz,Xi2,i2,212) = (W2, Xi2,¥12,1)

(WinsXin,VinsZin) @ (Win,Xjn, Vin Zjn)
{P1,P2,P3}“ {Pbpz,Ps}
mutually one-to-one correspondence between vertices
Vei[G1(V1,U)], VeralGo(V2,U,)] preserving adjacency .
Hence for V k,| €1,n, where k #| ,
X X, Zig <« Zj,
X X5, zy © Zy,
preserve adjacency . Hence
f(%i, i) = f(¥5,25) | (1)
f(%i,x1) =0, (%, %) =0,
since vertices of type x are not adjacent .
f(%i,2i) = f(%,2;) | (2)



On the other hand v, of graph G4(V4,U,) and ¥, ¥ of graph
G,(V,,U,) are homonymous vertices respectively with
XiesZiy Xt 2y and X, Zy; X5,Z5.
Consider the relations
Vie = Vi (5)
Viie Vi (6)
From relation 1 and the loading of the graphs Vg1 and Vg, it follows
that (Vi Vi) = F(Vi, Vi)
From relations 2, 3 and the loading of the graphs Vg1 and V., it
follows that f(Vik,Vi|) = f(ij,Vj|) .
From relation 4 and the loading of the graphs V1 and V, it follows
that (Vi va) = £y, ) .
It follows that relations 5, 6 preserve adjointness .
By virtue of an arbitrary choice of X,z ; i,z and %, 2 ; %;,Z;
It follows that
B(G1(V1,U1),G2(Va,Uy)) = (Vi © Vjg, Vip © Vip, oo ,¥in € Vo).
That is, G1(V1,U1) G,(V,,U,) . Sufficiency is proved )
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Necessity .
Given G4(V1,U,) G,(V,,U,) it is required to prove that
Vgrl[él(vlyul)] Vgrz[az(Vz,Ug)] and if

B(G1(V1,U4),G2(Vo,U, )) ={Vi1 © Vi1,V © Vo, oe, Vine ¥} then

{Sn“ 5i1,52° Sj25 wee s Sin Jn} € B( grl[él(vl, 1)] ,Vgrz[Gz(Vz, 2)])
Let B(éi(VLUl),Gz(Vz,Uz)) {Vig © Vit, Vit © Vjg,y eeey, Vig © an}

wherevy€ V, for V k €1,n and V€ V, for V k €1,n. Take

Vr,l€ I,n wherer=1.

Vir < i‘1jr ’ (8)
. (9)
Then f(vi.,vi) = (v, ¥) , (10)

f(vlr;vlr) - f({/jra{’jr) ’
f(va, v ) = f(v, ) .
From 10 and since Vg1 ,V, are images, respectively, of the graphs of
G, ,G, it follows.

f(xi,20) = £(%,25) (11)
f( Xil,Z |r) = ( lezjr) ’ (12)
f(xlnzl ) = ( Jr,er) ’ (13)
f(x,20) = £(%,2) (14)



In a V-graph, vertices of type x are not connected by edges,
and vertices of type z are connected by edges . Hence

f(xir, %) = (%, %;) | (15)
f(2ir,21) = f(2,2;) . (16)
From 11,12,13,14,14,15,16 it follows that
Xip = Xip, Zj = Zy, (17)
Xij= X, 2y 2y, (18)
remain contiguous.
On the other hand .

A vertex w;- adjacent only to ;.
Vertex w;- adjacent only to ¥, .
Vertex w;- adjacent only to ;.
Vertex w; - adjacent only to %;.

Hence
Wip o Wi, W Wy (19)
Together with relations 17,18 preserve the adjacency .
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Hence the relations
(Wie,Xir,Zir) < (Wir, X0, 250) (20)
(Wi, %, 20) = (Wy,%,2;) (21)

preserve contiguity .
Vertices of type y are adjacent only to vertices of the same name
of types x and z . Hence
yir < )"/jr y )"n“’ )"/jl
together with relations 20, 21 preserve adjacency.
Hence
(Wir,Xie, Vi Zir) < (Wie, %ir, Vir, 25)
(Wi, %, n,20) < (Wi, %, 75,25
preserve adjacency .

