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                      A solution of the P versus NP problem .
( On graphs with coalitions of vertices and their isomorphism .) 
 It is proved in this paper that there does not exist a polynomial 
algorithm and a polynomial P task for the graph isomorphism problem. 
As a consequence, there does not exist a polynomial algorithm and a 
polynomial P task for any problem in the class NPC. In particular, there 
does not exist a polynomial algorithm and a polynomial P task for the 
traveling salesman problem.    
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                                   Definitions and notations .
 → - if then .
 ↔ - if and only if .
G⃗(V,U) is the notation of an oriented graph.
G(V,U) is the notation of an undirected graph without loops and
multiple edges , where |V| = n, V is the set of vertices, 
U is the set of edges if the graph is undirected ,
U - set of arcs if the graph is oriented . 
The degree of a vertex is a number equal to the number of edges 
incident to this vertex. We denote the degree of a vertex by Deg(vi) , 

where i ∈1 , n  and vi∈ V.
   Let us define a function on the set of vertices of the graph. 

Let a graph G(V,U) , vl,vp∈ V, where l,p∈1 , n  and l ≠p.

(vl,vp) ∈U → f(vl,vp) =1, (vl,vp) ∈ U →f(vl,vp) =0.

   Let vi,vj,vk ∈ V, where i,j,k ∈ 1 , n and i ≠j , j≠k , i≠k. 
We will say that vi and vj have equal links to a vertex vk if f(vi,vk)=f(vj,vk).

Let G⃗(V,U) , vi ∈ V , where i ∈ 1 , n. If there exists a loop at a vertex , i.e., 

(vi,vi) ∈ U , then let f(vi,vi) =1. That is, (vi,vi) ∈U →f(vi,vi) =1 and 

(vi,vi) ∈ U →f(vi,vi) =0 . For ∀ vl,vp ∈ V , where l,p ∈ 1 , n and l ≠p ,

(vl,vp) ∈ U & (vp,vl)  ∈U → f(vl,vp) =1 ,

(vl,vp) ∈ U & (vp,vl) ∈ U → f(vl,vp) = -1 .

(vl,vp) ∈ U & (vp,vl) ∈ U → f(vl,vp) = 2 ,
(vl,vp) ∈ U & (vp,vl) ∈ U → f(vl,vp) = 0 .

   Let vi,vj,vk ∈ V , where i,j,k ∈ 1 , n and i ≠j , j≠k , i≠k . We will say that vi 
and vj have equal links to vertex vk ,
if f(vi,vk) = f(vj,vk) and f(vi,vi) = f(vj,vj) .
   If f(vl,vp) = 0 , then we will say that vertices vl,vp are not connected to 
each other.
   Let two vertices of different graphs be given . A two-sided arrow 
placed between the labels of these vertices means that the vertices 
correspond to each other .Ġ1(V̇  ,U̇) , G̈2(V̈  ,Ü) , v̇i1 ,v̇i2 ∈V̇  , v̈j1 ,v̈j2 ∈V̈  be 
given . It is said that a one-to-one correspondence between the vertices
of v̇i1↔v̈ j1 ,v̇i2 ↔v̈ j2  preserves adjacency if (v̇i1 ,v̇i2) ∈ U̇  ↔ (v̈j1 ,v̈j2)∈Ü .
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if the graphs are



oriented , i.e., G⃗1(V̇ ,U̇) , G⃗2(V̈ ,Ü) and v̇i1 ,v̇i2 ∈V̇  , v̈j1 ,v̈j2 ∈V̈  .                             
 It is said to be a one-to-one correspondence
between vertices v̇i1 ↔ v̈j1  , v̇i2 ↔ v̈j2 preserves adjacency if
((v̇i1 ,v̇i2) ∈U̇↔ (v̈j1 ,v̈j2) ∈Ü ) &
& ((v̇i1 ,v̇i1) ∈U̇↔ (v̈j1 ,v̈j1) ∈Ü ) &
& ((v̇i2 ,v̇i2) ∈U̇↔ (v̈j2 ,v̈j2) ∈Ü ) &
& ((v̇i2 ,v̇i1) ∈U̇↔ (v̈j2 ,v̈j1) ∈Ü ) .
   We will denote by β or β(V̇ , V̈) , or β(Ġ1,G̈2) the mutually unambiguous 
correspondence between verticesV̇   and V̈  . If the graphs are oriented , 
then β(G⃗1,G⃗2) .
   A mutually unambiguous correspondence between vertices 

β(Ġ1,G̈2 ) preserves adjacency if for ∀v̇ik↔v̈ jk ∈ β(Ġ1,G̈2) and  ∀v̇ir ↔v̈ jr ∈ β(Ġ1,G̈2) , the mutually one-to-one correspondences  
v̇ik↔v̈ jk , v̇ir ↔v̈ jr preserves adjacency . Similarly, a mutually one-to-one 
correspondence β(G⃗1,G⃗2) preserves contiguity if for  ∀v̇i2 ↔v̈ j2 ∈ β(G⃗1,G⃗2) and ∀v̇i2 ↔v̈ j2 ∈ β(G⃗1,G⃗2),
the mutual one-to-one correspondences v̇i1↔v̈ j1 , v̇i2 ↔v̈ j2

preserves adjacency .
    A mutually unambiguous correspondence between vertices of graphs
preserving adjacency will be denoted by β(Ġ1,G̈2) .
For oriented graphs, we denote β(G⃗1,G⃗2) . A mutually unambiguous 
correspondence β(Ġ1,G̈2) that preserves adjacency will be denoted also 
by the equality β(Ġ1,G̈2 ) = β(Ġ1,G̈2 ) . For oriented graphs,
β(G⃗1,G⃗2) = β(G⃗1,G⃗2)  .
   If  vik ↔ vjk∈β, then we denote this by the equality  
β(v̇ik) = v̈jk or β(v̈jk) = v̇ik.
   We will denote by β(V̇ i,V̈ j) the mutual-ambiguous correspondence 
between subsets of vertices V̇ i∈V̇ 1 , V̈ j∈V̈ 2 .
Let Ġ1(V̇  ,U̇) ,G̈2(V̈  ,Ü)  , |V̇|= n ,|V̈|= n be given .
A graph Ġ1(V̇  ,U̇)  is said to be isomorphic to a graph G̈2(V̈  ,Ü)  and 

denoted by Ġ1(V̇  ,U̇) ~ G̈2(V̈  ,Ü)  if ∃β(Ġ1,G̈2)  . Similarly for oriented 

graphs ,G⃗1 ~ G⃗2  if ∃β(G⃗1,G⃗2)   .                                 
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                2. Related vertices of a graph and their properties .



Definition 1. Let a graph G(V,U) be given, |V| = n . Two vertices 

vi,vj ∈ V, where vi,vj ∈ V , where i,j ∈1 , n and i ≠ j , we will call them
related if they are not connected by an edge and have equal 
connections to any vertex different from them and denote by vi ≡ vj . 

That is, f(vi,vj) =0 and for ∀ vk ∈ V ,      

where k ∈1 , n and k ≠ i , k ≠ j , f(vi , vk) = f(vj , vk) .
Assertion 1. Given graphs , G1(V1 , U1) and G2(V2 , U2) , where 
|V1| = n , |V2| = n and G1 ~ G2 .  Ġ1(V̇ 1,U̇1 ) , Ġ2(V̇ 2,U̇2 ) are subgraphs 

respectively of graphs G1 and G2 .∃β(G1 , G2) and ∃β(Ġ1 , Ġ2) such that β(Ġ1 , Ġ2) ∈ β(G1 , G2)  . Then  Ġ1 ~ Ġ2 and
β(Ġ1 , Ġ2) preserves adjacency , i.e. β(Ġ1 , Ġ2) = β(Ġ1 , Ġ2) . 
That is, the subgraphs Ġ1,Ġ2 of the isomorphic graphs G1 , G2 
constructed on the vertices which are in mutual-ambiguous 
correspondence ,that retain adjacency are put in correspondence with 
each other  are isomorphic .
Proof .
   Let Ġ1(V̇ 1,U̇1 ) and Ġ2(V̇ 2,U̇2) be subgraphs respectively of graphs 
G1(V1 ,U1 ) and G2(V2 ,U2 ) satisfying the condition of the statement . 
That is, V̇ 1 = {v̇i1 ,v̇i2 , ... , v̇ik} , V̇ 2 = {v̇j1 ,v̇j2 , ... , v̇jk }  . 
And the one-to-one correspondence 
β(Ġ1 ,Ġ2) = {v̇i1 ↔ v̇j1 , v̇i2↔ v̇j2 , ... , v̇ik↔v̇ jk}                                           (1)            
is a subset of β(G1 , G2) = {v̇i1 ↔ v̇j1 , v̇i2 ↔ v̇j2, ... , v̇in ↔v̇ jn}                 (2)           

That is, β(Ġ1 ,Ġ2) ∈ β(G1 , G2) .                                                                      (3)
   Suppose the contrary β(Ġ1 ,Ġ2) does not preserve adjointness . 

