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 Гравитация и масса. Возможен ли процесс гравитации и образование масс в Евклидовом пространстве ?
 Рассматривается пространство с прямоугольной системой координат , где каждая точка может иметь вектор ,
характеризующий направление и количество материи в точно выбранный момент .
Пространство должно быть однородным и изотропным , а значит единым и неделимым .
 В пространстве присутствует материя M , единственной формой существования которой является её 
движение со скоростью V , то есть вектор импульса , который связывает произведением векторную скорость 
V и количество движущейся материи M .
 В любой , бесконечно малой точке пространства при столкновении импульсов VM1 и VM2 выход строго 
должен сохранять количество материи (M1+M2) , импульс (VM1 + VM2) , а значит и общую энергию, так как 
скорость только одна - V . Также должна сохраниться кинетическая энергия движения слагаемых 
относительно общего центра материи . Из этих ограничений получается неравномерное распределение 
выхода материи (M1+M2) из точки столкновения по сфере векторов скоростей радиусом V . Очевидным 
результатом таких столкновений является разбегание материи из ограниченной области пространства 
сферической волной со скоростью V , если отсутствует уравновешивающий встречный процесс .
 Опираясь на такие предположения, построим модель поведения волн в пространстве .
 
 Если в области пространства волнами перемещается материя, то назовём плотностью P отношение 
выбранной единичной длины L к среднему расстоянию Q , которое материя в среднем проходит между 
столкновениями . То есть P это линейная плотность волн выхода из столкновений материи вдоль некоторой 
оси .
 Теперь представим , что в области пространства вдоль оси X есть равномерный градиент плотности P :
  P = Po + (dP/dx)*X
 Проследим за движением выбранной в точке O материи, как будто окрасив её. Обозначим радиусом r -  
максимальное расстояние , которое волна могла достичь , двигаясь из центра O прямо со скоростью V за 
время t=(r/V) . Двигаясь во всех направлениях, волна сталкивается с другими волнами , перемешивая свою 
материю со встречными и из каждой точки столкновения снова начиная распространение во все стороны . 
Иначе говоря , движение каждой части материи точки O рассматриваем как броуновское движение . 
Столкновения волн будут происходить с частотой , пропорциональной плотности волн P в данной области . 
Скорость движения материи в любом направлении таким образом равна V/2 .
 Среднее расстояние между столкновениями Q будет изменяться в различных направлениях в линейной 
зависимости от изменения плотности . P = Po + (dP/dx)*cos(a)*r
 Волна от центра пойдет всеми возможными путями внутри области r , где каждый путь будет графом 
случайных блужданий с шагом Q , которые изменяются в разных направлениях .
 После каждого изменения направления каждый из бесконечного числа путей продолжает двигаться в таком 
же градиенте плотности P со скоростью V по тем же правилам .
 Для расчёта единичную длину обозначим L и единичный объём L^3 . Считаем плотность P равной 
отношению единичной длины L к Q между столкновениями: P=L/Q
 В статистике доказывается , что в пространстве объёмом L^3 с шагом между узлами Q , где есть (L/Q)^3 
перекрёстков , путь случайного блуждания в среднем пройдёт через (L/Q)^2 перекрёстков чтобы покинуть 
область L^3
 Похоже будут вести себя волны , условно создавая себе перекрёстки каждым столкновением и меняя 
направления в среднем через Q . Так же это можно представить как изменение средней площади всех 
фронтов всех волн в ограниченном объёме с изменением плотности P
 Время прохождения в среднем одного отрезка Q равно t1=(Q/V) и среднее время , за которое волна проходит
объём L^3 :
 tL= (L/Q)^2*t1=L^2/(Q*V)
Если для единичного объёма L^3 изменяется P плотность, то соответственно линейно изменяется и среднее 
время нахождения волны в этом объёме tL=P*L/V
 Распределение положения в пространстве от начала нашего отсчёта O произвольной части первоначальной 
волны будет соответствовать нормальному распределению . Но для вычисления влияния градиента 
плотности мы будем считать , что волна после каждого столкновения всё время распространяется со 
скоростью V по сфере в одинаковом поле градиента плотности по тем же правилам , как изначально . При 
движении в сторону увеличения плотности время прохождения одинаковых областей пространства L^3 будет 
возрастать , в сторону уменьшения – падать . Вокруг каждой новой точки выхода волны из столкновения 
изменения среднего времени tL в разных направлениях зависят от (dP/dx)*cos(a)*(r) также , как вокруг O. 
Обозначим в точке O плотность Po. В разных направлениях плотность P изменится в зависимости от 
пройденного расстояния и от угла к градиенту плотности: P = Po+(dP/dx)*cos(a)*r
В зависимости от расположения областей пространства O с плотностью (Po) и области Lr на удалении r от O 
с плотностью Po+(dP/dx)*cos(a)*r отношение времени нахождения в них будет следующим:
tL/tO = (Po+(dP/dx)*cos(a)*r)/Po
 Волна всё время t=r/V двигалась в одних условиях , расходясь со средней скоростью V/2 от O , пройдя при 
этом путь r, и достигла r/2 . Приращение плотности в точках сферы r : (dP/dx)*cos(a)*r/2 .
Время прохождения каждого единичного объёма на пути к r увеличивалось линейно от tO до tL и среднее 
приращение времени (tO – tL) для расчёта вероятности обнаружить путь волны в области L казалось бы 
должно быть уменьшено ещё вдвое , но расстояние r/2 проходится за время r/V через пути длиной r , что 
вдвое увеличивает время прохождения каждого приращения dr радиуса .
 Проинтегрируем по сфере r произведение координаты X * коэффициент вероятности tL/tO :
 



