
      Schrödinger’s wave quantum mechanics is actually the corpuscular-
wave mechanics of a non-relativistic electron. 

                                         Dzhomirzoev S.E. 

Three  hundred  and  fifty  years  ago,  I.Newton,  in  his  corpuscular  classical  mechanics
(CCM), introduced mass as an initial quantity and, on its basis, defined other corpuscular quantities
of CCM. And a hundred years ago, the corpuscular-wave properties of microparticles testified to
the inherent corpuscular-wave quantities (CWQ), which as the initial value had the product of mass
and  wavelength. Accordingly,  just  as  Newton’s  CCM  was  based  on  corpuscular  quantities,
corpuscular-wave mechanics (CWM) should have been based on CWQ in the same way. But a
hundred years ago, Plank’s and Einstein, to describe the corpuscular-wave properties of the photon,
used hybrid of corpuscular quantities Newton’s CCM and wave quantities of wave optics, which a
priori, by their definition, were insufficient to describe the CWQ of the photon. Subsequently, de
Broglie and Schrodinger applied the method of Planck and Einstein to the case of a non-relativistic
electron (NE), and obtained wave quantum mechanics (WQM). But the WQM he obtained turned
out to be a real puzzle, and now, a hundred years later, l was able to discover that in reality WQM
is an incomplete version of the CWM NE. The campaign managed to find out that Newton’s CCM
arises in the form of a special case of the CWM macroscopic body. In this regard, now, l seem to
be a Tajikistan physicist who discovered CWQ and CWM physics. 

             

1. On the insufficiency of  the Planck and Einstein formulas for
describing corpuscular-wave properties of the photon. 

The era of quantum concepts began with the discovery by M. Planck
[1]  of  the  photon  as  a  quantum of  light  and  a  constant,  called  Planck’s
constant:

ℏ=1,054 ⋅10−54дж•с (1.1)

Based  on  (1.1),  Planck  and  Einstein  [2]  discovered  the  following
formulas for the impulse and energy of a photon:

P=ℏ k (1.2)

E=mc2 (1.3)

E=ℏw (1.4)

Where,k–  wave  vector,  m –  relativistic  mass,  c–  speed,w –  cyclic
frequency of the photon.
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At  the  same   time,  Einstein  himself  interpreted  the  equality  of  the
corpuscular energy of the photon (1.3) with its wave energy (1.4) as a formula
for the corpuscular-wave duality (CWD) of the photon:

                                        (1.5)

          The peculiarity of formulas  (1.2)…(1.5) is that in them Planck and
Einstein used the previously known corpuscular quantities of Newton’s CCM
[3] and the wave quantities of wave optics [4]  combining them with Planck’s
constant  (1.1).  At  the  same  time,  due  to  the  fact  that  the  quantities  of
Newton’s  CCM  and  wave  optics  were  not  intended  to  describe  the
corpuscular-wave object of Nature, which was the photon, and there fore the
question arises, is the hybrid of the quantities of Newton’s CCM and wave
optics sufficient to describe corpuscular-wave property of the photon or not?

        In order to get an answer to the above question, let  is  turn to the
experimentally known property of the photon. Experimentally, the longer the
wavelength of a photon, the smaller its relativistic mass [5] and vice versa,
the  shorter  its  wavelength,  the  larger  its  relativistic  mass.  And  this
circumstance indicates that there is a certain constant m* , the factors of which
are the corpuscular quantities of the photon-the relativistic mass  m  and its
wave quantities-the linear wavelength-i r :

                                                                                 (1.6)

where, the  photon  c –  speed,  like  Planck’s  constant  (1.1)  is  a
fundamental constant.

