Гравитация и масса в евклидовом пространстве Поствайкин Павел Евграфович

Март 2025

Содержание

писание пространства и поля материи ва типа плотности толкновения и распространение материи лучайные блуждания и эффект времени мещение центра масс 1 Начальное распространение без градиента	4 5 5 6 6 7 7 7 8 8 8
ва типа плотности голкновения и распространение материи лучайные блуждания и эффект времени мещение центра масс 1 Начальное распространение без градиента	4 5 6 6 7 7 8 8 8
толкновения и распространение материи лучайные блуждания и эффект времени мещение центра масс 1 Начальное распространение без градиента	5 6 6 7 7 7 8 8
лучайные блуждания и эффект времени мещение центра масс 1 Начальное распространение без градиента 2 Добавление градиента плотности 3 Расчёт смещения 4 Проверка 4 Проверка 1 Скорость и ускорение рассеяния 2 Физический смысл	5 6 6 7 7 7 8 8
мещение центра масс 1 Начальное распространение без градиента 2 Добавление градиента плотности 3 Расчёт смещения 4 Проверка 4 Проверка 5 Скорость и ускорение рассеяния 6 Физический смысл	6 6 7 7 7 8 8
азбегание фрагментов 1 Скорость и ускорение рассеяния	8 8
	8
ила притяжения сферической оболочки к центру 1 Линейная плотность 2 Квадрат линейной плотности как поверхностная характеристика 3 Площадь поверхности сферы 4 Ускорение от градиента плотности 5 Сила притяжения 6 Заключение	8 9 9 9 10 10
аспределение плотности вблизи центра кластера 1 Предложенная функция плотности	10 11 11 11 12 12
	5 Сила притяжения

10 Характерный диаметр скопления	12
10.1 Скорость волнового процесса	. 12
10.2 Модель плотности	. 13
10.3 Радиальное время	. 13
10.4 Тангенциальное время	. 13
10.5 Условие равенства	. 13
10.6 Вывод	. 13
	11
п Бзаимодеиствие одинаковых скоплении	14
12 Взаимодействие разных скоплений	14
12.1 Описание скоплений и их плотности	. 14
12.2 Определение поверхности взаимодействия	. 15
12.3 Формулировка силы взаимодействия	. 16
12.4 Вычисление интеграла по поверхности	. 17
12.5 Сравнение с аналитическим результатом	. 18
12.6 Вывод	. 18
13 Физическая интерпретация силы взаимодействия	18
13.1 Роль параметра <i>т</i> как аналога массы	. 19
13.2 Гравитация как соприкосновение границ скоплений	. 19
13.3 Сравнение гравитации с молулированными волнами	. 19
13.4 Взаимодействие профилей волн и поля зарядов	. 19
13.5 Одинаковая ориентация профилей:	. 20
13.6 Разная ориентация профилей:	. 20
13.7 Гипотеза о происхождении зарядов	. 20
13.8 Движение	. 20
13.9 Движение с максимальной скоростью	. 20
13.10Вывод	. 21
14 Переход от моделирования движения материи как бесконечно малых ча)-
стиц к моделированию поля материи	21
14.1 Лискретный полхол: частины в пространстве	. 22
14.2 Непрерывный полхол: поле материи	. 22
14.3 Сравнение полхолов	. 22
15 Динамика движения	22
15.1 Дискретный подход: движение частиц	. 22
15.2 Непрерывный подход: эволюция поля	. 23
15.3 Сравнение подходов	. 23
16 Столкновения и взаимодействия	23
16.1 Дискретный подход: дискретные столкновения	. 23
16.2 Непрерывный подход: непрерывные взаимодействия	. 23
16.3 Сравнение подходов	. 24
	n 4
	24
17.1 Дискретныи подход: дреиф частиц	. 24
17.2 Пепрерывный подход: ускорение поля	. 24
11.3 Оравнение подходов	. 24

18 Взаимодействие скоплений	24
18.1 Дискретный подход: сила между частицами	24
18.2 Непрерывный подход: сила через поле	24
18.3 Сравнение подходов	25
10 200	9F
19 Заключение	20

1 Введение

Настоящая работа посвящена исследованию возможности возникновения гравитационных эффектов в трёхмерном евклидовом пространстве \mathbb{R}^3 без использования концепции искривления пространства-времени, характерной для общей теории относительности. Вместо этого материя представлена как непрерывное поле, которое распространяется и взаимодействует через столкновения, формируя структуры, аналогичные гравитационному притяжению. В отличие от традиционного подхода, рассматривающего материю как совокупность дискретных частиц, здесь она моделируется как гладкое поле, движущееся с постоянной скоростью V. Основная цель исследования заключается в строгом математическом анализе: могут ли столкновения и хаотичное движение фрагментов воспроизводить эффекты, подобные гравитации, при минимальном наборе физических допущений.

Для понимания начнём с простого пространства и шаг за шагом разберём, как эти взаимодействия могут создавать притяжение. Мы будем объяснять каждую формулу так, чтобы вы могли проследить её происхождение, даже если вы только начинаете изучать физику.

2 Описание пространства и поля материи

Рассматривается трёхмерное евклидово пространство \mathbb{R}^3 с координатами $\mathbf{x} = (x, y, z)$. Это означает, что каждая точка пространства задаётся тремя числами: x — вдоль одной оси, y — вдоль второй, z — вдоль третьей. В каждой точке пространства определено векторное поле $\mathbf{M}(\mathbf{x}, t)$. Величина этого поля, обозначаемая $|\mathbf{M}(\mathbf{x}, t)|$, соответствует объёмной плотности материи $\rho(\mathbf{x}, t)$, измеряемой в м⁻³, а направление указывает, куда движется материя в этой точке в момент времени t.

Общее количество материи в каком-либо объёме V вычисляется через интеграл:

$$M_V(t) = \int_V \rho(\mathbf{x}, t) \, d^3 \mathbf{x}$$

Здесь $d^3\mathbf{x}$ — это элемент объёма, а интеграл суммирует плотность по всей области V. Все элементы материи движутся с постоянной скоростью V, но их направления могут быть разными. При столкновении двух потоков материя смешивается, сохраняя общее количество и импульс, после чего продолжает движение в виде множества фрагментов.

Определение $\rho = |\mathbf{M}|$ логично, так как $|\mathbf{M}|$ — это мера количества материи в точке, а постоянство скорости V упрощает модель и делает её согласованной.

3 Два типа плотности

Модель использует два способа измерения количества материи:

- Объёмная плотность ρ : Это $\rho(\mathbf{x}, t) = |\mathbf{M}(\mathbf{x}, t)|$, измеряется в м⁻³ и показывает, сколько материи содержится в единице объёма.
- Линейная плотность *P*: Это величина, измеряемая в м⁻¹, которая описывает количество материи вдоль прямой линии и помогает оценить частоту столкновений в дальнейшем.

Связь между ними задаётся соотношением:

$$\rho = P^3$$
.

Это соотношение выбрано, чтобы связать одномерное измерение (P) с трёхмерным (ρ) : в трёх измерениях линейная плотность "переходит" в объёмную через возведение в третью степень.

4 Столкновения и распространение материи

Рассмотрим, что происходит, когда два потока материи, обозначенные как $\mathbf{M}_1 = \rho_1 \mathbf{v}_1 \Delta V$ и $\mathbf{M}_2 = \rho_2 \mathbf{v}_2 \Delta V$, сталкиваются в точке \mathbf{x}_0 в момент времени t_0 . Здесь ρ_1 и ρ_2 — плотности потоков, \mathbf{v}_1 и \mathbf{v}_2 — их направления движения (с $|\mathbf{v}_1| = |\mathbf{v}_2| = V$), а ΔV — малый объём.