I.e. ∃ {v̇ip ↔ v̇jp ,v̇il ↔ v̇jl} ∈ β(Ġ1 ,Ġ2) and
f(v̇ip ,v̇il) ≠ f(v̇jp,v̇jl) .                                                                                          (4)
   On the other hand, it follows from (3) that
v̇ip ↔ v̇jp , v̇il ↔ v̇jl ∈ β(G1 , G2) .Hence f(v̇ip , v̇il) = f(v̇jp, v̇jl) .                     (5)   
But (5) contradicts (4) . The obtained contradiction proves approval .
Assertion 2 . Given G1(V1 , U1) , G2(V2 , U2), where |V1| = n , 
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|V2| = n ,V1 = {v̇1 ,v̇2 , ... , v̇n) , V2 = {v̈1 ,v̈2 , ... , v̈n} . G1 and G2

have  k related vertices M1 = {v̇i1 ,v̇i2 , ... , v̇ik} , M2 = {v̈j1 ,v̈j2 , ... , v̈jk} . 

G1~ G2 . If ∃β1(G1 , G2) which contains β1(M1, M2 ) , then taking in 



β1(G1 , G2) instead of β1(M1, M2) any β2(M1, M2) different from 

β1(M1 , M2) we obtainβ2(G1 , G2) .
Proof .

   From the condition of the statement β1(G1 , G2) = 

= β1(M1, M2)∪β1(V1\ M1 , V2\ M2) .The subgraphs G11(V1\ M1 , U11) ,
G22(V2\ M2 , U22) of graphs G1 and G2 . It follows from statement 1 that 
G11~ G22 and β(G11, G22) = β1(V1\ M1, V2\ M2) . Let 
β1(V1\ M1, V2\ M2) = {v̇ik+1 ↔ v̈jk+1 , v̇ik+2↔v̈ jk+2, ... , v̇i(n-k)↔v̈ j(n-k)} .      (1)          
   Let us construct β2(G1 , G2) by joining β1(V1\ M1, V2\ M2) one-to-one 
correspondence of the vertices
β2(M1, M2) = {v̇p1 ↔ v̈l1 , v̇p2↔v̈ l2, ... , v̇pk↔v̈ lk} .                                     (2)
We prove that β2(G1 , G2 ) preserves adjacency, i.e. 

β2(G1 , G2) = β2(G1 , G2) . Suppose the contrary ∃ v̇pr↔ v̈lr, 

r ∈ 1 , k , and ∃v̇i ↔ v̈j ∈ β1(V1\ M1 , V2\ M2) such that
f(v̇pr , v̇i) ≠ f(v̈lr , v̈j) .                                                                                        (3)   

   On the other hand, let us take ∀v̇iq↔v̈ jq ∈ β1(M1, M2)since
f(v̇iq , v̇i) = f(v̈jq , v̈j) .                                                                                        (4)
M1,M2 are sets of related vertices
f(v̇iq , v̇i) = f(v̇pr , v̇i) ,
f(v̈jq , v̈j) = f(v̈lr , v̈j) .
Hence and from (4) it follows
f(v̇pr , v̇i) ¿ f(v̈lr , v̈j).                                                                                         (5)    
But (5) contradicts (3) , Hence the assumption is incorrect .

The related vertices are not adjacent . Hence for ∀ q ∈ 1 , k
and ∀ γ ∈ 1 , k , where q ≠γ , {v̇pq ↔ v̈lq , v̇pγ↔v̈ lγ∈β2 , then the following is 
true the equality f( v̇pq , v̇pγ ) = f(v̈lq , v̈lγ ) . Hence :
β2(G1 , G2) = β1(V1\ M1 , V2\ M2) ∪β2 (M1, M2).
The assertion is proved .
Assertion 3. Given graphs G1(V1 , U1), G2(V2 , U2), where |V1|=n ,|V2|=n.

M1 = {v̇i1 ,v̇i2 , ... , v̇ir} , M2 = { v̈j1 ,v̈j2 , ... , v̈jk} , M1∈ V1 , M2∈ V2 .
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M1,M2 are related vertices respectively of graphs G1,G2 .

If G1~ G2 and ∃β(G1,G2)   such that v̇i ↔ v̈j ∈β(G1 , G2), where v̇i∈M1 and v̈

j∈M2 , then all other related vertices M1\v̇i and M2\v̈j are 
put in correspondence to each other in β(G1 , G2)  and |M1|=|M2|,           



i.e., r = k .
Proof .

   Let v̇i ∈ M1 ,v̈j ∈ M2 , and 
β(G1 , G2) = {v̇i ↔ v̈j ,v̇ip1 ↔ v̈jl1 , v̇ip2↔v̈ jl2, ... , v̇ip(n-1)↔v̈ jl(n-1)} .
   Suppose the contrary . Without violating generality suppose ,

that there exists v̇ipq↔ v̈jlq ∈ β(G1 , G2)   , where q∈1 , n−1 , and 
v̇ipq≡ v̇ i , and v̈jlq and v̈j are not related vertices .

 Hence ∃v̈jlm , where m ∈1 , n−1 and 
                                       f( v̈j ,v̈jlm) ≠ f(v̈jlq,,v̈jlm) .                                              (1)

   On the other hand  v̇ipq↔ v̈jlq∈ β(G1 , G2)   and v̇ipq≡ v̇i . Hence and since 
in β(G1 , G2) there exist
                                       v̇ipm ↔ v̈jlm ,                                                              (a)
                                       v̇ipq ↔ v̈jlq ,                                                                (b)
                                           v̇i↔ v̈j                                                                     (c) 
should :
                               f( v̇i ,v̇ipm) = f(v̇ipq ,v̇ipm) ,                                                    (2)   
                               f( v̇i , v̇ipm) = f(v̈j , v̈jlm) ,                                                      (3)
                               f( v̇ipq , v̇ipm) = f(v̈jlq , v̈jlm) .                                                 (4)
It follows from (2) that the left parts of (3) and (4) are equal, and from 
(1) it follows that the right parts of (3) and (4) are not equal .
   The obtained contradiction refutes the assumption .
   Let us prove that |M1| = |M2| . Suppose the contrary .Without 

breaking generality, suppose that |M1| >|M2| and ∃β(G1 , G2),

such that v̇i ↔ v̈j ∈ β(G1 , G2) , where v̇i∈ M1 , v̈j∈ M2 .

   Hence ∃ v̇r ↔ v̈p∈ β(G1 , G2)  , where v̇r∈ M1 , v̈p∈ M2 .
As shown above such an assumption leads to 
a contradiction . The assertion is completely proved .
   3. About a graph with five types of vertices . About a V-graph .
                  (About a graph with coalitions of vertices.)
   3.1.Notations .
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   For convenience of reasoning we introduce the notation
Let two ordered sets M1 = (a1 , a2 , a3 , a4) ,
M2 = (b1 , b2 , b3 , b4) . Mutually unambiguous correspondence between
elements of the sets M1 and M2 , in which the elements occupying 
equal positions are put in correspondence ,
we denote by M1↔ M2 or (a1 , a2 , a3 , a4) ↔ (b1 , b2 , b3 , b4) .



