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Abstract

The goal of this note is to study the spectrum of a self-adjoint convolution operator
in L2(Rd) with an integrable kernel that is perturbed by an essentially bounded real-
valued potential tending to zero at in�nity. We show that the essential spectrum of such
operator is the union of the spectrum of the convolution operator and of the essential
range of the potential. Then we provide several su�cient conditions for the existence
of a countable sequence of discrete eigenvalues. For operators having non-connected
essential spectrum we give su�cient conditions for the existence of discrete eigenvalues
in the corresponding spectral gaps.

1 Introduction

In this paper we study the spectrum of self-adjoint non-local convolution type operators
with a potential of the form

(Lu)(x) :=
∫
Rd

a(x− y)u(y) dy + V (x)u(x) in L2(R
d). (1.1)

Our goal is to determine the location of the essential spectrum of operator L and to provide
conditions on the functions a and V ensuring the existence of countably many points of the
discrete spectrum.

In our previous work [2] we studied a similar spectral problem under the assumption
that V is the Fourier image of some function V̂ ∈ L1(R

d). Here we drop this conditions
on the potential V and only assume that V is a L∞ function that tends to zero at in�nity.
For such a potential the essential spectrum of L is getting more complicated, in particular,
spectral gaps can appear. Our �rst result describes explicitly the essential component of the
spectrum.

Then we provide simple su�cient conditions guaranteeing the existence of in�nitely many
discrete eigenvalues below or above the essential spectrum. We stress that in [2] the condi-
tions ensuring such a structure of the discrete spectrum have been formulated in terms of
the behaviour of higher order Taylor or Fourier coe�cients of a(·) and V localized in the
vicinity of their extreme points. This imposed in particular quite restrictive regularity as-
sumptions on the functions a(·) and V . Moreover, these conditions are rather implicit, it is
di�cult to check if they hold true. In the present work su�cient conditions for the existence
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of in�nitely many points of the discrete spectrum are given in terms of agreed lower bounds
on V at in�nity and on the Fourier image of a(·) in the vicinity of its maximum point, no
regularity of these functions is required.

We also show that there can be additional eigenvalues in the spectral gaps and provide
su�cient conditions ensuring the existence of such eigenvalues.

In recent years, there has been an increasing interest of mathematicians in non-local
operators of convolutional type with an integrable kernel. Such interest is motivated by
the fact that such operators possess many interesting nontrivial properties, which are not
exhibited by classical di�erential operators. One more reason is the presence of non-trivial
qualitative and asymptotic problems in this theory, for instance, various non-local homog-
enization problems, local estimates for the fundamental solution and the Green function,
large time asymptotics of the fundamental solutions, spectral problems, etc.

In applications, non-local convolution type operators appear in such �elds as population
dynamics, porous media, image processing, see [1], [4] and [5] for further details. One of the
mathematical tools widely used in population dynamics is the so-called contact processes in
continuum, see e.g. [6], [11]. These processes are a particular case of continuous time birth
and death processes with in�nite particle con�gurations in continuum. The function a(·) is
called the dispersal kernel and it de�nes the distribution of a position of a newly born particle
in the con�guration. The mortality rate determines the intensity of death, in heterogeneous
environments it depends on a position in the space. This leads to the appearance of a non-
constant potential V (·). One way of describing the evolution of stochastic in�nite-particle
con�gurations in continuum is based on studying a hierarchical system of evolution equations
for the corresponding correlation functions. The equation for the �rst correlation function
is decoupled and it reads as

∂tu(x, t) = Lu(x, t) in Rd × (0,+∞), u(x, 0) = u0(x).

Since the �rst correlation function represents the density of population, the large time be-
haviour of the population is characterized by the spectrum of L. In particular, once the
operator L has points of discrete spectrum above the top of the essential spectrum, the pop-
ulation shows an exponential growth, see [7] and [8] for further discussion on this subject.

In some applications the description of various processes based on non-local convolution
type operators is more accurate than the description based on di�erential equations. The lat-
ter provides an approximation that is suitable for characterizing the macroscopic behaviour
of the studied models and for obtaining the large time asymptotics of the corresponding
evolution processes. This is in a good accordance with the recent rigorous homogenization
results for convolution type operators stating that, both in periodic and random stationary
media, the e�ective operator is a second order elliptic di�erential operator, see [3], [10].

