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Abstract 
The article presents a generalization theory of functions of a complex variable for 3-dimensional Euclidean space and for 

Minkowski's space: Cauchy's integral theorem, Cauchy's integral formula, its integral representation for derivatives, and Sto ker’s 

and Ostrogradsky-Gauss theorems. Also, line and surface integrals were combined and generalized within the framework of the 

concept of hypercomplex numbers. A bijection (one-to-one correspondence) was established between multidimensional vectors 

and hypercomplex numbers, i.e., the Pauli matrices (σi) for 3-dimensional Euclidean space and the Dirac matrices (γi) for 

Minkowski space were used as hypercomplex numbers and basis vectors. The results of the calculations were used to study the 

laws of physics; in particular, dual integration was applied – replacing surface integrals over “time” planes with integration over 

“purely spatial” planes. The law of conservation of 4-electromagnetic currents has been proven within the framework of the 

Clifford algebra concept. 
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1. Introduction   

A bijection (one-to-one correspondence) is obvious [1] 

between vectors and complex numbers on the plane (E2). 

This correspondence does not seem obvious in the case of a 

multidimensional space (En, n>2).   

In this article, we will consider the relationship between 

line and surface integrals in 3- and 4-dimensional Euclidean 

(pseudo-Euclidean) spaces within the framework of Clifford 

algebra. In this case, we will establish a correspondence 

between hypercomplex numbers and Dirac matrices (γ i), 

which are used as unit vectors in Minkowski's space E4,1. We 

use the Pauli matrices (σα = γαγ0) as a basis in the space E3, 

which is a special case of E4,1.  

The choice of Dirac matrices in 4-dimensional space E4,1 is 

related to the fact that E4,1 has a signature + - - -. In the 

zeroth approximation, all laws of physics (special theory of 

relativity, quantum mechanics, etc.) occur precisely in 

Minkowski space. Therefore, Dirac matrices will be used 

both as an orthonormal basis for vector space E4,1 and as 

hypercomplex numbers.  

The 3-dimensional Euclidean space has the signature - - -, 

but for convenience we will use +++. Therefore, as basis 

vectors, we will use the Pauli matrices σi (i=0, 1, 2, 3), 

where σ0 is the identity 2x2 matrix.   

 

2. Results    

2.1. Line integrals in 3-dimensional Euclidean space. 

Let a positively oriented surface D, bounded by a contour 

l, be given in a 3-dimensional Euclidean space (Figure 1). 

The vector normal n to the surface D forms angles α, β, γ 

with the coordinate axes x, y, z.  

The projections of the surface D on the planes xy, yz, zx are 

Dxy, Dyz,, Dzx with contours lxy, lyz, lzx.   

Let the vector function R(r) 

be given in a region V 

(volume) bounded by a surface 

D:   

R(r)=σ1X(r)+ σ2Y(r)+ σ3Z(r) 

(1) 

Let us consider the line 

l∮R(r)dl and surface D∯R(r)dS 

integrals in this region.  

Here         

 r = (x, y, z) is the radius 

vector; 

dl = dx + dy + dz = σ1dx + σ2dy + σ3dz is an arc element; 

dS =dx∧dy cosα + dy∧dz cosβ + dz∧dx cosγ = nds is a 

surface element; 

n =σ1σ2 cosγ + σ2σ3 cosα + σ3σ1 cosβ is the positively 

oriented normal to surface D; 

dx∧dy =σ1σ2 dxdy = iσ3dxdy 

dy∧dz = σ2σ3 dydz =iσ1 dydz 

dz∧dx = σ3σ1 dzdx =iσ2 dzdx 

𝛁 =σ1∂/∂x + σ1∂/∂y + σ1∂/∂z is the nabla operator. 

σ0, σ1, σ2, σ3 are Pauli matrices.  

Remark 1.  

Depending on the expediency and simplicity, we will use 

surface integrals of either the first type or the second type, 

which, we hope, will not create inconvenience for the reader.   

 

Theorem 1. 

The following formulas are valid:   

l∮R(r)dl = 0, if R(r) is analytic              (2.1) 

l∮R(r)dl = 2π i f(r0) n, если R(r) = f(r)/(r – r0)    (2.2)  
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and 

l∮R•dl = D∯(∇∧R)•dS                   (3.1) 

l∮R∧dl = D∯(∇•R)dS                   (3.2) 

• and ∧ are the symbols in the inner and outer product of 

vectors [2]. 

R(r) = f(r)/(r – r0) means that the vector function R(r) has a 

pole at the point r0 [3].      

 f(r0) is the value of the function f(r) at the point r0.  

i is the imaginary unit. 

Remark 2.  

For simplicity, we will assume that the region D is simply 

connected. We will not dwell on methods for dividing non-

simply connected regions into simply connected ones [4].   

Remark 3.  