According  to  the  CWQ  (1.6),  the  photon  a  priori,  by  its  birth,  a
corpuscular-wave object of Nature and it has its own CWQ:

                                                       (1.7)

                           (1.8)

                                      (1.9)

          These proper CWQ (1.7)...(1.9) cannot be expressed using corpuscular 
quantities of Newton’s CCM and wave quantities of wave optics. To make 
this circumstance obvious, let us show how the proper CWQ of the photon 
(1.7)...(1.9) are actually related to the Planck and Einstein formulas (1.2)…
(1.5). To do this, we first transform the proper CWQ of the photon (1.7)...
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(1.9) using the differential operator (transformation) used by Schrödinger [6] 
in WQM:

                                                        (1.10)

In this case, the proper CWQ of the photon (1.7)...(1.9) are transformed
in the form:

                                              (1.11)

                            (1.12)

           (1.13)

where, the subscripts 1,2,3,4,0 correspond to the five dimensions of the
five-dimensional Klein-Gordon space:

       (1.14)

Here, it is easy to notice that the three-dimensional impulse that arose
on the right side of  the transformation (1.12) was discovered by Einstein in
the of a corpuscular photon impulse (1.2). The three-dimensional energy from
the right side, of the transformation (1.13) was discovered by Einstein in the
form of the corpuscular energy of the photon (1.3), and the energy from the
right side of the transformation (1.13) corresponding to the fifth dimension
was discovered by Planck of the form of the wave energy of the photon (1.4).

As  we  can  see,  the  corpuscular  and  wave  quantities  of  the  photon
(1.2)...(1.5) predicted by Planck and Einstein turned out to be quantities that
arise from the photon’s own CWQ (1.7)...(1.9) after transformations (1.11)…
(1.13),  that  is,  we  have  advanced  further  than  Planck  and  Einstein  in
understanding the quantities of the photon. At the same time, it became clear
that the corpuscular and wave quantities of the photon (1.2)...(1.5) discovered
by Planck and Einstein turned out to be internal spatial quantities in relation
to  the  five-dimensional  Klein-Gordon  space  (1.14),  and  the  own  CWQ
discovered  by  us  photon  quantities  (1.7)...(1.9)  turned  out  to  be  external
quantities  with  respect  to  the  five-dimensional  Klein-Gordon  (1.14).
Therefore, if, following Planck and Einstein, to describe the properties of a
photon we use the internal spatial  quantities of  Newton’s CCM and wave
optics, then the extra-spatial proper CWQ of the photon (1.7)…(1.9) and their
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transformations (1.11)…(1.13) will remain unknown in physics, as has been
the case from the beginning of the twentieth century intil the present day. 

Thus, the fact became clear that a photon endowed with its own CWQ
(1.7)…(1.9) is a corpuscular-wave object of Nature, and these own CWQ of
the photon (1.7)…(1.9) in within the five-dimensional Klein-Gordon (1.14)
manifests itself in the form of corpuscular, mixed and wave quantities. At the
same time, it became obvious that the CCM created by I.Newton is purely
three-dimensional spatial mechanics, and therefore, if we use it inside three-
dimensional spatial corpuscular quantities together with wave quantities of
wave optics, even then it is impossible to fully characterize the intrinsic CWQ
of  the  photon  (1.7)…(1.9),  which,  within  the  framework  of  the  five-
dimensional  Klein-Gordon  space  (1.14),  manifest  themselves  as  five-
dimensional  quantities.  This is  due to more general nature of  the intrinsic
CWQ of the photon (1.7)…(1.9) compared with the corpuscular quantities of
Newton’s CCM and the wave quantities of wave optics. 

For a  visual  comparison,  we  note  that  in  Newton’s  CCM  it  was
assumed that a hypothetical material point moves with mass m. But the real
object of Nature, the photon, turned out to be moving with a magnitude equal
to the product of  mass and wavelength m*, that is, the real object Nature, the
photon, turned out to be not like a hypothetical material point. Therefore, the
CWQ of a photon can be called corpuscular-wave mass m*  (1.7), corpuscular-
wave impulse P*  (1.8) and corpuscular-wave energy E* (1.9).

                    

 

              2.  On the insufficiency of the de Broglie and Schrödinger
formulas for describing the corpuscular-wave properties of a NE .

           Following Einstein,  L.  de Broglie  [7]  subsequently proposed a
hypothesis about the inherent nature of CWD not only to the photon, but also
to other  microparticles,  thereby generalising Einstein’s idea to the case of
other microparticles. In particular, for the case of a NE, the formulas Planck
and Einstein (1.2)...(1.5) were generalized by de Broglie in the form:

P=ℏk (2.1)
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𝐸k = m v2

2
 (2.2)

 = 𝐸 ℏw (2.3)

where: k– wave vector, m -mass, v – speed , w – cyclic frequency of the
NE . 

