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Abstract
The article presents a generalization theory of functions of a complex variable for 3-dimensional Euclidean space and for
Minkowski's space: Cauchy's integral theorem, Cauchy's integral formula, its integral representation for derivatives, and Sto ker’s
and Ostrogradsky-Gauss theorems. Also, line and surface integrals were combined and generalized within the framework of the
concept of hypercomplex numbers. A bijection (one-to-one correspondence) was established between multidimensional vectors
and hypercomplex numbers, i.e., the Pauli matrices (i) for 3-dimensional Euclidean space and the Dirac matrices (y) for
Minkowski space were used as hypercomplex numbers and basis vectors. The results of the calculations were used to study the
laws of physics; in particular, dual integration was applied — replacing surface integrals over “time” planes with integration over
“purely spatial” planes. The law of conservation of 4-electromagnetic currents has been proven within the framework of the

Clifford algebra concept.
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1. Introduction

A bijection (one-to-one correspondence) is obvious [1]
between vectors and complex numbers on the plane (E?).
This correspondence does not seem obvious in the case of a
multidimensional space (E", n>2).

In this article, we will consider the relationship between
line and surface integrals in 3- and 4-dimensional Euclidean
(pseudo-Euclidean) spaces within the framework of Clifford
algebra. In this case, we will establish a correspondence
between hypercomplex numbers and Dirac matrices (y'),
which are used as unit vectors in Minkowski's space E*L. We
use the Pauli matrices (o, = y*y°) as a basis in the space E?,
which is a special case of E*1.

The choice of Dirac matrices in 4-dimensional space E*! is
related to the fact that E** has a signature + - - -. In the
zeroth approximation, all laws of physics (special theory of
relativity, quantum mechanics, etc.) occur precisely in
Minkowski space. Therefore, Dirac matrices will be used
both as an orthonormal basis for vector space E*! and as
hypercomplex numbers.

The 3-dimensional Euclidean space has the signature - - -,
but for convenience we will use +++. Therefore, as basis
vectors, we will use the Pauli matrices o; (i=0, 1, 2, 3),
where oy is the identity 2x2 matrix.

2. Results

2.1. Line integrals in 3-dimensional Euclidean space.

Let a positively oriented surface D, bounded by a contour
I, be givenin a 3-dimensional Euclidean space (Figure 1).
The vector normal n to the surface D forms angles a, B, y
with the coordinate axes x, Y, z.

The projections of the surface D on the planes xy, yz, zx are

Dyy, Dyz,, D with contours lyy, lyz, lxx.
Let the vector function R(r)
be giveninaregionV
(volume) bounded by a surface
D:
R(r)=c1X(r)+ o2Y(r)+ o3Z(r)
1
iy | Let us consider the line
A 1$R(r)dl and surface pfPR(r)dS
integrals in this region.
Here
Figure 1 r=(x,Y, z) is the radius
vector;
dl = dx + dy + dz = 610X + c20y + 63dz is an arc element;
dS =dxAdy cosa + dyAdz cosp + dzadx cosy = nds is a
surface element;
N =6162C0Sy + 6203C0Sa + 6301 COSA IS the positively
oriented normal to surface D;
dxAdy =c162 dxdy = icsdxdy
dyAdz = 6,03 dydz =ic; dydz
dzAdx = o301 dzdx =ic, dzdx

V =610/0x + 610/0y + 610/0z is the nabla operator.

00, 01, 02, 63 are Pauli matrices.

Remark 1.

Depending on the expediency and simplicity, we will use
surface integrals of either the first type or the second type,
which, we hope, will not create inconvenience for the reader.

Theorem 1.
The following formulas are valid:
i$R(r)dl = 0, if R(r) is analytic (2.1)
i$R(r)dl = 27 i f(ro) n, ecu R(r) = f(N/(r —rg)  (2.2)
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and

1$Redl = pP(VAR)+dS (3.1)

i$RAdI = pfp(VR)dS (3.2)

* and A are the symbols in the inner and outer product of
vectors [2].
R(r) = f(r)/(r — ro) means that the vector function R(r) has a
pole at the point ro [3].
f(ro) is the value of the function f(r) at the point ro.
i is the imaginary unit.
Remark 2.

For simplicity, we will assume that the region D is simply
connected. We will not dwell on methods for dividing non-
simply connected regions into simply connected ones [4].
Remark 3.

It is obvious that

(VR)dS = (V+R)dS + (VAR)=dS + (VAR)AdS.
But the dimension of (VAR)AdS exceeds the dimension of 3-
dimensional space (>3), i.e., pp(VAR)AdS has no meaning.
Proof.
Surface D is the sum of surfaces Dyy, Dy; and Dx. Therefore,
it is sufficient to prove Theorem 1 on one of the projections,
for example, on Dyy, and then add the integrals over all
projections.

