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A B S T R A C T

I provide a transfer matrix method for the Foldy-Wouthuysen representation of the Dirac equation.
I derive the relationship between the reflection and transmission coefficients of the Dirac spinors
and the wavefunction in the transformed representation. I develop a WKB approximation for Dirac
fermions that has the same elegant form as the WKB solution to Schrödinger’s equation. My WKB
approximation is to all orders and includes the semi-classical turning point. I provide an extension
to fully 2-dimensional periodic structures by Fourier methods for band-gap engineering. I verify
my methods for all energies by comparison with analytic solutions developed in the Dirac spinor
representation. Rich appendices detail my research into the Green’s functions of Dirac fermions,
where I rigorously derive the free space Green’s functions for the Foldy-Wouthuysen representation
of the Dirac equation.

1. Introduction
In Refs. [1, 2, 3] the pseudo-relativistic dispersion of

2-dimensional (2D) materials was investigated theoretically
for the emergence of extra Dirac points with 1D periodic bar-
riers. The method employed was the application of Bloch’s
theorem to transfer matrices of Dirac spinors. These band-
gap engineering studies have attracted considerable interest
since the vanishing band gap of 2D materials presents a sig-
nificant challenge for practical applications. Other meth-
ods for band-gap engineering used to create 2D semiconduc-
tor materials include strain engineering [4], vertical stacking
[5], and chemical doping [6].

With the necessary knowledge for creating semiconduc-
tor 2D materials, a theoretical study of the operational win-
dow for negative differential resistance was pursued by other
authors [7]. The mathematical method employed in their
study was the application of transfer matrices to the Dirac
spinors of a rotated Dirac Hamiltonian derived in Ref. [8].

Motivated by the study of unconventional transmission
and density of states, the modeling of Dirac fermions has
advanced beyond idealized square barrier systems. In exper-
imental devices, barriers are more often smoothly varying;
semi-classical (WKB) methods are needed. An approach us-
ing separate Hamiltonians for electrons and holes in Ref. [9]
gave way in Ref. [10] to an expansion in powers of ℏ partly
resembling the WKB method for the Schrödinger equation.
However, it is acknowledged by the authors of Refs. [9, 10]
that their mathematical approaches to semi-classical analy-
sis can be divergent at the classical turning point.

This article contributes to the theory of tunneling in 2D
materials by applying the Foldy-Wouthuysen (FW) repre-
sentation of the Dirac equation.

While the FW transformation was first conceived as a
semi-relativistic representation of the Dirac equation [11],
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I will show, through my rigorous derivations in Section 2
through Section 13 and my analytic and numerical verifica-
tion of Section 14 and Appendix B, that the FW representa-
tion remains an exactly accurate representation of the Dirac
equation for all energies.

I find that the FW representation allows a derivation of
the relativistic WKB approximation, Section 7 to Section 10,
in the same elegant form as the approximate WKB solution
to Schrödinger’s equation. Since at low energies, the FW
representation reduces to the Schrödinger equation, I have
found, in Section 11, a simple method to mathematically de-
scribe the connections between WKB regions.

Fourier analysis is used in Section 12 to extend my ap-
proach to fully 2D periodic structures. Section 12 offers the
prospect of extending the scope of the band-gap engineering
studies made in Refs. [1, 2, 3]. My numerical and analytic
results showing that the FW equation is an exactly accurate
representation of relativistic fermions, for all energies, will
be important here. The Fourier transform method in Section
12 requires expansion of the wavefunction in plane waves of
momentum beyond semi-relativistic energies.

In Appendix E I make the reader aware of a limit to
appealing for solutions of the Dirac equation from its FW
representation, I reveal and discuss a Green’s function (GF)
paradox arising when transforming between the two repre-
sentations. In spite of the paradox, I have rigorously derived
the 1D, 2D and 3D free space FW GFs in Appendix D and
Appendix F. The Dyson equations for the FW GFs are avail-
able for all types of Born approximation [12, 13].

My article is organized as follows: Section 2 outlines the
derivation of the FW representation from the Dirac equa-
tion. Section 3 gives the transmission of the Dirac equation
in terms of the transmission of its FW representation. Sec-
tion 4 derives the boundary conditions of the FW equation
at sharp steps in potential. Section 5 and Section 6 develop
the transfer matrices for rectangular barriers and delta po-
tentials. Section 7, Section 8, Section 9 and Section 10 give
a 1𝑠𝑡, iterative and 2𝑛𝑑 order WKB approximations for two
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interpretations of the FW equation. Section 11 gives the con-
necting formulae between regions where the WKB approx-
imation is appropriate. Section 12 extends my approach to
include periodic structures. Section 13 details how I eval-
uated the boundary conditions. Section 14 gives numerical
results for examples of tunneling through barriers and reso-
nant diodes.

The appendices are organized as follows: Appendix A
analytically justifies my commutation of FW wavefunction
operators. Appendix B analytically calculates the reflection
at a step in both the Dirac spinor and FW representations
for comparison. Appendix C examines the tunneling of a
massless fermion through a magnetic delta barrier in the FW
representation. Appendix D calculates 1D GFs of the FW
equation. Appendix E uncovers a relativistic GF paradox.
Appendix F gives the correct 2D and 3D free space analytic
FW GFs.

2. Dirac equation and its Foldy-Wouthuysen
representation
The Dirac equation for a scalar potential 𝑉 is given in

Hamiltonian form by
[

𝑐𝛼 ⋅ �̂� + 𝛽𝑚𝑐2
]

Ψ = 𝐻Ψ = (𝐸 + 𝑉 ) Ψ , (1)

𝛾𝑡 =
(

+𝐼 0
0 −𝐼

)

, 𝛾𝑥,𝑦,𝑧 =
(

0 +𝜎𝑥,𝑦,𝑧
−𝜎𝑥,𝑦,𝑧 0

)

, (2)

𝐼 =
(

+1 0
0 +1

)

, 𝜎𝑥 =
(

0 +1
+1 0

)

, (3)

𝜎𝑦 =
(

0 −𝑖
+𝑖 0

)

, 𝜎𝑧 =
(

+1 0
0 −1

)

, (4)

with 𝛼𝑥,𝑦,𝑧 = 𝛾𝑡𝛾𝑥,𝑦,𝑧 and 𝛽 = 𝛾𝑡.

�̂� = −𝑖ℏ∇ = −𝑖ℏ
[

𝜕
𝜕𝑥

, 𝜕
𝜕𝑦

, 𝜕
𝜕𝑧

]

(5)

is the momentum operator for the electron which is of mass
𝑚 and energy 𝐸. The charge and current density are given
by the following well-known expressions:

𝜌 = Ψ∗Ψ , (6)

𝑗 = Ψ∗𝛼Ψ . (7)

There are two linearly independent solutions of the free par-
ticle Dirac equation,

Ψ(±)
↑ =

⎛

⎜

⎜

⎜

⎝

∓𝑚𝑐2 − 𝐸 − 𝑉
0
0

𝑐
(

𝑝𝑥 ± 𝑖𝑝𝑦
)

⎞

⎟

⎟

⎟

⎠

exp
( 𝑖𝑝𝑥𝑥 + 𝑖𝑝𝑦𝑦

ℏ

)

, (8)

Ψ(±)
↓ =

⎛

⎜

⎜

⎜

⎝

0
∓𝑚𝑐2 − 𝐸 − 𝑉
𝑐
(

𝑝𝑥 ∓ 𝑖𝑝𝑦
)

0

⎞

⎟

⎟

⎟

⎠

exp
( 𝑖𝑝𝑥𝑥 + 𝑖𝑝𝑦𝑦

ℏ

)

, (9)

each can be normalized to one electron per unit volume by
Eq. (6).

By making use of the FW transformation, I will decouple
the differential equations of the Dirac equation to give four
independent identical equations. I will show that by calcu-
lating the propagation for only one of these components I
may obtain the full GF and transmission.

Under unitary transformation the Dirac equation becomes

𝑒+𝑖𝑆𝐻𝑒−𝑖𝑆𝑒+𝑖𝑆Ψ = (𝐸 + 𝑉 ) 𝑒+𝑖𝑆Ψ . (10)

Foldy and Wouthuysen [11] found that their rotation

𝑒±𝑖𝑆 = cos 𝜃 ± 𝛽𝛼 ⋅
�̂�
|�̂�|

sin 𝜃 , (11)

transformed the Dirac Hamiltonian into diagonal and anti-
diagonal parts

𝛽
(

𝑚𝑐2 cos (2𝜃) + 𝑐 |�̂�| sin (2𝜃)
)

+ 𝑐𝛼 ⋅ �̂�
(

cos (2𝜃) − 𝑚𝑐
|�̂�|

sin (2𝜃)
)

= 𝑒+𝑖𝑆𝐻𝑒−𝑖𝑆 . (12)

Subsequently it was chosen [11]

cos (2𝜃) = 𝑚𝑐2
√

𝑐2�̂�2 + 𝑚2𝑐4
, (13)

sin (2𝜃) =
𝑐 |�̂�|

√

𝑐2�̂�2 + 𝑚2𝑐4
, (14)

so that by direct substitution of Eq. (13) and Eq. (14) into
Eq. (12)

[

𝛽
√

�̂�2𝑐2 + 𝑚2𝑐4 − 1̂ (𝑉 + 𝐸)
]

Ψ̃ = 0 . (15)

Eq. (15) shows there are two possibilities for the FW equa-
tion

[

∓
√

�̂�2𝑐2 + 𝑚2𝑐4 − (𝑉 + 𝐸)
]

Ψ̃(±) = 0 , (16)

Ψ̃(−) corresponds to the electron, Ψ̃(+) to the positron. The
rotated wavefunction Ψ̃ is related to Ψ by

[

cos 𝜃 + 𝛽𝛼 ⋅
�̂�
|�̂�|

sin 𝜃
]

Ψ = Ψ̃ . (17)

Taylor expanding
√

�̂�2𝑐2 + 𝑚2𝑐4 in Eq. (16) gives
[

∓ −
(

𝑉 + 𝐸 ± 𝑚𝑐2
)]

Ψ̃(±) = 0 , (18)
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where

 = 𝑚𝑐2
[

1
2

[

�̂�
𝑚𝑐

]2
− 1

8

[

�̂�
𝑚𝑐

]4
+ 1

16

[

�̂�
𝑚𝑐

]6
− ...