The vertices placed in correspondence with each other are taken
from (1) arbitrarily . Consequently, there is a one-to-one
correspondence between coalition vertices Vg1 , Vg2 constructed
from (1) by replacing vertices from G, , G, by coalition vertices
of the same name from V1, Vg, preserves adjacency .

That is, v~ v, , where r €1,n, is replaced by 5,- 3, and
vy~ v, where | €1,n, is replaced by $;< 3.




Vertices of type p are adjacent to each vertex of type z . Hence any
mutually one-to-one correspondence between vertices of type p of
graphs Vg1 ,Vgz and the specified mutually one-to-one correspondence
between their coalitional vertices preserve adjacency .

That is, Vg1 Vegro. The assertion is proved .
Notation .
Let Vg1((S1,P1,U1W,).(U,U,,,U1U})) be given,
Vera((S2,P2.Vi W), (Uc .Uy, UTUY))) , where Sy = Ui(W;,%;,7,2)
S, = U?(Wj,;‘j,yj, J) .
We label the vertices w,w,, |W,|=|W,| and |W,| #|W,]| , for
V ke T,n,wherek#1,and |W,|# |W,|,forVke T,n, wherek =r.

We will denote labeled vertices by (w)) , (w,) . V-graphs
in which m vertices are labeled we denote by V. (m) .

Mutually one-to-one correspondence between vertices Vg1(m) ,
Vgro(m) will be denoted by B, .

Assertion 9 .Let loaded V-graphs be given in which
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m - 1 vertices are correctly labeled, where m €1,n,
Vel (m - 1),((S1,P1,UiW3), (U U, Ui Uj)] ~
~ Vg (M - 1), ((Sz,Pzzu W) (Uc,Ux,Ui1U))] where S, = Uis;
§= (Wi, %, 75,2) , S2= VTS, 8= (W;,%,7;,%) .
We label the vertices w, € 5 and v, € 5, , where |,r € 1,n, with proper
labels that are equal to each other.
If Vga(m - 1) ~Vgo(m-1), then
3 Brn-1(Vera(M - 1),Vga(m - 1)) W~ W, if and only if
(W) < (%) € Bm(Vgu(m ) Vgo(m)) , where
Bm(vgrl( ), gr2(m)) m-1(V grrl(m 1) Vgr2(m -1)) U {w~ W},
That is, Vga(m - 1) Vgrz(m 1) -
=[((3 Brm-a(V gri(m 1) ,Vgrz( 1)) 3
> Wi w) & ((W) < (W r)EBm(Vgrl( ) \Vera(m)))] , where
Brn(Veri(m) Vera(m)) =B 1(Vgrra(m - 1) Vego(m = 1)) U {W, > W},
Proof .
Necessity .
Given : Vgi(m - 1) Vgro(m - 1) and
3 Bin-1 (Vga(m - 1) Vgo(m - 1)) 2w~ W, . It is required to prove that
(1) < (W) €Bm(Vgra(m) ,Vgra(m)), where Brn(Vga(m) ,Vga(m)) =



= Brr-1(Vgra(mM = 1) Virom - 1)) U (W W}
From assertion 3 and the condition of this assertion follows
proof .
Sufficiency .
Given
Bm(vgri(m) ,Vng(m)) = Bm-l(vgrl(m - 1) ,Vga(m - 1)) U (W~ W}
It is required to prove that
Wwie W, €Br_1(Vgra(m - 1) ,Vgo(m - 1)).
From assertion 3 and the condition of our assertion follows
{Wi> W} €B(Vgr(m) Vgo(m)), where
Em(vgrl(m) ’Vgr2(m))= Bm-l(vgrrl(m - 1) ’Vgrz(m - 1)) U {WIH Wr}’
it follows that w;« W, €B,_1(Vg1(m - 1) ,Vgo(m - 1)) .
The assertion is proved .
Assertion 10 . For the isomorphism problem of graphs without loops
_22 -
and multiple edges :
a) there does not exist a polynomial solution algorithm
b) there does not exist a polynomial P of the task .
Proof .
a) Let G4(V,,Uy) and G,(V, ,U,) , where |V4| =n, |V,]| =n, be given
oriented graphs (Berge graphs) . Their corresponding images are
VerlG1(V1,U1),((8,2, VW), (U, U, Ui U))]
Vng[éZ(VZ ,U0),((8,P,Uiwy),(U,U,,, U1 0})] .
Suppose the contrary . There exists a polynomial algorithm
computing isomorphism of graphs without loops and multiple edges .