It is obvious that  

(∇R)dS = (∇•R)dS + (∇∧R)•dS + (∇∧R)∧dS. 

But the dimension of (∇∧R)∧dS exceeds the dimension of 3-

dimensional space (>3), i.e., D∯(∇∧R)∧dS has no meaning.  

Proof. 

Surface D is the sum of surfaces Dxy, Dyz and Dzx. Therefore, 

it is sufficient to prove Theorem 1 on one of the projections, 

for example, on Dxy, and then add the integrals over all 

projections.   

The integral xy∮Rdl has a coordinate form:  

xy∮Rdl = xy∮R•dl + xy∮R∧dl, 

Here   

xy∮R•dl = σ0 xy∮(Χdx + Ydy)                (4.1) 

xy∮R∧dl = iσ3 xy∮(Χdy – Ydx)               (4.2) 

The surface integral has a vector form:  

xy∬(∇R)dx∧dy = xy∬(∇•R)dx∧dy + xy∬(∇∧R)•dx∧dy, 

Here 

xy∬(∇•R)dx∧dy = iσ3 xy∬(∂x Χ + ∂yΥ)dxdy        (5.1) 

xy∬(∇∧R)• dx∧dy = σ0 xy∬(∂x Y – ∂y X)dxdy       (5.2) 

1) We transform the line integral xy∮R•dl (4.1) into the 

surface one xy∬(∇∧R)•dx∧dy (5.2): 

xy∮R•dl = xy∮(σ1Χσ1dx + σ2Yσ2dy) = 

= xy∬(σ2∂y(σ1X) + σ1∂x(σ2Y))σ1σ2dxdy = 

= σ0( xy∬(∂yX – ∂χY)dxdy 

or  

σ0 xy∮(Χdx + Ydy) = σ0 xy∬(∂yX – ∂x Y)dxdy             (6) 

(6) is Green's theorem [5].  

Formulas of type (6) are valid also for integrals on 

projections Dyz and Dzx.     

Since the surface D with contour l is the sum of the 

integrals over the surfaces Dxy, Dyz, and Dzx with contours 

lxy, lyz, and lzx, then, adding the integrals over the projections, 

we obtain the equation (3.1).  

2) We transform the line integral xy∮R∧dl (4.2) into the 

surface one xy∬(∇•R)dx∧dy (5.1):   

σ1σ2 xy∮(Xdy – Ydx) = xy∮(σ1Xσ2dy + σ2Yσ1dx) = 

= xy∬(σ1∂x(σ1X) +σ2(∂yσ2Y))σ1σ2 dxdy = 

= σ1σ2 xy∬(∂xX + ∂yY)dxdy 

or 

iσ3 xy∮(Xdy – Ydx) = iσ3 xy∬(∂x X + ∂y Y) dxdy         (7) 

Formulas of type (7) are valid also for integrals in 

projections Dyx and Dzx. Adding the integrals over all 

projections Dxy, Dyz, and Dzx, we obtain the equation (3.2).  

Formulas (3) of Theorem 1 are proven. Formula (3.1) is 

Stokes' theorem [6].  

To understand the meaning of the formula (3.2), we write it 

in the form                  

l∮R∧dl = D∬divRdS. 

In terms of physics, formula (3.2) means that the vector 

field induction (l∮R∧dl) through a contour l is equal to the 

field divergence (D∬divRdS) through a surface D bounded 

by the same contour.      

Looking ahead, let us assume that a closed surface D (for 

example, a sphere) has a source of divergence inside it (a 

“sink” or “source”).  

If divR = ∂xX + ∂yY > 0, then the induction vector is 

directed outward, i.e., the induction vector with n forms an 

acute angle. This is the source (the lines of force are directed 

away from the sphere). If divR < 0, then the induction vector 

is directed inward, i.e., this induction vector forms an obtuse 

angle with n. This is a sink (the lines of force are directed 

inward into the sphere).  

Obviously, if the function R is analytic in the domain D, 

then the integrals (3) are equal to zero. Simply put, there is 

no source of divergence. (3.2) is a special case of the Gauss-

Ostrogradsky theorem (for a surface).   

If the function R(x,y) is analytic (by Cauchy [7]) in D, i.e., 

it does not have special isolated points (poles), then  

xy∮Rdl = 0                                    (8) 

Indeed, since R(x,y) is defined and bounded at all points of 

D, there exists an antiderivative F’
r = R(r). Then both it and 

the integral (8) are equal to zero over the closed contour:   

xy∮Rdl = F |aa = 0 

By adding up all integrals of type (8) over all projections 

Dxy, Dyz, and Dzx, we obtain the formula (2.1).    