 S [ da* (2 pi*r^2*sin(a))/(4 pi*r^2) * (cos(a)*r/2) * (Po+(dP/dx)*cos(a)*r/2)/Po ] =
(r^2)*(dP/dx)/(Po*12) = H
 
 Получим H длину смещения средней координаты волны от начального центра отсчёта O за время её 
движения t=(r/V) в поле плотности волн Po в начале отсчёта смещения O и градиенте плотности (dP/dx) в 
данной области .
 Предположим теперь что начало распространения волны O находится на сфере радиусом R по которой 
плотность P одинакова , а градиент (dP/dx) направлен к центру сферы . Смещение центра распределения 
волны H зависит от r как мы установили и пропорционально (V*t)^2 .
 gH = 2*H/t^2 = 2*((dP/dx)/Po)*(V*t)^2/(12*t^2)
откуда получим ускорение материи , создаваемое градиентом плотности :
 gH = V^2*(dP/dx)/(6*Po)
также она испытывает центробежные ускорение смещаясь в сторону от луча радиуса:
 aR = -(V/2)^2/R = -V/(4*R)
и приравнивая ускорения получим: (dP/dx)=-3*Po/2R
решив дифференциальное уравнение, получаем
 P * R^1.5 = Const
 Если с удалением от центра на R в соответствии с таким соотношением изменяется P , то центробежное 
ускорение равно ускорению смещения градиентом плотности.
 У соотношения такой вид что плотность при уменьшении радиуса R должна устремляться к бесконечности ,  
но это на самом деле не так, потому что в центре статистические расчёты надо проводить иначе , не имея 
равномерного градиента плотности. Центр объема будет похож на вершину нормального распределения в 
трёх измерениях.
Плотность:  P = M / R^1.5 ; где M произвольная константа
Производная (dP/dr) = - 3*M / (2*R^2.5)
Ускорение   g = V^2*(dP/dr)/(6*P) = - V^2/(4*R)
 Если плотность поверхности сферы умножить на собственное ускорение (4*Pi*R^2) * P^2 * g
то получим:  Pi*V^2*M^2 / R^2
что хочется назвать притяжением собственной плотности по всей сфере к собственному центру.
 Оценим как могут взаимодействовать два одинаковых скопления плотности.
 Примем что на R = 1 их плотности P равны M . Соединим их отрезком и через центр отрезка построим 
нормальную плоскость. Это будет граница этих скоплений , потому что по ней градиент плотности в проекции 
на ось M-M будет равен нулю и не будет неуравновешенного перетекания материи- волн в какую-либо 
сторону. При этом плотности пересекаются накладываются и суммируются , образуя общее скопление 2M на 
большом удалении.
 Посчитаем, как одна M взаимодействует с полем другой M по плоскости разделения пространства на равные
поля плотности: в точке этой плоскости А:
плотность: PA = M/((r/2)/cos(a))^1.5 = M*cos(a)^1.5/(r/2)^1.5
ускорение: gA = V^2/(4*((r/2)/cos(a)) = V^2*cos(a)/(4*(r/2))
проинтегрируем по нормальной плоскости разделения - по углу a от 0 до Pi/2:
 S [ PA^2 *cos(a) * gA * dS ]
 S [ (M^2 *cos(a)^3 /(r/2)^3)*cos(a)* (V^2*cos(a)/(4*(r/2)))* (2 pi* (r/2)^2 * (sin(a)/(cos(a)) *d(a)/((cos(a)^2) ] = 2*Pi * 
V^2 * M^2 / 3 * r^2

 Значение интеграла  можно назвать силой взаимодействия .
 Сразу заметно как коэффициент линейной плотности M пытается казаться Ньютоновской массой. И не 
потому ли , что для смещения идеальной сферы расходящейся из одной точки волны достаточно влиять на 
плотность только в одном из трёх измерений ?
 Если назвать скопление плотности частицей , то она не имеет границ в пространстве.
 Видно, что гравитационное взаимодействие - это соприкосновение границ двух скоплений плотности волн по 
определённой поверхности в пространстве. Каждая частица по сути бесконечна и заполняет всё 
пространство.
 Но по поверхности соприкосновения с другой частицей их плотности и градиенты столь малы, а расстояния 
до центров так велики что гравитация на десятки порядков меньше , чем взаимодействия модулированных 
волн плотности, которые могут создаваться сложными волновыми процессами, движущимися циклично в 
ограниченном объёме . Такие волны плотности, имеющие несимметричный профиль , колеблющиеся между 
соседними волнами около своего среднего радиуса легко представить. Они не переносят плотность в 
среднем , если нет встречного взаимодействия и только от встречного поля симметрично развернут свой 
профиль при отталкивании либо дополнят друг друга  при притяжении , и способны передавать профиль 
плотности непосредственно до других частиц . Так будут работать более сильные, чем гравитация поля.