При столкновении выполняются два закона сохранения:

• Сохранение материи: Общее количество материи после столкновения равно сумме до столкновения:

$$M = |\mathbf{M}_1| + |\mathbf{M}_2| = \rho_1 \Delta V + \rho_2 \Delta V.$$

• **Сохранение импульса:** Импульс — это векторная величина, зависящая от количества материи и её движения:

$$\mathbf{P} = \mathbf{M}_1 + \mathbf{M}_2 = \rho_1 \mathbf{v}_1 \Delta V + \rho_2 \mathbf{v}_2 \Delta V.$$

После столкновения материя начинает распространяться с плотностью:

$$\sigma(\mathbf{n}, t) = \frac{M}{4\pi [V(t - t_0)]^2} + \frac{3|\mathbf{P}|}{4\pi [V(t - t_0)]^2 V} (\mathbf{n} \cdot \mathbf{e}_P),$$

где **n** — единичный вектор направления от точки столкновения, $\mathbf{e}_P = \frac{\mathbf{P}}{|\mathbf{P}|}$ — направление результирующего импульса, $V(t - t_0)$ — расстояние, пройденное за время $t - t_0$, а $4\pi [V(t - t_0)]^2$ — площадь сферической поверхности. Первое слагаемое отражает равномерное распределение материи, второе — влияние импульса. Эта формула — гипотеза, которую мы примем как отправную точку.

После столкновения материя стремится распространяться в виде сферического волнового фронта, что является естественным следствием её равномерного распределения во все стороны с постоянной скоростью V. Однако в реальной среде этот процесс нарушается: сферическая волна сталкивается с другими потоками материи или уже существующими фронтами. Каждое такое столкновение приводит к разделению и смешению материи, изменяя её направление движения случайным образом. Таким образом, изначальная сферическая симметрия быстро теряется, и движение становится хаотичным, состоящим из множества фрагментов, которые продолжают сталкиваться и разбегаться. Эта эволюция от упрощённой волновой картины к хаотическому блужданию будет рассмотрена в следующих разделах.

Для выбранного объёма пространства столкновение внутри него приводит к разбеганию материи за его границы, если плотность снаружи меньше.

5 Случайные блуждания и эффект времени

Столкновения фрагментов материи моделируются как случайные блуждания — процесс, при котором направление движения меняется случайным образом после каждого столкновения. В движении материя начинает многократно менять направления движения, бесконечно разделяясь и смешиваясь со встречными. Чтобы понять происходящее, надо попытаться представить движение именно нашей первой порции материи, как будто у неё другой цвет, и по густоте окраски пространства можно увидеть, где в среднем она оказалась через определённое время. В статистике доказывается, что в пространстве объёмом L^3 с шагом между узлами Q, где есть $(L/Q)^3$ перекрёстков, путь случайного блуждания в среднем пройдёт через $(L/Q)^2$ перекрёстков чтобы покинуть область L^3 . Похоже будут вести себя волны, условно создавая себе перекрёстки каждым столкновением и меняя направления в среднем через Q. Так же это можно представить как изменение средней площади всех фронтов всех волн в ограниченном объёме с изменением плотности P.

Столкновения фрагментов материи моделируются как случайные блуждания — процесс, при котором направление движения меняется случайным образом после каждого столкновения. Линейная плотность P связана со средним расстоянием между столкновениями Q:

$$P = \frac{L}{Q},$$

где *L* — фиксированная длина. Время между столкновениями:

$$\tau = \frac{Q}{V} = \frac{L}{PV}$$

В однородной среде $(P = P_0) Q_0 = \frac{L}{P_0}, \tau_0 = \frac{L}{P_0 V}$. Если плотность меняется, например, $P(x) = P_0 + \frac{dP}{dx}x$, время прохождения расстояния *L* зависит от местной плотности:

$$t_L(x) = \frac{L}{V} \cdot \frac{P(x)}{P_0}.$$

6 Смещение центра масс

В этом разделе мы исследуем, как масса материи, изначально сосредоточенная в точке, смещается в пространстве под влиянием градиента линейной плотности. Рассмотрим сгусток материи с общим количеством M, который находится в точке $\mathbf{x}_0 = (0, 0, 0)$ в момент времени $t_0 = 0$. Начальный импульс этого сгустка равен нулю ($\mathbf{P} = 0$), что означает отсутствие предпочтительного направления движения в начальный момент. Материя распространяется со скоростью V, но её движение не прямолинейно — это хаотичное перемещение множества фрагментов, которые сталкиваются, разделяются и меняют направления, напоминая броуновское движение с фиксированной скоростью V.

6.1 Начальное распространение без градиента

Сначала разберём, как материя ведёт себя в однородной среде, где линейная плотность $P = P_0$ постоянна. Так как $\mathbf{P} = 0$, поверхностная плотность фрагментов задаётся формулой:

$$\sigma(\mathbf{n},t) = \frac{M}{4\pi(Vt)^2}$$

Здесь Vt = r — радиус сферы, описывающей максимальное распространение за время t, а $4\pi r^2$ — её площадь. Формула следует из закона сохранения материи: M распределяется равномерно по поверхности. Проверка: $\int \sigma(\mathbf{n}, t) dS = M$.

Точка на сфере имеет координаты:

$$x = r\cos\theta, \quad y = r\sin\theta\cos\phi, \quad z = r\sin\theta\sin\phi,$$

где θ — угол от оси x, ϕ — угол в плоскости yz, а $dS = r^2 \sin \theta \, d\theta \, d\phi$. Без градиента центр масс остаётся в $\mathbf{x}_0 = (0, 0, 0)$, так как распределение симметрично.

6.2 Добавление градиента плотности

Теперь предположим, что линейная плотность меняется вдоль оси x:

$$P(x) = P_0 + \frac{dP}{dx}x,$$

где P_0 — плотность в \mathbf{x}_0 , а $\frac{dP}{dx}$ — градиент в м⁻². Наша цель — найти среднее смещение центра масс вдоль x, обозначенное $\langle x \rangle$.

Чем выше P, тем чаще столкновения, что задерживает фрагменты в областях с большим P и ускоряет их в областях с меньшим P, смещая центр масс к большей плотности.

6.3 Расчёт смещения

Фрагменты распространяются в пределах сферы радиусом r = Vt, но их распределение зависит от P(x). Время прохождения расстояния L в однородной среде:

$$t_0 = \frac{L}{V}.$$

С градиентом:

$$t_L(x) = \frac{L}{V} \cdot \frac{P(x)}{P_0}$$

Для точки $x = r \cos \theta$ эффект градиента оцениваем в средней точке пути, например, $x = \frac{r}{2} \cos \theta$:

$$P\left(\frac{r}{2}\cos\theta\right) = P_0 + \frac{dP}{dx} \cdot \frac{r}{2}\cos\theta.$$

Относительное время:

$$\frac{t_L}{t_0} = 1 + \frac{\frac{dP}{dx} \cdot \frac{r}{2}\cos\theta}{P_0}$$

Среднее смещение:

$$\langle x \rangle = \frac{\int x \sigma(\mathbf{n}, t) \frac{P(x)}{P_0} dS}{\int \sigma(\mathbf{n}, t) \frac{P(x)}{P_0} dS}$$

Для малых градиентов: - Числитель: $\frac{M}{4\pi r^2} \cdot \frac{dP}{dx} \int x^2 dS$, - Знаменатель: $\approx M$, - $\int x^2 dS = \frac{4\pi r^4}{3}$. Итог:

$$\langle x \rangle = \frac{\frac{dP}{dx}}{P_0} \cdot \frac{r^2}{3}, \quad r = Vt, \quad \langle x \rangle = \frac{V^2 t^2}{12} \cdot \frac{\frac{dP}{dx}}{P_0}$$

Ускорение:

$$g = \frac{d^2 \langle x \rangle}{dt^2} = \frac{V^2}{6} \cdot \frac{\frac{dP}{dx}}{P_0}.$$

6.4 Проверка

- $\langle x \rangle \propto t^2$ признак постоянного ускорения.
- Если $\frac{dP}{dx} < 0, g < 0$ смещение к большей плотности.
- Единицы: $\frac{M^{-2}}{M^{-1}} \cdot M^2/c^2 = M/c^2$.