Now let us consider the case when the function R(r) in the 

domain D has an isolated singular point r, i.e., a pole of the 

type    

R = f(r)/( r – r0)                              (9) 

We transform the line integral xy∮Rdl: 

   

  

Since (f(r) – f(r0))/(r – r0) is the derivative at r → r0, then 

the first integral is equal to zero: 

xy∮f’dl = f(r) |aa = 0   

Now we transform the second integral, more precisely,  

xy∮(r – r0)-1dl . By analogy with the theory of complex 

analysis, we obtain   

  

or in the exponential form  

  (10) 

Equalities of the type (10) also hold for the zx and yz 

planes. Adding up all integrals of type (10) over all 

projections Dxy, Dyz, and Dzx, we obtain the formula (2.2).  

Since the value of the integral (10) is imaginary, equality 

(2.2) is satisfied for the imaginary part of the integral l∮Rdl.   

Formula (2.2) is a generalization of the Cauchy integral 

formula [8] to the case of 3-dimensional Euclidean space. 

Theorem 1 is proven.  

 



2.2. Surface integrals in 3-dimensional Euclidean space   

Let the vector function R(x,y,z)  be given in a volume V 

bounded by a surface D (Figure 1).  We will consider the 

surface integral D∬RdS= D∬Rnds in this region.   

Theorem 2. 

The following formulas are valid:   

D∯RdS = 0, if R is analytic                  (11.1) 

D∯RdS = 2π i f(r0) n, if R = f(r)/(r – r0)     (11.2) 

and 

D∯R∧dS = V∭(∇•R)dv               (12.1) 

D∯R•dS = V∭(∇∧R)•dv               (12.2) 

Proof. 

We have already done the transformation of a line integral 

into a surface integral and vice versa in Theorem 1 (formula 

(3)). We cut the closed surface D with a plane parallel to xy 

and divide it into surface integrals over the “upper” and 

“lower” surfaces: 

D∯RdS = Dup∯RdS + Ddown∯RdS 

Next, we apply formula (3) of Theorem 1 to both the 

“upper” and “lower” integrals. Formula (3) is valid for both 

the “lower” and “upper” integrals. By adding the “lower” 

and “upper” integrals over all projections Dxy, Dyz, and Dzx, 

we obtain the formula (11). 

Since R is analytic everywhere in D, then there is an 

antiderivative F (F’
r = R). It is also analytic in the domain 

D.       

According to Theorem 1,  

Dup∬RdS = l∮F∧dl = 0 

Formula (11.1) is proven.  

Now we consider the case when the function has a pole of 

type    

R(r) = f(r)/(r – r0)   

We transform the surface integrals (11.2): 

    

  

or  

 , (13)  

here 

,   

since  is the derivative with 

respect to r, i.e., the gradient of a vector function.   

According to formulas (3), the first integral on the right-

hand side of (13) is transformed into the line integral and is 

equal to zero: 

up∬(∇f(r))dx∧dy = up∬(∇f(r))dSxy = up∬(∇f(r))dSxy = 

= up∬(∇∧f(r))•dSxy + up∬(∇•f(r))dSxy = xy∮f•dl + xy∮f∧dl = 0, 

since the function f(r) is analytic at all points of D (both in 

Dup and in Ddown).  

According to formula (2.1) of Theorem 1, xy∮f•dl = 0.     

We calculate the second integral on the right-hand side of 

(13): 

 (14)  

∇Ln(r– r0 ) = (r – r0)-1, so we expand (r – r0)-1  into a 

Laurent series [9]:  

    

  

Now we integrate this series: 

  

   

Here we only need the member with number n=1: .  

Substituting the value of c1 into (14), we get  

  

Integrating over both the "lower" and "upper" surfaces, we 

obtain the same result. Since the pole is the same for both 

surfaces, then, adding the integrals, we get  

xy∯dxdy/(r – r)-1 = 2π iσ3                  (15) 

Equalities of the type (15) are also valid for projections Dyz 

and Dzx. Adding integrals of the type (15) over all 

projections Dxy, Dyz, and Dzx, we get the formula (11.2).   

Formula (11.2) of Theorem 2 is proven.  

Now we will prove the formula (12.1).   

It is obvious that  

V∭(∇•R)dv = V∭(∇•R)dx∧dy∧dz = 

= V∭(∂xX + ∂yY + ∂zZ)σ1σ2σ3dxdydz = 

= iσ0 V∭(∂xX + ∂yY + ∂zZ)dxdydz  

or  

V∭(∇•R)dv = iσ0 V∭(∂xX + ∂yY + ∂zZ)dv          (16) 

Applying the Ostrogradsky-Gauss formula [10] to (16), we 

obtain (12.1).  

Now we will prove the formula (12.2).   