Since under the di�usive scaling convolution operators approximate di�erential operators,
it is natural to compare the spectral properties of non-local operators (1.1) and those of
the classical Schr�odinger operators. It should be emphasized that, unlike the Schr�odinger
operator, the operator of multiplication by V in (1.1) is not relatively compact with respect
to the convolution operator. Therefore, the essential spectrum of L need not coincide with
the essential spectrum of the convolution operator. And this is indeed the case: we show
that the essential spectrum of L coincides with the union of the essential spectrum of the
multiplication by V and that of the convolution operator, see Theorem 1.

It is well-known that localized perturbations of classical di�erential operators can create
discrete eigenvalues below the essential spectrum. Since very �rst classical works [14], [15],
[16], [17], such phenomenon was discovered and studied for plenty of models in hundreds of
works and being not able to cite all of them, we just cite a recent book [18], in which a nice
survey of the current state-of-art was provided. We also mention that a perturbation of the
bottom of the essential spectrum for a di�erential operator can violate the preservation of
total multiplicity and there are many mechanisms for such phenomenon, see [19], [20], [21],
[22], [23], [24]. It is then known that, in the case of perturbation of di�erential operators, a
weakly decaying potential can create in�nitely many eigenvalues emerging from the bottom

2



of the essential spectrum, see for instance [12, Sect. XIII.3]. In dimension three an appropri-
ate decay of the perturbing potential for such phenomenon is |x|−2. In the non-local case
that we study the potential and the convolution operator are both bounded and equipollent
from this point of view. This is why in the considered case a much more wider class of local-
ized perturbation can produce discrete eigenvalues bifurcating from the essential spectrum
including the case of in�nitely many such eigenvalues. In the present work we focus on suf-
�cient conditions ensuring the existence of in�nitely many eigenvalues that are formulated
in terms of simple lower bounds for the potential V at in�nity and for the function â in the
vicinity of its maximum point, see Theorems 2-4 in Section 4. It is worth noting that in
the case of a non-negative a(·) being a probability density the conditions of existence of an
in�nite discrete spectrum of L can be formulated in terms of the asymptotic behaviour of
a(·) and V (·) at in�nity. Then, in Section 5, we provide simple su�cient conditions for the
presence of points of the discrete spectrum in spectral gaps.

2 Main assumptions

Now we formulate general conditions on functions V = V (x) and a = a(x). We assume that

a ∈ L1(R
d), a(−x) = a(x). (2.1)

Concerning V we suppose that

� V is a real-valued function,

� V is an element of L∞(Rd),

−∞ < Vmin := essinf
x∈Rd

V (x), esssup
x∈Rd

V (x) =: Vmax < +∞, (2.2)

� V (x) tends to zero as |x| → 0: for any δ > 0 there exists Nδ such that

esssup
|x|⩾Nδ

|V (x)| ⩽ δ. (2.3)

Due to (2.1) the Fourier image â of the function a is a continuous real-valued function with
â(λ) → 0, as |λ| → ∞, i.e. â ∈ C0(R

d).
Denote

amin := inf
Rd
â, amax := sup

Rd

â.

Then
amin ⩽ 0 ⩽ amax, Vmin ⩽ 0 ⩽ Vmax. (2.4)

In what follows we also use the notation µ0 = min{amin, Vmin} and µ1 = max{amax, Vmax}.

3 Essential spectrum

The spectrum of the operator of multiplication by V in L2(Rd) coincides with its essential
spectrum and is equal to the essential range of V . We denote the essential range of V by
SV . The following theorem describe the essential spectrum of the operator L.

Theorem 1. Under the above formulated conditions on the functions a and V the essential
spectrum of the operator L is the union

σess(L) = [amin, amax] ∪ SV .

The discrete spectrum of L can be located only in the set

[amin + Vmin, amax + Vmax] \
(
[amin, amax] ∪ SV

)
.

It can accumulate only to the boundary of
(
[amin, amax] ∪ SV

)
.
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Proof. First we show that [amin, amax] ⊂ σess(L), Assume that λ ∈ (amin, amax). Since
â is continuous, there exists ξ0 such that â(ξ0) = λ. Consider the sequence of functions

φ̂n(ξ) =
(
n
2

) d
2 1ξ0+[− 1

n , 1
n ]d , n = 1, 2, . . . Observe that ∥φn∥L2(Rd) = 1.