And the formula CWD (1.5) took the form:

                      (2.4)         

 In turn, E. Schrödinger, having expressed de Broglie formulas (2.1)...
(2.3)  using the differential operator  (1.10),  obtained the initial  relations of
WQM in the form:

P̂=i ℏ∇ (2.5)

Èk=
ℏ2

2 m
Δ  (2.6)

Û=iℏ
∂
∂ t

 (2.7)

where: P̂ È , Û— operators impulse and energy NE.

Due to the fact that the formulas of de Broglie and Schrödinger (2.1)...
(2.7) were a generalisation of the formulas of Planck and Einstein (1.2)...(1.5)
to the case  of  a  NE,  and therefore,  following example,  we generalize the
formulas  of  proper  CWQ  of  the  photon  (1.7)...(1.9)  and  transformations
(1.11)...(1.13)  in  the  case  NE.  To  do  this,  we  first  note  the  corpuscular
quantities of the NE, which are established using the beginning of all physics-
the corpuscular quantities of Newton’s CCM in the form:

Mass: m               (2.8)

Impulse: P=m⋅ v    (2.9)

Kinetic energy: E❑=
m v2

2
            (2.10)

Potential energy: U=m⋅ v2                         (2.11)

And the wave magnitude of a NE will be the linear wavelength:

i r=i r (1,2,3,4,0)             (2.12)
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where:  1,2,3,4,0  are  symbols  of  the  five  dimensions  of  the  five-
dimensional Klein-Gordon (1.14).

By combining the corpuscular quantities of the NE (2.8)...(2.11) with
the wave quantity of the NE, namely, with its linear wavelength (1.12), we
obtain  the  intrinsic  CWQ of  the  NE similar  to  the  intrinsic  CWQ of  the
photon (1.7)...(1.9):

                         (2.13)

                          (2.14)

                                  (2.15)

                                                                                                                             (2.16)

In turn, the proper CWQ of a NE (2.13)...(2.16) using the differential
operator (1.10) similar to transformations (1.11)…(1.13):

(2.17)

          (2.18)

 (2.19)

(2.20)

where:

          (2.21)

(2.22)

Not, it is easy to notice that both the formulas (2.1)...(2.4) proposed by
de  Broglie  and  the  initial  relations  of  WQM  (2.5)...(2.7)  proposed  by
Schrödinger  are  formulas  in  which  simplified  form  of  transformations
(2.17)...(2.20) are presented in relation to the corpuscular quantities of a NE
(2.8)…(2.11):

          (2.23)
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(2.24)

(2.25)

(2.26)

As  we  see,  formulas  (2.1)...(2.7)  obtained  by  de  Broglie  and
Schrödinger,  corresponding  to  formulas  (2.23)...(2.26),  are  thereby
insufficient  to  express  the  proper  CWQ  of  a  NE  (2.13)...(2.16)  and
transformations (2.17)...(2.20), just like the formulas of Planck and Einstein
(1.2)...(1.5) turned out to be insufficient to express the proper CWQ of the
photon (1.7)...(1.9) and transformations  (1.11)…(1.13).  The insufficiency of
the de Broglie and Schrödinger formulas (2.1)...(2.7) resulted in the fact that
instead of the necessary CWM of a NE, its incomplete version was obtained
in the form of WQM, and we will verify this in the third paragraph of this
work. 

Now, let us note how the Heisenberg uncertainty principle [8] confirms
the fact of the existence in Nature of the CWQ of a NE (2.13)…(2.16). On the
left  side  the  Heisenberg  uncertainty  relation  we  are  talking  about  the
experimentally measured values of impulse and spatial coordinates, which are
established and obtained by the researcher:

                                            (2.27)