7 Разбегание фрагментов

7.1 Скорость и ускорение рассеяния

В классической механике центробежное ускорение:

$$a_{\rm центробежное} = \frac{v^2}{R}.$$

В нашей модели фрагменты расходятся от центра скопления в \mathbf{x}_0 на расстоянии R_1 . Средняя скорость рассеяния в плоскости, перпендикулярной R_1 :

$$v_{\perp} = \frac{V}{2}.$$

Ускорение:

$$a_{\text{рассеяние}} = \frac{\left(\frac{V}{2}\right)^2}{R_1} = \frac{V^2}{4R_1}.$$

7.2 Физический смысл

Ускорение $\frac{V^2}{4R_1}$ противодействует сжатию скопления, уменьшаясь с ростом R_1 . Единицы:

$$\frac{\mathrm{M}^2/\mathrm{c}^2}{\mathrm{M}} = \mathrm{M}/\mathrm{c}^2.$$

Модель равновесия кластера

8 Сила притяжения сферической оболочки к центру

В этом разделе мы вводим концепцию силы, притягивающей сферическую оболочку к центру кластера, на основе градиента линейной плотности. На данном этапе мы не определяем массу явно, вместо этого рассматривая силу как пропорциональную произведению ускорения, поверхностной плотности и площади сферы. Это закладывает основу для понимания динамики кластера.

8.1 Линейная плотность

Линейная плотность P(R) определяется как:

$$P(R) = \frac{M}{R^{1.5}},$$

где M — произвольная константа с размерностью $[M] = M^{0.5}$, а P — линейная плотность $([P] = M^{-1})$, характеризующая количество материи на единицу длины вдоль радиального направления.

Аргументация:

- Зависимость $R^{-1.5}$ выбрана как гипотеза, отражающая уменьшение плотности с расстоянием, что согласуется с равновесием между расширением и сжатием, как будет выведено в разделе 9.
- Размерность м $^{-1}$ соответствует Pкак мере материи вдоль линии базовой величине в нашей модели.

8.2 Квадрат линейной плотности как поверхностная характеристика

Квадрат линейной плотности интерпретируется как поверхностная плотность сферы в фиксированный момент:

$$P^2 = \left(\frac{M}{R^{1.5}}\right)^2 = \frac{M^2}{R^3}$$

Размерность $[P^2] = {\rm M}^{-2}$ отражает количество материи на единицу площади на сферической оболочке.

Аргументация:

- P^2 вводится как мера концентрации материи на поверхности сферы радиусом R, связывая линейную плотность с распределением оболочки.
- Это упрощает модель, избегая явного определения массы, но сохраняя интуитивное представление о поверхностной плотности.

8.3 Площадь поверхности сферы

Площадь поверхности сферической оболочки радиусом *R*:

$$S = 4\pi R^2,$$

с размерностью $[S] = M^2$.

Аргументация:

- S геометрическая характеристика сферы, необходимая для оценки общего количества материи на оболочке через умножение на P^2 .
- Произведение $P^2 \cdot S$ даёт безразмерную величину, что согласуется с нашей текущей абстрактной интерпретацией.

8.4 Ускорение от градиента плотности

Ускорение *g*, действующее на материю в кластере, определяется градиентом плотности из главы 1:

$$g = \frac{V^2}{6} \cdot \frac{\frac{dP}{dR}}{P}.$$

Вычислим производную:

$$\frac{dP}{dR} = \frac{d}{dR} \left(\frac{M}{R^{1.5}} \right) = M \cdot \left(-\frac{3}{2} R^{-2.5} \right) = -\frac{3M}{2R^{2.5}}.$$

Подставим в формулу:

$$g = \frac{V^2}{6} \cdot \frac{-\frac{3M}{2R^{2.5}}}{\frac{M}{R^{1.5}}} = \frac{V^2}{6} \cdot \left(-\frac{3}{2} \cdot \frac{R^{1.5}}{R^{2.5}}\right) = \frac{V^2}{6} \cdot \left(-\frac{3}{2R}\right) = -\frac{V^2}{4R}.$$

Размерность $[g]={\rm m/c^2},$ отрицательный знак указывает направление к центру.

Аргументация:

- Формула $g = \frac{V^2}{6} \cdot \frac{dP}{R}$ выведена в главе 1 как ускорение из-за градиента плотности, аналогичное притяжению.
- Зависимость R^{-1} согласуется с равновесием между расширением и сжатием, как будет показано далее.

8.5 Сила притяжения

Сила, притягивающая сферическую оболочку к центру, предполагается пропорциональной произведению ускорения, поверхностной плотности и площади:

$$F = g \cdot P^2 \cdot S = \left(-\frac{V^2}{4R}\right) \cdot \frac{M^2}{R^3} \cdot 4\pi R^2.$$

Упростим:

$$F = -\frac{V^2}{4R} \cdot \frac{M^2}{R^3} \cdot 4\pi R^2 = -\frac{V^2 M^2 4\pi}{4R^4} \cdot R^2 = -\frac{\pi M^2 V^2}{R^2}.$$

Аргументация:

- $P^2 \cdot S = 4\pi \frac{M^2}{R}$ безразмерная мера общего количества материи на оболочке.
- Умножение на g даёт силу с зависимостью R^{-2} , напоминающей закон обратных квадратов гравитации.
- Размерность $F = M/c^2$, а не кг·м/ c^2 , так как масса не определена; это промежуточная величина в нашей модели.

8.6 Заключение

Сила $F = -\frac{\pi M^2 V^2}{R^2}$ описывает притяжение сферической оболочки к центру, обусловленное градиентом линейной плотности. Зависимость R^{-2} подчёркивает аналогию с классической гравитацией, хотя масса остаётся неопределённой и будет рассмотрена в последующих разделах.

9 Распределение плотности вблизи центра кластера

Одной из ключевых задач модели является описание поведения плотности вблизи центра кластера. Исходная функция $P(R) = \frac{M}{R^{1.5}}$ предсказывает бесконечный рост плотности при $R \to 0$, что физически нереалистично. Кроме того, градиент $\frac{dP}{dR} = -\frac{3M}{2R^{2.5}}$ становится крайне крутым у центра, указывая на нелинейную зависимость и изменение направления градиента в пространстве. Простая статистика здесь неприменима: в ближайшей окрестности начала движения материи её траектории создают самопрепятствия, особенно выраженные ближе к центру. Это ограничивает рост плотности, формируя конечный пик, напоминающий вершину нормального распределения. Мы предлагаем модифицированную функцию плотности и анализируем её приблизительно.

9.1 Предложенная функция плотности

Чтобы устранить сингулярность и учесть саморегуляцию, вводим функцию:

$$P(R) = P_0 \cdot \left(\frac{R_0}{R + R_0}\right)^{1.5},$$

где P_0 — конечная плотность в центре (R = 0), R_0 — параметр радиуса ядра, сглаживающий распределение.

Свойства:

• В центре (R = 0):

$$P(0) = P_0 \cdot \left(\frac{R_0}{0+R_0}\right)^{1.5} = P_0,$$

плотность конечна, сингулярность устранена.

• На больших расстояниях ($R \gg R_0$):

$$P(R) \approx P_0 \cdot \frac{R_0^{1.5}}{R^{1.5}} = \frac{M}{R^{1.5}},$$

где $M = P_0 R_0^{1.5}$, что соответствует исходной модели.

• Функция непрерывно убывает от P_0 до $\frac{M}{R^{1.5}}$.