The integral w$Rdl has a coordinate form:

wPRAI = $Redl + 4 $RACI,
Here
wPRedl = 0,y $(Xdx + Ydy) (4.1)
wPRAdI = ic3x,P(Xdy — Ydx) (4.2)
The surface integral has a vector form:
xJI(VR)dxAdy =« JJ (VeR)dxAdy + 5 [f (VAR)=dxAdY,
Here
)] (VeR)dXAdy = icax [ (6x X+ 6yY)dxdy  (5.1)
wlJ (VAR)* dxAdy = coxyJf (0x Y— 8y X)dxdy  (5.2)
1) We transform the line integral x,$Redl (4.1) into the
surface one x, [ (VAR)+dxAdy (5.2):
wPRedl =y, $(c1Xo1dX + 62Yo dy) =
:xyff(Gzay(G:LX) + 610x(02Y))o1020xdy =
= oo( xyJJ (8yX — &,Y)dxdy
or
G0,y $(Xdx + Ydy) = Goxy JJ (ByX — & Y)dxdy (6)
(6) is Green's theorem [5].

Formulas of type (6) are valid also for integrals on
projections Dy, and Dxx.

Since the surface D with contour | is the sum of the
integrals over the surfaces Dyy, Dy;, and D, with contours
Iy, lyz, and I, then, adding the integrals over the projections,
we obtain the equation (3.1).

2) We transform the line integral x, $RAdI (4.2) into the
surface one x, ff (VeR)dxAdy (5.1):
G102 Xysﬁ(Xdy — YdX) = xy¢(01XG2dy + (SzYGldX) =
=y JJ (616x(51X) +02(6y52Y)) o102 dxdy =
= 61624 JJ (6xX + 8y Y)dxdy
or
icaxy$(Xdy — YdX) = i3 x [J (6x X + 6y Y) dxdy (7

Formulas of type (7) are valid also for integrals in
projections Dyx and D.«. Adding the integrals over all
projections Dy, Dy;, and D., we obtain the equation (3.2).

Formulas (3) of Theorem 1 are proven. Formula (3.1) is

Stokes' theorem [6].

To understand the meaning of the formula (3.2), we write it
in the form
1$RAdI = pffdivRdS.

In terms of physics, formula (3.2) means that the vector
field induction (1$RAdI) through a contour | is equal to the
field divergence (p ffdivRdS) through a surface D bounded
by the same contour.

Looking ahead, let us assume that a closed surface D (for
example, a sphere) has a source of divergence inside it (a
“sink” or “source”).

If divR = 6,X + 6,Y > 0, then the induction vector is
directed outward, i.e., the induction vector with n forms an
acute angle. This is the source (the lines of force are directed
away from the sphere). If divR < 0, then the induction vector
is directed inward, i.e., this induction vector forms an obtuse
angle with n. This is a sink (the lines of force are directed
inward into the sphere).

Obviously, if the function R is analytic in the domain D,
then the integrals (3) are equal to zero. Simply put, there is
no source of divergence. (3.2) is a special case of the Gauss-
Ostrogradsky theorem (for a surface).

If the function R(x,y) is analytic (by Cauchy [7]) in D, i.e.,
it does not have special isolated points (poles), then

wPRdl =0 (8)
Indeed, since R(x,y) is defined and bounded at all points of
D, there exists an antiderivative F'r = R(r). Then both it and
the integral (8) are equal to zero over the closed contour:
wPRdl = F [, =0
By adding up all integrals of type (8) over all projections
Dxy, Dyz, and Dy, we obtain the formula (2.1).

Now let us consider the case when the function R(r) in the
domain D has an isolated singular pointr, i.e., a pole of the
type

R=1(r)/(r—rq) 9)
We transform the line integral xy$Rdl:

RAl = @dl: f(r)_f(ro)"'f(ro)dl:
- T—r

XV xy T o Xy o
— Sﬁ Fr)—f(rg) dl-l— Sﬁ Flrg) di
sy TTo 2y TTo

Since (f(r) — f(ro))/(r — ro) is the derivative at r — ro, then
the first integral is equal to zero:
w$fdl =f(r) Pa=0
Now we transform the second integral, more precisely,
w$(r — ro)*dl . By analogy with the theory of complex
analysis, we obtain

SE dal Sﬁd([—lo) _ SE gy Al ag it oy ap dy)
) o L o oy (Tpxt oy og¥)

xy xy
or in the exponential form

Eﬁ dlogdationdy) .
Tpxtidgg ¥

Xy

J-ZTI |r|-explios @)
o riexplios )

de = 2rioz (10)
xy

Equalities of the type (10) also hold for the zx and yz
planes. Adding up all integrals of type (10) over all
projections Dyy, Dy;, and D., we obtain the formula (2.2).

