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аппарата теории случайных функций. Показано, что если допустить 

существование в бесконечномерном функциональном пространстве 
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В отличие от прототипа данного исследования (размещенного автором на 

[4], которое не публиковалось в научных рецензируемых журналах) в данной 

статье задача ставится и решается в другом виде, исходно как задача 

аппроксимации. Дополнены положения о симметриях в функциональном 

пространстве, исправлены многие неточности, изменено представление 

случайной функции на более правильное. Многие преобразования изменены и 

добавлены новые. 



Пусть есть обучающая выборка в виде набора векторов на входе 

𝑥1, 𝑥2, … , 𝑥𝑘(𝑥𝑖 ∈ 𝑅
𝑛) размерностью 𝑛 и набор значений на выходе 

𝑦1, 𝑦2, … , 𝑦𝑘 (𝑦𝑖 ∈ 𝑅). 

Решение регрессионной задачи машинного обучения в этом случае 

можно представить как решение задачи аппроксимации в виде: 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝑢𝑖      (1) 

где 𝑓(𝑥) – функция, связывающая входные и выходные значения 𝑥𝑖 и 𝑦𝑖 , 
искомая модель, которую нужно определить, основываясь на обучающей 

выборке; 

𝑢1, 𝑢2, … , 𝑢𝑘 ∈ 𝑅 – независимые случайные величины, с нормальным законом 

распределения и нулевым математическим ожиданием, которые, можно 

считать, что были добавлены к 𝑓(𝑥𝑖), и поэтому ее значения могут не 

совпадать точно с 𝑦𝑖  (тем самым моделируем погрешности или 

неоднозначности, которые могут присутствовать в обучающей выборке) 

Задачу также можно интерпретировать следующим образом: 

Пусть изначально существовала некоторая неизвестная функция 𝑓(𝑥). 
Затем над ней были выполнены эксперименты. Для некоторой выборки 

𝑥1, 𝑥2, … , 𝑥𝑘 были найдены значения 𝑓(𝑥𝑖) (но которые нам неизвестны), к 

которым были прибавлены случайные, неизвестные нам величины 

𝑢1, 𝑢2, … , 𝑢𝑘. В результате к уже известным 𝑥1, 𝑥2, … , 𝑥𝑘  дополнительно были 

получены 𝑦1, 𝑦2, … , 𝑦𝑘 .  

Теперь же задача состоит в том, чтобы по последовательностям 𝑥𝑖 и 𝑦𝑖  

предположить какая могла быть  𝑓(𝑥). 

Первоначально может показаться (даже если известны характеристики 

величин 𝑢𝑖), что такая формулировка ничего не дает для решения, поскольку 

ничего неизвестно о природе 𝑓(𝑥) и то, какая она может быть в (1) никак не 

раскрывается. 

Но рассмотрим сначала сильно упрощенную версию задачи. 

Допустим, что у нас есть “подсказка”. Предположим, что кто-то заранее 

сообщил нам варианты правильных ответов, какая может быть функция 𝑓(𝑥). 

Пусть подсказка была в виде последовательности вариантов функций 𝑓𝑗(𝑥) и 

соответствующих им вероятностей 𝑝𝑗, что это правильный ответ. Но 

вероятности этот кто-то в подсказке дал нам априорные, не зная, что затем над 

𝑓(𝑥) были проведены эксперименты и у нас еще есть независимая 

дополнительная информация в виде последовательностей  𝑥𝑖 и 𝑦𝑖 . 



Предположим, что нам известны дисперсии случайных величин 

𝑢1, 𝑢2, … , 𝑢𝑘. Допустим, что они все одинаковы и равны 𝜎2. Тогда вероятности 

того, что j-тый вариант функции в подсказке 𝑓𝑗(𝑥) окажется правильным 

ответом, будут пропорциональны 𝑝𝑗̂: 

𝑝𝑗̂ = 𝑝𝑗
1

(2𝜋𝜎2)
𝑘
2

𝑒
−
1
2𝜎2

∑ 𝑢𝑖
2𝑘

𝑖=1                                    (2) 

где 𝑢𝑖 можем определить как: 

𝑢𝑖 = 𝑦𝑖 − 𝑓𝑗(𝑥𝑖) 

Перебрав последовательно все 𝑝𝑗̂ и найдя максимальное из них, тем 

самым выберем наилучший вариант 𝑓𝑗(𝑥) как наилучшее решение задачи 

аппроксимации в (1). 

Но, что представляет собой множество вариантов функции 𝑓(𝑥) с 

заданными на нем вероятностями (или заданной на нем функции 

распределения вероятностей)? Это ни что иное как описание случайной 

функции. 

Как видно выше, при наличии такой подсказки (заданной случайной 

функции с конечным множеством реализаций), сразу же было получено 

решение. 

Но аналогичные рассуждения можно провести и без “подсказки” в явном 

виде. Возьмем в качестве возможных вариантов функции 𝑓(𝑥) множество всех 

непрерывных вещественных функций, существующих в 𝑅𝑛. Это множество 

можно представить в бесконечномерном гильбертовом пространстве, каждое 

измерение которого это возможные значения функции для каждого 

некоторого конкретного значения 𝑥 ∈ 𝑅𝑛. 

На этом множестве в свою очередь может быть задана функция плотности 

вероятности 𝑃(𝑓) (что в совокупности дает описание случайной функции, 

которую можно использовать для решения задачи). 

Эту функцию 𝑃(𝑓) можно считать неизвестной, однако, рассматривая 

функцию плотности вероятности в этом пространстве можно допустить 

существование некоторых симметрий (которые вполне можно было 

предположить перед тем, как над 𝑓(𝑥) были выполнены эксперименты). 

1. Допустим, что если для некоторых двух функций 𝑓1(𝑥) и 𝑓2(𝑥) 

существуют такие 𝐴 и 𝑡, что 

𝑓2(𝑥) = 𝑓1(А𝑥 + 𝑡), 𝑥, 𝑡 ∈ 𝑅
𝑛    (3) 

𝐴- некоторая матрица поворота 



тогда плотность вероятности для 𝑓1(𝑥) и 𝑓2(𝑥) должна быть одинаковой 

𝑃(𝑓1) = 𝑃(𝑓2). 

Т.е. для любого подмножества функций, которые преобразуются друг в друга 

путем поворота или параллельного переноса должна быть задана одинаковая 

плотность вероятности. 

2.  Допустим, что если для некоторых двух функций 𝑓1(𝑥) и 𝑓2(𝑥) 
выполняется: 

𝑓2(𝑥) = 𝑘𝑓1(𝑥 𝑘⁄ ), 𝑥 ∈ 𝑅𝑛    (4) 

где 𝑘 ∈ 𝑅 – некоторый коэффициент 

тогда плотность вероятности для 𝑓1(𝑥) и 𝑓2(𝑥) должна быть одинаковой 

𝑃(𝑓1) = 𝑃(𝑓2). 