]

. (19)

Eq. (16) and Eq. (18) are two interpretations of the FW equa-
tion.

I demonstrate the unsuitability of my FW approach for
calculating magnetic barrier tunneling in Appendix C. I rig-
orously derive the GFs of the FW Eq. (18) in Appendix D
and Appendix F. I uncover and discuss a GF paradox of the
FW Eq. (18) in Appendix E.

3. Relationship between the transmission of
the Dirac equation and its
Foldy-Wouthuysen representation
Throughout my numerical and analytic results, Section

14 and Appendix B, I will calculate the reflection coefficient
𝑅 to deduce the transmission coefficient 𝑇 as

𝑇 = 1 − 𝑅 . (20)

Calculating 𝑅, rather than 𝑇 directly, avoids the need for
wavefunction normalization in both the incident and trans-
mitted regions.

Let Ψ be given by Eq. (8) and Eq. (9) as

Ψ = 𝑢 exp
( 𝑖𝑝𝑥𝑥 + 𝑖𝑝𝑦𝑦

ℏ

)

, (21)

taking Ψ̃ of the form

Ψ̃ = �̃� exp
( 𝑖𝑝𝑥𝑥 + 𝑖𝑝𝑦𝑦

ℏ

)

, (22)

I find by application of Eq. (17) to Eq. (21)

�̃�1 = 𝑢1 cos 𝜃 +
(

𝑑𝑥 − 𝑖𝑑𝑦
)

𝑢4 sin 𝜃 ,

�̃�2 = 𝑢2 cos 𝜃 +
(

𝑑𝑥 + 𝑖𝑑𝑦
)

𝑢3 sin 𝜃 ,

�̃�3 = 𝑢3 cos 𝜃 −
(

𝑑𝑥 − 𝑖𝑑𝑦
)

𝑢2 sin 𝜃 ,

�̃�4 = 𝑢4 cos 𝜃 −
(

𝑑𝑥 + 𝑖𝑑𝑦
)

𝑢1 sin 𝜃 ,

(23)

where 𝑑 = �̂�∕|�̂�|.
Eq. (21), Eq. (22), and Eqs. (23) show Ψ̃ in exponential

planar form which is useful for calculating the fermion prop-
agation through homogeneous space.

The incident (𝑖) and reflected (𝑟) waves for planar struc-
tures in the Dirac equation description are related to the re-
flection coefficient in the well-known way:

𝑅 =
(Ψ ⋅Ψ∗)(𝑟)

(Ψ ⋅Ψ∗)(𝑖)
. (24)

For the two linearly independent solutions of the Dirac equa-
tion, Eq. (8) and Eq. (9), Eq. (24) gives rise to two degenerate
expressions for the reflection coefficient:

𝑅↑ =

(

|

|

Ψ1
|

|

2 + |

|

Ψ4
|

|

2
)(𝑟)

(

|

|

Ψ1
|

|

2 + |

|

Ψ4
|

|

2
)(𝑖)

, (25)

𝑅↓ =

(

|

|

Ψ2
|

|

2 + |

|

Ψ3
|

|

2
)(𝑟)

(

|

|

Ψ2
|

|

2 + |

|

Ψ3
|

|

2
)(𝑖)

. (26)

I take note of Eqs. (23) linking �̃� to 𝑢 and calculate when 𝑑
is real

|

|

�̃�1||
2 + |

|

�̃�4||
2 = |

|

𝑢1||
2 + |

|

𝑢4||
2 , (27)

|

|

�̃�2||
2 + |

|

�̃�3||
2 = |

|

𝑢2||
2 + |

|

𝑢3||
2 , (28)

therefore 𝑅 described by the Dirac equation can be rewritten
in terms of the FW wavefunctions:

𝑅↑ =

(

|

|

|

Ψ̃1
|

|

|

2
+ |

|

|

Ψ̃4
|

|

|

2
)(𝑟)

(

|

|

|

Ψ̃1
|

|

|

2
+ |

|

|

Ψ̃4
|

|

|

2
)(𝑖)

, (29)

𝑅↓ =

(

|

|

|

Ψ̃2
|

|

|

2
+ |

|

|

Ψ̃3
|

|

|

2
)(𝑟)

(

|

|

|

Ψ̃2
|

|

|

2
+ |

|

|

Ψ̃3
|

|

|

2
)(𝑖)

. (30)

Since the components of Ψ̃ are degenerate I am only re-
quired to evaluate the propagation of a fermion by the FW
Eq. (18) once when calculating 𝑅 and 𝑇 .

4. Boundary Conditions of the
Foldy-Wouthuysen equation at a sharp step
Consider a sharp step in potential at 𝑥 = 𝑎. I will inte-

grate the FW Eq. (18) through the boundary, normal to the
boundary

lim
(𝑎+−𝑎−)→0∫

𝑎+

𝑎−

[

∓ −
(

𝑉 + 𝐸 ± 𝑚𝑐2
)]

Ψ̃(±) 𝑑𝑥
𝑐ℏ

= 0 . (31)

In this section, I introduce the operator ⌢
, which com-

mutes with 𝑐�̂�𝑥 and is defined by

Ψ̃ = −⌢
𝑐�̂�𝑥Ψ̃ = −𝑐�̂�𝑥

⌢
Ψ̃ . (32)

Appendix A discusses Eq. (32).
Since

lim
(𝑎+−𝑎−)→0∫

𝑎+

𝑎−

(

𝑉 + 𝐸 ± 𝑚𝑐2
)

Ψ̃(±) 𝑑𝑥
𝑐ℏ

= 0 , (33)

due to the function integrated being finite but the integration
range tending to zero, I have

[

𝑖⌢Ψ̃
]𝑎+

𝑎−
= lim
(𝑎+−𝑎−)→0∫

𝑎+

𝑎−
Ψ̃𝑑𝑥

𝑐ℏ
= 0 . (34)
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I can understand Eq. (34) when I consider that

Ψ̃ = 𝑖𝑐ℏ
𝜕
(

⌢
Ψ̃

)

𝜕𝑥
. (35)

Eq. (34) shows that Ψ̃ is continuous under the operation of
⌢
.

In order to evaluate ⌢
Ψ̃ for the mathematical description

of the boundary conditions note

±⌢
𝑐�̂�𝑥Ψ̃(±) =

(

𝑉 + 𝐸 ± 𝑚𝑐2
)

Ψ̃(±) = ±𝑐𝑝𝑥
⌢
Ψ̃(±) , (36)

therefore

⌢
Ψ̃(±) = ±𝑉 + 𝐸 ± 𝑚𝑐2

𝑐𝑝𝑥
Ψ̃(±) = ∓𝛼(±)Ψ̃(±) . (37)

For my second boundary condition I note that �̂�Ψ̃ always
gives a finite observed value, therefore Ψ̃ is continuous ev-
erywhere.

My boundary conditions are in stark contrast to the con-
tinuity conditions of the Klein-Gordon equation; in that case,
continuity is with respect to momentum and wavefunction. I
verify my boundary conditions numerically and analytically
in Section 14 and Appendix B.

5. Transfer matrices for a rectangular
potential barrier
Inside a layer thickness 𝐷 the transfer matrix of Ψ̃ is

given by

⎛

⎜

⎜

⎜

⎝

exp
(

−
𝑖𝐷𝑝𝑥
ℏ

)

0

0 exp
(

+
𝑖𝐷𝑝𝑥
ℏ

)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑎1

�̃�1

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑎0

�̃�0

⎞

⎟

⎟

⎟

⎠

, (38)

where 𝑎0 and 𝑎1 denote forward traveling FW wave parts
and �̃�0 and �̃�1 denote backward travelling FW wave parts, 0
denotes on the left, 1 denotes on the right. The fermion is
refracted at an angle 𝜙 to the layer boundary normal, where

𝑝𝑥 = 𝑝 cos𝜙 . (39)

For a boundary at a sharp step, applying the wavefunc-
tion continuity condition set out in Section 4 gives

𝑎0 + �̃�0 = 𝑎1 + �̃�1 . (40)

Secondly, applying wavefunction continuity under the oper-
ation of ⌢

, derived in Section 4, to Eq. (40) gives

𝛼0𝑎0 − 𝛼0�̃�0 = 𝛼1𝑎1 − 𝛼1�̃�1 . (41)

Eq. (40) and Eq. (41) can be written in matrix form as

1
2

⎛

⎜

⎜

⎜

⎝

(

1 +
𝛼1
𝛼0

) (

1 −
𝛼1
𝛼0

)

(

1 −
𝛼1
𝛼0

) (

1 +
𝛼1
𝛼0

)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑎1

�̃�1

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑎0

�̃�0

⎞

⎟

⎟

⎟

⎠

. (42)

During tunneling, wave modes either decay or grow ex-
ponentially. Transfer matrix multiplication combines these
large and small values, this process is numerically unsta-
ble and inaccurate. Instead, I suggest using the method of
Refs. [14, 15] to combine my transfer matrices. The method
of Refs. [14, 15] addresses these instability issues by sepa-
rating the exponentially growing and decaying terms.