Since the value of the integral (10) is imaginary, equality
(2.2) is satisfied for the imaginary part of the integral |$Rdl.

Formula (2.2) is a generalization of the Cauchy integral
formula [8] to the case of 3-dimensional Euclidean space.
Theorem 1 is proven.



2.2. Surface integrals in 3-dimensional Euclidean space

Let the vector function R(x,y,z) be givenina volume V
bounded by a surface D (Figure 1). We will consider the
surface integral pffRdS=p [/Rnds in this region.

Theorem 2.
The following formulas are valid:
ofPRAS = 0, if R is analytic (11.1)
ofPRAS = 21 i f(ro) n, if R=F(r)/(r—ro) (11.2)
and
ofPRAdS = v [J (V*R)dv (12.1)
offR=dS = v [ff (VAR)-dv (12.2)
Proof.

We have already done the transformation of a line integral
into a surface integral and vice versa in Theorem 1 (formula
(3)). We cut the closed surface D with a plane parallel to xy
and divide it into surface integrals over the “upper” and
“lower” surfaces:

DsﬁiRdS = Dup#RdS +Ddown@RdS
Next, we apply formula (3) of Theorem 1 to both the
“upper” and “lower” integrals. Formula (3) is valid for both
the “lower” and “upper” integrals. By adding the “lower”
and “upper” integrals over all projections Dyy, Dy, and Dy,
we obtain the formula (11).

Since R is analytic everywhere in D, then there is an
antiderivative F (Fy = R). It is also analytic in the domain
D.

According to Theorem 1,

oupJJRAS = 1$FAdI = 0

Formula (11.1) is proven.

Now we consider the case when the function has a pole of
type

R(r) = f(n)/(r —ro)
We transform the surface integrals (11.2):
ff RS — ﬂ f(r) dS ff Fir)—flrod+ flrg)

r=r
X¥un o

dx rndy=

AT
x}’up v
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£ s = [[vreydxndy + Fre). ff
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here

» (13)

I BT ax ndy = [[(vfadxndy,

A¥up A¥up
since lim f(?‘)—f(?”o) df(?”o)
r=rg T 7o dr
respectto r, i.e., the gradient of a vector function.

According to formulas (3), the first integral on the right-
hand side of (13) is transformed into the line integral and is
equal to zero:

upJS (VE(r)) XAy = up [J (VH(r))dS,y = up JJ (VF(r))dS,y =
= upJJ (VAR(r))=dSyy +upJ (V+F(r))dSyy = xy$fedl +5,$fAdl = 0,
since the function f(r) is analytic at all points of D (both in
Dup and in Dgown).

According to formula (2.1) of Theorem 1, y,$fedl = 0
W calculate the second integral on the right-hand side of
(13):

[ e = JCVintr —ro))ds = § Lnr —r9)dL (14)

x}’up o A¥un

= Vf(r) is the derivative with

VLn(r-ro) = (r—ro)?, so we expand (r —ro)? into a
Laurent series [9]:

L 1 1 1 1 L
=Ty &y (X =% )+ (¥—Ya) Fy XHIF ¥ —X,—iFaly Ty Z-F,
1 11 o (zo)n 1 2R
T myz 1—?0 I R T gy SM=lgn+
Now we integrate this series:
z
od 1 Zg' Z d(zo)

f n 12n+1 — 4. &n=l ( ) nFT =

Zo

—liym Lo lye !
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Here we only need the member with number n=1: ¢; = —
Substituting the value of ¢ into (14), we get
J-J- dxf\dy isﬁ g 8z _ .':0'3 J-GZTI d(p _ 27Tf.0’3
EVup r—Tp oy x¥ z
Integrating over both the "lower" and "upper" surfaces, we
obtain the same result. Since the pole is the same for both
surfaces, then, adding the integrals, we get
wdpdxdy/(r — )t =2mnics (15)
Equalities of the type (15) are also valid for projections Dy,
and Dx. Adding integrals of the type (15) over all
projections Dyy, Dy;, and D, we get the formula (11.2).
Formula (11.2) of Theorem 2 is proven.
Now we will prove the formula (12.1).
It is obvious that
vf[f (VeR)dv = v [[f (V+R)dxAdyAdz =
=vJff (&X + 6yY + 8,Z)5102030xdydz =
= icovJJJ (6:xX + 6yY + 6,Z)dxdydz

or

vI[J (V-R)dv = icov[f[ (X + 8y + &,Z)dv (16)
Applying the Ostrogradsky-Gauss formula [10] to (16), we
obtain (12.1).
Now we will prove the formula (12.2).
The triple integral in (12.2) in coordinate form looks like
this:

V[f(VAR)«dv =
=v[ff (c1(0xY- 8yZ)+ 62(OxZ - D X)+ 63(dyX - &Y))dxdydz (17)
We transform the surface integral in (12.2) into a triple one:
ofpRedS =
= ofP(61X+ 62Y+ 63Z) *(0162 dxdy+ 6,03dydz+ 6301dzdx)=
=pdp(c1(Zdzdx — Ydxdy) + oo(Xdxdy — Zdydz) +
+ o3(Ydydz — Xdzdx)) =
=vff[(c1(8yZ - 8,Y) + 62(0; X —x Z) +
+ 63(0x Y — 0y X))dxdydz
or
ofPR+dS = v [[[ (61(8yZ — 8, Y) + 62(0: X —0x Z) +
+03(0x Y — 0y X))dv (18)

Comparing (17) and (18), we see that formula (12.2) is
correct.
Theorem 2 is proven.

2.3. Line integrals in Minkowski space
We will consider the line JA(r)dl and surface p [[ A(r)dS
integrals in 4-dimensional pseudo-Euclidean space,
where
the vector - function: A(r) = y'A(r) (19)
r={x}={t, x, v, z} is the interval (in spacetime),



dl =y dxi (20)
Dirac matrices ' in the following representation:

0p 0 0 o,

o _ [ — _
¥ =10 _go,;v =i 6, O a=1,23.(21)
0,60 _ Ta 1,2_ _.|les 0O
YY =g, o V7" T "o o
2.3 . 0y 0 3 1 . 4} 0
Y]{_ 0 0.11‘]'/‘}!_ 0 0_2
_|ee 0O _e,1,2,3_| 9 ‘o
E=1, Ja|,’1f—’1f’1f1f’r—_% ol

dS=dtAdx + dtAdy + dtAdz + dxAdy + dyAdz + dzadx =Nds is
the hypersurface element;
N = y%cosaor + y%y2c0saoz + Y%y3c0oSans + yly?cosaiz +
v2y3cosazs + y3ylcosas: is a normal vector;
/2 — C0Sap1, W2 — COSan2, ... are the angles between the
normal N and the hyperplanes tx(y%?%), ty(y%?), etc.
In other words, cosagp1, COSaoz, ... are direction cosines.

dtAdx = y%yldtdx = y%lcosao: dS,

dtAdy = y9%2dtdy = y%2cosa, dS,

dtAdz = y%3dtdz = y%y3cosags dS,

dxady = yly2dtdx = yy2cosai2 dS,

dyAdz = y?y3dydz = y?y3cosai23dS,

dzAdx = y3yidzdx = y3y'cosaz dS.
The order of inversion (i, j) y'yi goes according to the
formula

,YO,Y()( = glop Y;Lyv

where % s the absolutely antisymmetric unit four-rank
tensor (or Levi-Civita symbol) [11].

The hypersurface D and the contour I, with their
projections on the hyperplanes tx, ty, tz, xy, yz, and zx, are
defined in Minkowski space.

Remark 4.

ao1, aoz, and ags are the “angles” between the normal N and
the “time axis™ t. Since these three angles are imaginary, we
write themin the form

cosao1 = €0s(in1) = coshyy = (1 — p?)0°

CoSagz = c0s(inz) = coshy, = (1 — )05

COSags = €0S(izs) = coshyz = (1 — )00
where 7 is the rapidity [12], I; = (1 — B%)%% is the Lorentz
factor [13], Bx=vi/c, v; is the projection of the velocity v onto
the x; axis. c is the speed of light in a vacuum.
a2, O3, 031 are the usual spatial angles between the normal
N and the spatial axes X, y, z:
o2 =0, 023 =P, 31 =Y.
Then the normal N has the form:
N =yl + y0y2[% +y0y3 I3 + yly2cosa + y2y3cosp + y3ylcosy (22)
Now we will prove theorems similar Theorems 1 and 2 in
the case of Minkowski's space.