Т.е. для любого подмножества функций, которые преобразуются друг в друга 

изменением масштаба должна быть задана одинаковая плотность вероятности. 

3. Допустим, что если предположить, что решением является одна из 

функций на подмножестве функций, которые описываются как: 

𝑓𝑘(𝑥) = 𝑘𝑓1(𝑥), 𝑘 ∈ 𝑅      (5) 

где 𝑘 – некоторое вещественное число (назовем его в данном контексте 

амплитудой 𝑓1(𝑥)) 

𝑓1(𝑥) – некоторая произвольная непрерывная функция, взятая чтобы 

породить множество в (5)  

 Тогда условная плотность вероятности на этом подмножестве функций 

будет определяться нормальным законом от амплитуды 𝑘, с математическим 

ожиданием при 𝑘 = 0. 

Т.е. если мы берем любую непрерывную функцию (как одну из реализаций) и 

сравним ее с другой, которая повторяет первую, но отличается от нее только 

амплитудой, то функция с меньшей амплитудой будет более вероятна, чем с 

большей. А закон распределения вероятностей будет иметь характер 

нормального закона, зависящего от амплитуды (в (5) обозначенной через 𝑘) с 

математическим ожиданием равным нулю. В данном случае мы не уточняем, 

какая может быть дисперсия (подразумевая, что не нулевая, иначе говорить о 

нормальном законе распределения не имело бы смысла), а говорим лишь о 

характере закона распределения вероятностей. 

4.  Прибавим ко всем функциям в множестве, что описано в п.3. одну и ту 

же функцию 𝑓2(𝑥) и получим новое множество функций, элементы 

которого можно описать как: 



𝑓𝑘
∗(𝑥) = 𝑘𝑓1(𝑥) + 𝑓2(𝑥), 𝑘 ∈ 𝑅    (6) 

где 𝑘 – некоторое вещественное число (амплитуда 𝑓1(𝑥)) 

𝑓1(𝑥) и 𝑓2(𝑥) – любые непрерывные функции 

Предположим, что какую бы мы функцию 𝑓2(𝑥) не взяли, плотность 

вероятности на этом подмножестве функций также как и в п.3. сохранит 

нормальный закон распределения от амплитуды 𝑘 (но математическое 

ожидание уже может не равняться нулю). 

То есть, если мы возьмем произвольную непрерывную функцию 𝑓2(𝑥), а затем 

также возьмем произвольную непрерывную функцию 𝑓1(𝑥) и умножая на 

различные варианты амплитуды 𝑘 будем прибавлять ее к 𝑓2(𝑥), порождая 

таким образом множество функций 𝑓𝑘
∗(𝑥) (как бы совершающие колебания 

вокруг 𝑓2(𝑥)), то плотность вероятности 𝑃(𝑓) на этом множестве функций 

будет соответствовать нормальному закону распределения от амплитуды 𝑘 (но 

математическое ожидание не обязательно будет соответствовать 𝑘 = 0). 

Рассмотрим следствия из п.1-4, какие будут свойства у случайной 

функции, для которой они выполняются. 

Поскольку будем считать п.3-4. справедливыми для любой непрерывной 

функции, тогда из этого следует, что 𝑃(𝑓) будет бесконечномерным 

нормальным законом распределения в гильбертовом пространстве. 

Фактически, пунктами 3 и 4 мы и предполагаем, что имеем дело 

бесконечномерным нормальным законом распределения, впрочем, не уточняя 

его характеристик (кроме предположения о математическом ожидании в точке 

ноль). 

Однако, любое невырожденное (что выполняется в нашем случае) 

многомерное нормальное распределение можно свести к вектору независимых 

нормальных случайных величин. Это означает, что обязательно найдется 

такая последовательность функций (образующих базис, по которому может 

быть разложена любая другая непрерывная функция), с помощью которой 

можно выразить рассматриваемую нами случайную функцию как линейную 

комбинацию этой последовательности функций и независимых случайных 

нормальных величин. А это не что иное как каноническое разложение 

случайной функции. Т.е. из 3 и 4 пунктов следует, что у такой случайной 

функции обязательно должно существовать каноническое разложение. 

Каноническое разложение случайной функции (В.С. Пугачев [1], стр.248-249): 

𝐹(𝑥) = 𝑚𝑓(𝑥) +∑𝑉𝑗𝜑𝑗(𝑥)

∞

𝑗=1

,                                           (7) 



где  𝑚𝑓(𝑥) – функция математического ожидания, 

 𝑉𝑗 – некоррелированные случайные величины, математические 

ожидания которых равны нулю (коэффициенты канонического разложения), 

 𝜑𝑗(𝑥) – координатные функции канонического разложения 

Из п.3. следует, что 𝑚𝑓(𝑥) = 0. А также, поскольку количество функций 𝜑𝑗(𝑥) 

в нашем случае будет несчетным, (7) обобщается до интегрального 

канонического представления случайной функции: 

𝐹(𝑥) = ∫𝑉(𝜆)𝜑(𝑥, 𝜆)𝑑𝜆,                                         (8)

 

Λ

 

где  𝑉(𝜆) – белый шум параметра 𝜆, 

𝜑(𝑥, 𝜆) – некоторая (неслучайная) функция аргумента 𝑥 и параметра 𝜆 

Таким образом получается разложение всех возможных реализаций 

(непрерывных функций) по некоррелированным бесконечно малым 

элементарным случайным функциям 𝑉(𝜆)𝜑(𝑥, 𝜆)𝑑𝜆.  Но пока мы лишь 

сделали вывод что из п.3 и п.4 следует существование такого разложения. 

Рассмотрим теперь п.1.  

Из него следует, что рассматриваемая случайная функция (8) при 

выполнении п.1 должна быть стационарной. А значит, она должна иметь 

спектральное разложение. 

Интегральное каноническое представление стационарной случайной 

функции представлено В.С. Пугачевым в [1], стр.333. Но используемый там 

белый шум 𝑉(𝜔), интенсивность которого может быть различной для разных 

частот, мы можем представить напрямую как произведение составляющих 

𝑉(𝜔) →
1

2
𝑉(𝜔)√

𝑆(𝜔)

𝑑𝜔
 ,                                                                (9) 

 где 𝑉(𝜔) будет уже иметь одинаковую интенсивность на всех частотах 

(почему использование (9) будет корректным, будет показано ниже). 