6. Transfer matrix for a delta potential
barrier
Integrating Eq. (18), with 𝑉 (𝑥) = 𝑔𝛿(𝑥) and with respect

to 𝑑𝑥∕𝑐ℏ, across
[

0−, 0+
]

gives

[

∓𝑖⌢
(

𝑎(±) + �̃�(±)
)]0+

0−
=

𝑔
𝑐ℏ

(

𝑎(±) + �̃�(±)
)

|

|

|

|𝑥=0
. (43)

Continuity of the wavefunction gives

𝑎0 + �̃�0 = 𝑎1 + �̃�1 . (44)

Eq. (43) and Eq. (44) can be written in the following matrix
form

⎛

⎜

⎜

⎜

⎝

(

1 −
𝑖𝑔

2𝑐ℏ𝛼𝑘

) (

−
𝑖𝑔

2𝑐ℏ𝛼𝑘

)

(

+
𝑖𝑔

2𝑐ℏ𝛼𝑘

) (

1 +
𝑖𝑔

2𝑐ℏ𝛼𝑘

)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑎1

�̃�1

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑎0

�̃�0

⎞

⎟

⎟

⎟

⎠

,

(45)

where I define 𝑎0, 𝑎1, �̃�0, and �̃�1 in the same way as Section
5.

7. 𝟏𝐬𝐭 order relativistic WKB approximation
Consider the following result from Appendix D derived

from the correct fermion interpretation of the FW equation
in terms of ,

𝑇 (𝑘) =

(

2𝛼𝑘𝛼𝑞
)2

(

𝛼2𝑞 − 𝛼2𝑘
)2

sin2
(

2𝑚∗𝑞𝑎
ℏ

)

+
(

2𝛼𝑘𝛼𝑞
)2

(46)

for a rectangular barrier given by

𝑉 (𝑥) =
{

𝑉 for |𝑥| < 𝑎 ,
0 for |𝑥| > 𝑎 . (47)

Eq. (46) can be approximated as

𝑇 (𝑘) ≈

(

2𝛼𝑘𝛼𝑞
𝛼2𝑘 − 𝛼2𝑞

)2

exp
(

−
4𝑖𝑚∗𝑞𝑎

ℏ

)

(48)

by assuming exponential wavefunction decay within the bar-
rier. Taking logarithms of Eq. (48), the non-logarithmic term
dominates the logarithmic term so that

log𝑒 𝑇 (𝑘) ≈ −
4𝑖𝑚∗𝑞𝑎

ℏ
. (49)
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Assuming independence of transmission events, the total
transmission probability for crossing an overall barrier is

𝑇 ≈
∞
∏

𝑖=1
𝑇𝑖 , (50)

log𝑒
∞
∏

𝑖=1
𝑇𝑖 ≈

∞
∑

𝑖=1
−
2𝑖𝑚∗

𝑖 𝑞𝑖Δ𝑥
ℏ

= −2𝑖
ℏ ∫ 𝑝𝑥𝑑𝑥 , (51)

where the 𝑇𝑖 are the transmission probabilities of the indi-
vidual barriers. I see from Eq. (51) that inside a smoothly
varying layer the FW wavefunction is approximately given
by

Ψ̃ ≈ exp
(

± 𝑖
ℏ ∫ 𝑝𝑥𝑑𝑥

) 𝑁
∏

𝑖=1

(

2𝛼𝑘𝛼𝑞
𝛼2𝑘 − 𝛼2𝑞

)

𝑖

. (52)

8. Iterative relativistic WKB approximation
Consider a wavefunction of the form

Ψ̃ = exp
( 𝑖Φ
ℏ

)

, (53)

then the boson FW interpretation Eq. (16) becomes

⎡

⎢

⎢

⎣

√

𝑐2
(𝜕Φ
𝜕𝑥

)2
− 𝑐2𝑖ℏ𝜕

2Φ
𝜕𝑥2

+ 𝑚2𝑐4 − (𝑉 + 𝐸)
⎤

⎥

⎥

⎦

Ψ̃ = 0 .

(54)

Eq. (54) can be exactly rewritten as

𝑐2
(𝜕Φ
𝜕𝑥

)2
− 𝑐2𝑖ℏ𝜕

2Φ
𝜕𝑥2

+ 𝑚2𝑐4 = (𝑉 + 𝐸)2 . (55)

I now make use of (𝐸 + 𝑉 )2 = 𝑚2𝑐4 + 𝑝2𝑐2 in Eq. (55) and
find that as expected

�̂�2𝑥Ψ̃ = 𝑝2𝑥Ψ̃ , 𝜕Φ
𝜕𝑥

=

√

𝑝2𝑥 + 𝑖ℏ𝜕
2Φ
𝜕𝑥2

. (56)

I know from Section 7

±𝜕Φ
𝜕𝑥

≈ 𝑝𝑥 , (57)

suggesting a next approximation on from Eq. (52) is

Φ ≈ ±∫

√

𝑝2𝑥 ± 𝑖ℏ
𝜕𝑝𝑥
𝜕𝑥

𝑑𝑥 . (58)

Eq. (58) follows from the integration of Eq. (56). This pro-
cedure can be iterated to an 𝑛𝑡ℎ order WKB approximation
in the boson FW interpretation.

9. 𝟐𝐧𝐝 order relativistic WKB approximation
Expanding Φ (𝑥) in powers of ℏ

Φ (𝑥) = Φ0 (𝑥) + ℏΦ1 (𝑥) + ℏ2Φ2 (𝑥) + ... , (59)

then substituting Eq. (59) into Eq. (56) gives
(

Φ′
0 + ℏΦ′

1 + ...
)2 − 𝑖ℏ

(

Φ′′
0 + ℏΦ′′

1 + ...
)

= 𝑝2𝑥 . (60)

Equating terms in powers of ℏ, in Eq. (60), I see

±Φ′
0 = 𝑝𝑥 , 2Φ′

0Φ
′
1 − 𝑖Φ′′

0 = 0 , (61)

so that

Φ0 = ±∫ 𝑝𝑥𝑑𝑥 , Φ1 =
𝑖
2
log𝑒Φ′

0 . (62)

Eqs. (62), Eq. (59), and Eq. (53) give

Ψ̃ ≈
exp

(

± 𝑖
ℏ
∫ 𝑝𝑥𝑑𝑥

)

√

𝑝𝑥
. (63)

This result is identical to the Klein-Gordon WKB approxi-
mation because on the way I approximated FW Eq. (18) with
Eq. (16).

10. Discussion of fermion and boson WKB
approximations

When I made my WKB approximation in Section 7, from
what I will show in Section 14 and Appendix B to be the
correct form Eq. (18) of the FW equation, I saw in the non-
exponential factor of Eq. (48) appearances of 𝑝𝑖 changed to
appearances of 𝛼𝑖 going from boson to fermion descriptions.
I have noticed, that for tunneling through slowly varying po-
tentials, Eq. (48), Eq. (50) and Eq. (63) give the implication:

𝑁
∏

𝑖=1

(

2𝑘𝑞
𝑘2 − 𝑞2

)2

𝑖
≈

𝑝1
𝑝𝑁

⟹

𝑁
∏

𝑖=1

(

2𝛼𝑘𝛼𝑞
𝛼2𝑘 − 𝛼2𝑞

)2

𝑖

≈
𝛼(±)𝑝1

𝛼(±)𝑝𝑁

.

(64)

Eq. (64) suggests that the WKB approximation for fermions,
in the correct FW representation, will take the form

Ψ̃ ≈
exp

(

± 𝑖
ℏ
∫ 𝑝𝑥𝑑𝑥

)

√𝛼𝑝𝑥
. (65)

Going from Eq. (63) to Eq. (65) I swapped an appearance of
𝑝𝑖 to±𝛼(±)𝑖 , from boson to fermion descriptions, as suggested
by Eq. (48), Eq. (50) and Eq. (63).

11. Connection formulae
It is suggested by Section 8 that for the WKB approxi-

mation to be appropriate

|

|

𝑝𝑥||
2 ≫

|

|

|

|

ℏ
𝜕𝑝𝑥
𝜕𝑥

|

|

|

|

. (66)
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Eq. (66) suggests that when 𝑝𝑥 ≈ 0 the WKB method fails. I
need a connection formula between the regions where 𝑝2𝑥 ≠
0.