That is, ((a1 , a2 , a3 , a4) ↔ (b1 , b2 , b3 , b4))→ (a1↔ b1 , a42↔ b2 ,
a3 ↔b3 , a4↔ b4) . Hence the following relations are true
(a1,a4) ↔ (b1,b4) , (a2,a3) ↔ (b2,b3) since they establish the same and the 
same correspondences between the elements . 
   If we consider any one-to-one correspondence
between elements of two sets M1 and M2 . The sets M1 and M2

let us denote as unordered: M1 = {a1 , a2 , a3 , a4} , M2 = {b1 , b2 , b3 , b4} .
That is, {a1 , a2 , a3 , a4} ↔ {b1 , b2 , b3 , b43} is any mutually unambiguous 
correspondence between elements of sets M1 , M2 .
     Let us introduce graphs of a special kind .In the indicated graphs, 
vertices are partitioned into subsets of vertices . Each subset consists of
four vertices . Each of the four vertices has a property different from 
the properties of the other three vertices .
This allows us to introduce the notion of vertex type . Thus, each 
quadruple vertex consists of four types of vertices
    These four vertices will be called a coalition of vertices or a coalition 
vertex .The main property of the introduced graphs .
Mutually unambiguous correspondence between vertices of the 
specified graphs , preserving adjacency, puts coalition vertices in 
mutually unambiguous  correspondence . In this case , the mutually 
ambiguous correspondence puts the vertices of the 
same type into a mutually-ambiguous correspondence . 
The introduced graphs allow us to reduce the problem of isomorphism 
of oriented graphs (Berge graphs) to the problem of isomorphism of 
undirected graphs without loops and multiple edges . And establish the 
relation between the P task 
(the P task answers the question existence of a solution: Yes or No) 
with the algorithm for solving the isomorphism problem of graphs 
without loops and multiple edges .
        3.2 Constructing a V - graph .
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   Definition 2 . Consider the graphical representation of the Latin
letter V . It consists of two line segments forming an angle .
Let's transform the image of the letter V into a graph with three 
vertices .
   At the vertex of the angle we place the first vertex of the graph .
At the free end of the left segment we place the second vertex .



At the free end of the right segment we place the third vertex .
   The vertex located at the vertex of the corner will be called 
vertex of type y .
   The vertex located at the free end of the left segment 
will be called a vertex of type x .
   The vertex located at the end of the right segment will be called a 
vertex of type z .
   Let's transform the constructed graph into a graph with four vertices.
   The fourth vertex will be connected by an edge only to a vertex of 
type x .This fourth vertex will be called a vertex of type w .
   Let's construct a graph which consists of n graphs constructed above
with four vertices . For this purpose , the image of the constructed 
graph with four vertices, we repeat it n times .
   Let us denote and number the vertices . The letter denoting the type
of a vertex is at the same time its denotation .
   Let's number the vertices as follows .Vertices belonging to the same 
graph image with four vertices will have equal numbers .
   We assign an index to each vertex designation . The value
index is equal to the vertex number . Vertices of the same type 
we number them sequentially from 1 to n.
   The vertices of four types forming a quadruple vertex with the same 
numbers will be called a coalition of vertices or vertices of the same 
name .
 We denote a coalition of vertices by si , where the value i is equal to
number assigned to vertices forming this coalition and
call a coalition of vertices a coalition vertex . 
   The set of all coalition vertices will be denoted by S .
In a coalition vertex we define the following ordering of vertex types: 
w,x,z,y . That is, a coalition vertex is an ordered set containing four 

vertices . Thus si = (wi,xi,zi,yi) , where i ∈1 , n ,S = ∪1
nsi .
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   We connect vertices of type z by edges . That is, the vertices of type z 
form a complete graph . Let us introduce three more related vertices .
Let us call them vertices of type p . We denote the set of vertices of 
type p by P={p1 , p2 , p3} . Let us connect each vertex from P by an edge 
to each vertex of type z .



   The edges in the graph described above will be in every graph 
containing the same number of coalition vertices. Let us denote the set 
of these edges by Uc .
In the described graph there may be edges connecting vertices of type 
x with vertices of type z . We will denote the set of these edges
1by Uxz. Also, for vertices of type w,
we may introduce related vertices.   For a vertex wi ,we denote by Wi , 

where i ∈1 , n.
Ui is the set of edges connecting vertices from Wi to vertex xi , where 

i∈1 , n .
   A graph with five types of vertices x,y,z,w,p will be called a V-graph
and denote by Vgr((S,P,∪1

nWi),(Uc,Uxz∪1
nUi)), where |S| = n .

   If |Uxz| = 0 , then the V-graph will be called unloaded. If
|Uxz| ≠ 0 , then the V-graph is called loaded.
   The number of coalition vertices|S| will be called the dimension of 
the V-graph and denoted by R(Vgr) .
   If vertices related to one of the vertices of type w are added to 
the V-graph, we will say that this vertex is labeled or has a label . 

   The set of vertices Wi related to a vertex wi , where i ∈1 , n ,
we will call the label of vertex wi . |Wi| - the number of vertices related 
to vertex wi we will call the label value .
                 3.3 Properties of vertices of a V-graph .

 The necessary conditions for vertices v̇i∈V̇  , where i ∈1 , n, , v̈j ∈V̈ ,

j∈1 , n,such that ∃β(G1(V̇ , U̇) , G2(V̈ ,Ü)) ∋ v̇i↔v̈ j .
Assertion 4. Let G1(V̇ , U̇), G2(V̈ ,Ü) , where 
V̇  = {v̇1 , v̇2 ,..., v̇n} , V̈  = {v̈1 , v̈2 ,..., v̈n} . If G1(V̇ , U̇)  G2(V̈ ,Ü) and for a

vertex v̇i ∈ V̇  , v̈j ∈V̈∃β(G1 , G2) such that v̇i↔v̈ j ∈ β(G1 , G2)  . Then the 
degrees of the specified vertices are equal to .
     Proof .
   Suppose the contrary Deg(v̇i) ≠ Deg(v̈j) . Without violating generality
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let Deg(v̇i) >Deg(v̈j) .

   Let {v̇i1, v̇i2,...,v̇ik} ∈V̇
  be vertices adjacent to vertex v̇i .I.e. Deg(v̇i) = k .

   On the other hand, for ∀ l ∈1 , k , f( v̇i, v̇il) = 1. Since
v̇i↔v̈ j ∈ β(G1 , G2) , then ∃v̈jl∈V̈  , such that v̇il↔v̈ jl∈β(G1 , G2).Hence 
f(v̈j , v̈jl) = 1. Hence Deg(v̈j) = k , and by assumption Deg( v̇i) >Deg(v̈j) ,          



i.e. k ¿ k . The resulting contradiction proves the statement .

   Assertion 5. Let G1(V̇  , U̇) ,G2(V̈ , Ü) ,where |V̇| = n , |V̈| = n . v̇i∈V̇  ,
v̈j∈V̈  the adjacent sets of vertices, respectively                                              
 L1 = {v̇i1, v̇i2,...,v̇ik} , L2 = {v̈j1, v̈j2,..., v̈jm} and their corresponding vertex 
degree sets M1 = {Deg(v̇i1),Deg(v̇i2,..., Deg(v̇ik)} ,
M2 = {Deg(v̈j1),Deg(v̈j2),..., Deg(v̈jm)} .

   If G1~ G2 and ∃β(G1 , G2) is such that v̇i ↔ v̈j ∈β(G1 , G2) , then
|M1| = |M2| , i.e., m = k , the sets of degrees of vertices M1 , M2 ,
adjacent to vertices v̇i, v̈j , respectively, are equal to each other ,
i.e., M1 = M2 .
   Proof .

By the condition of statement G1~ G2 and v̇i ↔ v̈j ∈ β(G1 , G2), hence and 
statement 4 follows |M1| = |M2| , i.e. k = m .
   Suppose the contrary M1 ≠ M2 . Then any 
a one-to-one correspondence between vertices from L1 and L2

will assign to each other v̇iβ ∈ L1 andv̈jγ∈ L2 , where γ,µ ∈ 1 , k ,
such that Deg(v̇iβ) ≠ Deg(v̈jγ) . That is, from the assumption that ∃β(G1 , G2) and v̇i ↔ v̈j ∈ β(G1 , G2), it follows that ∃
v̇iβ↔v̈ jγ∈ β(G1,G2) and Deg(v̇iβ) ≠ Deg(v̈jγ) . And this contradicts statement 
4 . The resulting contradiction proves the statement .
   Definition 3 . Let given Vgr((S,P,∪1

nWi),(Uc,Uxz,∪1
nUi)),

Wi = {wi1 , wi2 ,...,w ik1} is the label of vertex wi , 

Wj = {wj1 , wj2 ,..., wjk2} is the label of vertex wj , where wi ∈ si , wj ∈ sj , 

si,sj ∈ S . We will say that vertices wi ,wj , where i ≠ j , have 
different labels if k1 ≠ k2 . If k1 = k2 we will say that
vertices wi , wj have equal labels . Similarly, we define labels if Wi ,Wj 
belong to different V-graphs .
We call ki = |Wi| , kj = |Wj| the label value .                           
   Definition 4. Let Vgr((S,P,∪1

nWi),(Uc,Uxz,∪1
nUi)). We will 
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say that the vertices of the V-graph are labeled correctly if any                 
two labeled vertices have different labels .
                    Ranges of degree values of vertices
                         of each type in the V-graph .
Deg(x) - denotation of the degree of vertices of type x .
Deg(y) - designation of the degree of vertices of type y .
Deg(w) - denotation of the degree of vertices of type w .