Denote by F the Fourier transform in Rd, and let φn = F−1φ̂n. Then, after direct

computation, we have φn = e−iξ0·x
(
n
2

) d
2
∏d

j=1
2
xj

sin(
xj

n ). Observe that |φn| ⩽
(
2
n

) d
2 . Due

to (2.2) and (2.3),

∥V φn∥2L2(Rd) =∥V φn∥2
L2([−n

1
2 ,n

1
2 ]d)

+ ∥V φn∥2
L2(Rd\[−n

1
2 ,n

1
2 ]d)

⩽4d∥V ∥2L∞(Rd)n
− d

2 + esssup
x∈Rd\[−n

1
2 ,n

1
2 ]d

|V (x)|2 ∥φn∥L2(Rd) → 0 as n→ ∞.

We also have

∥a ∗ φn − λφn∥2L2(Rd) = ∥(â− λ)φ̂n∥2L2(Rd) → 0, as n→ ∞.

Combining the last two limit relations yields

∥(L − λ)φn∥L2(Rd) → 0 as n→ ∞.

Since the family {φn}∞n=1 is not compact, this relation implies that λ ∈ σess(L).
Assume now that λ ∈ SV . Then |V −1(λ − 1

n , λ + 1
n )| > 0 for any n > 0, here and later

on for a set S ⊂ Rd we denote by |S| its Lebesgue measure. Consider a Lebesgue point x0
of V such that x0 ∈ V −1(λ − 1

n , λ + 1
n ). By the de�nition of a Lebesgue point there exists

δn > 0 such that ∫
Kδn (x0)

|V (x)− V (x0)| dx <
1

n
|Kδn(x0)|,

here the symbol Kδ(x) stands for the cube x+ [−δ, δ]d. We choose δn ⩽ 1
n and let

ϕn = (|Kδn(x0)|−
1
2 )1Kδn (x0), n = 2, 3, . . .

Then ∥ϕn∥L2(Rd) = 1 and

∥(V − λ)ϕn∥2L2(Rd) ⩽
2

|Kδn(x0)|

∫
Kδn(x0)

|V (x)− V (x0)|2 dx

+
2

|Kδn(x0)|

∫
Kδn(x0)

|V (x0)− λ|2 dx

⩽
4∥V ∥L∞(Rd)

|Kδn(x0)|

∫
Kδn(x0)

|V (x)− V (x0)| dx+
2

n2

⩽
1

n

(
4∥V ∥L∞(Rd) + 2

)
.

(3.1)

One can easily calculate the Fourier transform of ϕn:

ϕ̂n(ξ) = eiξ·x0(2δn)
− d

2

d∏
j=1

2

ξj
sin(δnξj).

From this formula we deduce that |ϕ̂n(ξ)| ⩽ (2δn)
d
2 . Since ∥ϕ̂n∥L2(Rd) = 1, the L2 norm of

the convolution a ∗ ϕn can be estimates as follows:

∥a ∗ ϕn∥2L2(Rd) = ∥âϕ̂n∥2L2(Rd) =

∫
K

δ
− 1

2
n

(0)

|â|2(ξ)|ϕ̂n|2(ξ)dξ +
∫

Rd\K
δ
− 1

2
n

(0)

|â|2(ξ)|ϕ̂n|2(ξ)dξ
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⩽ ∥â∥2L∞(Rd)4
dδ

d
2
n + max

ξ∈Rd\K
δ
− 1

2
n

(0)
|â(ξ)| −→ 0 as n→ ∞.

Combining this inequality with (3.1) we conclude that ∥(L − λ)ϕn∥L2(Rd) → 0. Since by
construction the family {ϕn}∞n=1 is not compact, this implies that λ ∈ σess(L). Therefore,
[amin, amax] ∪ SV ⊂ σess(L)

The opposite inclusion σess(L) ⊂ [amin, amax] ∪ SV can be justi�ed in exactly the same
way as in the proof of Theorem 2.1 in [2]. This completes the proof of the �rst statement of
the theorem.