9.2Градиент и кривизна

Для анализа формы графика вычислим градиент и кривизну:

• Градиент:

$$\frac{dP}{dR} = P_0 \cdot 1.5 \cdot \frac{R_0^{1.5} \cdot (-1)}{(R+R_0)^{2.5}} = -\frac{1.5P_0R_0^{1.5}}{(R+R_0)^{2.5}}.$$

- При R = 0: $\frac{dP}{dR} = -\frac{1.5P_0}{R_0}$, конечное значение. При больших R: $\frac{dP}{dR} \approx -\frac{1.5M}{R^{2.5}}$, как в исходной модели.
- Кривизна (вторая производная):

$$\frac{d^2 P}{dR^2} = 1.5 P_0 R_0^{1.5} \cdot 2.5 \cdot (R+R_0)^{-3.5} = \frac{3.75 P_0 R_0^{1.5}}{(R+R_0)^{3.5}}.$$

- При R = 0: $\frac{d^2 P}{dR^2} = \frac{3.75P_0}{R_0^2} > 0$, положительная кривизна, пик.
- С ростом *R* кривизна уменьшается, градиент сглаживается.

Физическая интерпретация 9.3

Представим, что материя исходит из всех точек сферы радиусом R, как из одной точки R = 0. Ближе к центру траектории пересекаются чаще: площадь сферы $4\pi R^2$ уменьшается, а плотность потоков растёт. Это создаёт самопрепятствия, замедляющие выход материи. Чем меньше R, тем сильнее эффект, что ограничивает плотность значением P_0 . Термин $R + R_0$ в знаменателе отражает это сглаживание, предотвращая бесконечный рост. Можно образно сказать, что ближе к центру материя статистически начинает чаще сталкиваться сама с собой, чем это должно быть, заменяя сама себе отчасти градиент линейной плотности.

9.4 Приближение у центра

Разложим P(R) в ряд Тейлора при $R \to 0$:

$$P(R) = P_0 \cdot \left(1 + \frac{R}{R_0}\right)^{-1.5} \approx P_0 \cdot \left(1 - 1.5\frac{R}{R_0} + 1.875\frac{R^2}{R_0^2}\right).$$

Сравним с нормальным распределением $P_0 \exp\left(-\frac{R^2}{2\sigma^2}\right) \approx P_0 \left(1 - \frac{R^2}{2\sigma^2}\right)$. Квадратичный член $1.875 \frac{R^2}{R_0^2}$ даёт $\sigma^2 = \frac{R_0^2}{3.75}$, указывая на сходство с гауссовым пиком, хотя линейный член показывает отклонение от чистой нормальности.

9.5 Ускорение

Ускорение, связанное с градиентом:

$$g = \frac{V^2}{6} \cdot \frac{\frac{dP}{dR}}{P} = \frac{V^2}{6} \cdot \frac{-\frac{1.5P_0R_0^{1.5}}{(R+R_0)^{2.5}}}{P_0 \cdot \left(\frac{R_0}{R+R_0}\right)^{1.5}} = -\frac{V^2}{4(R+R_0)}.$$

- При R = 0: $g = -\frac{V^2}{4R_0}$, конечное.
- При больших $R: g \approx -\frac{V^2}{4R}$, как в предыдущем разделе.

9.6 Вывод

Модифицированная плотность $P(R) = P_0 \cdot \left(\frac{R_0}{R+R_0}\right)^{1.5}$ устраняет сингулярность, достигая пика P_0 в центре и переходя к $R^{-1.5}$ на больших расстояниях. Самопрепятствия у центра, вызванные сходимостью траекторий, формируют конечный профиль, близкий к вершине нормального распределения с приблизительной дисперсией $\sigma^2 = \frac{R_0^2}{3.75}$. Это согласуется с равновесием кластера, где частота столкновений $\nu(R) \propto P(R)$.

10 Характерный диаметр скопления

Мы исследуем существование диаметра D, при котором время прохождения волны материи через центр равно времени её движения по сфере радиуса $\frac{D}{2}$. Это гипотеза, и точная математика сложна из-за нелинейного градиента плотности у центра.

10.1 Скорость волнового процесса

Единственная базовая скорость в модели — V. Скорость распространения сферического волнового фронта зависит от плотности:

$$v(R) = \frac{V}{2} \cdot \frac{P(1)}{P(R)}$$

где $\frac{V}{2}$ — максимальная скорость при минимальной плотности P(1) = 1, а с ростом P(R) скорость падает.

Аргументация:

- $v = \frac{V}{2}$ достигается при P(R) = P(1), что задаёт масштаб.
- Обратно пропорциональная зависимость от P(R) согласуется с вычислением g в главе 1.
- Это приближение, принятое как гипотеза.

10.2 Модель плотности

$$P(R) = \frac{M}{(R+R_0)^{1.5}}, \quad P(1) = \frac{M}{(1+R_0)^{1.5}} = 1, \quad M = (1+R_0)^{1.5}.$$
$$v(R) = \frac{V}{2} \cdot \frac{(R+R_0)^{1.5}}{(1+R_0)^{1.5}}.$$

10.3 Радиальное время

$$t_{\rm pag} = 2 \int_0^{\frac{D}{2}} \frac{dx}{v(x)} = \frac{8(1+R_0)^{1.5}}{V} \left[\frac{1}{\sqrt{R_0}} - \frac{1}{\sqrt{\frac{D}{2}} + R_0} \right].$$

10.4 Тангенциальное время

$$t_{\text{танг}} = \frac{\pi \cdot \frac{D}{2}}{v\left(\frac{D}{2}\right)} = \frac{\pi D}{V} \cdot \frac{(1+R_0)^{1.5}}{\left(\frac{D}{2}+R_0\right)^{1.5}}.$$

10.5 Условие равенства

$$8\left[\frac{1}{\sqrt{R_0}} - \frac{1}{\sqrt{\frac{D}{2} + R_0}}\right] = \frac{\pi D}{\left(\frac{D}{2} + R_0\right)^{1.5}}$$

Для $\delta = \frac{D}{2R_0}$:

$$8\left[1 - \frac{1}{\sqrt{1+\delta}}\right] = \frac{2\pi\delta}{(1+\delta)^{1.5}}$$

При $\delta \approx 0.8$, $D \approx 1.6 R_0$.

10.6 Вывод

Гипотеза подтверждается: $D \approx 1.6R_0$ — возможный диаметр, зависящий от R_0 . Это приближение, требующее уточнения градиента у центра, но указывающее на потенциальный размер стабильной структуры в модели.

Взаимодействие двух скоплений

11 Взаимодействие одинаковых скоплений

В данной главе исследуется взаимодействие двух скоплений плотности, расположенных на определённом расстоянии друг от друга, через поверхность, разделяющую их поля плотности. Рассматриваются два одинаковых скопления с параметром *m*, соединённых отрезком, через середину которого проведена нормальная плоскость. Эта плоскость служит границей, на которой градиент плотности в проекции на ось, соединяющую центры скоплений, равен нулю, что предотвращает неуравновешенное перетекание материи-волн.

Целью является вычисление силы взаимодействия одного скопления с полем другого через эту разделяющую плоскость. Для этого определяются плотность и ускорение в точке на плоскости, после чего интегрируется поток силы по всей поверхности.

Рассмотрим два скопления с центрами в точках M_1 и M_2 , на расстоянии r друг от друга. Линейная плотность каждого скопления при R = 1 равна m. Плоскость разделения проходит через середину отрезка M_1M_2 и перпендикулярна ему. В точке A на этой плоскости:

$$P_{A} = \frac{m}{\left(\frac{r/2}{\cos a}\right)^{1.5}} = \frac{m\cos^{1.5}a}{\left(\frac{r}{2}\right)^{1.5}},$$
$$g_{A} = \frac{V^{2}}{4\left(\frac{r/2}{\cos a}\right)} = \frac{V^{2}\cos a}{2r},$$

где *а* — угол, определяющий геометрию взаимодействия.