Deg(z) - denotation of the degree of vertices of type z .
Deg(p) - denote the degree of vertices of type p .                                         
  Given Vgr((S,P,∪1

nWi),(Uc,Uxz,∪1
nUi)),. Only vertices of type x

adjacent to one or more vertices that have
degree equal to 1 since Deg(w) = 1 . 
Deg(x) = 2          if the V-graph is not loaded and vertices of type w 
                            are not  labeled .           
Deg(x) ≤ n + 2   if the V-graph is  loaded and vertices of type w 
                            are not  labeled .      
Deg(y) =2           always .
Deg(w) = 1         always . 
Deg(z) = n + 3     if the V-graph is unloaded, since vertices of type 
                              z are connected by edges and to one 
                              vertex of type y , each of them is 
                              adjacent to each of three vertices of type p .
Deg(z) ≤ 2n + 3    if the V-graph is loaded , since each vertex of type
                               z can be adjacent to each vertex of type x .
Deg(p) = n            since vertices of type p are always adjacent 
                               only to each vertex of type z .
   Hence :
2 ≤ Deg(x) ≤ n + 2 
Deg(y) = 2             always .
Deg(w) = 1            always .
n + 3 ≤ Deg(z) ≤ 2n + 3 .
Deg(p) = n             always .
    Assertion 6. Given Vgr1((Ṡ,Ṗ,∪1

n Ẇ i),(U̇ c,U̇ xz,∪1
n U̇ i)),

Vgr2((S̈,P̈,∪1
n Ẅ i),(Ü c,Ü xz,∪1

n Ü i)). If Vgr1 Vgr2, then any 
mutual-ambiguous correspondence between vertices Vgr1, Vgr2,
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preserving contiguity , puts vertices of the same type in 
correspondence with each other .                                                    
   Proof .
   Let Vgr1  Vgr2. Consider each vertex type  in separately .
1)Deg(w) = 1 . The degree of the other vertex types have degree 
greater than 1 . Hence from statement 4 follows ∃β(Vgr1,Vgr2) in which a 
vertex of type w is put in correspondence to a vertex 



of another type .  
   2) 2 ≤ Deg(x) ≤ n + 2 . A vertex of type x is the only vertex type 
adjacent to a vertex having degree equal to 1 . It follows from 
statement 5 that ∃β(Vgr1,Vgr2)  in which a vertex of type x corresponds to 
a vertex of another type .
   3) Deg(y) = 2 . A vertex of type y is not adjacent to a vertex whose 
degree is 1 . It follows from statement 5 that ∃β(Vgr1,Vgr2) in which a 
vertex of type y corresponds to a vertex of type x . The degrees of 
vertices of types w,z,p cannot be equal to Deg(y) . It follows from 
statement 4 that ∃β(Vgr1,Vgr2) in which a vertex of type y corresponds 
to a vertex of another type 
  4) n + 3 ≤ Deg(z) ≤ 2n + 3 . That is, the degree of any vertex of type z
cannot be equal to the degree of a vertex of another type . 
From here and statement 4, it follows that ∃β(Vgr1,Vgr2)  in which a 
vertex of type z is put in correspondence to a vertex of another type.     
5)  Deg(p) = n . A vertex of type p is not adjacent to
a vertex whose degree is 1 . It follows from statement 5 that ∃β(Vgr1,Vgr2)
in which a vertex of type p corresponds to a vertex 
of type x .
 The degrees of the vertices of types w,z,y cannot be equal to Deg(p) . 
Hence and statement 4 it follows that ∃ β(Vgr1,Vgr2) in which a vertex 
of type P is put in correspondence to a vertex of a different type . The 
assertion is completely proved .
   Assertion 7. Given Vgr1((Ṡ,Ṗ,∪1

n Ẇ i),(U̇ c,U̇ xz,∪1
n U̇ i)),

Vgr2((S̈,P̈,∪1
n Ẅ i),(Ü c,Ü xz,∪1

n Ü i)), where |Ṡ| = n ,|S̈| = n , |Ṗ| = 3 , 

|P̈| = 3 . If  Vgr1~ Vgr2 , then ∀β(Vgr1,Vgr2)  puts the same-named vertices 
of one graph in correspondence with the same-named vertices 
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of the same type. That is, (Vgr1~ Vgr2) → (∀β(Vgr1,Vgr2) = 
 = {ṡi1↔ s̈j1, ṡi2↔ s̈j2,..., ṡin↔ s̈jn} ∪ Ṗ↔P̈) .
   Proof .

   It follows from Assertion 6 that ∀β(Vgr1,Vgr2)  puts vertices of the same 
type in correspondence to each other . It remains to prove that 

if ṡI∈Ṡ ,s̈j∈S̈ , where ṡi = {ẇ i,ẋ i,żi, ẏ i} ,s̈j = {ẅ j,ẍ j,z̈j, ÿ j } , i,j∈1 , n and 
at least one of the relations ẋI↔ ẍ j , ẏ i ↔ ÿ j , żi ↔ z̈j , ẇ i ↔ ẅ j

belongs to β(Vgr1,Vgr2) , then each of them belongs to β(Vgr1,Vgr2) .



The proof will be carried out in 4 steps .For each relation, we prove that
if it belongs to β(Vgr1,Vgr2) , then the
other three relations also belong to β(Vgr1,Vgr2) .

   1)Let ẋ i↔ ẍ j∈β(Vgr1,Vgr2) , we need to prove that  

{ ẏ i ↔ ÿ j , żi ↔ z̈j , ẇ i ↔ ẅ j} ∈β(Vgr1,Vgr2) . Suppose the contrary 
ẋI↔ ẍ j ∈ β(Vgr1,Vgr2)  , and at least one of the relations : ẏ i ↔ ÿ j ,
żi↔ z̈j , ẇ i ↔ ẅ j

does not belong to β(Vgr1,Vgr2) .

   a) Let ∃ be such a β(Vgr1,Vgr2)  such that ẋ i↔ ẍ j∈β(Vgr1,Vgr2) , but
ẇ i ↔ẅj∈ β(Vgr1,Vgr2)  . That is, ẋi↔ ẍ j ∈ β(Vgr1,Vgr2)   ,
β(ẇ i) ≠ẅ j ,β(ẇ i) = ẅ j1 , where j ≠ j1 . Hence f( ẋ i,ẇ i) = f(ẍj,ẅ j1) .
    On the other hand f(ẋ i,ẇ i) ≠ 0 , and f(ẍ j,ẅ j1) = 0 , since any vertex of 
type x is adjacent only to a vertex of the same name of type w . Hence 
f(ẋ i,ẇ i) ≠ f(ẍ j,ẅ j1) . The resulting contradiction refutes assumption .

   b) Let ∃ β(Vgr1,Vgr2) such that β(ẋ i) = ẍ j , but β( ẏ i) = ÿ j1 , where j≠ j1 .
Hence  f(ẋ i, ẏ i) = f(ẍ j, ÿ j1) . On the other hand a vertex of type x is adjacent 
only to a vertex of the same name of type y . Hence
f(ẋI, ẏ i) ≠ 0 , and f(ẍ j, ÿ j1) = 0 , i.e., f(ẋ i, ẏ i) ≠ f(ẍ j, ÿ j1) . The resulting 
contradiction refutes the assumption .