According  to  the  CWQ (2.14),  on  the  right  side  of  the  Heisenberg
uncertainty relation (2.27) under the symbol of Plank’s constant (1.1) the own
dimensional  quantities  of  the  NE  are  hidden.  In  this  regard,  in  became
obvious  that  as  soon  as  the  experimentally  measured  magnitudes  of  the
impulse  and  spatial  coordinate  become  equal  to  the  intrinsic  dimensional
CWQ of a NE,  that  any change in the wave quantities  of  a  NE (2.12)  is
accompanied by a change in its corpuscular quantities (2.8)...(2.11) and vice
versa,  any  change  in  the  corpuscular  quantities  of  a  NE  (2.8)...(2.11)  in
accompanied by a change in its wave quantities (2.12). Accordingly, as soon
as the left part (2.27) becomes smaller than the right part, then the intrinsic
dimensions of the NE (2.13)...(2.16) become undetectable quantities. As we
can  see,  the  Heisenberg  uncertainty  is  one  of  the  many uncertainties  that
occur due to the fact that the corpuscular and wave quantities of a photon are
quantized  using  constants  (1.7)...(1.9),  and  the  corpuscular  and  wave
quantities of a NE are quantized using constants (2.13)...(2.16).
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Here we should especially emphasize the fact that the constanty of the
intrinsic CWQ of the photon (1.7)...(1.9) is beyond doubt, but the constanty
of the intrinsic CWQ of a NE (2.13)...(2.16) must be specified. In this regard
we will take into account the fact that the speed of the photon:

    м/с             (2.28)

and the fine structure constant:

     (2.29)

they are fundamental constants, and therefore, their products are also a
fundamental constant:

 м/с   (2.30)

As we can see, the first Bohr velocity [9], like Planck’s constant and
the speed of light, is a fundamental constant, and therefore, the intrinsic CWQ
of a NE (2.13)...(2.16) similar to the intrinsic CWQ of the photon(1.7)...(1.9)
are also fundamental constant. Accordingly, the constanty of the first Bohr
velocity (2.30) implies the relevance of the relation:

  (2.31)

Here,  the values with lower e indices are the values of the NE, and the
values with lower p indices are the values of the photon.

Thus, the CWQ of the photon (1.7)...(1.9) and the intrinsic CWQ of a
NE (2.13)...(2.16), and also, protons are quantized due to the fact that they are
fundamental constants. Historically, when great physicists limited themselves
to just one of them, Plank’s constant (1.1), then, along with constants (1.7)...
(1.9),  (2.13)...(2.16)  the  intrinsic  CWQ  of  the  photon  and  the  NE  went
unnoticed, and along with them, the CWM of physics went unnoticed. 

At  the  end  of  this  section,  we  note  that  if,  along  with  the  linear
wavelengty  of  a  NE (2.12),  we take  into account  its  perpendicular  radius
vector  r⊥,  then between the CWQ (2.13) and (2.14) there will be another
CWQ:

m⊥
¿
=[m❑

¿ ×r⊥]=m [ i r ×r⊥ ]                      (2.32)
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We will consider one important feature of relation (2.32) in the 
following paragraphs, since it assumes the possibility of a spontaneous 
transition between translational and rotational motions.

Now, in the next paragraph, we will show how the CWQ of a NE 
(2.13)...(2.16) make it possible to find out that Schrodinger’s WQM is 
actually an incomplete version of the CWM of a NE. And we will make sure 
that this circumstance was not noticed for a hundred years. 

      

3. Schrodinger’s WQM, as an incomplete version of the CWM 
of the NE. 

          One of the features of Newton’s CCM is that it contains both 
corpuscular quantities similar to corpuscular quantities (2.8)...(2.11) and the 
equation of motion:

                             (3.1)

         Unlike Newton’s CCM, Schrodinger’s WQM has only its equation of 
motion:

                      (3.2)

And the quantities associated with its equation of motion (3.2), historically, 
were not discovered. 

         To discover the quantities associated with the equation of motion of 
WQM (3.2), let us turn to the intrinsic, CWQ of a NE (2.13)...(2.16) and 
consider their changes in a fairly short time:

       (3.3)

thier evolutionary formulas look like:

 (3.4)
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   (3.5)

(3.6)

(3.7) 

       Now, if we write evolutionary formula (3.5) with respect to energy E:

 (3.8)

And we do not take into account the last component, then we obtain the 
equation of motion of WQM (3.2) with out the function symbol:

     (3.9)

        As we see, the proper CWQ of a NE (2.13)...(2.16) turned out to be 
exactly the quantities with which the equation of motion of WQM (3.2) is 
associated, similar to how the equation of motion of Newton’s CCM is 
associated with corpuscular quantities (3.1).