Интеграл потока силы через плоскость:

$$S = \int_0^{\pi/2} \left(\frac{8m^2 \cos^3 a}{r^3}\right) \cdot \left(\frac{V^2 \cos^2 a}{2r}\right) \cdot \left(\frac{\pi r^2}{2} \cdot \frac{\sin a}{\cos^3 a}\right) da = \frac{2\pi m^2 V^2}{3r^2}.$$

Таким образом, сила притяжения между скоплениями:

$$F = \frac{2\pi m^2 V^2}{3r^2}.$$

12 Взаимодействие разных скоплений

В этом разделе мы подробно исследуем взаимодействие двух скоплений волн с различными параметрами, такими как m_1 и m_2 , которые можно интерпретировать как аналоги массы в нашей модели. Эти скопления расположены на расстоянии r друг от друга, и их взаимодействие происходит через специальную поверхность, которую мы обозначим S. Мы шаг за шагом разберём, как определить эту поверхность, как вычислить силу притяжения между скоплениями и как проверить наши результаты с помощью численных методов. Наша цель — не просто получить формулу, но и объяснить каждый этап так, чтобы читатель мог проследить логику и понять физический смысл.

12.1 Описание скоплений и их плотности

Представим два скопления волн — A и B, центры которых находятся в точках \mathbf{c}_1 и \mathbf{c}_2 . Расстояние между центрами:

$$r = |\mathbf{c}_2 - \mathbf{c}_1|.$$

Каждое скопление описывается функцией линейной плотности, которая показывает, сколько материи приходится на единицу длины в зависимости от расстояния до центра. Мы выбрали следующую форму:

$$P_i(\mathbf{x}) = \frac{m_i}{|\mathbf{x} - \mathbf{c}_i|^{1.5}}, \quad i = 1, 2,$$

где:

- х координаты произвольной точки в пространстве,
- \mathbf{c}_i центр *i*-го скопления,
- m_i параметр скопления, который мы пока называем "аналогом массы", так как он определяет интенсивность поля плотности,
- $|\mathbf{x} \mathbf{c}_i|$ расстояние от точки \mathbf{x} до центра \mathbf{c}_i ,
- показатель 1.5 это гипотеза, выбранная для описания убывания плотности с расстоянием; он может быть скорректирован в будущем, но пока мы работаем с ним.

Почему именно $R^{-1.5}$? Это предположение основано на предыдущих разделах, где такая зависимость обеспечивала баланс между расширением и сжатием кластера. Плотность P_i измеряется в м⁻¹, что соответствует нашей интерпретации линейной плотности как количества материи на единицу длины.

12.2 Определение поверхности взаимодействия

Чтобы найти силу взаимодействия, нам нужно понять, как эти два скопления "чувствуют" друг друга. Мы предположили, что взаимодействие происходит через поверхность S, на которой градиенты плотностей P_1 и P_2 уравновешивают друг друга. Градиент — это вектор, который показывает, как быстро меняется плотность в разных направлениях, и его величина говорит о скорости этого изменения.

Найдём градиент $P_i(\mathbf{x})$. Для функции $P_i(\mathbf{x}) = m_i |\mathbf{x} - \mathbf{c}_i|^{-1.5}$ используем правила дифференцирования:

$$\nabla P_i(\mathbf{x}) = \nabla \left(m_i |\mathbf{x} - \mathbf{c}_i|^{-1.5} \right).$$

Поскольку m_i — константа, выносим её за знак градиента:

$$\nabla P_i(\mathbf{x}) = m_i \nabla \left(|\mathbf{x} - \mathbf{c}_i|^{-1.5} \right).$$

Для скалярной функции $f(r) = r^{-1.5}$, где $r = |\mathbf{x} - \mathbf{c}_i|$, градиент:

$$\nabla f(r) = \frac{df}{dr} \cdot \frac{\mathbf{x} - \mathbf{c}_i}{|\mathbf{x} - \mathbf{c}_i|}.$$

Производная $f(r) = r^{-1.5}$:

$$\frac{df}{dr} = -1.5r^{-2.5} = -\frac{1.5}{r^{2.5}}.$$

Подставляем:

$$\nabla P_i(\mathbf{x}) = m_i \left(-\frac{1.5}{|\mathbf{x} - \mathbf{c}_i|^{2.5}} \right) \cdot \frac{\mathbf{x} - \mathbf{c}_i}{|\mathbf{x} - \mathbf{c}_i|}.$$

Упрощаем:

$$\nabla P_i(\mathbf{x}) = -\frac{1.5m_i}{|\mathbf{x} - \mathbf{c}_i|^{2.5}} \cdot \frac{\mathbf{x} - \mathbf{c}_i}{|\mathbf{x} - \mathbf{c}_i|}$$

Модуль градиента — это величина вектора, без учёта направления:

$$|\nabla P_i(\mathbf{x})| = \frac{1.5m_i}{|\mathbf{x} - \mathbf{c}_i|^{2.5}},$$

так как $\left| \frac{\mathbf{x} - \mathbf{c}_i}{|\mathbf{x} - \mathbf{c}_i|} \right| = 1.$

Теперь определим поверхность S. Мы хотим, чтобы модули градиентов были равны:

$$|\nabla P_1(\mathbf{x})| = |\nabla P_2(\mathbf{x})|$$

Подставляем:

$$\frac{1.5m_1}{|\mathbf{x} - \mathbf{c}_1|^{2.5}} = \frac{1.5m_2}{|\mathbf{x} - \mathbf{c}_2|^{2.5}}.$$

Коэффициенты 1.5 сокращаются:

$$\frac{m_1}{|\mathbf{x} - \mathbf{c}_1|^{2.5}} = \frac{m_2}{|\mathbf{x} - \mathbf{c}_2|^{2.5}}.$$

Умножим обе части на $|\mathbf{x} - \mathbf{c}_1|^{2.5} |\mathbf{x} - \mathbf{c}_2|^{2.5}$ (предполагая, что они не равны нулю):

$$m_1 |\mathbf{x} - \mathbf{c}_2|^{2.5} = m_2 |\mathbf{x} - \mathbf{c}_1|^{2.5}.$$

Преобразуем:

$$|\mathbf{x} - \mathbf{c}_1|^{2.5} = \frac{m_1}{m_2} |\mathbf{x} - \mathbf{c}_2|^{2.5}.$$

Или:

$$\left(\frac{|\mathbf{x} - \mathbf{c}_1|}{|\mathbf{x} - \mathbf{c}_2|}\right)^{2.5} = \frac{m_1}{m_2}.$$

Это уравнение описывает поверхность S. Если $m_1 = m_2$, то $|\mathbf{x}-\mathbf{c}_1| = |\mathbf{x}-\mathbf{c}_2|$, и S становится плоскостью, равноудалённой от \mathbf{c}_1 и \mathbf{c}_2 . Но если $m_1 \neq m_2$, поверхность искривляется, и её форма зависит от отношения m_1/m_2 .

12.3 Формулировка силы взаимодействия

Сила притяжения между скоплениями определяется как интеграл по поверхности S:

$$F = m_1 m_2 \int_S \frac{1}{|\mathbf{x} - \mathbf{c}_1|^{1.5} |\mathbf{x} - \mathbf{c}_2|^{1.5}} \, dS.$$

Давайте разберём, откуда взялась эта формула. Мы предположили, что сила зависит от плотностей обоих скоплений в точках поверхности S:

$$P_1(\mathbf{x}) = \frac{m_1}{|\mathbf{x} - \mathbf{c}_1|^{1.5}}, \quad P_2(\mathbf{x}) = \frac{m_2}{|\mathbf{x} - \mathbf{c}_2|^{1.5}}.$$

Произведение P_1P_2 даёт:

$$P_1(\mathbf{x})P_2(\mathbf{x}) = \frac{m_1m_2}{|\mathbf{x} - \mathbf{c}_1|^{1.5}|\mathbf{x} - \mathbf{c}_2|^{1.5}}$$

Интегрируя это по S, мы суммируем вклад каждой точки поверхности в общую силу. Коэффициент m_1m_2 вынесен за интеграл, так как он константа для данных скоплений. Мы также предполагаем, что на больших расстояниях сила принимает вид:

$$F \approx \frac{2\pi m_1 m_2 V^2}{3r^2},$$

где V — характеристическая скорость волн (например, из предыдущих разделов). Это выражение напоминает закон обратных квадратов, как в гравитации, и коэффициент $\frac{2\pi V^2}{3}$ был получен ранее для одинаковых скоплений, а теперь обобщён.