    c) Let ∃ β(Vgr1,Vgr2) such that β(ẋ i) = ẍ j , but β(żi) = z̈j1, where j ≠ j1 .
From (b) it follows that β( ẏ i) = ÿ j . Hence f( ẏ i,ż i) = f( ÿ j,z̈j1) .
    On the other hand , since ÿ j is adjacent only to a vertex of type z of 
the same name, f( ẏ i,żi) ≠ 0 , f( ÿ j,z̈j1) = 0 , i.e., f( ẏ i ,żi) ≠ f( ÿ j,z̈j1) .
The resulting contradiction refutes the assumption .
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 2) Let ẏ i ↔ ÿj∈β(Vgr1,Vgr2)  , it is required to prove that  
{ẋi ↔ ẍ j , żi ↔ z̈j , ẇ i ↔ẅj}∈β(Vgr1,Vgr2) . Suppose the contrary 

, ẏ i↔ ÿj∈β(Vgr1,Vgr2) , and at least one of the relations
ẋ i↔ ẍ j , żi ↔ z̈j, ẇ i ↔ẅj does not belong to β(Vgr1,Vgr2) .

a) Let ∃ β(Vgr1,Vgr2)  ) such that , ẏ i↔ ÿj∈β(Vgr1,Vgr2)  but
ẋ i↔ ẍj ∈ β(Vgr1,Vgr2) . That is β( ẏ i) = ÿ j ,β(ẋ i) = ẍ j1 ,where

j≠ j1 . Hence f( ẏ i,ẋ i) = f( ÿ j,ẍ j1) . On the other hand , f( ẏ i,ẋ i) ≠ 0 ,
f( ÿ j,ẍ j1) = 0 , since any vertex of type y is adjacent only to a vertex of the 
same name of type x . Hence f( ẏ i,ẋ i) ≠ f( ÿ j,ẍ j1) . The resulting
the contradiction refutes the assumption . 

  b) Let ∃ β(Vgr1,Vgr2) such that ẏ i↔ ÿj ∈ β(Vgr1,Vgr2) ,but



żi ↔ z̈j ∈ β(Vgr1,Vgr2) That is β( ẏ i)= ÿ j, β(żi) ¿ z̈j1where j ≠ j1 . Hence 
f( ẏ i,ż i) = f( ÿ j,z̈j1) . On the other hand f( ẏ i,żi) ≠ 0 , f( ÿ j,z̈j1) = 0 , 
since any vertex of type y is adjacent only to a vertex of the
same name of type z .Hence f( ẏ i,żi) ≠ f( ÿ j,z̈j1) . The resulting
 contradiction refutes the assumption .

   c) Let ∃ β(Vgr1,Vgr2) such that β( ẏ i) = ÿ j , but β ẇi) = ẅ j1 , where j ≠j1 , i.e. β

(ẇ i) ≠ ẅ j . But in this case it follows from (a) that 
β(ẋi) = ẍj . Hence f(ẋ i,ẇ i) = f(ẍ j,ẅ j1) . On the other hand, since a vertex of 
type x is adjacent only to a vertex of the same name 
of type w , f(ẋ i,ẇ i) ≠ 0 , f(ẍ j,ẅ j1) = 0 . Hence f(ẋ i,ẇ i) ≠ f(ẍ j,ẅ j1) . 
The resulting contradiction refutes the assumption .

    3) Let ẇ i ↔ẅj ∈ β(Vgr1,Vgr2) , it is required to prove that 

{ẋi↔ ẍj , , ẏ i ↔ ÿ j, ż i ↔ z̈j} ∈ β(Vgr1,Vgr2) . Suppose the contrary
ẇ i ↔ ẅ j∈β(Vgr1,Vgr2) , and at least one of the relations ẋ i↔ ẍ j ,
ẏ i↔ ÿ j, żi ↔ z̈j does not belong to β(Vgr1,Vgr2) .

(a) Let ∃ β(Vgr1,Vgr2) such that ẇ i↔ẅj∈β(Vgr1,Vgr2) , but 
ẋ i ↔ ẍ j ∈ β(Vgr1,Vgr2) . That is, β(ẇ i) = ẅ j , β(ẋ i) = ẍ j1, 
Where j ≠ j1 . Hence f(ẇ i,ẋ i) = f(ẅ j,ẍ j1) . On the other hand
f(ẇ i,ẋi) ≠ 0 ,f(ẅ j,ẍ j1) = 0 since any vertex of type w is adjacent only to a 
vertex of the same name of type x . Hence f(ẇ i,ẋ i) ≠ f(ẅ j,ẍ j1) . The 
resulting contradiction refutes the assumption .

b) Let ∃ β(Vgr1,Vgr2)  such that ẇ i↔ẅj∈β(Vgr1,Vgr2)  , but
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ẏ i↔ ÿj ∈ β(Vgr1,Vgr2)  . That is, β(ẇ i) = ẅ j , β( ẏ i) = ÿ j1, 
where j1 ≠ j . Then from (a) it follows that β(ẋ i) = ẍ j . Hence 
f(ẋ i, ẏ i) = f(ẍ j, ÿ j1) . On the other hand , since a vertex of type x is adjacent 
only to a vertex of type y with the same name, f( ẋ i, ẏ i) ≠ 0 , f(ẍ j, ÿ j1) = 0 . 
Hence f(ẋ i, ẏ i) ≠ f(ẍ j, ÿ j1) . The resulting contradiction refutes the 
assumption .

   c) Let ∃ β(Vgr1,Vgr2) such that ẇ i↔ẅj∈β(Vgr1,Vgr2) , but 
żi↔ z̈j∈ β(Vgr1,Vgr2) . That is, β(ẇ i) = ẅ j ,β(ż i) = z̈j1, 
where j1 ≠ j . Hence and (b) follows β( ẏ i) = ÿ j. Hence f( ẏ i,żi)=f( ÿ j,z̈j1) .
On the other hand , since a vertex of type y is adjacent only to a vertex 
of type z with the same name, f( ẏ i,ż i) ≠ 0 , f( ÿ j,z̈j1) = 0 . Hence 
f( ẏ i,z i) ≠ f( ̇ ÿ j,z̈j1) . The resulting contradiction refutes the assumption .

    4) Let żi↔ z̈j ∈ β(Vgr1,Vgr2) , it is required to prove that

{ẋi↔ ẍj , ẏ i ↔ ÿ j , ẇ i↔ ẅ j} ∈ β(Vgr1,Vgr2) . Suppose the contrary 



żi ↔ z̈j ∈β(Vgr1,Vgr2) , and at least one of the relations ẋ i ↔ ẍ j ,
ẏ i ↔ ÿ j, ẇ i ↔ ẇ i does not belong to β(Vgr1,Vgr2) .

(a) Let ∃ β(Vgr1,Vgr2)  such that żi↔ z̈j∈β(Vgr1,Vgr2)  , but
ẏ i ↔ ÿ j ∈ β(Vgr1,Vgr2)  . That is ,β(żi) = z̈j, β( ẏ i) ¿ ÿ j1

where j1 ≠ j . Hence f( żi, ẏ i) = f( z̈j, ÿ j1) . On the other hand f( żi, ẏ i) ≠ 0 ,
f(z̈j, ÿ j1) = 0 , since any vertex of type z is adjacent only to a vertex of the 
same name of type y . Hence f( ż i, ẏ i) ≠ f(z̈j, ÿ j1) . The resulting 
contradiction refutes the assumption .

   b) Let ∃ β(Vgr1,Vgr2) such that żi↔ z̈j∈β(Vgr1,Vgr2) , but
ẋ i↔ ẍj ∈ β(Vgr1,Vgr2) . That is β(ż i) = z̈j , β(ẋ i) = ẍ j1 , where j1 ≠ j . 
Hence and  (a) follows β( ẏ i) = ÿ j . Hence 
ẋ i ↔ ẍ j∈ β((Vgr1,Vgr2) . That is, β(ẋ i) = ẍ j1, β(żi) = z̈j ,
f( ẏ i,ẋ i) = f( ÿ j, ẍ j1) . On the other hand f( ẏ i,ẋ i) ≠ 0 , f( ÿ j,ẍ j1 ) = 0 , since
a vertex of type y is adjacent only to a vertex of type xẍ jwith the same 
name . Hence f( ẏ i,ẋ i) ≠ f( ÿ j,ẍ j1) . The resulting contradiction refutes 
the assumption .