The triple integral in (12.2) in coordinate form looks like 

this:    

V∭(∇∧R)•dv = 

= V∭(σ1(∂xΥ- ∂yΖ)+ σ2(∂xZ - ∂zX)+ σ3(∂yX - ∂xY))dxdydz (17) 

We transform the surface integral in (12.2) into a triple one:  

D∯R•dS =  

= D∯(σ1X+ σ2Y+ σ3Z)•(σ1σ2 dxdy+ σ2σ3dydz+ σ3σ1dzdx)= 

=D∯(σ1(Zdzdx – Ydxdy) + σ2(Xdxdy – Zdydz) + 

+ σ3(Ydydz – Xdzdx)) = 

=V∭(σ1(∂y Z – ∂z Y) + σ2(∂z X –∂x Z) + 

+ σ3(∂x Y – ∂y X))dxdydz 

or 

D∯R•dS = V∭(σ1(∂y Z – ∂z Y) + σ2(∂z X –∂x Z) + 

+ σ3(∂x Y – ∂y X))dv            (18) 

Comparing (17) and (18), we see that formula (12.2) is 

correct.   

Theorem 2 is proven.   

 

2.3. Line integrals in Minkowski space   

We will consider the line l∫A(r)dl and surface D∬A(r)dS 

integrals in 4-dimensional pseudo-Euclidean space, 

where   

 the vector - function:        A(r) = γιΑι(r)                           (19) 

r = {xi} = {t, x, y, z} is the interval (in spacetime),  



            dl = γi dxi                           (20) 

Dirac matrices γi in the following representation: 

 ,   α = 1, 2, 3. (21) 

,   ,     

      ,   .  

,   .  

dS=dt∧dx + dt∧dy + dt∧dz + dx∧dy + dy∧dz + dz∧dx =Nds is 

the hypersurface element;     

N = γ0γ1cosα01 + γ0γ2cosα02 + γ0γ3cosα03 + γ1γ2cosα12 + 

γ2γ3cosα23 + γ3γ1cosα31 is a normal vector;  

π/2 – cosα01, π/2 – cosα02, … are the angles between the 

normal N and the hyperplanes tx(γ0γ1), ty(γ0γ2), etc.   

In other words, cosα01, cosα02, … are direction cosines. 

dt∧dx = γ0γ1dtdx = γ0γ1cosα01 dS,   

dt∧dy = γ0γ2dtdy = γ0γ2cosα02 dS, 

dt∧dz = γ0γ3dtdz = γ0γ3cosα03 dS, 

dx∧dy = γ1γ2dtdx = γ1γ2cosα12 dS, 

dy∧dz = γ2γ3dydz = γ2γ3cosα23 dS, 

dz∧dx = γ3γ1dzdx = γ3γ1cosα31 dS. 

The order of inversion (i, j) γiγj goes according to the 

formula  

γ0γα = ε0αλμ γλγν 

where ε0αλμ is the absolutely antisymmetric unit four-rank 

tensor (or Levi-Civita symbol) [11].  

The hypersurface D and the contour l, with their 

projections on the hyperplanes tx, ty, tz, xy, yz, and zx, are 

defined in Minkowski space.    

Remark 4. 

α01, α02, and α03 are the “angles” between the normal N and 

the “time axis” t. Since these three angles are imaginary, we 

write them in the form   

cosα01 = cos(iη1) = coshη1 = (1 – β2
1)-0.5  

cosα02 = cos(iη2) = coshη2 = (1 – β2
2)-0.5 

cosα03 = cos(iη3) = coshη3 = (1 – β2
3)-0.5 

where η is the rapidity [12], Γλ = (1 – β2
λ)-0.5 is the Lorentz 

factor [13], βλ=vλ/c, vλ is the projection of the velocity v onto 

the xλ axis. c is the speed of light in a vacuum. 

α12, α23, α31 are the usual spatial angles between the normal 

N and the spatial axes x, y, z:   

α12 = α, α23 = β, α31 = γ.   

Then the normal N has the form:  

N =γ0γ1Γ1 + γ0γ2Γ2 + γ0γ3 Γ3 + γ1γ2cosα + γ2γ3cosβ + γ3γ1cosγ  (22) 

 Now we will prove theorems similar Theorems 1 and 2 in 

the case of Minkowski's space.  

 

Theorem 3.  

The following formulas are valid:  

l∮Adl = 0, if A is analytical              (23.1) 

l∮Adl = 2π N f(r0), if A(r) = f(r)/(r – r0)       (23.2) 

and 

l∮A•dl = D∬(∇∧A)•dS                    (24.1) 

l∮A∧dl = D∬(∇•A)dS                      (24.2) 

Proof. 

Really, if a function A(r) is defined and bounded everywhere 

in D, then it has an antiderivative function F’
r = A(r). Then 

l∮Adl = F|aa = 0      

Suppose that the function has a pole of type  

A(r) = f(r)/(r – r0)                             (25) 

We transform the integral:  

  

The first integral on the right side of the equation is the 

derivative ∇f(r).  This integral is equal to zero.  