Since the quadratic form (Lu, u) satis�es an evident estimate(
amin + Vmin

)
∥u∥2L2(Rd) ⩽ (Lu, u) ⩽

(
amax + Vmax

)
∥u∥2L2(Rd),

the spectrum of L is situated in the interval [amin +Vmin, amax +Vmax], and, due to the �rst
statement of the theorem, the discrete spectrum, if exists, occupies the segments [amin +
Vmin, µ0) and (µ1, amax + Vmax]. An accumulation point of the discrete spectrum of L is an
element of the essential spectrum of L. Therefore, this point must coincide either with µ0

or with µ1.

4 Discrete spectrum

We turn now to the discrete spectrum of L and consider its behaviour in the segment
(µ1, amax + Vmax]. In order to study the discrete spectrum in the segment [amin + Vmin, µ0)
it su�ces the exchange L to −L. It is clear that the necessary condition for the existence
of a discrete spectrum in (µ1, amax + Vmax] is the validity of the following inequality:

amax + Vmax > max{amax, Vmax}.

This inequality together with (2.4) imply that amax > 0 and Vmax > 0.
We consider further the case µ1 = amax > 0 and 0 < Vmax ⩽ amax, and assume without

loss of the generality that amax = â(0).

Theorem 2. Let µ1 = amax > 0, 0 < Vmax ⩽ amax, and assume that amax = â(0) and the
following two conditions hold:
1) there exist constants α > 0, ϑ > 0 and c > 0 such that

â(ξ) ⩾ amax − c|ξ|α for all |ξ| ⩽ ϑ; (4.1)

2) there exist constants γ > 0, q > 0 and C > 0 such that

V (x) ⩾ C|x|−γ for all |x| ⩾ q. (4.2)

If α > γ, then the operator L has in�nitely many eigenvalues in (µ1, amax + Vmax] with the
accumulation point µ1.

The conditions in (4.1)�(4.2) can be essentially relaxed, instead of point-wise estimates
it is su�cient to assume that weaker estimates in integral form are valid. Denote

⟨V ⟩(R) := 1

meas(GR)

∫
GR

V (x) dx, GR := {x ∈ Rd : R ⩽ |x| ⩽ 2R},

⟨â⟩(r) := 1

meas(Gr)

∫
Gr

â(ξ)dξ,

The following statement holds.
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Theorem 3. Assume that µ1 = amax > 0, 0 < Vmax ⩽ amax, and amax = â(0). Assume,
moreover, that the following two conditions hold:
1) there exist constants α > 0, ϑ > 0 and c > 0 such that

⟨â⟩(r) ⩾ amax − crα for all r ⩽ ϑ; (4.3)

2) there exist constants γ > 0, q > 0 and C > 0 such that

⟨V ⟩(R) ⩾ CR−γ for all R ⩾ q. (4.4)

If α > γ, then the operator L has in�nitely many eigenvalues in (µ1, amax + Vmax], with the
accumulation point µ1.

Clearly, the statement of Theorem 2 follows from that of Theorem 3. Therefore, it su�ces
to prove Theorem 3.

Proof of Theorem 3. Our goal is to construct a countable family of functions such that the
quadratic form of the operator L−µ1 is positive de�nite on the linear span of these functions.

Let ψ ∈ C∞
0 (Rd) be an in�nitely di�erentiable radially symmetric real positive function

such that

� suppψ ⊂ { 1
2 < |x| < 5

2},

� ψ(x) ≡ h = const for x ∈ {1 < |x| < 2},

� 0 ⩽ ψ(x) ⩽ h for all x ∈ Rd,

� ∥ψ∥L2(Rd) = 1.

Observe that in this case the Fourier transform of ψ is also radially symmetric and real. For
an arbitrary R > 0 denote ψR(x) = R−d/2ψ

(
x
R

)
. Then

suppψR ⊂
{
1

2
R < |x| < 5

2
R

}
and ∥ψR∥L2(Rd) = 1.

For the Fourier transform ψ̂(ξ) of the function ψ(x) we have ψ̂R(ξ) = Rd/2ψ̂(Rξ).
The quadratic form of the operator L − µ1 reads(

(L − µ1)ψR, ψR

)
=
(
(â− amax)ψ̂R, ψ̂R

)
+
(
V ψR, ψR

)
. (4.5)

Taking su�ciently large R we estimate separately each term on the right-hand side of (4.5).
It follows from condition 2) of the theorem that

(
V ψR, ψR

)
⩾

∫
R⩽|x|⩽2R

R−dψ2
( x
R

)
V (x) dx = R−dh2

∫
R⩽|x|⩽2R

V (x) dx

⩾h2meas(G1)⟨V ⟩(R) ⩾ Ch2meas(G1)R
−γ .