Theorem 3.
The following formulas are valid:
i$AdI = 0, if Ais analytical (23.1)
1$AdI = 27 N f(ro), iIf A(r) = f()/(r—ro)  (23.2)
and
i$Adl = p [ (VAA)-dS (24.1)
AN = pff (V-A)dS (24.2)

Proof.
Really, if a function A(r) is defined and bounded everywhere
in D, then it has an antiderivative function F'r = A(r). Then
1$Adl = Flp, =
Suppose that the function has a pole of type
A(r) = f(r)/(r —ro) (25)
We transform the integral'

r— 'ro
The first mtegral on the right side of the equation is the
derivative Vf(r). This integral is equal to zero.
We transform the second integral on the right-hand side of
the equation, more precisely, 1 $(r — ro)dl:

§ —§ yla(t—tol+ytale—xg) +y2 dly-yo)+y°dlz—zy) _
i T-To 1 PRty (r—x ) ¥ (y—yo ) +yE(2—2q)
. i ylattytdxtyt dytyidz
o POr+platy? yydz
yPac+ytdx sﬁy at+y2ay ylar+yaz
o e Yittylx yOt+y2y tz yIt+yiz

i SE yldx+ydy Sﬁ yldxt+yidz SE yEdytyidz
yraty2y v Yratyiz 2 YAytyez

xy
By calculating the integrals over all hyperplanes separately,
for example, as

yldattylde @ Edt+yyldx

fr YUtHYix o e EttyPylx o
2w exply?y! @oy Jde
— a..1 o1 o1 __ a.,1
= T —————— =2
ry fO 701 Iro1l exp(y® ¥t epps) vy

and, adding up similar ones over all projections, we get
SIE r—rg
Formulas (23.1) and (23.2) are proven.

Now we will prove formulas (24.1) and (24.2). We will
consider line integrals on the planes tx, ty, tz, xy, yz, and tx,
ty, tz, xy, yz separately.

According to the Clifford vector product:

wPAdl = xPAdl +$AAI (26)
We transform the line integral «$Aedl into a surface one:
tx¢A‘d|:yoyltxff(ao A 761 Ao) YO"{ldth:Etxff(a‘oAl 761A0)dth
Then

dl=2x-N

wAedl =E v J[ (GoA1 — d1A0)dtdx 27
Adding up all integrals of type (27) over all planes, we get
the formula (24.1).
Now we transform the line integral x$AAdI of (26).
w$ANI = (720 + yHAD)A( yOdt + yidx) =
= 10y (Ao dx — Ardt) = [ (VeA)dtAdx =
= txff(avo — 51A1)dt/\dX = "{O’Yl txff(avo — 61A1)dth
or
AN = yoy2y [f(GoA o— 01A)dtdx  (28)
By adding integrals of the type (28) over all planes, we get
the formula (24.2).
Theorem 3 is proven.

2.4. Surface integrals in Minkowski space

Let the function A(t,x,y,z) be given in the domain V
bounded by the hypersurface D. We will consider the
surface integral pfPAdS on this hypersurface.
Theorem 4.
The following formulas are valid:



ofPAdS =0, if Ais analytical (29.1)
ofPAdS = 27 f(ro) N, if A= f(r)/(r — ro) (29.2)
and
ofP AADS = 10y . ff[ (B1A: + 82A; + B3 )dxdydz +
+ vy w2 JJJ (GoPo — O2A0 + B3Ag)dtdydz +
+ yzy tzxfff(avo + 01A1 — 83%)dtdZdX +
+ 93y vy Jf[(GoPo — 1AL + BoA0)dtdxdy  (30.1)
off AedS =
= e JJJ (v1(O3A2 —02A3)+ y2(01A3 —O3A)+ y3(82A1 —O1A2))dxdydz +
+ 2 JJJ (Y0(83A2 —02A3)+ Y2(B3A0 —O0As)+ Y3(DoAz —O2A0))dtdydz +
+oa JJJ (Y0(01A3 —03A1)+ Y1 (BoAs —03Aa)+ y3(O1A0 —OoAr))didzdx +
+ oy JJf (YO(82A1-01A2)+ YL(02A0-B0A2)+ y2(BoA1-01A0))dtdxdy(30.2)
Proof.
Similar to Theorem 2, we will prove Theorem4 in 4-
dimensional Minkowski space.
If the function A(t,x,y,z) is analytic, then
ofp AdS = pfp(VF)dS = 1$Fdl =0
Since Ais defined everywhere in D, then there is an
antiderivative F(F'r = A), and it is also analytic in the
domain D.
Formula (29.1) is proven.
Now we prove (29.2) in the same way as (11.2) of
Theorem 2. Let the function have a pole of type
A(r) =f(n/(r —ro)
We transform the surface integrals (29.2) (over tx, ty, tz, xy,
yz, 2X):

tjj 70 ~di Adx = [[(Vf)dtndx +fGo) [ 7 e - (31),
Fuup tiyp up "
where

if Mdt Adx = [[(Vf(r)dt ndx,

Liyp i Eup

since TILTD % = df;?) = Vf(r) is the derivative with
respecttor, i.e., the gradient of a vector function.