12.4 Вычисление интеграла по поверхности

Точное вычисление интеграла по криволинейной поверхности сложно, поэтому мы упростим задачу, аппроксимировав *S* плоскостью. Возьмём пример:

- $m_1 = 1$,
- $m_2 = 2$,
- r = 1,
- $\mathbf{c}_1 = (0, 0, 0),$
- $\mathbf{c}_2 = (1, 0, 0),$
- V = 1.

Уравнение поверхности:

$$|\mathbf{x}|^{2.5} = \frac{1}{2}|\mathbf{x} - (1,0,0)|^{2.5}.$$

Чтобы найти положение плоскости, рассмотрим точки вдоль оси x (где y = 0, z = 0):

$$x^{2.5} = \frac{1}{2}(1-x)^{2.5}.$$

Возведём обе части в степень $\frac{1}{2.5} = 0.4$:

$$\frac{x}{1-x} = \left(\frac{1}{2}\right)^{0.4} \approx 0.574.$$

Обозначим $t = \frac{1-x}{x}$, тогда:

$$\frac{1}{t} = 0.574 \implies t \approx 1.741.$$

Решаем:

$$1 - x = 1.741x \implies 1 = x(1 + 1.741) = 2.741x \implies x \approx 0.365$$

Итак, S аппроксимируется плоскостью x = 0.365.

Теперь вычислим интеграл:

$$I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{|\mathbf{x}|^{1.5} |\mathbf{x} - (1, 0, 0)|^{1.5}} \, dy \, dz,$$

где $\mathbf{x} = (0.365, y, z)$. Расстояния:

$$|\mathbf{x}| = \sqrt{0.365^2 + y^2 + z^2} = \sqrt{0.133225 + y^2 + z^2},$$
$$|\mathbf{x} - (1, 0, 0)| = \sqrt{(0.365 - 1)^2 + y^2 + z^2} = \sqrt{0.403225 + y^2 + z^2}.$$

Перейдём в полярные координаты: $y = \rho \cos \theta$, $z = \rho \sin \theta$, $dy dz = \rho d\rho d\theta$, θ от 0 до 2π , ρ от 0 до ∞ :

$$I = \int_0^{2\pi} \int_0^\infty \frac{\rho}{(0.133225 + \rho^2)^{0.75} (0.403225 + \rho^2)^{0.75}} \, d\rho \, d\theta.$$

Интеграл по θ даёт 2π , так как функция не зависит от θ :

$$I = 2\pi \int_0^\infty \frac{\rho}{(0.133225 + \rho^2)^{0.75} (0.403225 + \rho^2)^{0.75}} \, d\rho.$$

Этот интеграл сложен для аналитического решения, поэтому используем численный метод. Сделаем замену $u = \rho^2$, тогда $\rho = \sqrt{u}$, $d\rho = \frac{du}{2\sqrt{u}}$:

$$I = 2\pi \int_0^\infty \frac{\sqrt{u}}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{(0.133225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0.75}} \cdot \frac{du}{2\sqrt{u}} = \pi \int_0^\infty \frac{du}{(0.133225 + u)^{0.75} (0.403225 + u)^{0$$

Численное вычисление (например, в Python с scipy.integrate.quad) даёт $I \approx 2.135$. Тогда:

$$F = m_1 m_2 I = 1 \cdot 2 \cdot 2.135 \approx 4.27.$$

12.5 Сравнение с аналитическим результатом

Аналитическая формула:

$$F = \frac{2\pi m_1 m_2 V^2}{3r^2}.$$

Подставим значения:

$$F = \frac{2\pi \cdot 1 \cdot 2 \cdot 1^2}{3 \cdot 1^2} = \frac{4\pi}{3} \approx 4.1888.$$

Сравним:

- Численно: $F \approx 4.27$,
- Аналитически: $F \approx 4.1888$,
- Разница: 4.27 4.1888 = 0.0812, или около 2%.

Погрешность мала и объясняется тем, что r = 1 не является "большим" расстоянием, и аппроксимация S плоскостью не идеальна. На больших r результаты будут ближе.

12.6 Вывод

Мы показали, что сила взаимодействия между скоплениями с разными m_1 и m_2 может быть вычислена через интеграл по поверхности S, определённой равенством градиентов. Для больших расстояний:

$$F \approx \frac{2\pi m_1 m_2 V^2}{3r^2},$$

что напоминает гравитацию. Численное интегрирование подтверждает эту формулу с небольшой погрешностью, демонстрируя, что модель применима для описания взаимодействия разных скоплений.

13 Физическая интерпретация силы взаимодействия

Выражение для силы взаимодействия между двумя скоплениями волн, полученное ранее как:

$$F = \frac{2\pi m_1 m_2 V^2}{3r^2}.$$

можно интерпретировать как силу притяжения, аналогичную гравитационной в классической механике. Здесь m_1 и m_2 — параметры скоплений, которые мы назвали аналогами массы, V — характеристическая скорость распространения волн материи, а r — расстояние между центрами скоплений. Давайте разберём, почему это выражение выглядит так знакомо и что оно говорит о природе взаимодействия.

13.1 Роль параметра *m* как аналога массы

Заметим, что *m* входит в формулу квадратично (m_1m_2) , точно так же, как масса в законе притяжения $F = G \frac{M_1M_2}{r^2}$. Это не случайно. В нашей модели линейная плотность $P_i(\mathbf{x}) = \frac{m_i}{|\mathbf{x}-\mathbf{c}_i|^{1.5}}$ определяет, как материя распределена вокруг центра скопления. Чем больше m_i , тем выше плотность вблизи центра, и тем сильнее скопление влияет на окружающее пространство. Но почему *m* ведёт себя как масса? Ответ может лежать в том, как волны взаимодействуют в трёхмерном пространстве. Если представить идеальную сферическую волну, расходящуюся из одной точки, то для её смещения достаточно изменить плотность только вдоль одного направления — например, вдоль оси между центрами скоплений. Это изменение плотности в одном измерении, усиленное трёхмерным распространением волн, создаёт эффект, эквивалентный притяжению массы. Таким образом, *m* становится мерой интенсивности волнового процесса, а сила F — результатом их соприкосновения.

13.2 Гравитация как соприкосновение границ скоплений

Гравитационное взаимодействие в этой модели можно рассматривать как результат контакта границ двух скоплений волн через поверхность *S*, где градиенты плотностей уравновешены:

$$|\nabla P_1(\mathbf{x})| = |\nabla P_2(\mathbf{x})|.$$

Каждое скопление бесконечно в том смысле, что его плотность $P_i(\mathbf{x})$ убывает с расстоянием, но никогда не становится нулевой. Это означает, что волны от одного скопления проникают в область другого, и их взаимодействие происходит не в одной точке, а по всей поверхности S. Для скоплений с разными m_1 и m_2 эта поверхность криволинейна, проходя через точки, где градиенты плотности одинаковы по величине, но противоположны по направлению вдоль нормали к поверхности:

$$\mathbf{n} \cdot \nabla P_1(\mathbf{x}) = -\mathbf{n} \cdot \nabla P_2(\mathbf{x}).$$

Сила притяжения зависит от значений P_1 и P_2 на S и от градиентов, направленных к центрам скоплений. Это похоже на то, как две сферы влияют друг на друга через общую границу, где давление или напряжение плотности создаёт притяжение.

13.3 Сравнение гравитации с модулированными волнами

Однако гравитация — это лишь слабая составляющая взаимодействия. На поверхности *S* значения плотностей P_1 и P_2 и их градиентов малы, так как *S* находится далеко от центров скоплений (при больших r). Например, если $r = 10^6$ м, то $P_i \propto r^{-1.5}$ уменьшается на порядок 10^{-9} , а градиент $|\nabla P_i| \propto r^{-2.5}$ — на 10^{-15} . Это делает гравитацию на десятки порядков слабее других возможных взаимодействий, таких как модулированные волны плотности.