Let us compute B (Vg1 (G1), Vera(G2)) . It follows from assertion 7 that

— —

B(Vgr1 (G1), VeraG2)) DUT((Wik, ki, Vi Zik) = ((Wieo Xk, Vi Zik)) -
It follows from hence and assertion 8 that B(G1,G,) = Ui(vy < V) .
l.e., it follows from our assumption that there exists a
polynomial algorithm for the Berge graph isomorphism problem . And
this contradicts the statement proved by
S.V. Yablonsky [1] that there exist Berge graphs
for which there does not exist a polynomial algorithm for computing
their isomorphism .
The obtained contradiction proves the point a of the assertion .
b) Suppose the contrary . There exists a polynomial P task for the
isomorphism problem of graphs without loops and multiple edges .



Let us start labeling with correct labels the vertices of type w
of graphs Vg4,Ve» . Consider a sequentially numbered
series of vertices wy,W,, ..., w, of graph V..
For vertex v, we assign IabeI ki=|W.|, where |W,| =1.
In the graph V., , compute a vertex W, such that after assigning to it
the label kj; = |Wj,| , where |Wj;| = 1, P the task establishes that
Ver1(1) ~ V(1) . In this case, it follows from statements 3 and 2 that
3 B (Vgr1(1), Vgr2(1)) such that
{Wl W11 , Wp < le} € B (Vgrl(l)a Vgr2(1)) .

For vertex w, of graph V4(1), we assign a label with value
K, = |W,|, where |W,|= 2. In the graph V,.(1), compute a vertex v,
such that after labeling it ki, = |Wj,| , where |W;,|= 2
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P task will establish Vg1(2) ~ Vgr2(2). In this case, from statements
3 and 2, it follows 3 B (Vg1(2), Vera(2)) such that
{(Wyo Wi Wy o Wy, Wye Wiy Wy o Wil € B (Vga(2), Vera(2)) .

Let us continue the above process . For each vertex in
the set {wq,w,,w3, ..., w,}, we compute their corresponding
vertices {W;1,W5,Wjs,...,W;n} . That is, let us compute
B (Vgra(n) , Vng(n)) > {W,e le , Wi = W, Wye sz , Wy = Wiy,

, Wie WJn » Wn © Wi }. (22)

The graphs Vg1, Vg, are subgraphs, respectively, of the graphs
Vgr1(Nn), Vera(n). 1t follows from 22 that
B(ng,Vgrz) =p (Vgrl(n) gr2( NDN{W;e Wj1 , Wyo sz, ces
W, W;.}. From assertion 1, it follows that Vg1 ~ Vg and B(Vg1,Ver2)
preserves adjacency i.e. B(Vg1,Ver2) = B (Vg1 , Vo) and
{ Wy o Wy, Wy o Wy, o, Wy o Wil € B (Vg V)
It follows from hence and assertion 7 that
B (Vert, Ver2) ={ 51 51,52 3, .o, 5y 8, JU {P ~ P} . Hence
and assertion 8 follows
{vy e ¥y vy o Vi, n, Ve Vi 1= B(G1,G,) . That is, we applied the
polynomial P task n times and
computed the isomorphism of Berge graphs . We obtained a
contradiction .
S.V. Yablonsky [1] proved that there exist oriented
graphs for which there does not exist a polynomial algorithm



for computing their isomorphism . Hence our assumption is incorrect .
There is no polynomial P of the task and there is no
polynomial algorithm for solving .

Assertion 11. For NP tasks belonging to the NPC class
there are no polynomial P problems and polynomial
solution algorithms.

Proof .

The polynomial solution to any problem from the NPC
class gives
polynomial algorithm to solve each problem
belonging to the NPC class.

The graph isomorphism problem is a special case of the
problem
isomorphism to a subgraph belonging to the class NPC.
From here

- 24 -

a) if there is a polynomial P task for at least one
problems from the NPC class, then there is a polynomial P
problem
for the graph isomorphism problem,

b) if there is a polynomial algorithm for solving at least
for one of the problems of the NPC class, then there is a
polynomial algorithm for solving the graph isomorphism
problem.

From here and assertion 10 it follows that for any
problem of the class
NPC there is no polynomial P task and there is no
polynomial solution algorithm.
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