The first integral on the right side of (31) is transformed
into a line integral, and it is equal to zero, since the function
f(r) is analytic at all points of D (either by Dyp and Dgown).

We will calculate the second integral on the right-hand
side of (31). We have already calculated a similar integral in
Theorem 2 (formulas (14) — (15)).

ff amay = [J(VIn(r — ro))ds = 55 Ln(r —ry)dr (32)

xup Lty Lxyy
Since VLn(r — ro) = (r —ro), we will expand (r — ro) in the
Laurent series:

1 1 e Zh

r-ry E m=1_n+1
We integrate this series:

001y 2D 1 ce 1
T y0&m=1n+l dz _}E m=1,-n (33)

In (33) we only need the term with number m=1: ¢4 =

Substituting ¢ into (32), we get
dxAdy 1 ydz 012Trd -2 0.1
B g P =z
Integrating also over the “lower” surface, we get the same

result. Since the pole is the same for both surfaces, adding
the integrals, we obtain

fh 2 = 25y Oyt (35)

ty Eit 1]

Equalities of the type (35) are also valid for all
hyperplanes. By adding integrals of the type (35) over all
projections, we get the formula (29.2).

Now we will prove the formula (30.1).

It is obvious that in 4-dimensional space, the elementary
volume Ndv consists of the sum of four trivectors:

Ndv = dxAdyAdz + dtAdyAdz + dtadzadx + dtadxAdy
or
Ndv = yly2y3dxdydz + yO%y2y3dtdydz + y%y3yldtdzdx +
voyly2dtdxdy
Trivectors y2y2y3, yoy2y3, v%y3y! u yOyy2 are dual [14] to
pseudovectors y%, yly, y%y and y3y:
YA = vy =y
YO = - vy O = vy Oy = vy
PP= P =R R SRR = vy
VY= YOS PO =
Then

Ndv = yOydxdydz + ylydtdydz + y2ydtdzdx + y3ydtdxdy
Remark 5

Here we took the modulus (“length”) of trivectors, bivectors,
and pseudovectors as one, or more precisely, as the identity
matrix:
'l = vl = 'viv¥| = |E|
Using the duality of trivectors and pseudovectors, we write
the outer product AAdS in coordinate form:

AAdS = yA; y2y3dydz + y2A; y3yidzdx + y3As yly2dxdy +
+7°A0 y2y¥dydz + y2Ae yoy3dtdz + y3As yOydtdy +
+y0Ag y3yldzdx + y3As yOyldtdx + yiA; yOy3dtdz +
+y%Ao ylydxdy +yiAy yOy2dtdy + y2A; yOyldtdx  (36)

We transform the pfp AAdS integral into a triple one, for
example, for the pseudovector y% = yly2y3:
Y0y w2 $P (Ardydz + Apdxdz + Agdxdy) =
=’YO’\{ xyszf(alAl + 024, + 63A3)dXdde.
Ina similar way, we transform the three remaining surface
integrals:
Yoy P (Aodydz — Aoditdz + Agditdly)
Y2y ox$P (Aodzdx + Acdtdz — Asdtdx)
Y3y vy P (Aodxdy — Asdtdy + Axdtdx)
By adding up the triple integrals for all pseudovectors (y%;,
Y, 3y, ¥3y), we get the formula (30.1).
Now we will prove the formula (30.2).
ofp A«dS in coordinate form has the form
pfp AcdS = ofP (Y0P + y AL + 2R + y3Ag)+(yOydtdx +
yoy2dtdy + yOy3dtdz + yly2dxdy + y2y3dydz + y3yldzdx)
or
w2 P (Y:(Acdxdy —Asdxdz) + y2(Asdydz —Asdxdy) +
+ y3(Acdxdz — Aodydz)) +
+ 4P (yO(Acdltdy —Agditdz) + y2(Acdtdy —Agdydz) +
+v3(Acdydz — Aodtdz)) +
+ 1 $P (YO(Asditdz —Aqditdx) + y2(Asdzdx —Adtdx) +
+ y3(Aodtdz — Adzdx)) +
+ 0y §P (YO(Acdtdx —Apditdy) + y2(Aodtdx —Asdxdy) +
+ y2(Acdxdy — Aodtdy)) (37)
The triple integral v[[f (VAA)sdv in (30.2) has the
expanded form



vJIJ (VAA)«dv =
= w2 JJ (YH(B3A2 —D2A3)+ y3(01A3 —B3A1)+ Y3(82A1 —01A2)) dxdydz +

+ 2 JJf (y9(8aA2 —02A3)+ v2(D3A0 —oA3)+ v3(BoA2 —02A0)) didydz +

+ o JJ[ (v°(61A3 —B3A1)+ y(OoA3 —D3A0)+ y3(01A0 —OoA1)) dtdzdx +
+ oy fJ[ (Y°(B2A1 —01A2)+ y(D2A0 —O0A2)+ y2(OoA1 —61A0)) didxdy(38)