(4.6)

Let us estimate the �rst term on the right-hand side of (4.5). Since ψ ∈ C∞
0 (Rd), then ψ̂(ξ)

is a function of the Schwarz class. Therefore,

ψ̂(ξ) |ξ|k → 0, |ξ| → ∞ ∀k = 1, 2, . . . .

Consequently,
max

r<|ξ|<2r
|ψ̂(ξ)|2(1 + r)d+α+1 ⩽ C for all r > 0.
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By this relation, Condition 1) of the theorem and the boundedness of â(·), we obtain

Rd

∫
|ξ|⩽ϑ

|ψ̂(Rξ)|2
(
â(ξ)− amax

)
dξ =Rd

∞∑
j=1

∫
G2−jϑ

|ψ̂(Rξ)|2
(
â(ξ)− amax

)
dξ

⩾Rd
∞∑
j=1

max
G(2−jϑR)

|ψ̂(ξ)|2
∫

G2−jϑ

(
â(ξ)− amax

)
dξ

⩾−Rd
∞∑
j=1

C1meas(G(2−jϑ)) (2
−jϑ)α

(1 + 2−jϑR)d+α+1

=−R−α
∞∑
j=1

C2(2
−jϑR)d+α

(1 + 2−jϑR)d+α+1

=−R−α
( j0∑

j=1

C2(2
−jϑR)d+α

(1 + 2−jϑR)d+α+1

+
∞∑

j=j0+1

C2(2
−jϑR)d+α

(1 + 2−jϑR)d+α+1

)

⩾−R−α
( j0∑

j=1

C2

2−jϑR
+

∞∑
j=j0+1

C2(2
−jϑR)d+α

)
⩾− C3R

−α,

(4.7)

where j0 ∈ N is such that 1 ⩽ 2−j0ϑR < 2. Since ψ̂(·) is a Schwarz class function, for R > 1
the integral over the set {|ξ| > ϑ} can be estimated as follows:

Rd

∫
|ξ|>ϑ

|ψ̂(Rξ)|2
(
â(ξ)− amax

)
dξ ⩾− 2∥â∥L∞(Rd)

∫
|ξ|>ϑR

|ψ̂(ξ)|2dξ

⩾− c4(ϑR)
−2α.

(4.8)

Combining (4.7) and (4.8) yields(
(â− amax)ψ̂R, ψ̂R

)
=Rd

∫
Rd

|ψ̂(Rξ)|2
(
â(ξ)− amax

)
dξ

=Rd

∫
|ξ|⩽ϑ

|ψ̂(Rξ)|2
(
â(ξ)− amax

)
dξ

+Rd

∫
|ξ|>ϑ

|ψ̂(Rξ)|2
(
â(ξ)− amax

)
dξ

⩾− C3R
−α − c4(ϑR)

−2α > −C5R
−α

(4.9)

for R > 1. Thus, for γ < α it follows from (4.5) - (4.9) that there exist R0 > 0 and c2 > 0
such that (

(L − µ1)ψR, ψR

)
⩾

1

2
Ch2meas(G1)R

−γ ,

if R ⩾ R0.
Next we should prove that quadratic form (4.5) is positive de�nite on the linear span of

a countable set of the functions of the form ψR. Let us �rst assume that a(z) has a �nite
support. Taking φn = ψ22n−1R, n = 1, 2, . . . , where R > 1 is large enough, we conclude that(

(L − µ1)φn, φn

)
> 0 for all n = 1, 2, . . . .
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Moreover, (
(L − µ1)φn, φm

)
= 0 if n ̸= m,

since the supports of the functions
∫
Rd

a(x− y)φn(y)dy and φm do not intersect for large R.

Consequently, the quadratic form of the operator (L − µ1) is positive de�nite on the linear
span of {φn}, and thus the operator L has in�nitely many eigenvalues to the right of the
edge µ1.