c) Let ∃ be such a β(Vgr1,Vgr2) such that żi↔ z̈j∈β(Vgr1,Vgr2) ,
but ẇ i ↔ ẅ j∈ β(Vgr1,Vgr2) . That is, β(żi) = z̈j ,β(ẇ i) = ẅ j1 , 
where j1 ≠ j . Hence and from (b) it follows that β(ẋ i) = ẍ j . Hence
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f(ẋ i,ẇ i) = f(ẍ j,ẅ j1) .
On the other hand f(ẋ i,ẇ i) ≠ 0 , f(ẍ j,ẅ j1 ) = 0 , since any vertex of type x is 
adjacent only to a vertex of the same name of type w .Hence
f(ẋ i,ẇ i) ≠ f(ẍ j,ẅ j1) . The resulting contradiction refutes 
the conjecture . The assertion is completely proved .
            4. Immersion of an oriented graph (Berge graph)
     Into an undirected graph without loops and multiple edges                
                                                  V-graph .
   Definition 5.Let an unloaded Vgr((S,P,∪1

nWi),(Uc,Uxz,∪1
nUi))

with dimension R(Vgr) = n and an oriented graphG⃗1(V1,U1) , where

|V1| = n .∀ vi∈V1 ,where i ∈1 , n , with number i ,

correspond to two vertices of the same name xi ∈ si , zi ∈ si, with the 

same number i, where i ∈1 , n and si ∈ S . A vertex of the graph G⃗1 with 

number i and vertices (wi,xi,zi,yi) ∈ S of the V-graph with the same 
number i will be called homonymous . Let Vgr be supplemented with 
edges so that the following conditions are fulfilled .



For ∀ vi,vj ∈ V , where i,j∈1 , n , if vi has a loop, then the vertices with the 
same name in Vgr xi and zi are connected by an edge ; if vj has a loop, 
then the vertices with the same name in Vgr xj and zj are connected by 
an edge .

If it is an arc going from vi to vj , i.e.(vi,vj) ∈ U1 , then the vertices xi and 

zj with the same name in Vgr are connected by an edge . If it is 

an arc going from vj to vi , i.e.,(vj,vi) ∈ U1 , then in Vgr the vertices zi and 
xj with the same name are connected by an edge . I.e. for∀i,j∈1 , n and i ≠ j, the relations :

(vi,vj) ∈U1↔ (xi,zj) ∈Uxz ,

(vj,vi) ∈ U1↔ (xj,zi) ∈Uxz ,

(vi,vi) ∈ U1↔ (xi,zi) ∈Uxz ,

(vj,vj) ∈ U1↔ (xj,zj) ∈Uxz .
   The V-graph thus augmented with edges will be called 
the image of the graph G⃗1(V1,U1) or the representation of the oriented 
graph G⃗1(V1,U1) as an undirected graph without loops and 
multiple edges or loading an oriented graph into a V-graph and denote 
by Vgr[G⃗1(V1,U1)] .
   Thus the V-graph augmented with edges will be also 
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be called an immersion of an oriented graph into an undirected graph 
without loops and multiple edges .                                                 
    5. On the non-existence of the polynomial P problem and the
        a polynomial algorithm for the graph isomorphism problem .
   Assertion 8. Let oriented graphs G⃗1(V1,U1), G⃗2(V2,U2) be given ,
where |V1| = n , |V2| = n . Their corresponding images 

Vgr1[G⃗1(V1,U1),((Ṡ ̇,Ṗ,∪1
n Ẇ i),(Uc,Uxz,∪1

n U̇ i))] ,
Vgr2[G⃗2(V2,U2),((S̈,P̈,∪1

n Ẅ i),(Ü c ,Ü xz,∪1
n Ü i))] , where R(Vgr1) = n and R(Vgr2) = 

n .The oriented graphsG⃗1 , G⃗2 are isomorphic 
if and only if when their images Vgr1[G⃗1] , Vgr2[G⃗2] are isomorphic . 
If mutually the one-to-one correspondence between vertices G⃗1 ,G⃗2

preserves adjacency , then the one-to-one correspondence 
between coalitional vertices of V-graphs with the same name as them 
Vgr1[G⃗1], Vgr2[G⃗2] also preserves adjacency . Conversely, if
mutually unambiguous correspondence between coalitional
vertices Vgr1[G⃗1], Vgr2[G⃗2] preserves adjacency , then a mutually



the one-to-one correspondence between the vertices of graphs 
G⃗1(V1,U1) , G⃗2(V2,U2) with the same name as them preserves adjacency . 
I.e.

G⃗1 G⃗2↔Vgr1[G⃗1(V1,U1]  Vgr2[G⃗2(V2,U2)] ,
({v̇i1 ↔ v̈j1 ,v̇i2 ↔ v̈j2, ... , v̇in↔ v̈jn} = β(G⃗1 , G⃗2)) ↔ 

↔  ({ṡI1↔ s̈j1 , ṡI2↔s̈j2 , ... , ṡin↔ s̈jn} ∈ β(Vgr1[G⃗1],Vgr2[G⃗2]) , where 
{ṡi1,ṡi2, ... , ṡin} = Ṡ, { s̈j1,s̈j2, ... , s̈jn} = S̈,                                                      
{v̇i1 ,v̇i2 , ... , v̇in} = V1 , {v̈j1 ,v̈j2 , ... , v̈jn} = V2 .
     Proof .
  Sufficiency .
Given Vgr1[G⃗1(V1,U1]  Vgr2[G⃗2(V2,U2)] . It is required to prove that
G⃗1(V1,U1) G⃗2(V2,U2) and if β(Vgr1 [G⃗1(V1,U1)], Vgr2[G⃗2(V2,U2]) ∋
∋ ({ṡI1↔ s̈j1 ,ṡI2↔s̈j2 , ... , ṡin↔ s̈jn} , then 
{v̇i1 ↔ v̈j1 ,v̇i2 ↔ v̈j2, ... , v̇in↔ v̈jn} = β(G⃗1(V1,U1),G⃗2(V2,U2)) .
From Vgr1[G⃗1(V1,U1]  Vgr2[G⃗2(V2,U2)] and assertion 7, it follows 
that∀β(Vgr1[G⃗1],Vgr2[G⃗2]) = { ṡI1↔ s̈j1 , ṡI2↔s̈j2 , ... , ṡin↔ s̈jn}∪ Ṗ↔P̈ . 
Hence , let                              
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                              (ẇ i1,ẋ i1, ẏ i1,żi1)↔  (ẅ j1,ẍj1, ÿ j1,z̈j1) ,
                              (ẇ i2,ẋ i2, ẏ i2,żi2) ↔ (ẅ j2, ẍj2, ÿ j2,z̈j2) ,
                              ...
                              (ẇ in,ẋ in, ẏ in,żin)↔  (ẅ jn,ẍ jn, ÿ jn ,z̈jn) ,
                              {Ṗ1,Ṗ2,Ṗ3}↔ {P̈1,P̈2,P̈3}
mutually one-to-one correspondence between vertices 
Vgr1[G⃗1(V1,U1)], Vgr2[G⃗2(V2,U2)] preserving adjacency .

Hence for ∀ k,l ∈1 , n, where k ≠l ,
                             ẋ ik↔ ẍ jk , żik ↔ z̈jk ,
                               ẋ il↔ ẍjl , żil ↔ z̈jl ,
preserve adjacency . Hence 
                               f(ẋ ik,żik) = f(ẍ jk,z̈jk) ,                                                        (1)      
                              f(ẋ ik,ẋ il) = 0 , f(ẍ jk,ẍ jl) = 0 ,
since vertices of type x are not adjacent .
                               f(ẋ ik,żil) = f(ẍ jk,z̈jl) ,                                                          (2)      
                               f( żik,ẋ il) = f( z̈jk,ẍ jl) ,                                                          (3)
                               f( żik,ż il) = f(z̈jk,z̈jl) ,
                               f(ẋ il,żil) = f(ẍ jl,z̈jl) ,                                                            (4)