We transform the integral (38) into the surface one, for
example, as

we I (Y1 (0sA20dxdydz —52Asdxdydz)+ y2(d1Asdxdydz —
03A1dxdydz)+ y3(d2A1dxdydz —01A2dxdydz)) =

= 9P (yL(A2dxdy — Asdxdz) + y2(Asdydz —Aidxdy) + y3(Aidxdz —
Azdydz))

Comparing this with the first integral in (37), we see that
they are identical. By transforming the remaining triple
integrals in (38), we get the formula (30.2).

Theorem 4 is proven.

2.5. Generalization of the Cauchy integral formula
Now we will consider the case when the function has a
pole of the form
A=f(r)/(r —rp)*! (39
Theorem 5.
Assume that the function A(t,x,y,z) has a pole of type (39) at
point ro(to, Xo, Yo, Zo) in domain D. Then the following
formula is valid
G dI/(r — ro)*t = 27 f(ro) N/C(k + 1) (40)
Here I'(k + 1) = k! is the gamma function of an integer non-
negative argument [15].
Proof.
Taking ro as a parameter, we differentiate the integral
(23.2) with respect to it:
§ I = 1 L = TR O, = 2 £ ()

r—rg)? 1dn =Ty
0 0,

f(rar 1 a2 fryar _ 2mN (2 2aN .(7)
%ﬁ (r-m)® 12:11255 r—ry f;’o Oy, = ﬁ“c- (7o)

Flrydi 1 ¢ f(‘r‘)d! 2N 2N
=3l R Oy =S AT

(F=rg)® 3 ars

etc.

Fridt 1 d" e fO)d 2ma N
e e TR S O b ARG

y (et K drk
Thus, we get the formula (40). Theorem 5 is proven.
Formula (40) is a generalization of the Cauchy-type
integral for a multidimensional complex function, i.e., a
hypercomplex function for a 4-dimensional pseudo-
Euclidean space.
Consequence.
We define the fractional derivative [16] or fractional
gradient (for a function of several variables) of order p
through a generalized Cauchy-type integral by generalizing
formula (40):

DR = VPP = s L (41)

or

SR e (42)

o (r—t)pHL

DPF) = VPFO =5
where p is a positive real number.
3. Application in physics

Formula (24.1) can be examined from the perspective of
physics. We write the right side of (24.1) as

EpJJ (VAA)+dS =E b [[ ((3oA1 — 0140)dtdx + (0od2 — D240)dtdy
+ (o3 — 0340)dtdz + (0241 — 0142)dxdy + (0342 — 0243)dydz
+ (alAg — 63A1)dZdX)

or
ED#(V/\A)’dS =E D#((aoAl — 0140)11 + (0od2 — 0240) % +
(0043 — 03A0) 3 + (0241 — 0142)cosa + (0342 — 0243)cosp +
(61A3 - asAl)COSy)dS
In accordance with the electromagnetic field tensor
definition [17]
Fij = 0i 4;— 0j 4i,
we write the final integral in the following form:
ED#(V/\A)'dS =E D#(Fol It +Foal% + Fo3l3 + Frpcoso +
F23 cosp + F31 cosy)dS (43)

According to formulas (23), integral (43) is either equal to
zero (if the function is analytic) or equal to the total 4-
current [18] (if the function has poles). In general, it is
constant. In other words, the surface integral over a closed
surface (the total electromagnetic 4-current) is constant, i.e.,
the 4-dimensional electromagnetic current is conserved. This
is one of the fundamental laws of physics.

The electromagnetic field tensor can be written as a sum of
vectors:

F =y Fij=y"y (84— 0j4) =

= y%y! (8o A1 —01 Ao)+ y*y? (0o A2 —02 Ao)+ Y°y® (G0 A3 —03 Ao) +

+y1y2 (0142 — 02 A1)+ ¥?y3 (02 A3 — O3 A2)+ y3y* (O3 AL — 01 4s)
Using the duality of bivectors (yYy? = y%3y, y2y3= yo%1y,

v3yt=v%?2y), we write the electromagnetic field tensor as
F= 01 (6o A1 —01 Ao) + yOy? (G A2 =02 Ao) +
+ %73 (O 43 —03 Ao) + YPy*y(OL A2 — 02 A1) +
+y%y1y(02 A3 — O3 A2) +) + yy?*y(03 A1 — 01 4s)

or

F =v091 (6o A1 —01 Ao) + v (8243 — 03 42)) +

+y%y2 ((Go A2 —02 Ao) + v (0341 — 01 A3))+
+ %3 (Go A3 —03 Ao) + v (0142 — 02 A1)
or in vector form
F=E+yB (44)