Тогда мы можем представить нашу случайную функцию в следующем виде: 

𝐹(𝑥) =
1

2
∫ 𝑉(𝜔)√

𝑆(𝜔)

𝑑𝜔
𝑒𝑖𝜔𝑥𝑑𝜔

 

𝑅𝑛
,   𝑥, 𝜔 ∈ 𝑅𝑛                               (10) 

где 𝑆(𝜔) – спектральная плотность, неотрицательная вещественная 

симметричная функция, 



 𝑉(𝜔) – комплексная случайная функция, каждое значение которой для 

промежутка, соответствующего 𝑑𝜔, является независимой случайной 

величиной (кроме дополнительного условия, о котором ниже), действительная 

и мнимая части которой распределены по нормальному закону с 

математическим ожиданием равным нулю и дисперсией равной единице. Т.е. 

𝑉(𝜔) это белый шум с одинаковой дисперсией на всех частотах. 

Дополнительное условие: поскольку все возможные варианты 

реализаций 𝑓(𝑥) должны быть вещественными, значит для любых частот 𝜔 

значения 𝑉(𝜔) и 𝑉(−𝜔)  должны быть комплексно сопряженными. 

Чтобы отразить это условие поделим пространство частот 𝑅𝑛 на две части 

𝑅1
𝑛 и 𝑅2

𝑛 какой-либо гиперплоскостью размерности 𝑛 − 1, проходящей через 

начало координат. 

Тогда 𝑉(𝜔) можно записать: 

𝑉(𝜔) = {
𝑉𝑅(𝜔) + 𝑖𝑉𝐼(𝜔), если 𝜔 ∈ 𝑅1

𝑛

𝑉𝑅(𝜔) − 𝑖𝑉𝐼(𝜔), если 𝜔 ∈ 𝑅2
𝑛  ,                               (11) 

где 𝑉𝑅(𝜔) и 𝑉𝐼(𝜔) – вещественные симметричные случайные функции, каждое 

значение которых для промежутка, соответствующего 𝑑𝜔 из (9), одинаково 

для частот 𝜔 и −𝜔, является независимой случайной величиной с 

математическим ожиданием равным нулю и дисперсией равной единице 

(симметричный вещественный белый шум). 

Тогда (10) можно записать как: 

𝐹(𝑥) =
1

2
∫ (𝑉𝑅(𝜔) + 𝑖𝑉𝐼(𝜔))√

𝑆(𝜔)

𝑑𝜔
𝑒𝑖𝜔𝑥𝑑𝜔 +

 

𝑅1
𝑛

+
1

2
∫ (𝑉𝑅(𝜔) − 𝑖𝑉𝐼(𝜔))√

𝑆(𝜔)

𝑑𝜔
𝑒𝑖𝜔𝑥𝑑𝜔

 

𝑅2
𝑛

                                   (12) 

Поскольку для любой 𝜔, если 𝜔 ∈ 𝑅1
𝑛  то −𝜔 ∈ 𝑅2

𝑛 и наоборот, то во 

втором интеграле можно перейти к области интегрирования 𝑅1
𝑛 и 

одновременно заменить везде 𝜔 на −𝜔 в подынтегральном выражении. 

𝐹(𝑥) =
1

2
∫ (𝑉𝑅(𝜔) + 𝑖𝑉𝐼(𝜔))√

𝑆(𝜔)

𝑑𝜔
𝑒𝑖𝜔𝑥𝑑𝜔

 

𝑅1
𝑛

+
1

2
∫ (𝑉𝑅(−𝜔) − 𝑖𝑉𝐼(−𝜔))√

𝑆(−𝜔)

𝑑𝜔
𝑒−𝑖𝜔𝑥𝑑𝜔

 

𝑅1
𝑛

= 



=
1

2
∫ √

𝑆(𝜔)

𝑑𝜔
(𝑉𝑅(𝜔)(𝑒

𝑖𝜔𝑥 + 𝑒−𝑖𝜔𝑥) + 𝑖𝑉𝐼(𝜔)(𝑒
𝑖𝜔𝑥 − 𝑒−𝑖𝜔𝑥)) 𝑑𝜔

 

𝑅1
𝑛

=

= ∫ √
𝑆(𝜔)

𝑑𝜔
(𝑉𝑅(𝜔) cos(𝜔𝑥) − 𝑉𝐼(𝜔) sin(𝜔𝑥))𝑑𝜔

 

𝑅1
𝑛

                     (13) 

         Таким образом мы получили интегральное каноническое представление 

нашей случайной функции (соответствующее записи (8)), выраженное через 

действительные функции и независимые действительные нормальные 

случайные величины с дисперсией равной единице. 

Как показали преобразования, выражение (13) полностью соответствует 

комплексной форме (10), в которой белый шум был представлен как 

1

2
𝑉(𝜔)√

𝑆(𝜔)

𝑑𝜔
 

Для более удобного наглядного представления дальнейших 

преобразований заменим интеграл (13) бесконечной суммой. Обозначим через 

𝑣𝑗
𝑅 бесконечную последовательность значений 𝑉𝑅(𝜔) каждое из которых 

соответствует своему промежутку области интегрирования d𝜔 в 𝑅1
𝑛 (ему будет 

соответствовать частота 𝜔𝑗). Введем аналогичную последовательности 𝑣𝑗
𝐼 для 

𝑉𝐼(𝜔) и 𝑠𝑗 для 𝑆(𝜔). 

Тогда (13) можно записать: 

𝐹(𝑥) =∑√
𝑠𝑗
𝑑𝜔

(𝑣𝑗
𝑅 cos(𝜔𝑗𝑥) − 𝑣𝑗

𝐼 sin(𝜔𝑗𝑥))𝑑𝜔

∞

𝑗=0

                                 (14) 

Подразумевая, что 𝑑𝜔 это некоторая очень малая область (в пределе 

бесконечно малая, тогда (14) превращается в (13)).  

Запишем выражение (14) чуть иначе: 

𝐹(𝑥) =∑𝑣𝑗
𝑅√𝑠𝑗𝑑𝜔 cos(𝜔𝑗𝑥)

∞

𝑗=0

−∑𝑣𝑗
𝐼√𝑠𝑗𝑑𝜔 sin(𝜔𝑗𝑥)

∞

𝑗=0

                      (15) 

Но выражение (15), это то же самое каноническое разложение случайной 

функции вида (7), где функция математического ожидания равна нулю, 𝑣𝑗
𝑅 и 

𝑣𝑗
𝐼 это независимые случайные величины с единичной дисперсией а роль 

координатных функций выполняют √𝑠𝑗𝑑𝜔 cos(𝜔𝑗𝑥) и −√𝑠𝑗𝑑𝜔 sin(𝜔𝑗𝑥). 