We transform the second integral on the right-hand side of 

the equation, more precisely, l∮(r – r0)-1dl: 

    

     

   

   

By calculating the integrals over all hyperplanes separately, 

for example, as 

   

  

and, adding up similar ones over all projections, we get  

   

Formulas (23.1) and (23.2) are proven.   

Now we will prove formulas (24.1) and (24.2). We will 

consider line integrals on the planes tx, ty, tz, xy, yz, and tx, 

ty, tz, xy, yz separately.     

According to the Clifford vector product:  

tx∮Adl = tx∮A•dl + tx∮A∧dl                     (26) 

We transform the line integral tx∮A•dl into a surface one:   

tx∮A•dl=γ0γ1
tx∬(∂0 A1 –∂1 A0) γ0γ1dtdx=Etx∬(∂0A1 –∂1A0)dtdx 

Then 

tx∮A•dl =E tx∬(∂0A1 – ∂1A0)dtdx                 (27) 

Adding up all integrals of type (27) over all planes, we get 

the formula (24.1).    

Now we transform the line integral tx∮A∧dl of (26).  

tx∮A∧dl = tx∮(γ0A0 + γ1A1)∧( γ0dt + γ1dx) = 

= γ0γ1
 tx∮(A0 dx – A1dt ) =tx∬(∇•A)dt∧dx = 

= tx∬(∂0A0 – ∂1A1)dt∧dx = γ0γ1 tx∬(∂0A0 – ∂1A1)dtdx 

or 

tx∮A∧dl = γ0γ1
tx∬(∂0A 0 – ∂1A1)dtdx       (28) 

By adding integrals of the type (28) over all planes, we get 

the formula (24.2).  

Theorem 3 is proven.  

 

2.4. Surface integrals in Minkowski space   

Let the function A(t,x,y,z) be given in the domain V 

bounded by the hypersurface D. We will consider the 

surface integral D∯AdS on this hypersurface.   

Theorem 4. 

The following formulas are valid:   



D∯AdS = 0, if A is analytical                    (29.1) 

D∯AdS = 2π f(r0) N, if A = f(r)/(r – r0)        (29.2)  

and  

D∯A∧dS = γ0γ xyz∭(∂1A1 + ∂2A2 + ∂3A3 )dxdydz + 

+ γ1γ tyz∭(∂0A0 – ∂2A2 + ∂3A3)dtdydz + 

+ γ2γ tzx∭(∂0A0 + ∂1A1 – ∂3A3)dtdzdx + 

+ γ3γ txy∭(∂0A0 – ∂1A1 + ∂2A2)dtdxdy        (30.1) 

D∯A•dS = 

 = xyz∭(γ1(∂3A2 –∂2A3)+ γ2(∂1A3 –∂3A1)+ γ3(∂2A1 –∂1A2))dxdydz + 

+ tyz∭(γ0(∂3A2 –∂2A3)+ γ2(∂3A0 –∂0A3)+ γ3(∂0A2 –∂2A0))dtdydz + 

+ txz∭(γ0(∂1A3 –∂3A1)+ γ1(∂0A3 –∂3A0)+ γ3(∂1A0 –∂0A1))dtdzdx + 

+ txy∭(γ0(∂2A1–∂1A2)+ γ1(∂2A0–∂0A2)+ γ2(∂0A1–∂1A0))dtdxdy(30.2) 

Proof.   

Similar to Theorem 2, we will prove Theorem 4 in 4-

dimensional Minkowski space.  

If the function A(t,x,y,z) is analytic, then    

D∯AdS = D∯(∇F)dS = l∮Fdl = 0  

Since A is defined everywhere in D, then there is an 

antiderivative F(F’
r = A), and it is also analytic in the 

domain D.    

Formula (29.1) is proven.    

Now we prove (29.2) in the same way as (11.2) of 

Theorem 2. Let the function have a pole of type   

A(r) = f(r)/(r – r0)  

We transform the surface integrals (29.2) (over tx, ty, tz, xy, 

yz, zx): 

 (31),    

where 

,    

since  is the derivative with 

respect to r, i.e., the gradient of a vector function.   

The first integral on the right side of (31) is transformed 

into a line integral, and it is equal to zero, since the function 

f(r) is analytic at all points of D (either by Dup and Ddown).   

We will calculate the second integral on the right-hand 

side of (31). We have already calculated a similar integral in 

Theorem 2 (formulas (14) – (15)).  

 (32) 

Since ∇Ln(r – r0) = (r – r0)-1, we will expand (r – r0)-1 in the 

Laurent series: 

   

We integrate this series: 

          (33) 

In (33) we only need the term with number т=1:  .  

Substituting с1 into (32), we get 

    (34)  

Integrating also over the “lower” surface, we get the same 

result. Since the pole is the same for both surfaces, adding 

the integrals, we obtain  

                             (35)   

Equalities of the type (35) are also valid for all 

hyperplanes. By adding integrals of the type (35) over all 

projections, we get the formula (29.2).   