Модулированные волны — это волны с несимметричным профилем, которые возникают в сложных циклических процессах внутри ограниченного объёма. Представим сферическую волну с плотностью, которая не просто убывает как $r^{-1.5}$, а имеет гребни и впадины, меняющиеся вдоль радиуса. Такие волны не переносят плотность в среднем, если нет встречного взаимодействия, а лишь колеблются вокруг некоторого среднего радиуса. Эти колебания накладываются на всё пространство другого скопления, создавая более сильное взаимодействие, чем простое убывание плотности.

13.4 Взаимодействие профилей волн и поля зарядов

Рассмотрим два скопления с модулированными профилями:

13.5 Одинаковая ориентация профилей:

Если гребни волн обоих скоплений направлены вдоль радиуса от своих центров одинаково, то между центрами профили противоположны (гребень встречает гребень), а за центрами - одинаковы. При колебаниях этих профилей центр плотности каждой частицы будет отталкиваться от другой.

13.6 Разная ориентация профилей:

Если у одного скопления гребень направлен наружу, а у другого внутрь, то между центрами профили совпадают, а за центрами — противоположны. Это приводит к притяжению центров плотности.

Эти взаимодействия намного сильнее гравитации, так как зависят от локальных колебаний, а не только от среднего убывания плотности. Мы назовём их "полем зарядов", предполагая, что противоположные профили волн соответствуют противоположным зарядам, а одинаковые - одноимённым.

13.7 Гипотеза о происхождении зарядов

Представим, что поля зарядов возникают из разделения единой нейтральной волновой структуры. Изначально вокруг общего центра существуют циклические процессы, создающие два типа профилей плотности: один с гребнями наружу, другой внутрь. При сильном центральном столкновении (например, с большим импульсом) или под действием внешнего поля эта структура распадается на две частицы с противоположными профилями. Материя, движущаяся с постоянной скоростью V сложными замкнутыми траекториями внутри ограниченной области, формирует эти волны.

13.8 Движение

Движение в пространстве - это всегда перенос импульса скоплением или волновым фронтом со скоростью от 0 до V/2. За счёт общего движения всего устойчивого статистическоговолнового процесса относительно пространства волны материи вокруг общего центра будут перераспределяться таким образом, что время перемещения материи из центра скопления в любую точку этой частицы и обратно будет одинаковым для всех симметричных точек скопления. Иначе говоря, любое скопление плотности всегда покоится в своей системе отсчёта, связанной со своим центром. В действительности двигающийся импульс скопления делает волны материи ближе друг к другу перед скоплением и дальше друг от друга позади движущегося скопления. Здесь нужно сказать, что пространство всегда будет заполнено хаотично движущейся с единой скоростью V материей большей или меньшей плотности и она имеет «свою массу». Сформированные в устойчивые скопления статистические-волновые процессы можно сравнить с видимыми волнами на поверхности этого океана хаоса.

13.9 Движение с максимальной скоростью

При столкновении и изменении волновых процессов часть импульса и массы может не войти в новые формы волн, а отделиться как остаток, уносясь со скоростью V/2 в направлении результирующего импульса. Этой частице не нужно ускорение, так как такой волновой процесс изначально двигается с максимальной скоростью волны для окружающей плотности. Этот остаток несимметричен и под действием внутренних сил он пытается собраться в частицу, но, двигаясь с максимальной скоростью, проходит через центр как

волна, сохраняя колебания, поперечные направлению движения. Двигаясь с максимальной скоростью V/2 в окружающей среде, такая частица сохраняет импульс и энергию колебаний, путешествуя через "океан" волн материи, где бесконечно малые порции движутся со скоростью V.

13.10 Вывод

Пространство всегда заполнено материей с некоторой плотностью. В модели показано, что скопления материи – это упорядоченные статистикой области большей плотности на общем фоне бесконечного движения. В общем всё пространство наполняется материей и должно иметь массу по отношению к областям с меньшей плотностью. Все наблюдаемые процессы характеризуются наличием большей по сравнению с окружением плотностью материи. Максимальная скорость движения волны или скопления V/2. Видно, как скопления материи замедляют скорость волновых процессов вблизи в зависимости от расстояний. Любое скопление не имеет границ. Формула $F = \frac{2\pi m_1 m_2 V^2}{3r^2}$ описывает гравитационное взаимодействие как слабое соприкосновение границ скоплений через поверхность S. Однако модулированные волны плотности с несимметричными профилями создают более сильные поля зарядов, представляющие собой сферические волны плотности в пространстве, колеблющиеся радиально, где притяжение или отталкивание создаётся наложением волн повсему объёму и зависит от ориентации профилей. Гипотеза о разделении нейтральной структуры объясняет происхождение таких полей, связывая их с динамикой волновых процессов и остатками столкновений. Это открывает путь к пониманию различий между гравитацией и электромагнитными взаимодействиями в рамках единой волновой модели материи.

Поле материи

14 Переход от моделирования движения материи как бесконечно малых частиц к моделированию поля материи

Перейдём к модели непрерывного поля материи, где пространство однородно заполнено бесконечно делимой субстанцией. В отличие от моделей с дискретными частицами, здесь нет выделенных объектов — материя представлена как непрерывная субстанция, а её движение определяется взаимодействием с окружающим полем через бесконечное число столкновений.

Идея бесконечной делимости порций материи означает, что в каждой точке \mathbf{x} поле \mathbf{M} одновременно "расщепляется"по всем направлениям. Это делает \mathbf{F} интегралом по всем возможным ω , что заменяет дискретное событие столкновения непрерывным процессом.

В каждой точке траектории порция материи сталкивается с другими порциями, что изменяет её направление движения. Эти столкновения не дискретны, а происходят непрерывно, и их результат определяется распределением направлений, заданным в начале исследования. Вместо случайных флуктуаций, которые характерны для дискретных систем, мы предполагаем, что порция материи бесконечно делима. Это означает, что из начальной точки 0 порция "расщепляется"и одновременно проходит по всем возможным траекториям в пространстве. Такой подход напоминает интеграл по траекториям Фейнмана в квантовой механике, однако в нашей модели он применяется в классическом и детерминированном смысле. Поскольку порция движется по всем путям, её среднее поведение становится гладким и предсказуемым, а флуктуации усредняются до нуля. Это позволяет описывать динамику поля $\mathbf{M}(\mathbf{x},t)$ с помощью дифференциальных уравнений, а не стохастических процессов.

Таким образом, в непрерывной модели мы сохраняем физическую идею: импульс **М** влияет на направление движения после взаимодействия, но это выражается через полевое уравнение, а не через дискретное событие.

В каждом разделе мы будем сравнивать два подхода: дискретный (модель частиц) и непрерывный (поле материи), подчёркивая их математические отличия и сходства. Это позволит читателю проследить эволюцию модели и понять её математические основы.

14.1 Дискретный подход: частицы в пространстве

В дискретной модели пространство \mathbb{R}^3 рассматривается как пустое, за исключением множества частиц, каждая из которых характеризуется положением $\mathbf{x}_i(t)$ и скоростью $\mathbf{v}_i(t)$, где i — индекс частицы, t — время. Каждая частица имеет фиксированную скорость $|\mathbf{v}_i| = V$, но направление \mathbf{v}_i может меняться при столкновениях. Плотность материи в точке \mathbf{x} определяется как:

$$\rho(\mathbf{x},t) = \sum_{i} m_i \delta(\mathbf{x} - \mathbf{x}_i(t)),$$

где m_i — масса частицы, δ — дельта-функция Дирака, а сумма берётся по всем частицам.