 



Тогда мы можем выразить корреляционную функцию (каноническое 

разложение через координатные функции): 

𝐾𝑓(𝑥1, 𝑥2) =∑𝑠𝑗(cos(𝜔𝑗𝑥1) cos(𝜔𝑗𝑥2) + sin(𝜔𝑗𝑥1) sin(𝜔𝑗𝑥2))𝑑𝜔

∞

𝑗=0

=∑𝑠𝑗 cos (𝜔𝑗(𝑥1 − 𝑥2)) 𝑑𝜔

∞

𝑗=0

                                                              (16) 

Т.е. мы получили автокорреляционную функцию (что и следовало 

ожидать для стационарной случайной функции): 

𝑘𝑓(𝜏) =∑𝑠𝑗 cos(𝜔𝑗𝜏) 𝑑𝜔

∞

𝑗=0

                                                      (17) 

Если теперь в (17) обратно вернуться к интегралу, то получим: 

𝑘𝑓(𝜏) = ∫𝑆(𝜔) cos(𝜔𝜏) 𝑑𝜔

 

𝑅1
𝑛

                                                     (18) 

Что является известным каноническим представлением корреляционной 

функции, где 𝑆(𝜔) – спектральная плотность. 

Таким образом мы показали, что представление белого шума из 

интегрального канонического разложения стационарной случайной функции 

через 𝑉(𝜔) (описываемого (11)) и спектральной плотности 𝑆(𝜔) возможно 

через выражение (9), а саму случайную функцию будет корректно представить 

через (10) в комплексной форме или через (13) в действительной. 

Теперь рассмотрим, как можно выразить наиболее вероятную 

реализацию случайной функции (10) (или ее же в представлении (13) или (14)), 

которая лучше всего соответствует обучающей выборке (исходная задача). 

Поскольку все значения 𝑣𝑗
𝑅 и 𝑣𝑗

𝐼 являются независимыми случайными 

нормальными величинами с математическими ожиданиями равными нулю и 

единичной дисперсией, то функция плотности вероятности реализаций 

случайной функции (которую ранее обозначили как 𝑃(𝑓)), выраженная через 

𝑣𝑗
𝑅 и 𝑣𝑗

𝐼 будет равна перемножению всех нормальных распределений 

(бесконечномерный нормальный закон) каждого из них и будет 

пропорциональна: 

𝑒𝑥𝑝(−
1

2
∑((𝑣𝑗

𝑅)
2
+ (𝑣𝑗

𝐼)
2
)

∞

𝑗=0

)                                             (19) 



Но (15) учитывает только априорную плотность вероятности без учета 𝑢𝑖. 

Допустим, что все случайные величины 𝑢𝑖 в (1) имеют некоторую 

дисперсию 𝜎2. Умножим (19) на совместный нормальный закон 

распределения 𝑢𝑖, тогда получившаяся экспоненциальная часть будет: 

𝑒𝑥𝑝(−
1

2
∑((𝑣𝑗

𝑅)
2
+ (𝑣𝑗

𝐼)
2
)

∞

𝑗=0

−
1

2𝜎2
∑𝑢𝑖

2

𝑘

𝑖=1

)                               (20) 

Тогда (аналогично рассуждениям с решением задачи с использованием 

выражения (2)) поиск наилучшей реализации в (14) или (15) будет поиском 

таких последовательностей 𝑣𝑗
𝑅 и 𝑣𝑗

𝐼 которые максимизируют значение (20). 

Но поиск максимума (20) равносилен поиску минимума: 

1

2
∑((𝑣𝑗

𝑅)
2
+ (𝑣𝑗

𝐼)
2
)

∞

𝑗=0

+
1

2𝜎2
∑𝑢𝑖

2

𝑘

𝑖=1

→ min                          (21) 

Обучающая выборка на основании (1) и (15) породит систему уравнений: 

{
 
 
 
 

 
 
 
 ∑𝑣𝑗

𝑅√𝑠𝑗𝑑𝜔 cos(𝜔𝑗𝑥1)

∞

𝑗=0

−∑𝑣𝑗
𝐼√𝑠𝑗𝑑𝜔 sin(𝜔𝑗𝑥1)

∞

𝑗=0

+ 𝑢1 = 𝑦1

∑𝑣𝑗
𝑅√𝑠𝑗𝑑𝜔 cos(𝜔𝑗𝑥2)

∞

𝑗=0

−∑𝑣𝑗
𝐼√𝑠𝑗𝑑𝜔 sin(𝜔𝑗𝑥2)

∞

𝑗=0

+ 𝑢2 = 𝑦2

…

∑𝑣𝑗
𝑅√𝑠𝑗𝑑𝜔 cos(𝜔𝑗𝑥𝑘)

∞

𝑗=0

−∑𝑣𝑗
𝐼√𝑠𝑗𝑑𝜔 sin(𝜔𝑗𝑥𝑘)

∞

𝑗=0

+ 𝑢𝑘 = 𝑦𝑘

              (22) 

Получается задача минимизации (21) при системе ограничений в виде 

равенств (22). Ее можно решить методом множителей Лагранжа. 

Функция Лагранжа получится следующая: 

𝐿(𝑣1
𝑅 , 𝑣2

𝑅 , . . , 𝑣1
𝐼 , 𝑣2

𝐼 , . . , 𝑢1, . . , 𝑢𝑘, 𝜆1, . . , 𝜆𝑘) =
1

2
∑((𝑣𝑗

𝑅)
2
+ (𝑣𝑗

𝐼)
2
)

∞

𝑗=0

+
1

2𝜎2
∑𝑢𝑖

2

𝑘

𝑖=1

+ 

+∑𝜆𝑖 (𝑦𝑖 − 𝑢𝑖 −∑𝑣𝑗
𝑅√𝑠𝑗𝑑𝜔 cos(𝜔𝑗𝑥𝑖)

∞

𝑗=0

+∑𝑣𝑗
𝐼√𝑠𝑗𝑑𝜔 sin(𝜔𝑗𝑥𝑖)

∞

𝑗=0

)

𝑘

𝑖=1

,   (23) 

где 𝜆𝑖 – множители Лагранжа, количество которых равно размеру обучающей 

выборки. 



Из условий 
𝑑𝐿

𝑑𝜆𝑖
= 0 получим снова систему уравнений (22). 