If supp a(·) is not compact, then we take

φn = ψ2MnR,

the constant M > 2 will be speci�ed later on. Since the supports of functions φn and φm

do not intersect for n ̸= m, the same arguments as those used in estimate (4.9) yield for
n < m the following bound

|
(
(L − µ1)φn, φm

)
| =
∣∣((â− amax)φ̂n, φ̂m

)∣∣
=
(
2MnR

)d/2 (
2MmR

)d/2 ∣∣∣∣∣∣
∫
Rd

(amax − â(ξ)) ψ̂(2MnRξ)ψ̂(2MmRξ) dξ

∣∣∣∣∣∣
⩽

((
2MnR

)d∫
Rd

(amax − â(ξ)) |ψ̂(2MnRξ)|2dξ
)1

2

·
((

2MmR
)d∫

Rd

(amax − â(ξ)) |ψ̂(2MmRξ)|2dξ
) 1

2

⩽C5

(
2MnR

)−α
2
(
2MmR

)−α
2

=C5

(
2MnR

)− γ
2
(
2MmR

)− γ
2
[(
2MnR

) γ−α
2
(
2MmR

) γ−α
2
]

It remains to choose su�ciently large M so that for all R ⩾ R0 it holds

C5

(
2MnR

) γ−α
2
(
2MmR

) γ−α
2 < 4−(n+m) 1

2
Ch2meas(G1), m, n = 1, 2, . . .

Then
|
(
(L − µ1)φn, φm

)
| < 4−(m+n)

(
(L − µ1)φm, φm

) 1
2
(
(L − µ1)φn, φn

) 1
2 ,

and the desired positive de�niteness of the quadratic form
(
(L−µ1)ψ,ψ

)
on the linear span

of functions {φn}∞n=1 follows.

In the models of population dynamics the function a is a probability density while the
potential V satis�es the inequalities 0 ⩽ V ⩽ 1, see [7]. If a(z) = a(|z|) ⩾ 0 is a probability
density, then amax = â(0) = 1. Assume that either

m =

∫
Rd

|z|2 a(z) dz <∞, (4.10)

or
a(z) ∼ c1

|z|α+d
as |z| → ∞, with 0 < α < 2. (4.11)

Then (4.10) together with estimate sin2 x ⩽ x2 yield that

1− â(ξ) =

∫
Rd

a(z)(1− cos zξ) dz = 2

∫
Rd

a(z) sin2
zξ

2
dz ⩽

m

2
ξ2,

and hence
â(ξ) ⩾ 1− m

2
ξ2.
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The relation (4.11) implies that

â(ξ) = 1− c|ξ|α + o(|ξ|α), as |ξ| → 0,

see e.g. [9].

Corollary. Suppose that 0 < Vmax ⩽ 1 and probability density a(z) satis�es one of condi-
tions (4.10), (4.11). Then by Theorem 2, the operator L has in�nitely many eigenvalues in
(1, 1 + Vmax], if

lim inf
|x|→∞

V (x)

|x|−γ
> 0

for some 0 < γ < 2 in the case (4.10) and for 0 < γ < α in the case (4.11).

Thus, for the probability distribution with the density a(z) the existence of an in�nite
discrete spectrum of the operator L is determined by the asymptotic behaviour of the tails
of the functions a(·) and V (·) at in�nity. In particular, this statement complements the
results on the existence of a positive discrete spectrum of the so-called non-local Schr�odinger
operators presented in [7, 8].

The case amax = â(ξ0) with ξ0 ̸= 0 can be treated in a similar way. We introduce a test
function ψ as in the proof of Theorem 2 and de�ne ψR(·) by

ψR(x) = R−d/2 eixξ0 ψ
( x
R

)
.

Then ψ̂R(ξ) = Rd/2 ψ̂(R(ξ − ξ0)).

Remark. With evident modi�cations in the proof, condition (4.4) in the formulation of
Theorem 3 can be replaced with a weaker one that reads

lim sup
R→∞

⟨V ⟩(R)
R−γ

> 0.

Indeed, in this case there exists θ > 0 and a sequence Rj → ∞ as j → ∞ such that
⟨V ⟩(R) ⩾ θR−γ

j . Then one can take ψn(x) = ψ(MRznξ) with zn that satisfy the following
conditions:

zn+1 > zn + 1 and ⟨V ⟩(MRzn) ⩾ θ(MRzn)
−γ .