Общее количество материи в объёме V вычисляется как:

$$M_V(t) = \int_V \rho(\mathbf{x}, t) \, d^3 \mathbf{x} = \sum_{i \in V} m_i.$$

14.2 Непрерывный подход: поле материи

В непрерывной модели пространство полностью заполнено материей, описываемой векторным полем $\mathbf{M}(\mathbf{x},t) = \rho(\mathbf{x},t)\mathbf{v}(\mathbf{x},t)$, где $\rho(\mathbf{x},t)$ — скалярная плотность (в м⁻³), а $\mathbf{v}(\mathbf{x},t)$ — вектор скорости с $|\mathbf{v}| = V$. Здесь $\rho(\mathbf{x},t) = |\mathbf{M}(\mathbf{x},t)|$, а \mathbf{M} интерпретируется как поток материи в каждой точке.

Общее количество материи в объёме V:

$$M_V(t) = \int_V \rho(\mathbf{x}, t) \, d^3 \mathbf{x}$$

где интеграл берётся по непрерывной плотности, а не по дискретным частицам.

14.3 Сравнение подходов

- **Материя**: - **Дискретный**: конечное число частиц с точечной плотностью $\rho = \sum m_i \delta(\mathbf{x} - \mathbf{x}_i)$. - **Непрерывный**: гладкое поле $\rho(\mathbf{x}, t)$, равномерно распределённое в пространстве. - **Математика**: - **Дискретный**: суммы по частицам, локальные концентрации материи. - **Непрерывный**: интегралы по объёму, глобальное распределение. - **Физика**: дискретный подход удобен для моделирования отдельных объектов, непрерывный — для описания однородной среды.

15 Динамика движения

15.1 Дискретный подход: движение частиц

Движение частиц определяется стохастическими уравнениями. Предположим, что частицы испытывают случайные столкновения, изменяющие их траектории. Для каждой ча-

стицы:

$$d\mathbf{x}_i(t) = \mathbf{v}_i(t)dt,$$

где $\mathbf{v}_i(t)$ обновляется при столкновениях. Если столкновения моделируются как броуновское движение:

$$d\mathbf{v}_i(t) = \sigma d\mathbf{W}_i(t),$$

где $\mathbf{W}_i(t)$ — винеровский процесс, σ — коэффициент случайного шума. Однако в нашей модели $|\mathbf{v}_i| = V$, и направление меняется дискретно при столкновениях.

15.2 Непрерывный подход: эволюция поля

Динамика поля $\mathbf{M}(\mathbf{x},t)$ описывается уравнением в частных производных:

$$\frac{\partial \mathbf{M}}{\partial t} + \nabla \cdot (\mathbf{v} \otimes \mathbf{M}) = \mathbf{F}(\mathbf{M}, \nabla \mathbf{M}),$$

где $\mathbf{v} \otimes \mathbf{M}$ — тензор потока, а \mathbf{F} — член, моделирующий непрерывные взаимодействия. Уравнение сохранения массы:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0.$$

15.3 Сравнение подходов

- **Уравнения**: - **Дискретный**: стохастические уравнения для $\mathbf{x}_i(t)$, $\mathbf{v}_i(t)$. - **Непрерывный**: детерминированные уравнения для $\mathbf{M}(\mathbf{x},t)$. - **Движение**: - **Дискретный**: траектории частиц — случайные блуждания с конечной длиной пробега. - **Непрерывный**: плавное изменение поля, траектории усреднены по всем направлениям. - **Природа**: дискретный подход стохастичен, непрерывный — гладкий и предсказуемый.

16 Столкновения и взаимодействия

16.1 Дискретный подход: дискретные столкновения

Рассмотрим столкновение двух частиц с потоками $\mathbf{M}_1 = \rho_1 \mathbf{v}_1 \Delta V$ и $\mathbf{M}_2 = \rho_2 \mathbf{v}_2 \Delta V$. Сохранение импульса: $\mathbf{P} = \mathbf{M}_1 + \mathbf{M}_2,$

сохранение массы:

$$M = |\mathbf{M}_1| + |\mathbf{M}_2|.$$

После столкновения материя распределяется по сферической поверхности:

$$\sigma(\mathbf{n}, t) = \frac{M}{4\pi [V(t - t_0)]^2} + \frac{3|\mathbf{P}|}{4\pi [V(t - t_0)]^2 V} (\mathbf{n} \cdot \mathbf{e}_P),$$

где $\mathbf{e}_P = \frac{\mathbf{P}}{|\mathbf{P}|}, \, \mathbf{n}$ — направление.

16.2 Непрерывный подход: непрерывные взаимодействия

В непрерывной модели столкновения встроены в **F**:

$$\mathbf{F}(\mathbf{M}, \nabla \mathbf{M}) = \int_{\Omega} \left[\frac{\rho}{4\pi} + \frac{3|\mathbf{M}|}{4\pi V} (\omega \cdot \mathbf{e}_M) \right] V \omega \, d\omega$$

где Ω — единичная сфера, $\mathbf{e}_M = \frac{\mathbf{M}}{|\mathbf{M}|}$. Это отражает распределение направлений, аналогичное $\sigma(\mathbf{n}, t)$, но в каждой точке пространства.

16.3 Сравнение подходов

- **Механизм**: - **Дискретный**: столкновения — дискретные события с явным распределением σ. - **Непрерывный**: взаимодействия — непрерывный процесс через **F**. -**Распределение**: - **Дискретный**: функция σ зависит от времени и расстояния. -**Непрерывный**: интеграл по направлениям в каждой точке, мгновенный. - **Сохранение**: оба подхода сохраняют импульс, но дискретный — локально, непрерывный глобально.

17 Смещение в градиенте плотности

17.1 Дискретный подход: дрейф частиц

Предположим градиент плотности $P(x) = P_0 + \frac{dP}{dx}x$. Частицы чаще сталкиваются в областях с большим P, что смещает их центр масс:

$$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i(t).$$

Скорость дрейфа зависит от частоты столкновений, пропорциональной Р.

17.2 Непрерывный подход: ускорение поля

Для поля $\rho(\mathbf{x}, t)$ с градиентом $\nabla \rho$:

$$\frac{d\langle \mathbf{x} \rangle}{dt} = \int \mathbf{u}(\mathbf{x}, t) \rho(\mathbf{x}, t) \, d\mathbf{x},$$

где $\mathbf{u} \propto \nabla \rho$. Ускорение:

$$\mathbf{g} = \frac{d^2 \langle \mathbf{x} \rangle}{dt^2} \propto \nabla \rho.$$

17.3 Сравнение подходов

- **Смещение**: - **Дискретный**: статистическое усреднение по частицам. - **Непрерывный**: интеграл по полю. - **Ускорение**: - **Дискретный**: результат случайных столкновений. - **Непрерывный**: детерминированное $\mathbf{g} \propto \nabla \rho$. - **Природа**: дискретный — стохастичен, непрерывный — гладкий.

18 Взаимодействие скоплений

18.1 Дискретный подход: сила между частицами

Для двух скоплений с массами m_1, m_2 сила вычисляется через интеграл потока:

$$F = \frac{2\pi m_1 m_2 V^2}{3r^2}.$$

18.2 Непрерывный подход: сила через поле

Для полей ρ_1, ρ_2 сила — интеграл по поверхности S:

$$F = \int_S \rho_1 \rho_2 \, dS \approx \frac{2\pi m_1 m_2 V^2}{3r^2}$$

18.3 Сравнение подходов

- **Сила**: - **Дискретный**: результат столкновений частиц. - **Непрерывный**: интеграл потоков поля. - **Зависимость**: оба дают $F \propto r^{-2}$.

19 Заключение

Мы показали переход от дискретной модели частиц к непрерывному полю, сохраняя ключевые свойства, такие как гравитационная сила $F \propto r^{-2}$. Предложенная модель интерпретирует гравитацию как результат взаимодействия потоков непрерывного поля материи через поверхности равновесия градиентов. Отсутствие флуктуаций достигается за счёт бесконечной делимости порций и их движения по всем возможным путям, что заменяет случайность детерминированным усреднением.