I assume that when Eq. (66) fails

𝑚𝑐 ≫ |

|

𝑝𝑥|| , (67)

so that I may treat the connecting region with the 𝑐 = ∞
non-relativistic limit of the FW Eq. (18). The wavefunction
in the connecting region is then given by the Airy function
solutions to the Schrödinger equation. This approach leads
to the two connected solutions for Ψ̃ between the classical
and non-classical regions:

Classical region 𝐩𝟐 > 𝟎 and 𝐱 < 𝐱𝟏

𝐴1

exp
(

+ 𝑖
ℏ
∫ 𝑥
𝑥1
|𝑝| 𝑑𝑥′

)

√

|𝑝|
+𝐵1

exp
(

− 𝑖
ℏ
∫ 𝑥
𝑥1
|𝑝| 𝑑𝑥′

)

√

|𝑝|
, (68)

Non-classical region 𝐩𝟐 < 𝟎 and 𝐱 > 𝐱𝟏

𝐴2

exp
(

−1
ℏ
∫ 𝑥
𝑥1
|𝑝| 𝑑𝑥′

)

√

|𝑝|
+𝐵2

exp
(

+1
ℏ
∫ 𝑥
𝑥1
|𝑝| 𝑑𝑥′

)

√

|𝑝|
, (69)

where

2𝐴2 = −𝑖
(

𝐴1 + 𝑖𝐵1
)

exp
(

+ 𝑖𝜋∕4
)

(70)

and

𝐵2 = +𝑖
(

𝐴1 − 𝑖𝐵1
)

exp
(

− 𝑖𝜋∕4
)

. (71)

In Eq. (68) and Eq. (69) I have used the asymptotic forms of
the Airy functions and taken 𝑝 = 0 to be at 𝑥1.

The wavefunctions Eq. (68) and Eq. (69) are in the WKB
form derived for relativistic fermions in Section 7 to Section
10, therefore the solutions in both regions can be extended
to relativistic energies.

12. Extension to periodic structures
Consider the periodic potential

𝑉 (𝑥) =
∑

𝐺
𝑉𝐺 exp

(

+ 𝑖𝐺𝑥
ℏ

)

. (72)

Eq. (72) is a Fourier expansion of the potential, where 𝐺 =
2𝜋𝑛∕𝑎 and 𝑛 is positive and negative integers. The wave-
function follows from Bloch’s theorem for periodic crystals

Ψ̃(±) = exp
(

+ 𝑖𝑘𝑥
ℏ

)

∑

𝑔
𝐴𝑔 exp

(

−
𝑖𝑔𝑥
ℏ

)

, (73)

where 𝑔 = 2𝜋𝑚∕𝑎 and 𝑚 is positive and negative integers.
Substituting Eq. (72) and Eq. (73) into
[

∓ −
(

𝐸 ± 𝑚𝑐2 + 𝑉
)]

Ψ̃(±) = 0 (74)

and multiplying through by exp (𝑖(𝐺′ − 𝑘)𝑥∕ℏ), where 𝐺′ =
2𝜋𝑛′∕𝑎, then integrating 𝑥 over one period 𝑎, I find that the
first, second, and third terms are only non-zero for 𝑔 = 𝐺′

while the fourth term is only non-zero for 𝑔−𝐺 = 𝐺′. There-
fore, with rearrangement

∑

𝑔

(

𝛿𝑔𝐺′𝑊𝑔 − 𝑉𝑔−𝐺′
)

𝐴𝑔 =
(

𝐸 ± 𝑚𝑐2
)

𝐴𝐺′ , (75)

where

𝑊𝑔 = −𝑐 (𝑘 − 𝑔) 𝛼(±)𝑘−𝑔 . (76)

The eigenvalue problem described by Eq. (75) can be
solved for varying 𝑘 to give the eigenvalues

(

𝐸 ± 𝑚𝑐2
)

. The
relationship between 𝑘 and 𝐸 defines the band structure.

For planar structures of period 𝐷 I have by Bloch’s the-
orem

Ψ̃ (𝑥 +𝐷) = exp
( 𝑖𝐾𝐷

ℏ

)

Ψ̃ (𝑥) , (77)

which in terms of transfer matrices can be written as

𝑀Ψ̃ = exp
( 𝑖𝐾𝐷

ℏ

)

Ψ̃ = 𝜆Ψ̃ ⟹ |𝑀 − 𝜆𝐼| = 0 , (78)

where

𝑀 =
(

𝑀11 𝑀12
𝑀21 𝑀22

)

. (79)

For fermions to propagate through the periodic structure, 𝐾
must be real. Consequently, by Eqs. (78)

−1 ≤ cos
(𝐾𝐷

ℏ

)

=
𝑀11 +𝑀22

2
≤ +1 . (80)

Band gaps arise in 1D periodic potentials if the condition in
Eq. (80) is not satisfied.

13. Calculation of transfer matrix parameters
13.1. Calculation of the angle of refraction

To match the Dirac spinors of Eq. (8) and Eq. (9) either
side of a potential step at 𝑥 = 0 it must be that

𝑝(𝑖)𝑦 |𝑥=0 = 𝑝(𝑡)𝑦 |𝑥=0 , (81)

therefore, since

�̂� = �̂�𝑝 cos𝜙 + �̂�𝑝 sin𝜙 , (82)

I arrive at Snell’s law for the relativistic fermion

sin𝜙(𝑖)

sin𝜙(𝑡)
=

𝑝(𝑡)

𝑝(𝑖)
. (83)

I do not analytically verify non-normal incident relativistic
tunneling and transmission in this article.
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13.2. Tunneling between layers of varying electron
mass

In free space by special relativity

𝐸2 = 𝑚2𝑐4
(

1 +
(𝑘
𝑐

)2)

, (84)

inside a layer by special relativity

(𝐸 + 𝑉 )2 = 𝑚∗2𝑐∗4
(

1 +
( 𝑞
𝑐∗

)2
)

, (85)

where𝑚∗ is the effective mass of the electron in the layer and
𝑐∗ is the corresponding effective speed of light. Comparing
Eq. (84) and Eq. (85), I find

𝑞2

𝑘2
=
( 𝑚𝑐
𝑚∗𝑐∗

)2
+ 𝑚𝑐2

𝑚∗𝑐∗2
2𝑔(𝑘∕𝑐)𝑉
𝑚∗𝑘2

+
( 𝑉
𝑚∗𝑐∗𝑘

)2
+

+

(

𝑚𝑐2 − 𝑚∗𝑐∗2
)(

𝑚𝑐2 + 𝑚∗𝑐∗2
)

(𝑚∗𝑐∗)2
1
𝑘2

. (86)

In the last term of Eq. (86) I used the difference of two squares
to improve numerical accuracy. When |𝑘| < 𝑐 the function
𝑔(𝑘∕𝑐) is given by the Taylor expansion

𝑔 (𝑘∕𝑐) =

√

1 +
(𝑘
𝑐

)2
= 1+

(𝑘∕𝑐)2

2
−
(𝑘∕𝑐)4

8
+ ... (87)

and when |𝑘| > 𝑐 the function 𝑔(𝑘∕𝑐) is given by the Taylor
expansion

𝑔 (𝑘∕𝑐) =
(𝑘
𝑐

)

(

1 +
(𝑐∕𝑘)2

2
−

(𝑐∕𝑘)4

8
+ ...

)

. (88)

Computationally, I add the smallest terms together first to
improve numerical accuracy. In terms of 𝑔(𝑘∕𝑐) and the 𝑥-
component of electron momentum 𝑚∗𝑞𝑥 I calculate the pa-
rameter 𝛼(±)𝑞 to be

𝛼(±)𝑞 = −
𝑚𝑐2𝑔 (𝑘∕𝑐) + 𝑉 ± 𝑚∗𝑐∗2

𝑐∗𝑚∗𝑞𝑥
. (89)

13.3. Tunneling into a layer where electron mass
vanishes

In free space the fermion momentum dispersion is given
by Eq. (84) whereas inside the layer electron mass has van-
ished and therefore

𝐸 + 𝑉 = 𝑞𝑐∗ , (90)

where 𝑞 is the fermion momentum in the layer, and 𝑐∗ is the
speed of light in the layer. Comparing Eq. (84) and Eq. (90),
I find

𝑞𝑐∗ = 𝑚𝑐2𝑔 (𝑘∕𝑐) + 𝑉 (91)

and

𝛼𝑞 = −
𝑞
𝑞𝑥

. (92)
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Figure 1: (Color online) (a) Transmission through the poten-
tial barrier Eq. (94) as a function of incident momentum 𝑝, for
fermions (red) and bosons (orange). (b) Convergence of the
fermion transmission with increasing number of relativistic cor-
rection Taylor expansion terms 0, 5, 10, 20, 40, 80 as labelled.

14. Results
This section is restricted to quantum tunneling. For the

structures I investigate in this section I introduce a length
scale 𝑎 given in terms of electron mass 𝑚, the speed of light
𝑐, and ℏ

𝑎 = 5 ℏ
𝑚𝑐

. (93)

In Appendix B I investigate reflection of electrons from a
sharp step in potential. In Appendix B I find exact analytic
agreement for 𝑅 between the FW and Dirac spinor represen-
tations.