        Thus, it became obvious that what was perceived for a hundred years as 
WQM actually turned out to be an incomplete version of the CWM of a NE, 
the incompleteness of WQM, which Einstein assumed, was generated by the 
absence in it of its own CWQ of the NE (2.13)...(2.16), transformations 
(2.17)...(2.20) and evolutionary formulas (3.4)…(3.7).

        Now, due to the fact that is a generally accepted opinion about the 
transition of Schrodinger’s WQM on a macroscopic scale to Newton’s CCM, 
we will therefore indicate how Schrodinger’s WQM is actually 
interconnected with Newton’s CCM. As noted above, Schrodinger’s WQM is
an incomplete form of the CWM of a NE,  and therefore, it es enough to find 
out how the CWM of a NE is interrelated with the CCM of Newton. First of 
all, let us pay attention to the fact that according to the information in the 
previous paragraph, the corpuscular quantities of Newton’s CCM (2.8)...
(2.11) arise from the CWQ of the NE (2.13)...(2.16) after transformations 
(2.17)...(2.20), that is, it became obvious that the CWQ of the NE (2.13)...
(2.16) are more general compared to corpuscular quantities of the Newton’s 
CCM (2.8)...(2.11). Accordingly, we will take into account the fact that all 
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evolutionary formulas (3.4)...(3.7) are related to the CWM of a NE, and of 
these, only the evolutionary formula (3.4) is also related to Newton’s CCM. 
The connectedness of the evolutionary formula (3.4) is explained by the fact 
that the evolutionary formula (3.4) itself is located where Newton’s first law 
is now located, that is, the evolutionary formula (3.4) is the formula of 
Newton’s first law. Therefore, the impulse P , that arose on the right side of 
the evolutionary formula (3.4) is the impulse that appears both in Newton’s 
first law an in Newton’s second law or, in other words, in the equation of 
motion of Newton’s CCM (3.1). Thus, the corpuscular quantities of Newton’s
CCM (2.8)...(2.11) arise from the CWQ of the NE (2.13)...(2.16) after 
transformations (2.17)...(2.20) in the from of internal spatial three-
dimensional quantities, and Newton’s first and second laws are related to the 
evolutionary formula (3.4). As we see, Schrödinger’s WQM, being a more 
general mechanics, does not fit into the framework within the spatial three-
dimensional CCM of Newton. 

        Here we note te fundamental difference between the equation of motion 
of Schrödinger’s WQM (3.2) and the equation of motion of Newton’s CCM 
(3.1). The equation of motion of Schrödinger’s WQM (3.2), being a  first-
order differential equation, is not similar to the equation of motion of 
Newton’s CCM (3.1), since the equation of motion of Newton’s CCM is a 
second-order differential equation. On the contrary, the equation of motion of 
WQM (3.2) like transformations (2.17)...(2.20) is an equation of 
transformation (display) in time t and expresses how the CWQ of a NE (2.14)
is transformed (displayed) under the influence of time t. Therefore, to the 
equation of motion WQM (3.2) it will be necessary to add one more function,
which is called the wave function, and it is this wave function that fixes the 
change in time of the transformed version of the CWQ of a NE (2.14). In 
contrast, the equation of motion Newton’s CCM (3.1), being a  second-order 
differential equation, itself fixes the change in impulse P over time t.

        Thus, according to the above results, what was called Schrödinger’s 
WQM for a hundred years actually turned out to be an incomplete version of 
the CWM of a NE, which as its quantities has its own CWQ of a NE (2.13)…
(2.16), and what for a hundred years was called Schrödinger’s equation of 
motion of WQM (3.2) actually turned out to be the equation of motion of 
CWM of a NE (3.9). In contrast to the CWM of a NE, Newton’s CCM has 
corpuscular quantities (2.8)...(2.11) as its quantities, and has the equation of 
motion (3.1) as its equation of motion. In this case, the corpuscular quantities 
of Newton’s CCM (2.8)...(2.11) arise from the CWQ of the NE (2.13)...(2.16)
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after transformations (2.17)...(2.20) in the form of quantities corresponding to
three-dimensional dimension of the five-dimensional Klein-Gordon space 
(1.14). Accordingly, Newton’s first and second laws follow from 
evolutionary formula (3.4), and the equation of motion of CWM of a NE 
follows from evolutionary formula (3.5). Thus, we have clearly outlined the 
differences between the new CWM of a NE and the previously known CCM 
of Newton. 