In the case of potentials having heavy tails we introduce an additional characteristic of
the kernel a:

ℓâ(r) =

∫
Rd

(amax − â(rξ))e−ξ2dξ. (4.12)

Theorem 4. Let ⟨V ⟩(R) admit the lower bound ⟨V ⟩(R) ⩾ R− d
4 for all su�ciently large R,

and assume that µ1 = amax > 0, amax = â(0) and

ℓâ(R
−1)

⟨V ⟩(R)
→ 0 as R→ ∞. (4.13)

Then the operator L has in�nitely many eigenvalues in (µ1, amax + Vmax], with the accumu-
lation point µ1.

Proof. We consider a sequence of Gaussian test functions φRj
(x) = R

− d
2

j e
− x2

R2
j , where the

scaling factors Rj > 0, j = 1, 2, . . . will be chosen later on. Observe that∫
Rd

V (x)(φR(x))
2 dx =

∫
Rd

V (x)R−de−
2x2

R2 dx ⩾ C1 ⟨V ⟩(R), (4.14)
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where the constant C− > 0 does not depend on R. Since V (·) is bounded, for any integer
j > 1 we also have∫

Rd

V (x)(φR(x))φRj (x) dx ⩽ C

∫
Rd

φR(x)φRj (x) dx ⩽ CR− d(j−1)
2 ; (4.15)

hereinafter C is a positive constant independent of R, but it can change its value from one
formula to another. Denote

θkj :=

∫
Rd

V (x)φRk
(x)φRj (x) dx.

Letting Rj+1 = R4
j , j=1,2,. . . , by (4.14)-(4.15) and taking into account the lower bound

⟨V ⟩(R) ⩾ R− d
4 , for k > j we obtain

(θkj)
2 ⩽ CR

−(22(k−j)−1)d
j ⩽ R

− d
4

j R
− d

4

k R
− d

4 2
2(k−j)

j ⩽ CR
− d

4 2
2(k−j)

j θjjθkk.

Choosing su�ciently large R1 we conclude that for any function φ ∈ L2(Rd) such that

φ =
N∑
j=1

κjφRj
the following inequality holds:

∫
Rd

V (x)φ2(x) dx ⩾
1

2

N∑
j=1

κ2j

∫
Rd

V (x)(φRj (x))
2 dx ⩾

C−

2

N∑
j=1

κ2j ⟨V ⟩(Rj). (4.16)

Since the Fourier transform of φRj
is φ̂Rj

(ξ) = cdR
d
2
j e

−R2
jξ

2

with cd = (2π)−
d
2 , the quantities(

(amax − â)φ̂Rj , φ̂Rj

)
L2(Rd)

and
(
(amax − â)φ̂Rj , φ̂Rk

)
L2(Rd)

with k > j can be estimated as

follows:

c2d

∫
Rd

(amax − â(ξ))Rd
j e

−2R2
jξ

2

dξ = c2d

∫
Rd

(
amax − â

(
ξ

Rj

))
e−2ξ2dξ ⩽ c2dℓa(R

−1
j ),

c2d

∫
Rd

(amax − â(ξ))R
d
2
j R

d
2

k e
−R2

jξ
2

e−R2
kξ

2

dξ = c2d

(Rj

Rk

) d
2

∫
Rd

(
amax − â

(
ξ

Rk

))
e−ξ2e

−
R2

j ξ2

R2
k dξ

⩽ c2dR
−(22(k−j)−1) d

2
j ℓa(R

−1
k ).

In view of (4.13) for su�ciently large R1 this implies the estimate

(
(amax − â)φ̂, φ̂

)
L2(Rd)

⩽
C−

20

N∑
j=1

κ2j ⟨V ⟩(Rj) +
C−

20

N∑
j=1

N∑
k=j+1

κjκkR
(22(k−j)−1) d

2
j ⟨V ⟩(Rk)

⩽
C−

20

N∑
j=1

κ2j ⟨V ⟩(Rj)

+
C−

20

N∑
j=1

N∑
k=j+1

κjκkR
(22(k−j)− 3

2 )
d
2

j

(
⟨V ⟩(Rk)

) 1
2
(
⟨V ⟩(Rj)

) 1
2

⩽
C−

10

N∑
j=1

κ2j ⟨V ⟩(Rj);

here we have also used the inequality ⟨V ⟩(R) ⩾ R− d
4 . Combining this estimate with (4.16)

we obtain (
(L − µ1)φ,φ

)
⩾
C−

4

N∑
j=1

κ2j ⟨V ⟩(Rj) ⩾ cN∥φ∥2L2(Rd), cN > 0.