The striking feature of all my results is that I see exact
analytic agreement between 𝑇 and 𝑅 calculated in the FW
and Dirac spinor representations for all momentum 𝑝, even
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Figure 2: (Color online) Repeat of Fig. 1, except that now
electron mass vanishes inside the barrier.

when |𝑝| > 𝑚𝑐. This finding is significant, as the Taylor
expansion of  diverges when |𝑝| > 𝑚𝑐. I think that conser-
vation of energy is restricting my evaluation of ⌢

 on Ψ̃(±) to
the particular values required to meet the physical boundary
conditions for the Dirac Hamiltonian.

I model a resonant-tunneling diode to compare my WKB
approximations of Section 9 and Section 10 as the final ex-
ample in this section.

For my numerical computations I use Python 3.8.

14.1. Tunneling through a barrier
The system under consideration is a potential barrier de-

scribed by

𝑉 (𝑥) = −
{

0 for |𝑥| > 𝑎 ,
3𝑚𝑐2 for |𝑥| < 𝑎 . (94)

Since 𝑉 is negative, the momentum of the electron inside the
barrier becomes imaginary when the following condition is

met:

−𝑚𝑐2 < 𝐸 + 𝑉 < +𝑚𝑐2 , (95)

then the electron is quantum tunneling.
The analytic transmission for Eq. (94) is derived in Ap-

pendix D as:

𝑇 (𝑘) = 4𝜅2

4𝜅2 +
(

1 − 𝜅2
)2 sin2

(

2𝑚𝑞𝑎
ℏ

) , (96)

where I take 𝜅 to be 𝜅𝑓 in the FW representation, and 𝜅𝑑 in
the Dirac spinor representation. For the derivation of Ap-
pendix D in the FW representation

𝜅(±)
𝑓 =

𝛼(±)𝑘

𝛼(±)𝑞

=
𝑞𝑥
𝑘𝑥

𝐸 ± 𝑚𝑐2

𝐸 ± 𝑚𝑐2 + 𝑉
. (97)

It was shown by the authors of Refs. [16, 17] by deriving 𝑇
in the Dirac spinor representation of quantum tunneling

𝜅(±)
𝑑 =

𝑞𝑥
𝑘𝑥

𝐸 ± 𝑚𝑐2

𝐸 ± 𝑚𝑐2 + 𝑉
, (98)

which is in exact analytic agreement with 𝜅(±)
𝑓 , as expected.

The numerical results demonstrating relativistic tunnel-
ing of electrons are shown in Fig. 1. For comparison I also
show the transmission of tunneling bosons with identical
mass to the electron.

Fig. 1(b) shows the absolute error calculated as the dif-
ference between 𝑇 evaluated using the Taylor expansions
𝑔(𝑘∕𝑐) in 𝜅 or the Python 3.8 𝑐𝑚𝑎𝑡ℎ module square root
function.

The region of slow convergence around |𝑘∕𝑐| = 1 in
Fig. 1(b) is an artifact of the point in 𝑔(𝑘∕𝑐) about which I
have taken my Taylor expansions.

14.2. Tunneling through a barrier with vanishing
electron mass inside the barrier

In this subsection I almost repeat the demonstration of
Section 14.1 except that now inside the barrier the electron
mass is strictly vanishing.

Since 𝑚 = 0 when |𝑥| < 𝑎, I must re-evaluate 𝜅𝑑 for
Eq. (96):

𝜅(±)
𝑑 =

𝑞𝑥
𝑝𝑥

𝐸 ± 𝑚𝑐2

𝐸 + 𝑉
, (99)

which is in exact analytic agreement with 𝜅(±)
𝑓 , as expected.

The numerical results demonstrating tunneling of rela-
tivistic electrons are shown in Fig. 2. For comparison I also
show the transmission of tunneling bosons with identical
mass to the electron.

In Fig. 2(b) the absolute error is calculated as the dif-
ference between 𝑇 evaluated using the Taylor expansions
𝑔(𝑘∕𝑐) in 𝜅 or the Python 3.8 𝑐𝑚𝑎𝑡ℎ module square root
function.

The region of slow convergence around |𝑘∕𝑐| = 1 in
Fig. 2(b) is an artifact of the point in 𝑔(𝑘∕𝑐) about which I
have taken my Taylor expansions.
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Figure 3: (color online) (a) Potential profile for a representa-
tion of a resonant-tunneling diode under a range of bias po-
tentials Δ𝑉 ∕𝑚𝑐2 0.00, 0.25, 0.50, 0.75, 1.00 as labelled. (b)
Transmission as a function of bias potential Δ𝑉 for a series of
left hand side electron incident energies 𝐸(𝑖)∕𝑚𝑐2 0.400, 0.425,
0.450, 0.475 as labelled, with Γ𝑖 taken to be ±𝛼(±)

𝑖 . (c) Dif-
ference in transmission, as a function of bias potential Δ𝑉 ,
between using ±𝛼(±)

𝑖 or 𝑝𝑖 for Γ𝑖.

14.3. Transmission through a resonant-tunneling
diode using the WKB approximation

I calculate the transmission through a resonant diode un-
der a range of bias potentials Δ𝑉 . I show a series of poten-
tials describing increasingΔ𝑉 in Fig. 3(a). The transmission
as a function of Δ𝑉 is given in Fig. 3(b) for a series of inci-
dent energies. I calculate transmission with the two different
WKB approximations, derived in Section 9 and Section 10,
for comparison in Fig. 3(c).

The resonant-tunneling diode that I consider includes a
planar cavity with a smoothly varying potential. For the
wavefunction to traverse the cavity the employment of WKB
transfer matrices developed in Section 9 and Section 10 are
required:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

exp
(

− 𝑖
ℏ
∫ 𝑥1
𝑥0

𝑝𝑑𝑥
)

√

Γ0∕Γ1

0

0
exp

(

+ 𝑖
ℏ
∫ 𝑥1
𝑥0

𝑝𝑑𝑥
)

√

Γ1∕Γ0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1

�̃�1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎0

�̃�0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(100)

Γ𝑖 is 𝑝𝑖 or ±𝛼(±)𝑖 depending on whether I use FW Eq. (16) or
Eq. (18) inside the cavity. The subscript 0 denotes evaluation
at 𝑥0 = −𝑎∕2 the left hand side of the smoothly varying
region for which the transfer matrix is applied, 1 is at 𝑥1 =
+𝑎∕2 the right hand side of the smoothly varying region. I
define 𝑎0, 𝑎1, �̃�0, and �̃�1 in the same way as Section 5.

Since I have established in Section 14.1 and Section 14.2
that the Taylor series for 𝑔(𝑘∕𝑐) gives convergence to the
square root function of the Python 3.8 𝑐𝑚𝑎𝑡ℎ module, I dis-
pense with the Taylor series and use the 𝑐𝑚𝑎𝑡ℎ square root
function to calculate the results in this subsection.

I see in Fig. 3(b) and (c) that as the energy of the inci-
dent electrons moves to higher values the first resonance of
the diode moves towards lower values of Δ𝑉 , as expected.
I observe in Fig. 3(b) negative transmission as expected ac-
cording to the Klein paradox [16, 18].

In Fig. 3(b) and (c) I see no qualitative difference be-
tween my two WKB approximations, showing that exponen-
tial decay is the dominant factor in the cavity for this exam-
ple.

15. Conclusion
In this work I have developed Dirac fermion transfer ma-

trix methods, for all energies, in the FW representations.
I have also developed WKB approximations, to all orders,
and discussed the validity of the approximations. I have in-
troduced connection formulae between regions of real and
imaginary fermion momentum.

I have demonstrated the applicability of my method to
2D periodic structures for band-gap engineering [1, 2, 3].

I have alerted the reader to the limits of my methods by
revealing a GF paradox that occurs when transforming be-
tween Dirac and FW representations. In spite of the paradox,
I have rigorously derived the 1D, 2D and 3D free space FW
GFs. I note that since the FW Eq. (18) is a linear differential
equation, the Dyson equations for the FW GFs are available
for all types of Born approximation.

I have verified my methods and derivations for massive
and effectively massless fermions of all momentum by an-
alytic comparison with the Dirac spinor representation of
fermion tunneling. I have shown that the FW representation
is an exact description of Dirac fermions and is not restricted
to semi-relativistic energies as first envisioned [11].
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A. Discussion of commutation
In this appendix I will provide a discussion of

 = −⌢
𝑐�̂�𝑥 = −𝑐�̂�𝑥

⌢
 . (101)

The operator  takes the form

 = 𝑚𝑐2
[

1
2

[

�̂�
𝑚𝑐

]2
− 1

8

[

�̂�
𝑚𝑐

]4
+ 1

16

[

�̂�
𝑚𝑐

]6
− ...