Now we will prove the formula (30.1).  

It is obvious that in 4-dimensional space, the elementary 

volume Ndv consists of the sum of four trivectors:  

Ndv = dx∧dy∧dz + dt∧dy∧dz + dt∧dz∧dx + dt∧dx∧dy 

or   

Ndv = γ1γ2γ3dxdydz + γ0γ2γ3dtdydz + γ0γ3γ1dtdzdx + 

γ0γ1γ2dtdxdy 

Trivectors γ1γ2γ3, γ0γ2γ3, γ0γ3γ1 и γ0γ1γ2 are dual [14] to 

pseudovectors γ0γ, γ1γ, γ2γ and γ3γ:   

 γ1γ2γ3 = γ0γ0γ1γ2γ3 = γ0γ 

γ0γ2γ3 = - γ1γ1γ0γ2γ3 = γ1γ0γ1γ2γ3 = γ1γ    

γ0γ3γ1= -γ2γ2γ0γ3γ1=-γ2γ2γ0γ3γ1=γ2γ2γ0γ1γ3 =γ2γ0γ1γ2γ3 = γ2γ 

γ0γ1γ2= -γ3γ3γ0γ1γ2= γ3γ0γ1γ2γ3 = γ3γ 

Then  

Ndv = γ0γdxdydz + γ1γdtdydz + γ2γdtdzdx + γ3γdtdxdy 

Remark 5  

Here we took the modulus (“length”) of trivectors, bivectors, 

and pseudovectors as one, or more precisely, as the identity 

matrix:  

|γi | = |γiγj| = |γiγjγk| = |E| 

Using the duality of trivectors and pseudovectors, we write 

the outer product A∧dS in coordinate form:   

A∧dS = γ1A1 γ2γ3dydz + γ2A2 γ3γ1dzdx + γ3A3 γ1γ2dxdy + 

+ γ0A0 γ2γ3dydz + γ2A2 γ0γ3dtdz + γ3A3 γ0γ2dtdy + 

+ γ0A0 γ3γ1dzdx + γ3A3 γ0γ1dtdx + γ1A1 γ0γ3dtdz + 

+ γ0A0 γ1γ2dxdy + γ1A1 γ0γ2dtdy + γ2A2 γ0γ1dtdx     (36) 

We transform the D∯A∧dS integral into a triple one, for 

example, for the pseudovector γ0γ = γ1γ2γ3:  

γ0γ xyz∯(A1dydz + A2dxdz + A3dxdy) = 

=γ0γ xyz∭(∂1Α1 + ∂2Α2 + ∂3Α3)dxdydz. 

In a similar way, we transform the three remaining surface 

integrals:  

γ1γ tyz∯(A0dydz – A2dtdz + A3dtdy) 

γ2γ tzx∯(A0dzdx + A1dtdz – A3dtdx) 

γ3γ txy∯(A0dxdy – A1dtdy + A2dtdx) 

By adding up the triple integrals for all pseudovectors (γ0γ, 

γ1γ, γ2γ, γ3γ), we get the formula (30.1).  

Now we will prove the formula (30.2).   

D∯A•dS in coordinate form has the form 

D∯A•dS = D∯(γ0A0 + γ1A1 + γ2A2 + γ3A3)•(γ0γ1dtdx + 

γ0γ2dtdy + γ0γ3dtdz + γ1γ2dxdy + γ2γ3dydz + γ3γ1dzdx)  

or 

xyz∯(γ1(A2dxdy –A3dxdz) + γ2(A3dydz –A1dxdy) + 

+ γ3(A1dxdz – A2dydz)) + 

+ tyz∯(γ0(A2dtdy –A3dtdz) + γ2(A0dtdy –A3dydz) + 

+ γ3(A2dydz – A0dtdz)) + 

+ txz∯(γ0(A3dtdz –A1dtdx) + γ1(A3dzdx –A0dtdx) + 

+ γ3(A0dtdz – A1dzdx)) + 

+ txy∯(γ0(A1dtdx –A2dtdy) + γ1(A0dtdx –A2dxdy) + 

+ γ2(A1dxdy – A0dtdy))                        (37) 

The triple integral V∭(∇∧A)•dv in (30.2) has the 

expanded form 



V∭(∇∧A)•dv = 

= xyz∭(γ1(∂3A2 –∂2A3)+ γ2(∂1A3 –∂3A1)+ γ3(∂2A1 –∂1A2)) dxdydz + 

+ tyz∭(γ0(∂3A2 –∂2A3)+ γ2(∂3A0 –∂0A3)+ γ3(∂0A2 –∂2A0)) dtdydz + 

+ txz∭(γ0(∂1A3 –∂3A1)+ γ1(∂0A3 –∂3A0)+ γ3(∂1A0 –∂0A1)) dtdzdx + 

+ txy∭(γ0(∂2A1 –∂1A2)+ γ1(∂2A0 –∂0A2)+ γ2(∂0A1 –∂1A0)) dtdxdy(38) 