Из условий 
𝑑𝐿

𝑑𝑣𝑗
𝑅 = 0 получим: 

𝑣𝑗
𝑅 = √𝑠𝑗𝑑𝜔∑𝜆𝑖 cos(𝜔𝑗𝑥𝑖)

𝑘

𝑖=1

                                                   (24) 

Из условий 
𝑑𝐿

𝑑𝑣𝑗
𝐼 = 0 получим: 

𝑣𝑗
𝐼 = −√𝑠𝑗𝑑𝜔∑𝜆𝑖 sin(𝜔𝑗𝑥𝑖)

𝑘

𝑖=1

                                                  (25) 

Из условий 
𝑑𝐿

𝑑𝑢𝑖
= 0 получим: 

𝑢𝑖 = 𝜎
2𝜆𝑖                                                                        (26) 

Т.е. разница, которая обозначена через случайные величины 𝑢𝑖, между 

наилучшим вариантом 𝑓(𝑥) и обучающей выборкой в (1) должна быть 

пропорциональна множителям Лагранжа (при решении задачи (21) и (22)). И 

связаны они будут через коэффициент 𝜎2, представляющий собой дисперсию 

величин 𝑢𝑖. 

Выразим наиболее вероятную реализацию 𝑓(𝑥), подставив (24) и (25) в (15): 

𝑓(𝑥) =∑𝑠𝑗∑𝜆𝑖

𝑘

𝑖=1

cos(𝜔𝑗𝑥𝑖) cos(𝜔𝑗𝑥) 𝑑𝜔

∞

𝑗=0

+∑𝑠𝑗∑𝜆𝑖 sin(𝜔𝑗𝑥𝑖) sin(𝜔𝑗𝑥) 𝑑𝜔

𝑘

𝑖=1

∞

𝑗=0

= 

=∑𝜆𝑖∑𝑠𝑗 cos (𝜔𝑗(𝑥𝑖 − 𝑥))

∞

𝑗=0

𝑘

𝑖=1

                                         (27) 

В (27) получилось не что иное как сумма канонических разложений 

корреляционной функции (которую уже получили в (16)) с множителями 𝜆𝑖. 

В итоге: 

𝑓(𝑥) =∑𝜆𝑖𝑘𝑓(𝑥𝑖 − 𝑥)

𝑘

𝑖=1

                                                       (28) 



Таким образом получаем, что если допустить выполнение п.1,3,4, то 

решением (1) должна быть линейная комбинация корреляционных функций 

(28). 

Чтобы найти коэффициенты Лагранжа в (28) подставим (24), (25) и (26) в 

систему (22). 

{
 
 
 
 

 
 
 
 
∑𝜆𝑖𝑘𝑓(𝑥𝑖 − 𝑥1)

𝑘

𝑖=1

+ 𝜎2𝜆1 = 𝑦1

∑𝜆𝑖𝑘𝑓(𝑥𝑖 − 𝑥2)

𝑘

𝑖=1

+ 𝜎2𝜆2 = 𝑦2

…

∑𝜆𝑖𝑘𝑓(𝑥𝑖 − 𝑥𝑘)

𝑘

𝑖=1

+ 𝜎2𝜆𝑘 = 𝑦𝑘

                                               (29) 

Запишем (29) в матричной форме. В этом случае 𝜎2 прибавляется к главной 

диагонали: 

(𝐾 + 𝜎2𝐸)𝜆 = 𝑌,                                          (30) 

   где  𝐾 – квадратная матрица элементов 𝑘𝑖𝑗 = 𝑘𝑓(𝑥𝑖 − 𝑥𝑗) 

 𝐸 – единичная матрица 

𝜆 – вектор столбец (𝜆1, 𝜆2, … , 𝜆𝑘) 

  𝑌 – вектор столбец (𝑦1, 𝑦2, … , 𝑦𝑘) 

Соответственно 𝜆 из (30) выражается как: 

𝜆 = (𝐾 + 𝜎2𝐸)−1𝑌                              (31) 

Если в (31) взять 𝜎2 = 0, то очевидно, что задача аппроксимации (1) 

превращается в задачу интерполяции. Регулируя значение 𝜎2 можно 

определять степень точности соответствия 𝑓(𝑥) и обучающей выборки в (1), 

чтобы избежать проблему “переобучения”. 

В итоге, через выражения (28) и (31) было получено решение задачи (1), 

однако в преобразованиях была использована спектральная плотность 𝑆(𝜔) 
(через которую выражается корреляционная функция в (18)), которую пока 

никак не определили. 



Обозначим как 𝑆𝑓1(𝜔) спектральное представление функции 𝑓1(𝑥), 

которая является некоторой конкретной реализацией случайной функции (10), 

в виде: 

𝑆𝑓1(𝜔) =
1

2
𝑉1(𝜔)√

𝑆(𝜔)

𝑑𝜔
,                                                (32) 

 где 𝑉1(𝜔) – некоторая конкретная реализация 𝑉(𝜔), т.е. совокупность 

значений, которые 𝑉(𝜔) приняла, в результате чего (10) обратилась в одну из 

своих реализаций 𝑓1(𝑥). 

𝑓1(𝑥) = ∫ 𝑆𝑓1(𝜔)𝑒
𝑖𝜔𝑥𝑑𝜔

 

𝑅𝑛
                                               (33) 

Аналогично обозначим как 𝑆𝑓2(𝜔) спектральное представление 

некоторой другой функции 𝑓2(𝑥). 

Предположим, что 𝑓1(𝑥) и 𝑓2(𝑥) такие, что для них выполняется п.2. (4). 

𝑓2(𝑥) = ∫ 𝑆𝑓2(𝜔)𝑒
𝑖𝜔𝑥𝑑𝜔

 

𝑅𝑛
= 𝑘𝑓1 (

𝑥

𝑘
) = 𝑘∫ 𝑆𝑓1(𝜔)𝑒

𝑖𝜔
𝑥
𝑘𝑑𝜔

 

𝑅𝑛
= 

= ∫ 𝑘𝑛+1𝑆𝑓1(𝜔)𝑒
𝑖𝜔
𝑥
𝑘𝑑
𝜔

𝑘

 

𝑅𝑛
= ∫ 𝑘𝑛+1𝑆𝑓1(𝜔𝑘)𝑒

𝑖𝜔𝑥𝑑𝑥
 

𝑅𝑛
                   (34) 

Сравнив начало и конец в (34) получим соотношение между спектральными 

представлениями для 𝑓1(𝑥) и 𝑓2(𝑥) для которых выполняется п.2: 

𝑆𝑓2(𝜔) = 𝑘𝑛+1𝑆𝑓1(𝜔𝑘)                                         (35) 

Вернемся теперь к (32), но запишем его иначе, выразив 𝑉1(𝜔): 

𝑉1(𝜔) = 2𝑆𝑓1(𝜔)√
𝑑𝜔

𝑆(𝜔)
                                                    (36) 

Поскольку в п.3 мы условились, что априорная плотность вероятностей 

таких функций 𝑓1(𝑥) и 𝑓2(𝑥) должна быть одинаковой, это значит, что 

выражение (19) для них обеих должно давать одно и то же значение. 