]

,

(102)

where

1
2

[

�̂�
𝑚𝑐

]2
= − ℏ2

2𝑚2𝑐2

[

𝑑2

𝑑𝑥2
+ 𝑑2

𝑑𝑦2

]

, (103)

1
8

[

�̂�
𝑚𝑐

]4
= ℏ4

8𝑚4𝑐4

[

𝑑4

𝑑𝑥4
+ 2 𝑑4

𝑑𝑦2𝑑𝑥2
+ 𝑑4

𝑑𝑦4

]

, (104)

and the series of polynomial differential operators continues
up to 𝑛𝑡ℎ order. It is clear that I can write

𝑑𝑛+𝑚

𝑑𝑥𝑛𝑑𝑦𝑚
= 𝑑

𝑑𝑥
𝑑𝑛+𝑚−1

𝑑𝑥𝑛−1𝑑𝑦𝑚
= 𝑑𝑛+𝑚−1

𝑑𝑥𝑛−1𝑑𝑦𝑚
𝑑
𝑑𝑥

. (105)

However, it is also the case that

𝑑𝑛

𝑑𝑦𝑛
𝑓 (𝑥, 𝑦) = 𝑑

𝑑𝑥
𝑑𝑥
𝑑𝑦

𝑑𝑛−1𝑓
𝑑𝑦𝑛−1

= 𝑑𝑛−1

𝑑𝑦𝑛−1
𝑑𝑥
𝑑𝑦

𝑑𝑓
𝑑𝑥

(106)

when every term in 𝑓 is a function of not just 𝑦 but also 𝑥.
I see from Eq. (105) and Eq. (106) that I can extract 𝑑∕𝑑𝑥
from either side of the operator , in these cases.

When 𝑓 (𝑥, 𝑦) = 𝑓 (𝑦), then in general

𝑑𝑛

𝑑𝑦𝑛
𝑓 (𝑦) ≠ 0 , (107)

but
𝑑
𝑑𝑥

𝑓 (𝑦) = 0 , (108)

therefore in general

0 ≠ 𝑑𝑛

𝑑𝑦𝑛
𝑓 (𝑦) ≠ 𝑑𝑛−1

𝑑𝑦𝑛−1
𝑑𝑥
𝑑𝑦

𝑑
𝑑𝑥

𝑓 (𝑦) = 0 . (109)

In the case described by Eq. (109) I cannot extract 𝑑∕𝑑𝑥
from either side of the operator 𝑑𝑛∕𝑑𝑦𝑛.

Eq. (101) is true when I assume that  acts on a function
of not just 𝑦 but also 𝑥.

B. Reflection at a step potential in
Foldy-Wouthuysen and Dirac spinor
representations for comparison
Consider a fermion incident on a step at 𝑥 = 0. The

wavefunction for 𝑥 < 0 is
(

𝐸 ± 𝑚𝑐2
−𝑐𝑝𝑥

)

exp
(

+
𝑖𝑝𝑥𝑥
ℏ

)

+𝐵
(

𝐸 ± 𝑚𝑐2
+𝑐𝑝𝑥

)

exp
(

−
𝑖𝑝𝑥𝑥
ℏ

)

,

(110)

and for 𝑥 > 0

𝐹
(

𝐸 + 𝑉 ± 𝑚𝑐∗2
−𝑐∗𝑞𝑥

)

exp
(

+
𝑖𝑞𝑥𝑥
ℏ

)

. (111)

Using wavefunction continuity at 𝑥 = 0, I find:
(

1 − 𝐵
)

𝑐𝑝𝑥 = 𝐹𝑐∗𝑞𝑥 , (112)

(

1 + 𝐵
)(

𝐸 ± 𝑚𝑐2
)

= 𝐹
(

𝐸 + 𝑉 ± 𝑚𝑐∗2
)

. (113)

Dividing Eq. (112) by Eq. (113) gives

1 − 𝐵
1 + 𝐵

=
𝑞𝑥𝑐∗

𝑝𝑥𝑐
𝐸 ± 𝑚𝑐2

𝐸 + 𝑉 ± 𝑚𝑐∗2
= 𝜅(±)

𝑑 . (114)

Now I turn to the FW representation. The corresponding
wavefunction for 𝑥 < 0 is

exp
(

+
𝑖𝑝𝑥𝑥
ℏ

)

+ 𝐵 exp
(

−
𝑖𝑝𝑥𝑥
ℏ

)

, (115)

and for 𝑥 > 0

𝐹 exp
(

+
𝑖𝑞𝑥𝑥
ℏ

)

. (116)

Applying my boundary condition at 𝑥 = 0, continuity of
wavefunction and continuity of wavefunction with respect
to ⌢

, I obtain
(

1 − 𝐵
)

𝛼(±)0 = 𝐹𝛼(±)1 , (117)

1 + 𝐵 = 𝐹 . (118)

M. B. Doost: Preprint submitted to Elsevier Page 10 of 14

https://gofund.me/34294631


Foldy-Wouthuysen Green’s function and WKB method for Dirac tunneling

Dividing Eq. (117) by Eq. (118) gives

1 − 𝐵
1 + 𝐵

=
𝛼(±)1

𝛼(±)0

=
𝑝𝑥𝑐
𝑞𝑥𝑐∗

𝐸 + 𝑉 ± 𝑚𝑐∗2

𝐸 ± 𝑚𝑐2
= 𝜅(±)

𝑓 . (119)

In Section 3 I derived 𝑅 = |𝐵|2, therefore

𝑅 =
|

|

|

|

1 − 𝜅
1 + 𝜅

|

|

|

|

2
, (120)

where I use 𝜅(±)
𝑑 for the Dirac equation and 𝜅(±)

𝑓 for the FW
equation. Substituting either 𝜅(±)

𝑓 or 𝜅(±)
𝑑 into Eq. (120) gives

analytically identical 𝑇 and 𝑅 between the Dirac and FW
representation, as expected. I also calculated 𝜅(±)

𝑑 in the case
of 𝑚 vanishing for 𝑥 > 0 and found exact analytic agreement
in 𝑇 and 𝑅 between the Dirac and FW representations, as
expected.

I calculate, for useful comparison, the transmission of
bosons with the following Klein-Gordon result

𝜅𝑘𝑔 =
𝑞𝑥𝑐∗

𝑝𝑥𝑐
. (121)

C. Examination of a massless fermion
tunneling through a magnetic delta barrier
in the Foldy-Wouthuysen representation

Consider a massless fermion tunneling through a mag-
netic delta barrier 𝐵 = 𝐵0𝛿 (𝑥) �̂�, where 𝐵 = ∇ × 𝐴. The
barrier is described by 𝐴 = 0 except for 𝐴 = 𝐴𝑦�̂� ≠ 0 when
𝑥 > 0. The Dirac spinor wavefunction is a solution of

[𝑐𝛼 ⋅ (�̂� − 𝐴)] Ψ = 𝐸Ψ . (122)

Using the approach of Section 2, Eq. (122) can be trans-
formed to

[

∓𝑐
√

(�̂� − 𝐴)2
]

Ψ̃(±) = 𝐸Ψ̃(±) . (123)

Taylor expanding Eq. (123) around �̂� = 0 gives
[

∓ −
(

𝐸 ± 𝑐𝐴𝑦
)]

Ψ̃(±) = 0 , (124)

where  is the corresponding linear differential operator.
Using the approach of Section 4 I calculate, that at the bar-
rier, the wavefunction is continuous and also continuous with
respect to ⌢

, where I define

⌢
Ψ̃(±) = ±

𝐸 ± 𝑐𝐴𝑦

𝑐𝑝𝑥
Ψ̃(±) . (125)

I now return to the Dirac spinor representation. In the
region 𝐴 = 𝐴𝑦�̂� ≠ 0, the general solution for �̂� = ±𝑞𝑥�̂� is
given by [22, 23]

Ψ =
(

+𝐸
±𝑐𝑞𝑥 − 𝑖𝑐𝐴𝑦

)

exp
(

±
𝑖𝑞𝑥𝑥
ℏ

)

, (126)

where 𝑐𝑞𝑥 =
√

𝐸2 − 𝑐2𝐴2
𝑦. The reflection is calculated by

matching wavefunctions at the step in vector potential, sim-
ilar to Appendix C for a step in electrostatic potential.

Making use of my boundary conditions I find the reflec-
tion coefficient 𝑅 takes the form of Eq. (120), with

𝜅𝑑 = 𝑐∗

𝑐
𝑞𝑥 − 𝑖𝐴𝑦

𝑝𝑥
(127)

for the Dirac spinor representation and

𝜅𝑓 =
𝑐𝑝𝑥
𝑐∗𝑞𝑥

𝐸 ± 𝑐∗𝐴𝑦

𝐸
(128)

for the FW representation. �̂� = 𝑝𝑥�̂� = (𝐸∕𝑐)�̂� when 𝐴 = 0.
The conflict between Eq. (127) and Eq. (128) indicates

𝑅 calculated in the FW representation does not reproduce
𝑅 calculated in the Dirac spinor representation. This sug-
gests that FW wavefunctions are unsuitable for calculating
tunneling through magnetic barriers. However, this conflict
might be resolved by employing the form of the FW trans-
formation in Ref. [11] that derives the Pauli equation from
the Dirac equation in the non-relativistic limit.