We transform the integral (38) into the surface one, for 

example, as  

xyz∭(γ1(∂3A2dxdydz –∂2A3dxdydz)+ γ2(∂1A3dxdydz –

∂3A1dxdydz)+ γ3(∂2A1dxdydz –∂1A2dxdydz)) =  

= xyz∯ (γ1(A2dxdy – A3dxdz) + γ2(A3dydz –A1dxdy) + γ3(A1dxdz – 

A2dydz))  

Comparing this with the first integral in (37), we see that 

they are identical. By transforming the remaining triple 

integrals in (38), we get the formula (30.2).  

Theorem 4 is proven.   

 

2.5. Generalization of the Cauchy integral formula  

Now we will consider the case when the function has a 

pole of the form  

A = f(r)/(r – r0)-k-1                         (39) 

Theorem 5. 

Assume that the function A(t,x,y,z) has a pole of type (39) at 

point r0(t0, x0, y0, z0) in domain D. Then the following 

formula is valid       

l∮f(r)dl/(r – r0)-k-1 = 2π f(k)(r0) N/Γ(k + 1)         (40)  

Here Γ(k + 1) = k! is the gamma function of an integer non-

negative argument [15].  

Proof. 

Taking r0 as a parameter, we differentiate the integral 

(23.2) with respect to it: 

  

  

    

etc.  

  

Thus, we get the formula (40). Theorem 5 is proven.  

Formula (40) is a generalization of the Cauchy-type 

integral for a multidimensional complex function, i.e., a 

hypercomplex function for a 4-dimensional pseudo-

Euclidean space.   

Consequence. 

We define the fractional derivative [16] or fractional 

gradient (for a function of several variables) of order p 

through a generalized Cauchy-type integral by generalizing 

formula (40):   

                 (41) 

or 

               (42) 

where p is a positive real number.   

 

3. Application in physics  

Formula (24.1) can be examined from the perspective of 

physics. We write the right side of (24.1) as  

ED∬(∇∧A)•dS =E D∬((∂0Α1 – ∂1Α0)dtdx + (∂0Α2 – ∂2Α0)dtdy 

+ (∂0Α3 – ∂3Α0)dtdz + (∂2Α1 – ∂1Α2)dxdy + (∂3Α2 – ∂2Α3)dydz 

+ (∂1Α3 – ∂3Α1)dzdx) 

or  

ED∯(∇∧A)•dS =E D∯((∂0Α1 – ∂1Α0)Γ1 + (∂0Α2 – ∂2Α0)Γ2 + 

(∂0Α3 – ∂3Α0)Γ3 + (∂2Α1 – ∂1Α2)cosα + (∂3Α2 – ∂2Α3)cosβ + 

(∂1Α3 – ∂3Α1)cosγ)dS  

In accordance with the electromagnetic field tensor 

definition [17] 

Fij = ∂i Αj – ∂ j Αi, 

we write the final integral in the following form:  

ED∯(∇∧A)•dS =E D∯(F01 Γ1 + F02 Γ2 + F03 Γ3 + F12 cosα + 

F23 cosβ + F31 cosγ)dS                    (43) 

According to formulas (23), integral (43) is either equal to 

zero (if the function is analytic) or equal to the total 4-

current [18] (if the function has poles). In general, it is 

constant. In other words, the surface integral over a closed 

surface (the total electromagnetic 4-current) is constant, i.e., 

the 4-dimensional electromagnetic current is conserved. This 

is one of the fundamental laws of physics.    

The electromagnetic field tensor can be written as a sum of 

vectors:  

F = γiγj Fij = γiγj (∂i Αj – ∂ j Αi) =  

= γ0γ1 (∂0 Α1 –∂1 Α0)+ γ0γ2 (∂0 Α2 –∂2 Α0)+ γ0γ3 (∂0 Α3 –∂3 Α0) + 

+ γ1γ2 (∂1 Α2 – ∂2 Α1)+ γ2γ3 (∂2 Α3 – ∂3 Α2)+ γ3γ1 (∂3 Α1 – ∂1 Α3) 