On the other hand v̇ik ,v̇il of graph G⃗1(V1,U1) and v̈jk, v̈jl of graph 
G⃗2(V2,U2) are homonymous vertices respectively with 
ẋ ik,żik; ẋ il,żil and ẍ jk,z̈jk; ẍ jl,z̈jl.
   Consider the relations
                                    v̇ik ↔v̈ jk                                                                     (5)       
                                    v̇il↔ v̈jl.                                                                       (6)
   From relation 1 and the loading of the graphs Vgr1 and Vgr2 it follows 
that                      f(v̇ik,v̇ik) = f(v̈jk,v̈jk) .
   From relations 2 , 3 and the loading of the graphs Vgr1 and Vgr2 it 
follows that        f( v̇ik,v̇il) = f(v̈jk,v̈jl) .
   From relation 4 and the loading of the graphs Vgr1 and Vgr2 it follows 
that                      f(v̇il,v̇il) = f(v̈jl,v̈jl) .
    It follows that relations 5 , 6 preserve adjointness .
By virtue of an arbitrary choice of ẋ ik,żik ; ẋ il,żil and ẍjk,z̈jk ; ẍ jl,z̈jl

It follows that 
β(G⃗1(V1,U1),G⃗2(V2,U2)) = {v̇i1 ↔v̈j1, v̇i2 ↔ v̈j2, ... ,v̇in↔ v̈jn}. 
That is, G⃗1(V1,U1) G⃗2(V2,U2) . Sufficiency is proved .   
                                                      - 19 -
Necessity .
Given G⃗1(V1,U1) G⃗2(V2,U2) it is required to prove that
Vgr1[G⃗1(V1,U1)]  Vgr2[G⃗2(V2,U2)] and if 
β(G⃗1(V1,U1),G⃗2(V2,U2)) ={v̇i1 ↔v̈ j1 ,v̇i2 ↔ v̈j2 , ... , v̇in↔ v̈jn} then 

 {ṡI1↔ s̈j1 ,ṡI2↔s̈j2 , ... , ṡin↔ s̈jn} ∈ β(Vgr1[G⃗1(V1,U1)] ,Vgr2[G⃗2(V2,U2)]).
   Let β(G⃗1(V1,U1),G⃗2(V2,U2)) = {v̇i1 ↔v̈ j1 , v̇i1 ↔v̈ j2 , ... , v̇i1 ↔v̈ jn} 

wherev̇ik∈ V1 for ∀ k ∈1 , n and v̈jk∈ V2 for ∀ k ∈1 , n. Take∀r,l ∈ 1 , n , where r ≠ l .                                                
v̇ir↔ v̈jr ,                                                                                                          (8)
v̇il↔v̈ jl.                                                                                                             (9)  
 Then f(v̇ir,v̇il) = f(v̈jr,v̈jl) ,                                                                               (10)
f(v̇ir,v̇ir) = f(v̈jr,v̈jr) ,
f(v̇il,v̇il ) = f(v̈jl,v̈jl) .
From 10 and since Vgr1 ,Vgr2 are images, respectively, of the graphs of      
G⃗1 ,G⃗2  it follows.
f(ẋ ir,żil) = f(ẍ jr,z̈jl) ,                                                                                           (11)
f(ẋ il,żir) = f(ẍ jl,z̈jr) ,                                                                                           (12)
f(ẋ ir,żir) = f(ẍ jr,z̈jr) ,                                                                                          (13)
f(ẋ il,żil) = f(ẍ jl,z̈jl) .                                                                                           (14)



   In a V-graph, vertices of type x are not connected by edges ,
and vertices of type z are connected by edges . Hence 
f(ẋ ir,ẋ il) = f(ẍ jr,ẍ jl) ,                                                                                          (15)  
f(żir,ż il) = f(z̈jr,z̈jl) .                                                                                          (16)
   From 11,12,13,14,14,15,16 it follows that       
ẋ ir↔ ẍ jr, ż il↔ z̈jl,                                                                                          (17)
ẋ il↔ ẍ jl, żir↔ z̈jr ,                                                                                         (18)
remain contiguous. 
   On the other hand .
A vertex ẇ ir- adjacent only to ẋir.
Vertex ẅ jr- adjacent only to ẍ jr .
Vertex ẇ il- adjacent only to ẋ il .
Vertex ẅ jl - adjacent only to ẍ jl .
Hence                                    
ẇ ir↔ ẅ jr, ẇ il↔ ẅ jl                                                                                      (19)
Together with relations 17,18 preserve the adjacency .

-20 -  
Hence the relations 
                                       (ẇ ir,ẋ ir,żir) ↔ (ẅ jr,ẍ jr,z̈jr) ,                         (20)                    
                                       (ẇ il,ẋ il,żil) ↔ (ẅ jl,ẍ jl,z̈jl)                              (21)
preserve contiguity .                                         
   Vertices of type y are adjacent only to vertices of the same name
of types x and z . Hence                                                                   
                                        ẏ ir ↔ ÿ jr , ẏ il↔ ÿ jl

together with relations 20 , 21 preserve adjacency.
 Hence 
                                        (ẇ ir,ẋ ir, ẏ ir,żir) ↔ (ẅ jr,ẍ jr, ÿ jr,z̈jr) ,
                                         (ẇ il,ẋ il, ẏ il,żil) ↔ (ẅ jl,ẍ jl, ÿ jl,z̈jl)
preserve adjacency .
    The vertices placed in correspondence with each other are taken 
from (1) arbitrarily . Consequently, there is a one-to-one 
correspondence between coalition vertices Vgr1 , Vgr2 constructed 
from (1) by replacing vertices from G⃗1 , G⃗2 by coalition vertices 
of the same name from Vgr1 , Vgr2 preserves adjacency .

 That is, v̇ir↔v̈ jr , where r ∈1 , n , is replaced by ṡir↔ s̈jr , and
v̇il↔v̈ jl , where l ∈1 , n, is replaced by ṡil↔ s̈jl.



    Vertices of type p are adjacent to each vertex of type z . Hence any 
mutually one-to-one correspondence between vertices of type p of 
graphs Vgr1 ,Vgr2 and the specified mutually one-to-one correspondence 
between their coalitional vertices preserve adjacency . 
That is, Vgr1 Vgr2. The assertion is proved .
    Notation .
Let Vgr1((S1,P1,∪1

n Ẇ i),(U̇ c,U̇ xz,∪1
n U̇ i)) be given ,

Vgr2((S2,P2,∪1
n Ẅ i),(Ü c ,Ü xz,∪1

n Ü i))) , where S1 = ∪1
n(ẇ i,ẋ i, ẏ i,żi) ,  

S2 = ∪1
n(ẅ j,ẍ j, ÿ j,z̈j) .

We label the vertices ẇ l,ẅr,|Ẇ l|=|Ẅ r| and |Ẇ l| ≠|Ẅ k| , for∀ k ∈ 1 , n, where k ≠ l , and |Ẅ r|≠ |Ẅ k| , for ∀ k ∈ 1 , n,  where k ≠ r .
   We will denote labeled vertices by (ẇ l) , (ẅr) . V-graphs
in which m vertices are labeled we denote by Vgr(m) .
   Mutually one-to-one correspondence between vertices Vgr1(m) ,
Vgr2(m) will be denoted by βm .
Assertion 9 .Let loaded V-graphs be given in which 
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m - 1 vertices are correctly labeled, where m ∈1 , n.
Vgr1[(m - 1),((S1,P1,∪1

n Ẇ i),(U̇ c,U̇ xz,∪1
n U̇ i)] ~

~ Vgr2[(m - 1),((S2,P2,∪1
n Ẅ i),(Ü c ,Ü xz,∪1

n Ü i))] where S1 = ∪1
n ṡi ,

ṡi= (ẇ i,ẋ i, ẏ i,ż i) , S2 = ∪1
n s̈j , s̈j= (ẅ j,ẍ j, ÿ j,z̈j) .