D. Analytic Green’s functions in one
dimension

Consider
[

∓ −
(

𝑉 + 𝐸 ± 𝑚𝑐2
)]

𝐺(±) (𝑥, 𝑥′
)

= 𝛿
(

𝑥 − 𝑥′
)

. (129)

Let Ψ̃𝐿 and Ψ̃𝑅 be the solutions of Eq. (18) which separately
satisfy the boundary conditions at 𝑥 = −𝑎 and 𝑥 = +𝑎. The
GF of Eq. (129) for the case of a 1D barrier can be written
as

𝐺(±) (𝑥, 𝑥′
)

=
Ψ̃(±)
𝐿

(

𝑥<
)

Ψ̃(±)
𝑅

(

𝑥>
)

𝑊 (±)
, (130)

where 𝑥< = min (𝑥, 𝑥′) and 𝑥> = max (𝑥, 𝑥′) and

𝑊 (±) = ∓Ψ̃(±)
𝐿 𝑖𝑐ℏ⌢

Ψ̃(±)
𝑅 ± Ψ̃(±)

𝑅 𝑖𝑐ℏ⌢
Ψ̃(±)

𝐿 (131)

is the Wronskian, which does not depend on 𝑥.
To prove Eq. (130) and Eq. (131), note that by Eq. (129)

∓ lim
𝜖→0∫

𝑥′+𝜖

𝑥′−𝜖
𝐺(±) (𝑥, 𝑥′

)

𝑑𝑥 = 1 , (132)

which implies

∓𝑖𝑐ℏ⌢
𝐺(±) (𝑥+, 𝑥

′) ± 𝑖𝑐ℏ⌢
𝐺(±) (𝑥−, 𝑥

′) = 1 , (133)

then, applying ⌢
 to Eq. (130) written out explicitly

⌢
𝐺

(

𝑥, 𝑥′
)

= 1
𝑊

{ ⌢
Ψ̃𝐿

(

𝑥
)

Ψ̃𝑅
(

𝑥′
)

for 𝑥 < 𝑥′ ,
Ψ̃𝐿

(

𝑥′
)⌢
Ψ̃𝑅

(

𝑥
)

for 𝑥 > 𝑥′ ,
(134)
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and substituting into Eq. (133) gives Eq. (131).
I now calculate the GF for a rectangular barrier of width

2𝑎.

Ψ̃1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp
(

+ 𝑖𝑚𝑘𝑥
ℏ

)

𝑥 > +𝑎 ,

𝐶 exp
(

+
𝑖𝑚∗𝑞𝑥
ℏ

)

+𝐷 exp
(

−
𝑖𝑚∗𝑞𝑥
ℏ

)

|𝑥| < 𝑎 ,

𝐴 exp
(

+ 𝑖𝑚𝑘𝑥
ℏ

)

+ 𝐵 exp
(

− 𝑖𝑚𝑘𝑥
ℏ

)

𝑥 < −𝑎 .

(135)

Continuity of Ψ̃1(𝑥) and continuity of Ψ̃1(𝑥) with respect to
⌢
 gives

𝐶 =
𝛼𝑞 + 𝛼𝑘
2𝛼𝑞

exp
(

+ 𝑖𝑚𝑘𝑎
ℏ

)

exp
(

−
𝑖𝑚∗𝑞𝑎
ℏ

)

, (136)

𝐷 =
𝛼𝑞 − 𝛼𝑘
2𝛼𝑞

exp
(

+ 𝑖𝑚𝑘𝑎
ℏ

)

exp
(

+
𝑖𝑚∗𝑞𝑎
ℏ

)

. (137)

Ψ̃2 the left hand solution is given by Ψ̃2(+𝑥) = Ψ̃1(−𝑥).
Therefore I evaluate Eq. (130) to give 𝐺(+𝑎,−𝑎):

𝑖𝛼𝑞

𝑖𝑐ℏ
(

𝛼2𝑞 + 𝛼2𝑘
)

sin
(

2𝑚∗𝑞𝑎
ℏ

)

− 2𝑐ℏ𝛼𝑞𝛼𝑘 cos
(

2𝑚∗𝑞𝑎
ℏ

) .

(138)

In Eq. (138), the Wronskian is given by

𝑊 = 2𝑖𝑐ℏ𝛼𝑞
(

𝐶2 −𝐷2) . (139)

The transmission for a barrier embedded in a vacuum
is given as the ratio of 𝐺(+𝑎,−𝑎) and the free space GF
𝐺𝑓𝑠(+𝑎,−𝑎):

𝑇 (𝑘) = |2𝑐ℏ𝛼𝑘𝐺 (+𝑎,−𝑎) |2 =
|

|

|

|

𝐺 (+𝑎,−𝑎)
𝐺𝑓𝑠 (+𝑎,−𝑎)

|

|

|

|

2
. (140)

The free space GF can be written as
[

∓ −
(

𝐸 ± 𝑚𝑐2
)]

𝐺(±) (𝑥, 𝑥′
)

= 𝛿
(

𝑥 − 𝑥′
)

, (141)

therefore by symmetry, when 𝑥′ = 0,

𝐺(±)(𝑥, 0) = 𝐴(±)

⎧

⎪

⎨

⎪

⎩

exp
(

− 𝑖𝑚𝑘𝑥
ℏ

)

for 𝑥 < 0 ,

exp
(

+ 𝑖𝑚𝑘𝑥
ℏ

)

for 𝑥 > 0 .
(142)

Integrating Eq. (141) across
[

0−, 0+
]

gives

∓𝑖𝑐ℏ𝐴(±)⌢ exp
(

+
𝑖𝑚𝑘0+

ℏ

)

±𝑖𝑐ℏ𝐴(±)⌢ exp
(

−
𝑖𝑚𝑘0−

ℏ

)

= 1

(143)

and letting 0+ → 0 and 0− → 0, I find

𝐴(±) = 1
2𝑖𝑐ℏ𝛼(±)𝑘

. (144)

E. Green’s function paradox
I reveal a GF paradox occurring when transforming be-

tween the FW and Dirac representations.
Let

[𝐻 − (𝐸 + 𝑉 )]
(

𝑟, 𝑟′
)

= 𝛿
(

𝑟 − 𝑟′
)

1̂ , (145)

therefore

𝑒+𝑖𝑆 [𝐻 − (𝐸 + 𝑉 )] 𝑒−𝑖𝑆𝑒+𝑖𝑆
[


(

𝑟, 𝑟′
)]

𝑒−𝑖𝑆

= 𝑒+𝑖𝑆 1̂𝑒−𝑖𝑆𝛿
(

𝑟 − 𝑟′
)

. (146)

However since

𝑒+𝑖𝑆 1̂𝑒−𝑖𝑆𝛿
(

𝑟 − 𝑟′
)

= 1̂𝛿
(

𝑟 − 𝑟′
)

, (147)

and since I have already seen in Section 2

𝑒+𝑖𝑆 [𝐻 − (𝐸 + 𝑉 )] 𝑒−𝑖𝑆 =
[

∓ −
(

𝑉 + 𝐸 ± 𝑚𝑐2
)]

1̂ ,
(148)

I have

𝑒+𝑖𝑆
[


(

𝑟, 𝑟′
)]

𝑒−𝑖𝑆 = 𝐺(±) (𝑟, 𝑟′
)

1̂

⟹ 𝑒−𝑖𝑆𝐺(±) (𝑟, 𝑟′
)

𝑒+𝑖𝑆 = 
(

𝑟, 𝑟′
)

1̂ . (149)

Eqs. (149) imply that the valid GFs of the Dirac equation are
diagonal. Now consider the identity

[𝐻 − (𝐸 + 𝑉 )] [𝐻 + (𝐸 + 𝑉 )]𝐾
(

𝑟, 𝑟′
)

= 1̂𝛿
(

𝑟 − 𝑟′
)

,
(150)

so that

[𝐻 + (𝐸 + 𝑉 )]𝐾
(

𝑟, 𝑟′
)

= 
(

𝑟, 𝑟′
)

. (151)

Multiplying out the brackets in Eq. (150) I obtain

−𝑐2ℏ2
[

∇2 +
( 𝑝
ℏ

)2
]

𝐾
(

𝑟, 𝑟′
)

= 𝛿
(

𝑟 − 𝑟′
)

. (152)

I see from Eq. (152) that in 1D free space (𝑉 = 0):

𝑐2ℏ2𝐾
(

𝑥, 𝑥′
)

= −
ℏ exp

( 𝑖𝑝 |
|

𝑥 − 𝑥′|
|

ℏ

)

2𝑖𝑝
, (153)

in 2D free space:

𝑐2ℏ2𝐾
(

𝜌, 𝜌′
)

= 𝑖
4
𝐻 (1)

0

(𝑝 |
|

𝜌 − 𝜌′|
|

ℏ

)

, (154)

and in 3D free space:

𝑐2ℏ2𝐾
(

𝑟, 𝑟′
)

=
exp

( 𝑖𝑝 |
|

𝑟 − 𝑟′|
|

ℏ

)

4𝜋 |𝑟 − 𝑟′|
. (155)
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Substituting the identity Eq. (151) into Eq. (149)

𝑒+𝑖𝑆 [𝐻 + (𝐸 + 𝑉 )] 𝑒−𝑖𝑆𝐾
(

𝑟, 𝑟′
)

= 𝐺(±) (𝑟, 𝑟′
)

1̂ (156)

and so
[
√

�̂�2𝑐2 + 𝑚2𝑐4 + (𝐸 + 𝑉 )
]

𝐾
(

𝑟, 𝑟′
)

= 𝐺(±) (𝑟, 𝑟′
)

1̂ .