Но выражение под суммой в (19) мы можем заменить как: 

(𝑣𝑗
𝑅)

2
+ (𝑣𝑗

𝐼)
2
= |𝑉(𝜔𝑗)|

2
                                                (37) 

 

 



Квадрат модуля (36) для частоты 𝜔𝑗 будет: 

|𝑉1(𝜔𝑗)|
2
= 4

|𝑆𝑓1(𝜔𝑗)|
2

𝑆(𝜔𝑗)
𝑑𝜔                                                        (38) 

Подставив (38) в (19), получим: 

𝑒𝑥𝑝(−2∑
|𝑆𝑓1(𝜔𝑗)|

2

𝑆(𝜔𝑗)
𝑑𝜔

∞

𝑗=0

)                                                   (39) 

Но эта сумма в (39) в пределе даст интеграл: 

𝑒𝑥𝑝(−2 ∫
|𝑆𝑓1(𝜔)|

2

𝑆(𝜔)
𝑑𝜔

 

𝑅1
𝑛

) =   𝑒𝑥𝑝(− ∫
|𝑆𝑓1(𝜔)|

2

𝑆(𝜔)
𝑑𝜔

 

𝑅𝑛

)               (40) 

Значит, если для 𝑓1(𝑥) и 𝑓2(𝑥) плотность вероятности будет одинаковой, 

тогда одинаковым должно быть и значение выражения (40), что выполняется, 

когда равны между собой интегральные его части: 

∫
|𝑆𝑓1(𝜔)|

2

𝑆(𝜔)
𝑑𝜔

 

𝑅𝑛

= ∫
|𝑆𝑓2(𝜔)|

2

𝑆(𝜔)
𝑑𝜔

 

𝑅𝑛

                                      (41) 

Подставим в (41) найденное ранее соотношение между спектральными 

представлениями (35): 

∫
|𝑆𝑓1(𝜔)|

2

𝑆(𝜔)
𝑑𝜔

 

𝑅𝑏

= ∫
|𝑆𝑓2(𝜔)|

2

𝑆(𝜔)
𝑑𝜔

 

𝑅𝑛

= ∫
𝑘2𝑛+2|𝑆𝑓1(𝜔𝑘)|

2

𝑆(𝜔)
𝑑𝜔 =

 

𝑅𝑛

 

= ∫
𝑘𝑛+2|𝑆𝑓1(𝜔𝑘)|

2

𝑆(𝜔)
𝑑(𝜔𝑘)

 

𝑅𝑛

= ∫
𝑘𝑛+2|𝑆𝑓1(𝜔)|

2

𝑆 (
𝜔
𝑘)

𝑑𝜔

 

𝑅𝑛

                        (42) 

Сравнив начало и конец в (42) получим соотношение для спектральной 

плотности: 

𝑆(𝜔/𝑘)

𝑆(𝜔)
= 𝑘𝑛+2                                                 (43) 

 

Поскольку рассматриваемая случайная функция стационарна, то 

автокорреляционная функция (18) должна обладать радиальной симметрией. 

Тогда радиальной симметрией должна обладать и ее спектральная плотность. 

 



Такой функцией, удовлетворяющей (43) будет: 

𝑆(𝜔) = 𝑎‖𝜔‖−(𝑛+2),                                               (44) 

  где 𝑎 – некоторый коэффициент 

Так как 𝜔 ∈ 𝑅𝑛 и является многомерной величиной (𝜔1, 𝜔2, … , 𝜔𝑛), то 

(44) можно записать и так: 

𝑆(𝜔1, 𝜔2, … , 𝜔𝑛) = 𝑎(𝜔1
2 +𝜔2

2 +⋯+𝜔𝑛
2)−

𝑛+2
2 , 𝜔1, 𝜔2, … , 𝜔𝑛 ∈ 𝑅          (45) 

Как видно, выражение (43) будет справедливо при любом коэффициенте 

𝑎 в (44) или (45), который можно выбрать исходя из представления, что 𝑘𝑓(0) 

будет являться дисперсией случайной функции. Соотношение 𝑘𝑓(0) и 𝜎2 

будет определять, насколько точно 𝑓(𝑥) должна соответствовать обучающей 

выборке. Как видно по (31) и (28), если одновременно умножить 𝑘𝑓 и 𝜎2 на 

некоторый множитель, то функция (28) останется неизменной. 

Рассмотрим более подробно результат, получившийся в (44) и (45). 

Обозначим 𝜏 в 𝑘𝑓(𝜏) в (18) как вектор (𝜏1, 𝜏2, … , 𝜏𝑛) и используя 

спектральную плотность (45) запишем (заодно перейдя из области 

интегрирования 𝑅1
𝑛 в 𝑅𝑛): 

𝑘𝑓(𝜏1, 𝜏2, … , 𝜏𝑛) =
𝑎

2
∫ … ∫

cos(𝜔1𝜏1 + 𝜔2𝜏2 +⋯+ 𝜔𝑛𝜏𝑛)

(𝜔1
2 + 𝜔2

2 +⋯+ 𝜔𝑛
2)
𝑛+2
2

𝑑𝜔𝑛𝑑𝜔𝑛−1…𝑑𝜔1

∞ 

−∞

∞ 

−∞

    (46) 

Чем будет являться сечение корреляционной функции (46), например, при 

условии 𝜏𝑛=0? Рассмотрим самый внутренний интеграл в (46) при 𝜏𝑛=0. 

∫
cos(𝜔1𝜏1 + 𝜔2𝜏2 + ⋯+ 𝜔𝑛−1𝜏𝑛−1)

(𝜔1
2 + 𝜔2

2 + ⋯+ 𝜔𝑛
2)
𝑛+2
2

𝑑𝜔𝑛 =

∞ 

−∞

=2cos(𝜔1𝜏1 + 𝜔2𝜏2 + ⋯+ 𝜔𝑛−1𝜏𝑛−1)∫
𝑑𝜔𝑛

(𝜔1
2 + 𝜔2

2 + ⋯+ 𝜔𝑛
2)
𝑛+2
2

∞ 

0

  (47) 

Сделаем замену: 

𝜔1
2 + 𝜔2

2 + ⋯+ 𝜔𝑛−1
2

𝜔1
2 + 𝜔2

2 + ⋯+ 𝜔𝑛−1
2 + 𝜔𝑛

2
= 1 − 𝑡                                           (48) 

Если выполнить преобразования, тогда (47) преобразуется в: 

cos(𝜔1𝜏1 + 𝜔2𝜏2 + ⋯+ 𝜔𝑛−1𝜏𝑛−1)

(𝜔1
2 + 𝜔2

2 + ⋯+ 𝜔𝑛−1
2 )