        Now, at the end of this section, let us turn to the corpuscular-wave 
formula (2.32) and obtain its evolutionary formula:

(3.13)

Where, we are dealing with two types of intrinsic angular momentum:

      (3.14)

 (3.15)

      In this case, in (3.14) we are dealing with translational intrinsic angular 
momentum and in (3.15) with rotational intrinsic angular momentum. But the 
appearance of two varieties of proper angular momentum (3.14) and (3.15) 
from one CWQ (2.32) indicates the possibility of a spontaneous transition 
between them. If in reality such a spontaneous transition between two 
varieties of proper angular momentum takes place, then it must be taken into 
account when studying the properties of real object’s of  Nature. 

             4.One the approximate form of CWM for a macroscopic body.

         By analogy with the CWQ of a NE (2.13)…(2.16) for the CWM of a 
macroscopic body (MB), the proper CWQ will the form:

 (4.1)

 (4.2)

(4.3)

           (4.4)
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where,  r – radius-vector of a MB co-directed with its speed v.

          An analogue of the operation of the differential operator (1.10) will be 
the operation of differentiation:

 (4.5) 

         Transforming the CWQ (4.1)…(4.4) of the CWM of a MB using the 
differentiation operation (4.5), we obtain analogies of transformations (2.17)
…(2.20):

(4.6)

 (4.7)

(4.8)

 (4.9)

where, the subscripts 1,2,3,4,0 correspond to the five dimensions of the five-
dimensional Klein-Gordon (1.14).

         On the right-hand sides of transformations (4.6)...(4.9) the quantities 
with subscripts 1,2,3, correspond to the three-dimensional dimension of the 
five-dimensional Klein-Gordon (1.14) and represent corpuscular quantities of 
Newton’s CCM:

Mass: m (4.10)

Impulse:            (4.11)

      Kinetic energy  :    (4.12)

      Potential energy:                (4.13)

        

           Further, if we consider changes in the CWQ (4.1)...(4.4) in the CWM of a

MB in a fairly short time t :
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(4.14)

Then we obtain evolutionary formulas for CWQ of CWM of a MB (4.1)...
(4.4) in the form of analogies of evolutionary formulas (3.4)…(3.7):

 (4.15)

 (4.16)

 (4.17)

       (4.18)

          In this case, the evolutionary formula (3.16) will be the equation of 
motion of the CWM of a MB by analogy with the evolutionary formula (3.5). 
Accordingly, the evolutionary formula (4.15) will be the formula of Newton’s
first law, and is the impulse that appears in Newton’s second law or, in other 
words, in the equation of motion of Newton’s CCM (3.1).

         In turn, the macroscopic analogue of the CWQ (2.32) will be the 
i888macroscopic CWQ:

     (4.19)

The analogue of the evolutionary formula (3.13) will be the macroscopic 
evolutionary formula:

                        (4.20)

        In the CWQ (4.1)...(4.4) are realized in Nature, then they will be 
inherent in free MB, and if the CWQ (4.1)...(4.4) are not realized in Nature, 
then, based on Newton’s first law, corpuscular quantities (4.10)…(4.13) will 
be inherent in free MB. To experimentally check whether macroscopic CWQ 
(4.1)...(4.4) are realized in Nature or not, we think, we can find out by 
experiments in conditions of weightlessness. For example, according to the 
evolutionary formula (4.15), any loose element, in particular, the astronauts 
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themselves, must be in a state of motion, since the evolutionary formula 
(4.15) refutes the first provision of Newton’s first law about bodies being at 
rest in the absence of external influence. Exactly, also, according to the 
evolutionary formula (3.4), a free microparticles will always have impulse 
and cannot be at rest, contrary to the first provision of Newton’s first law.

          Thus, if the CWQ and CWM discovered by us turn out to be realized in
Nature, then the first provision of Newton’s first law will not be realizable for
real object Nature. 
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