We label the vertices ẇ l ∈ ṡl and ẅr ∈ s̈r , where l,r ∈ 1 , n , with proper 
labels that are equal to each other . 
If  Vgr1(m - 1) ~ Vgr2(m - 1) , then                                                   ∃ βm - 1(Vgr1(m - 1),Vgr2(m - 1)) ∋ ẇ l↔ẅr if and only if

(ẇ l) ↔(ẅr) ∈ βm(Vgr1(m ),Vgr2(m))  , where
βm(Vgr1(m) ,Vgr2(m))  = βm - 1(Vgrr1(m - 1) ,Vgr2(m - 1)) ∪ {ẇ l↔ẅr} .
That is, Vgr1(m - 1)  Vgr2(m – 1) → 

→[((∃ βm –1(Vgr1(m - 1) ,Vgr2(m – 1)) ∋∋ ẇ l↔ẅr) ↔((ẇ l) ↔(ẅr)∈βm(Vgr1(m) ,Vgr2(m)))] , where 
βm(Vgr1(m) ,Vgr2(m))  =βm - 1(Vgrr1(m - 1) ,Vgr2(m – 1)) ∪ {Ẇ l↔Ẅ r} .
   Proof .
   Necessity .
Given : Vgr1(m - 1)  Vgr2(m – 1) and ∃ βm - 1 (Vgr1(m - 1) ,Vgr2(m - 1)) ∋ ẇl↔ẅr .  It is required to prove that
(ẇ l) ↔(ẅr)∈βm(Vgr1(m) ,Vgr2(m)), where βm(Vgr1(m) ,Vgr2(m)) =



= βm - 1(Vgrr1(m - 1) ,Vgr2(m - 1)) ∪ {Ẇ l↔Ẅ r} .
   From assertion 3 and the condition of this assertion follows 
proof .
   Sufficiency .
Given                                                                               
βm(Vgr1(m) ,Vgr2(m))  = βm - 1(Vgr1(m - 1) ,Vgr2(m - 1)) ∪ {Ẇ l↔Ẅ r}
It is required to prove that    
ẇ l↔ẅr ∈βm - 1(Vgrr1(m - 1) ,Vgr2(m - 1)). 
From assertion 3 and the condition of our assertion follows
  {Ẇ l↔Ẅ r} ∈βm(Vgr1(m) ,Vgr2(m)), where
βm(Vgr1(m) ,Vgr2(m))= βm - 1(Vgrr1(m - 1) ,Vgr2(m - 1)) ∪ {Ẇ l↔Ẅ r},                       
it follows that ẇ l↔ẅr ∈βm - 1(Vgr1(m - 1) ,Vgr2(m - 1)) . 
 The assertion is proved .
   Assertion 10 . For the isomorphism problem of graphs without loops
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and multiple edges :
a) there does not exist a polynomial solution algorithm ,
b) there does not exist a polynomial P of the task .
   Proof .
a) Let G⃗1(V̇ 1 ,U̇1) and G⃗2(V̈ 2 ,Ü2) , where |V̇ 1| = n , |V̈ 2| = n, be given 
oriented graphs (Berge graphs) . Their corresponding images are 
 Vgr1[G⃗1(V̇ 1 ,U̇1),((Ṡ ,Ṗ ,∪1

nẆ i),(U̇ c,U̇ xz,∪1
n U̇ i))] ,

 Vgr2[G⃗2(V̈ 2 ,Ü2),((S̈ ,P̈,∪1
n Ẅ i),(Ü c,Ü xz,∪1

n Ü i)] .
   Suppose the contrary . There exists a polynomial algorithm
computing isomorphism of graphs without loops and multiple edges .
Let us compute β (Vgr1 (G⃗1), Vgr2(G⃗2)) . It follows from assertion 7 that 
β(Vgr1 (G⃗1), Vgr2(G⃗2)) ∋∪1

n((ẇ ik,ẋ ik, ẏ ik,żik) ↔ ((ẅ jk,ẍ jK, ÿ jk,z̈jk)) .
It follows from hence and assertion 8 that β(G⃗1,G⃗2) = ∪1

n(v̇ik ↔ v̈jk) .               
I.e., it follows from our assumption that there exists a
polynomial algorithm for the Berge graph isomorphism problem .  And 
this contradicts the statement proved by             
S.V. Yablonsky [1] that there exist Berge graphs 
for which there does not exist a polynomial algorithm for computing 
their isomorphism . 
The obtained contradiction proves the point a of the assertion . 
   b) Suppose the contrary . There exists a polynomial P task for the 
isomorphism problem of graphs without loops and multiple edges .



   Let us start labeling with correct labels the vertices of type w 
of graphs Vgr1,Vgr2 . Consider a sequentially numbered
series of vertices ẇ1,ẇ2, ... , ẇn of graph Vgr1.
For vertex ẇ1 we assign label k1 = |Ẇ 1| , where |Ẇ 1| = 1 . 
In the graph Vgr2 , compute a vertex Ẅ j1 such that after assigning to it 
the label kj1 = |Ẅ j1| , where |Ẅ j1| = 1 , P the task establishes that
Vgr1(1) ~ Vgr2(1) .  In this case, it follows from statements 3 and 2 that∃ β (Vgr1(1), Vgr2(1)) such that

{Ẇ 1↔ Ẅ j1 , ẇ1 ↔ ẅ j1} ∈ β (Vgr1(1), Vgr2(1))  .
   For vertex ẇ2 of graph Vgr1(1), we assign a label with value 
K2 = |Ẇ 2|, where |Ẇ 2|= 2 . In the graph Vgr2(1), compute a vertex ẅ j2 
such that after labeling it kj2 = |Ẅ j2| , where |Ẅ j2|= 2 ,
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P task will establish Vgr1(2) ~ Vgr2(2). In this case, from statements 

3 and 2, it follows ∃ β (Vgr1(2), Vgr2(2)) such that

{Ẇ 1↔ Ẅ j1 , ẇ1 ↔ ẅ j1 , Ẇ 2↔ Ẅ j2 , ẇ2 ↔ ẅ j2} ∈ β (Vgr1(2) , Vgr2(2)) .
   Let us continue the above process . For each vertex in 
the set {ẇ1,ẇ2,ẇ3, ... , ẇn}, we compute their corresponding 
vertices {ẅ j1,ẅ j2,ẅ j3,...,ẅ jn} . That is, let us compute 
β (Vgr1(n) , Vgr2(n))  ∋ { Ẇ 1↔ Ẅ j1 , ẇ1 ↔ ẅ j1 , Ẇ 2↔ Ẅ j2 , ẇ2 ↔ ẅ j2 ,
... , Ẇ n↔ Ẅ jn , ẇn ↔ ẅ jn } .                                                                       (22)
   The graphs  Vgr1 , Vgr2 are subgraphs, respectively, of the graphs
Vgr1(n), Vgr2(n).  It follows from 22 that 
 β(Vgr1,Vgr2) = β (Vgr1(n) , Vgr2(n)) \ { Ẇ 1↔ Ẅ j1 , Ẇ 2↔ Ẅ j2, ... , 
 Ẇ n↔ Ẅ jn} .  From assertion 1, it follows that Vgr1 ~  Vgr2 and β(Vgr1,Vgr2) 
preserves adjacency i.e. β(Vgr1,Vgr2) = β (Vgr1 , Vgr2) and  

{ ẇ1 ↔ ẅ j1, ẇ2 ↔ ẅ j2, ... , ẇn ↔ ẅ jn} ∈ β (Vgr1 , Vgr2) .                                              
It follows from hence and assertion 7 that 
β (Vgr1 , Vgr2) ={ ṡ1↔ s̈j1 ,ṡ2↔s̈j2 , ... , ṡn↔ s̈jn } ∪ {Ṗ ↔ P̈} . Hence
and assertion 8 follows 
{v̇1 ↔ v̈j1 ,v̇2 ↔ v̈j2, ... , v̇n↔ v̈jn } = β(G⃗1,G⃗2)  . That is, we applied the 
polynomial P task n times and 
computed the isomorphism of Berge graphs . We obtained a 
contradiction .
S.V. Yablonsky [1] proved that there exist oriented 
graphs for which there does not exist a polynomial algorithm



for computing their isomorphism . Hence our assumption is incorrect . 
There is no polynomial P of the task and there is no
polynomial algorithm for solving .
 Assertion 11. For NP tasks belonging to the NPC class
there are no polynomial P problems and polynomial
solution algorithms.
Proof .
   The polynomial solution to any problem from the NPC 
class gives
polynomial algorithm to solve each problem
belonging to the NPC class.
   The graph isomorphism problem is a special case of the
problem
isomorphism to a subgraph belonging to the class NPC. 
From here
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  a) if there is a polynomial P task for at least one
problems from the NPC class, then there is a polynomial P
problem
for the graph isomorphism problem,
b) if there is a polynomial algorithm for solving at least
for one of the problems of the NPC class, then there is a 
polynomial algorithm for solving the graph isomorphism 
problem.
   From here and assertion 10 it follows that for any 
problem of the class
NPC there is no polynomial P task and there is no
polynomial solution algorithm.
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