(𝑛−1)+2
2

∫𝑡−
1
2(1 − 𝑡)

𝑛−1
2 𝑑𝑡

1

0

= 



 

=
cos(𝜔1𝜏1 + 𝜔2𝜏2 + ⋯+ 𝜔𝑛−1𝜏𝑛−1)

(𝜔1
2 + 𝜔2

2 + ⋯+ 𝜔𝑛−1
2 )

(𝑛−1)+2
2

𝐵 (
1

2
,
𝑛 + 1

2
) ,                             (49) 

где 𝐵 – бета-функция Эйлера 

Тогда сечение (46) при 𝜏𝑛=0 будет: 

𝑘𝑓(𝜏1, … , 𝜏𝑛−1) =

=
𝑎

2
𝐵 (
1

2
,
𝑛 + 1

2
) ∫ … ∫

cos(𝜔1𝜏1 +⋯+𝜔𝑛𝜏𝑛−1)

(𝜔1
2 + 𝜔2

2 +⋯+𝜔𝑛−1
2 )

(𝑛−1)+2
2

𝑑𝜔𝑛−1…𝑑𝜔1

∞ 

−∞

∞ 

−∞

     (50) 

Поскольку 
𝑎

2
𝐵 (

1

2
,
𝑛+1

2
) играет роль некоторого коэффициента, сравнивая 

(50) и (46) можно сделать вывод, что если для корреляционной функции в 

пространстве 𝑅𝑛 провести через начало координат сечение размерностью 

𝑅𝑛−1, то оно будет эквивалентно корреляционной функции в пространстве 

𝑅𝑛−1 выраженное снова через (46) (отличаясь лишь коэффициентом 𝑎 в (44)-

(45)). 

Отсюда можно сделать вывод, чтобы найти корреляционную функцию, 

достаточно будет определить её для одномерного случая на промежутке 𝜏 ∈
[0,+∞), а затем пользуясь свойством ее радиальной симметрии, определить ее 

для пространства любой размерности. 

Спектральная плотность (44) (если взять 𝑎 = 1) для одномерного случая будет: 

𝑆(𝜔) = |𝜔|−3, 𝜔 ∈ 𝑅                                                 (51) 

Случайная функция, выраженная в виде (13) в одномерном случае примет вид: 

𝐹(𝑥) = ∫
𝑉𝑅(𝜔) cos(𝜔𝑥) − 𝑉𝐼(𝜔) sin(𝜔𝑥)

𝜔√𝜔𝑑𝜔
𝑑𝜔, 𝑥, 𝜔 ∈ 𝑅

∞

0

              (52) 

Корреляционная функция (18) в одномерном случае: 

𝑘𝑓(𝜏) = ∫
cos(𝜔𝜏)

𝜔3
𝑑𝜔

∞

0

                                                     (53) 

Модуль от частоты в (52) и (53) можно убрать, поскольку интегрирование 

в будет только в положительной области. 

Однако в (52) и (53) видно, что при приближении частоты 𝜔 к нулю 

выражение под интегралом стремится к бесконечности. 



Возьмем некоторое очень малое значение 𝜔0 > 0 и рассмотрим 

случайную функцию, аналогичную (52), но у которой (у всех ее реализаций) 

частоты меньше 𝜔0 отсутствуют. 

Ее выражение будет отличаться от (52) только нижним пределом 

интегрирования: 

𝐹(𝑥) = ∫
𝑉𝑅(𝜔) cos(𝜔𝑥) − 𝑉𝐼(𝜔) sin(𝜔𝑥)

𝜔√𝜔𝑑𝜔
𝑑𝜔

∞

𝜔0

                                (54) 

Корреляционная функция для нее будет: 

𝑘𝑓(𝜏) = ∫
cos(𝜔𝜏)

𝜔3
𝑑𝜔

∞

𝜔0

                                                     (55) 

Гармоническому колебанию с частотой 𝜔0 будет соответствовать период: 

𝑇0 =
2𝜋

𝜔0
                                                                            (56) 

Пусть 𝜔0 взято такое, что период 𝑇0 многократно больше, чем диапазон 

значений 𝑥 из обучающей выборки. Тогда все колебания частот, меньших чем 

𝜔0, внутри этой области будут вырождаться в линейные слагаемые и мало 

отличаться друг от друга и от частот несколько больших, чем 𝜔0.  

Поэтому можно ожидать, что если значения обучающей выборки 𝑥𝑖 
ограничены некоторым конечным диапазоном, то всегда можно взять такое 

малое 𝜔0, что (54) и (55) будет допустимой с практической точки зрения 

заменой (52) и (53), а при устремлении 𝜔0 к нулю они становятся 

эквивалентными. 

Выполним дважды интегрирование (55) по частям: 

𝑘𝑓(𝜏) = ∫
cos(𝜔𝜏)

𝜔3
𝑑𝜔

∞

𝜔0

= −
cos(𝜔𝜏)

2𝜔2
|
𝜔0

∞

− 𝜏 ∫
sin(𝜔𝜏)

2𝜔2
𝑑𝜔

∞

𝜔0

= 

= (−
cos(𝜔𝜏)

2𝜔2
+ 𝜏

sin(𝜔𝜏)

2𝜔
)|
𝜔0

∞

−
𝜏2

2
∫
cos(𝜔𝜏)

𝜔
𝑑𝜔

∞

𝜔0

                    (57) 

Одним из множителей в последнем слагаемом в (57) получился 

интегральный косинус. 

 



Рассмотрим его более подробно (принимая во внимание, что 

рассматриваем лишь 𝜏 ≥ 0). 

− ∫
cos(𝜔𝜏)

𝜔
𝑑𝜔

∞

𝜔0

= − ∫
cos(𝜔𝜏)

𝜔𝜏
𝑑(𝜔𝜏)

∞

𝜔0𝜏

= 

=  𝛾 + ln(𝜔0𝜏) + ∫
cos(𝜔) − 1

𝜔
𝑑𝜔

𝜔0𝜏

0

 ,                                (58) 

   где 𝛾 – постоянная Эйлера-Маскерони 

Тогда (57) преобразуется в: 

cos(𝜔0𝜏)

2𝜔0
2 − 𝜏2

sin(𝜔0𝜏)

2𝜔0𝜏
+
1

2
𝜏2(𝛾 + ln(𝜏) + ln(𝜔0) + ∫

cos(𝜔) − 1

𝜔
𝑑𝜔

𝜔0𝜏

0

) = 

=
1

2
𝜏2(ln(𝜏) + (ln(𝜔0) + 𝛾 + ∫

cos(𝜔) − 1

𝜔
𝑑𝜔

𝜔0𝜏

0

−
sin(𝜔0𝜏)