This yields the desired statement.
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We turn to the case µ1 = Vmax > 0. In this case the statements similar to those of
Theorems 2�4 remain valid, if we exchange the roles of V and â. For the reader convenience
we formulate here the counterpart of Theorem 2.

Theorem 5. Let µ1 = Vmax = V (0) > 0, 0 < amax ⩽ Vmax, and assume that
1) there exists a small enough ϑ > 0 such that

V (x) ⩾ Vmax − c|x|γ for all |x| < ϑ,

2) there exists a large enough q > 0 such that

â(ξ) ⩾ C|ξ|−α for all |ξ| ⩾ q,

where c, C are constants.
If γ > α, then the operator L has in�nitely many eigenvalues in (µ1, µ1 + amax], with the
accumulation point µ1.

Proof. The proof of of Theorem 5 is analogous to that of Theorem 2. We consider a family
of test functions

ψ̂R(ξ) = R−d/2ψ̂

(
ξ

R

)
with supp ψ̂ ⊂ {q < |ξ| < 2q}.

In the same way as inequalities (4.6) and (4.9) were derived we obtain the estimates

(
âψ̂R, ψ̂R

)
⩾ C

∫
Rd

|ξ|−αψ̂2

(
ξ

R

)
d
ξ

R
⩾ R−α

(
C|ξ|−αψ̂(ξ), ψ̂(ξ)

)
,

and (
(V − Vmax)ψR, ψR

)
⩾ −R−γc

∫
Rd

|ψ(y)|2|y|γdy.

The rest of the proof follows the line of the proof of Theorem 2.

5 Discrete spectrum in spectral gaps

In this section we construct convolution operators with a potential that have a non-empty
discrete spectrum in spectral gaps. Consider an operator L de�ned in (1.1) with V =
V 0+V 1, and assume that the functions a(·) and V 0(·) satisfy all the conditions of Theorem
3 or 4. Assume moreover that V 1 is a bounded function with a compact support. Letting
S̃1 be the essential range of V 1 + V 01suppV 1 we denote S1 = S̃1 \ {0}, θ− = inf(S1) and
V 1
max = esssup(V 1). In the sequel we suppose θ− > amax. Observe that in this case amax and
θ− belong to the essential spectrum of L, and (amax, θ−) is a gap in the essential spectrum.

Under the above formulated assumptions, in the set {λ ∈ R : λ > amax} there is a
countable sequence of eigenvalues of the operator L0u := a∗u+V 0u that converges to amax.
We denote by λ0 the largest of them and by u0 the corresponding eigenfunction.

Theorem 6. Let the functions a(·) and V 0(·) satisfy all the conditions of Theorem 3 or 4,
and assume that θ− > λ0. Then there exists κ0 > 0, κ0 = κ0(amax, V

1
max, θ−, λ0, u0(·)), such

that if | suppV 1| < κ0, then the operator L has an eigenvalue in the interval (amax, θ−).

Proof. We �rst calculate the L2 norm of the function (Lu0 − λ0u0).

∥Lu0 − λ0u0∥L2(Rd) ⩽∥L0u0 − λ0u0∥L2(Rd) + ∥V 1u0∥L2(Rd) = ∥V 1u0∥L2(Rd)

⩽∥V 1∥L∞

( ∫
suppV 1

u20(x) dx

) 1
2

.
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Since u20(·) is integrable, there exists κ0 > 0 such that( ∫
suppV 1

u20(x) dx

) 1
2

<
(
∥V 1∥L∞

)−1
min{λ0 − amax, θ− − λ0}, (5.1)

if | suppV 1| ⩽ κ0. For such V
1 we have

δ := ∥Lu0 − λ0u0∥L2(Rd) ⩽ min{λ0 − amax, θ− − λ0).

By [13, Lemma 12] we conclude that there exists a point of the discrete spectrum of L in
the interval (λ0 − δ, λ0 + δ). Since (λ0 − δ, λ0 + δ) ⊂ (amax, θ−), this implies the desired
statement.

Remark. In a similar way, taking su�ciently small κ0, one can show that for any �nite
collection of distinct eigenvalues of the operator L0 there exists an eigenvalue of the operator
L in a small neighbourhood of each element of this collection.
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