(157)

By inspection of Eq. (157) and the energy momentum rela-
tion (𝐸 + 𝑉 ) =

√

𝑝2𝑐2 + 𝑚2𝑐4,

𝐺(±) (𝑟, 𝑟′
)

= 2 (𝐸 + 𝑉 )𝐾
(

𝑟, 𝑟′
)

(158)

and substituting Eq. (158) into Eq. (149) I also have


(

𝑟, 𝑟′
)

= 2 (𝐸 + 𝑉 )𝐾
(

𝑟, 𝑟′
)

. (159)

Let us test Eq. (158) and Eq. (159) by making an analytic
comparison between the GF for 1D free space Eq. (142) and
the GF composed of Eq. (158) and Eq. (153):

2𝐸𝐾 = −𝐸
exp

( 𝑖𝑝 |
|

𝑥 − 𝑥′|
|

ℏ

)

𝑖ℏ𝑝𝑐2
≠

exp
( 𝑖𝑝 |

|

𝑥 − 𝑥′|
|

ℏ

)

2𝑖𝑐ℏ𝛼𝑘
(160)

and so I have an apparent paradox.
Let us attempt to resolve the paradox. I have shown in

Appendix D that there are two possible forms of the FW GF:

𝐺(±) (𝑥, 𝑥′
)

=
exp

( 𝑖𝑝 |
|

𝑥 − 𝑥′|
|

ℏ

)

2𝑖𝑐ℏ𝛼(±)𝑘

(161)

for an electron delta source (−) or a positron source (+). If I
add my two expressions 𝐺(±)(𝑥, 𝑥′) I find

𝐺(−) (𝑥, 𝑥′
)

+ 𝐺(+) (𝑥, 𝑥′
)

= 2𝐸𝐾
(

𝑥, 𝑥′
)

. (162)

However if I try to prove that in general


(

𝑟, 𝑟′
)

= 𝐺(−) (𝑟, 𝑟′
)

+ 𝐺(+) (𝑟, 𝑟′
)

, (163)

I arrive at a contradiction. The Klein-Gordon GF has the
continuity conditions of the Klein-Gordon equation, (𝐸+𝑉 )
can be a discontinuous function, therefore 2(𝐸+𝑉 )𝐾 can be
discontinuous at boundaries. Therefore Eq. (159) implies 
may be discontinuous.  has the same boundary conditions
as Ψ, Eq. (159) may violate the boundary conditions for .

Let us now discuss a possible cause of the paradox. To
evaluate the FW transformations defined to be

𝑒±𝑖𝑆 = cos 𝜃 ± 𝛽𝛼 ⋅
�̂�
|�̂�|

sin 𝜃 , (164)

I am required to know the momentum �̂� also at the delta
source. To make this calculation of �̂� at the delta source
consider Eq. (142) from Appendix D,

𝐺 (𝑥, 0) = 1
2𝑖𝑐ℏ𝛼𝑘

⎧

⎪

⎨

⎪

⎩

exp
(

− 𝑖𝑚𝑘𝑥
ℏ

)

for 𝑥 < 0 ,

exp
(

+ 𝑖𝑚𝑘𝑥
ℏ

)

for 𝑥 > 0 .
(165)

I see from Eq. (165) that

𝑝𝑥 (𝑥 = 0)𝐺 (𝑥, 0) = lim
0±→0

�̂�𝐺
(

0±, 0
)

= ±𝑚𝑘𝐺 (0, 0) .

(166)

Eq. (166) indicates that when 𝑥 = 𝑥′, the momentum �̂� is
undefined. Therefore at the delta source the FW transforma-
tion is undefined. For 1D space it might be impossible to
evaluate 𝑒±𝑖𝑆 at the delta source.

F. Correct free space Foldy-Wouthuysen
Green’s functions in two and three
dimensions
I begin with the 3D FW GF in free space

𝐺(±)
3D

(

𝑟, 𝑟′
)

= −
𝑝

𝑐ℏ2𝛼(±)𝑘

1
4𝜋 |𝑟 − 𝑟′|

𝑒𝑖𝑝|𝑟−𝑟
′
|∕ℏ , (167)

which at the end of this Appendix F, I will show to be con-
sistent with the proven 1D FW GF, Eq. (142) and Eq. (144).
Eq. (167) is the solution of

[

∓ −
(

𝐸 ± 𝑚𝑐2
)]

𝐺(±)
3D

(

𝑟, 𝑟′
)

= 𝛿3D
(

𝑟 − 𝑟′
)

. (168)

Eq. (167) can be thought of as an outgoing exponential plane
FW wavefunction spreading out over a sphere centered on
the source, as we move further from the source. In Eq. (167)
I make a choice of amplitude to obtain agreement with the
correct 1D FW GF.

To derive the 1D free space FW GF, I integrate Eq. (167)
in the plane (𝑦, 𝑧) and find

𝐺(±)
1D

(

𝑥, 𝑥′
)

= ∫

+∞

−∞ ∫

+∞

−∞
𝐺(±)
3D

(

𝑟, 𝑟′
)

𝑑𝑦𝑑𝑧 , (169)

where 𝑟 = (𝑥, 𝑦, 𝑧). Eq. (169) is a consequence of

𝛿1D
(

𝑥 − 𝑥′
)

= ∫

+∞

−∞ ∫

+∞

−∞
𝛿3D

(

𝑟 − 𝑟′
)

𝑑𝑦𝑑𝑧 . (170)

Let 𝜌 =
√

𝑦2 + 𝑧2 in the cylindrical coordinates (𝜌, 𝜃, 𝑥),
and write 𝜉 =

√

(𝑥 − 𝑥′)2 + 𝜌2, so that Eq. (169) becomes

𝐺(±)
1D

(

𝑥, 𝑥′
)

= −
𝑝

𝑐ℏ2𝛼(±)𝑘
∫

2𝜋

0 ∫

∞

0

1
4𝜋𝜉

𝑒𝑖𝑝𝜉∕ℏ𝜌𝑑𝜌𝑑𝜃 .

(171)

Integrating Eq. (171) with respect to 𝜃 and changing variable
to 𝜉 gives, using the chain rule

𝑑𝜉 =
𝜌

√

(𝑥 − 𝑥′)2 + 𝜌2
𝑑𝜌 =

𝜌
𝜉
𝑑𝜌 , (172)

noting in the integration limits that I have 𝜉 = |𝑥 − 𝑥′| as a
minimum when 𝜌 = 0:

𝐺(±)
1D

(

𝑥, 𝑥′
)

= −
𝑝

𝑐ℏ2𝛼(±)𝑘
∫

∞

|𝑥−𝑥′|

1
2
𝑒𝑖𝑝𝜉∕ℏ𝑑𝜉 . (173)
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Eq. (173) can be integrated while dropping the oscillating
upper integration limit at 𝜉 = ∞, assuming the contributions
at 𝜉 = ∞ cancel out leading to a zero net contribution,

∫

∞

|𝑥−𝑥′|

1
2
𝑒𝑖𝑝𝜉∕ℏ𝑑𝜉 =

[

ℏ
2𝑖𝑝

𝑒𝑖𝑝𝜉∕ℏ
]∞

|𝑥−𝑥′|
= − ℏ

2𝑖𝑝
𝑒𝑖𝑝|𝑥−𝑥

′
|∕ℏ .

(174)

Hence I arrive at the required result, Eq. (142) combined
with Eq. (144):

𝐺(±)
1D

(

𝑥, 𝑥′
)

=
𝑝

𝑐ℏ2𝛼(±)𝑘

ℏ
2𝑖𝑝

𝑒𝑖𝑝|𝑥−𝑥
′
|∕ℏ = 𝑒𝑖𝑝|𝑥−𝑥′|∕ℏ

2𝑖𝑐ℏ𝛼(±)𝑘

. (175)

The integration in Eq. (174) can be seen clearly when
I take 𝑝 to be complex with even only a vanishingly small
imaginary part so that the upper integration limit is an ex-
ponentially decaying function, rather than just an oscillating
function.

An interesting comparison can be made between the FW
GF Eqs. (167) and Eqs. (175) and their Klein-Gordon coun-
terparts, Eqs. (155) and Eqs. (153), which were derived in
Appendix E. The derivation in this Appendix F can be re-
peated, as a simple checking exercise, for Eqs. (155) and
Eqs. (153). These comparisons and derivations, repeated in
1D and 2D space, suggest that the 2D confined free space
FW GF is given by

𝐺(±)
2D

(

𝑟, 𝑟′
)

= −
𝑝

𝑐ℏ2𝛼(±)𝑘

𝑖
4
𝐻 (1)

0
(

𝑝 |
|

𝑟 − 𝑟′|
|

∕ℏ
)

. (176)

Eq. (167) and Eq. (176) can be simplified with

𝑝

𝑐ℏ2𝛼(±)𝑘

= −𝐸 ∓ 𝑚𝑐2

𝑐2ℏ2
. (177)

I note that since the FW Eq. (18) is a linear differential
equation, the Dyson equations for the FW GFs are available
for all types of Born approximation [12, 13]. There might be
cases where the decoupling of electron and positron states by
the FW approach could simplify or eliminate certain diver-
gences in the Dyson series, potentially addressing aspects of
the renormalization problem.
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