2𝜔0𝜏
))+ 

+
cos(𝜔0𝜏)

2𝜔0
2                                                                  (59) 

Поскольку, как уже рассмотрели выше, 𝑘𝑓(𝜏) мы можем умножить на 

произвольный коэффициент, а важно лишь соотношение 𝑘𝑓(0) и 𝜎2, то в (59) 

мы можем убрать 
1

2
, а (59) записать как: 

𝑘𝑓(𝜏) = 𝜏
2(ln(𝜏) − 𝑏(𝜏)) + 𝑐(𝜏),                                                 (60) 

где 

𝑏(𝜏) =
sin(𝜔0𝜏)

𝜔0𝜏
− ln(𝜔0) − 𝛾 − ∫

cos(𝜔) − 1

𝜔
𝑑𝜔

𝜔0𝜏

0

                        (61) 

𝑐(𝜏) =
cos(𝜔0𝜏)

𝜔0
2                                                                                            (62) 

Если устремить 𝜔0 к нулю, то 𝑏(𝜏) и 𝑐(𝜏) устремятся к бесконечности. 

lim
𝜔0→+0

𝑏(𝜏) → +∞,  

lim
𝜔0→+0

𝑐(𝜏) → +∞ 



А случайная функция, описываемая (54) и (55) будет превращаться в 

случайную функцию, описываемую (52) и (53). Хотя видно, что 𝑐(𝜏) будет 

устремляться к бесконечности гораздо быстрее, чем 𝑏(𝜏), значение которого 

будет в основном определяться логарифмом (− ln(𝜔0)). 

Но если взять 𝜔0 достаточно малым, чтобы период (56) был значительно 

больше, чем диапазон изменения 𝜏,  то 𝑏(𝜏) и 𝑐(𝜏) фактически превращаются 

в константы, а в (60) мы получим корреляционную функцию, которую удобно 

использовать для вычислений. 

Таким образом мы получили автокорреляционную функцию (60) для 

одномерного случая и 𝜏 ∈ [0,+∞). Ее легко обобщить на многомерный 

случай, поскольку она должна обладать радиальной симметрией. 

Получаем итоговый результат: 

Автокорреляционная функция: 

𝑘𝑓(𝜏) =  𝜏
2(ln(‖𝜏‖) − 𝑏) + 𝑐 , 𝜏 ∈ 𝑅𝑛                                      (63) 

где 𝑏 и 𝑐 – константы, которые можно оценить по формулам (61) и (62) 

Выпишем еще раз полученные формулы (28) и (31). 

Решением задачи аппроксимации (1) будет функция: 

𝑓(𝑥) =∑𝜆𝑖𝑘𝑓(𝑥𝑖 − 𝑥)

𝑘

𝑖=1

                                                       (64) 

Коэффициенты 𝜆𝑖 определяются системой уравнений: 

𝜆 = (𝐾 + 𝜎2𝐸)−1𝑌                                    (65) 

   где  𝐾 – квадратная матрица элементов 𝑘𝑖𝑗 = 𝑘𝑓(𝑥𝑖 − 𝑥𝑗) 

 𝐸 – единичная матрица 

𝜆 – вектор столбец (𝜆1, 𝜆2, … , 𝜆𝑘) 

  𝑌 – вектор столбец (𝑦1, 𝑦2, … , 𝑦𝑘) 

  𝜎2 – дисперсия случайных величин 𝑢𝑖 из (1) 

Полученная линейная комбинация (64) функций (63) известна также как 

полигармонический сплайн (или его разновидность, сплайн тонкой пластины 

(thin plate spline) [2] и [3]). Но в данном случае есть нюансы использования, 

такие как использование коэффициентов 𝑏 и 𝑐, которые оцениваются через 



(61) и (62), прямое введение 𝜎2 случайных величин 𝑢𝑖 в систему уравнений 

(65), чтобы решить задачу аппроксимации. 

Пример: 

В качестве наглядного примера рассмотрим одномерный случай 

аппроксимации. 

Возьмем обучающую выборку, у которой большая часть входных значений 

лежит в интервале от 0 до 10, т.е. для оценки значений 𝑏 и 𝑐 примем, что 𝜏 
изменяется от 0 до 10. 

Возьмем 𝜔0 = 0.001. Таким образом соответствующий этой частоте период 

(56) будет равен 𝑇0 = 6283.1853, что примерно в 600 раз больше, чем 

изменения между значениями 𝑥𝑖. Вполне можно допустить, что наличие 

частот меньших 𝜔0 (с еще большим периодом) для решения задачи в нашей 

области аппроксимации не имеет существенного значения. 

Сравним значения 𝑏(𝜏) и 𝑐(𝜏) из (61) и (62) при выбранной 𝜔0 = 0.001 и 

значениях 𝜏 = 0 и 𝜏 = 10. 

b(0) = 1 + 6.907755 − 0.577216 + 0 = 7.33054 

𝑏(10) = 0.999983 + 6.907755 − 0.577216 + 0.000025 = 7.330548 

𝑐(0) = 1000000 

𝑐(10) = 999950.000416 

Значения 𝑏(𝜏) и 𝑐(𝜏) при 𝜏 = 10 относительно их же при 𝜏 = 0 

изменились на 0.0001% и 0.005% соответственно. Поэтому возьмем в качестве 

них просто константы b = 7.33054 и 𝑐 = 1000000. 

Попробуем сначала взять 𝜎2= 0 в (65). В этом случае все 𝑢𝑖 в (1) 

становятся равными нулю, 𝑓(𝑥) должна точно без ошибок пройти через все 

точки из обучающей выборки. Задача аппроксимации превращается в задачу 

интерполяции. Что и наблюдается на рисунке 1. 



 

Рисунок 1. 

Функция (64) легко воспроизводит любую сложную нелинейность без 

каких-либо скачков или осцилляций между соседними точками. 

Если взять 𝜎2 > 0, то переходим к исходной задаче аппроксимации (1). 

 

Рисунок 2. 

В данном случае, изображенном на рисунке 2, 𝜎2= 0.625 . 

 



Заключение. 

Таким образом было показано, что регрессионная задача машинного 

обучения как задача многомерной аппроксимации, выраженная (1), может 

быть решена на основе теории случайных функций, если предположить 

существование в функциональном пространстве некоторых симметрий 

плотности вероятности (3)-(6). Решением будет линейная комбинация 

корреляционной функции, спектральная плотность которой (44)-(45) также 

может быть выведена из одной из симметрий (4). Далее показано, что 

корреляционной функции с такой плотностью с некоторыми нюансами 

соответствует полигармоническому сплайну в виде (63). И как итог, 

выражения (61)-(65) для решения задачи (1). 
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