From (44) it is clear that the bivector F consists of three real
(polar)

E =0y (G0 A1 —01 o) + y%y? (G0 A2 —82 Ao) +

+v%y3 (o A3 —03 Ao)

(electric field strength [19]) and three dual (axial) bivectors

(pseudobivector)

B = yOy3y(8y Az — D2 A1) + YOyYy(O2 Az — O3 Ap) +) +
+y%y%y(0s A1 — 01 43)

(magnetic field induction [20]).

v is the matrix analogue of the imaginary unit (y? = - 1).
Now we will consider the surface integral pfp(VAA)AdS:
ofP(VAAIADS = odp (v Fos + y%y?Foo + 10y*Foa + y1y2Fia +

Y23 Fo3 + y3yFa) A yOytdtdx + yOy2dtdy + yOy3dtdz + yly2dxdy

+ y2y3dydz + y3yldzdx)
or

ofP (VAA)ALS = pdpy(Foidydz + Fopdzdx + Fos dxdy +



+ Fy, dtdz + Fas dtdx + Fa;dtdy) (45)

It is difficult to visualize integration in the tx, ty, tz planes.
Therefore, we introduce the concept of integration in dual
space [21], i.e., we replace integration over the planes tx, ty,
tz with integration over the planes xy, yz, zx.

In 3-dimensional Euclidean space, the bivector
(antisymmetric tensor of the second rank) dxAdy is dual to

the pseudovector (axial vector) ids:
dxAdy = c1620xdy = icsds = idz
In 4-dimensional space, by analogy with 3-dimensional
space, the second-rank antisymmetric tensor (bivector)

dtAdx is dual to the second-rank antisymmetric pseudo-
tensor (pseudo-bivector) ydyAdz [22]:

dtAdx = yOyidtdx = — yyy%yidydz = — y y?y3dydz
dtady = yOy2dtdx = — yyy%y2dzdx = — yy3yldzdx
dtAdz = y%y3dtdz = — yyy%y3dxdy = — vy yly2xdy
In the general case, we say that yb~is dual to b, and the
following equality holds [23]:
aAb = asyb* (46)
Below we present some useful consequences of the
formula (46):
(anb)A(dtadx) = (anb)«(ydyAdz)
In particular,
v23F23AYOyIdtdX = — y2y3Foseyy2y3dydz = y Fosdydz
vy R AYOy2dtdy = — y3yFspeyy3yldzdx = yFs1dzdx
Yoy F12AYOYy3dtdz = — yly2F1oeyyly2dxdy = yFiodxdy
Taking into account these consequences (46), in formula
(45) we replace the surface integrals over the planes tx, ty, tz
with dual surface integrals over the planes yz, zx, xy:

D@(V/\A)/\ds = Dgc:ﬁ((Fm + vF23) dydz + (Fo + yFs31) dzdx +

(F03 + YFlz) dXdy) (47)

or
ofp (VAA)AS = D#((FOS + yF12) cosa +(Foz + yFa1) coSp)
+(Fo1+ yF23) cosy)dS (48)

Since in (48) Fij, cosa, cosp, cosy are constants, the
integral (48) does not change, i.e. the 4-dimensional
electromagnetic current over a closed surface is preserved.
Thus, we have obtained one of the fundamental laws of
physics (the law of conservation of 4-dimensional
electromagnetic current) in integral form.

4. Conclusions

1. Theorems of complex analysis (Cauchy's integral
theorem, Cauchy's integral formula, and his integral
representation for derivatives) are generalized for 3- and 4-
dimensional Euclidean (pseudo-Euclidean) space. The Pauli
matrices (o') for 3-dimensional Euclidean space and the
Dirac matrices (y') for 4-dimensional pseudo-Euclidean
(Minkowski) space were used as basis vectors and
hypercomplex numbers. Thus, a bijection is established
between basis vectors and hypercomplex numbers by
definition.

2. The Stokes and Ostrogradsky - Gauss theorems are
combined and generalized for 4-dimensional pseudo-
Euclidean space.

3. Hypercomplex analysis (Cauchy's theorem and formula
and its consequences for derivatives) were performed for
both line and surface integrals.

4. The results of the analysis of hypercomplex numbers are
applied to the study of the laws of physics: within the
framework of Clifford algebra, the law of conservation of 4-
dimensional electromagnetic current is derived. The
replacement of integrals over “temporal” surfaces tx, ty, tz
by integrals over “spatial” surfaces Xy, yz, zx (integration
over dual space) is applied.
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