Using the duality of bivectors (γ1γ2 = γ0γ3γ, γ2γ3 = γ0γ1γ, 

γ3γ1 = γ0γ2γ), we write the electromagnetic field tensor as   

F= γ0γ1 (∂0 Α1 –∂1 Α0) + γ0γ2 (∂0 Α2 –∂2 Α0) + 

+ γ0γ3 (∂0 Α3 –∂3 Α0) + γ0γ3γ(∂1 Α2 – ∂2 Α1) +  

+ γ0γ1γ(∂2 Α3 – ∂3 Α2) +) + γ0γ2γ(∂3 Α1 – ∂1 Α3) 

or 

F = γ0γ1 ((∂0 Α1 –∂1 Α0) + γ (∂2 Α3 – ∂3 Α2)) + 

+ γ0γ2 ((∂0 Α2 –∂2 Α0) + γ (∂3 Α1 – ∂1 Α3))+ 

+ γ0γ3 (∂0 Α3 –∂3 Α0) + γ (∂1 Α2 – ∂2 Α1)) 

or in vector form  

 F = E + γB                              (44) 

From (44) it is clear that the bivector F consists of three real 

(polar)   

E = γ0γ1 (∂0 Α1 –∂1 Α0) + γ0γ2 (∂0 Α2 –∂2 Α0) + 

+ γ0γ3 (∂0 Α3 –∂3 Α0) 

(electric field strength [19]) and three dual (axial) bivectors 

(pseudobivector)   

B = γ0γ3γ(∂1 Α2 – ∂2 Α1) + γ0γ1γ(∂2 Α3 – ∂3 Α2) +) + 

 + γ0γ2γ(∂3 Α1 – ∂1 Α3) 

(magnetic field induction [20]).  

γ is the matrix analogue of the imaginary unit (γ2 = – 1). 

Now we will consider the surface integral D∯(∇∧A)∧dS: 

D∯(∇∧A)∧dS = D∯(γ0γ1F01 + γ0γ2F02 + γ0γ3F03 + γ1γ2F12 + 

γ2γ3F23 + γ3γ1F31)∧( γ0γ1dtdx + γ0γ2dtdy + γ0γ3dtdz + γ1γ2dxdy 

+ γ2γ3dydz + γ3γ1dzdx) 

or 

D∯(∇∧A)∧dS = D∯γ(F01dydz + F02dzdx + F03 dxdy + 



+ F12 dtdz + F23 dtdx + F31dtdy)              (45) 

It is difficult to visualize integration in the tx, ty, tz planes. 

Therefore, we introduce the concept of integration in dual 

space [21], i.e., we replace integration over the planes tx, ty, 

tz with integration over the planes xy, yz, zx.    

In 3-dimensional Euclidean space, the bivector 

(antisymmetric tensor of the second rank) dx∧dy is dual to 

the pseudovector (axial vector) ids: 

dx∧dy = σ1σ2dxdy = iσ3ds = idz   

In 4-dimensional space, by analogy with 3-dimensional 

space, the second-rank antisymmetric tensor (bivector) 

dt∧dx is dual to the second-rank antisymmetric pseudo-

tensor (pseudo-bivector) γdy∧dz [22]: 

dt∧dx = γ0γ1dtdx = – γγγ0γ1dydz = – γ γ2γ3dydz  

dt∧dy = γ0γ2dtdx = – γγγ0γ2dzdx = – γγ3γ1dzdx 

dt∧dz = γ0γ3dtdz = – γγγ0γ3dxdy = – γ γ1γ2xdy 

In the general case, we say that γb∗ is dual to b, and the 

following equality holds [23]:   

a∧b = a•γb∗                                        (46) 

Below we present some useful consequences of the 

formula (46): 

(a∧b)∧(dt∧dx) = (a∧b)•(γdy∧dz) 

In particular, 

γ2γ3F23∧γ0γ1dtdx = – γ2γ3F23•γγ2γ3dydz = γ F23dydz 

γ3γ1F31∧γ0γ2dtdy = – γ3γ1F31•γγ3γ1dzdx = γF31dzdx 

γ1γ2F12∧γ0γ3dtdz = – γ1γ2F12•γγ1γ2dxdy = γF12dxdy 

Taking into account these consequences (46), in formula 

(45) we replace the surface integrals over the planes tx, ty, tz 

with dual surface integrals over the planes yz, zx, xy:  

D∯(∇∧A)∧dS = D∯((F01 + γF23) dydz + (F02 + γF31) dzdx + 

(F03 + γF12) dxdy)                  (47) 

or 

D∯(∇∧A)∧dS = D∯((F03 + γF12) cosα +(F02 + γF31) cosβ ) 

+(F01 + γF23) cosγ )dS                  (48)  

Since in (48) Fij, cosα, cosβ, cosγ are constants, the 

integral (48) does not change, i.e. the 4-dimensional 

electromagnetic current over a closed surface is preserved.  

Thus, we have obtained one of the fundamental laws of 

physics (the law of conservation of 4-dimensional 

electromagnetic current) in integral form.   

 

4. Conclusions   

1. Theorems of complex analysis (Cauchy's integral 

theorem, Cauchy's integral formula, and his integral 

representation for derivatives) are generalized for 3- and 4-

dimensional Euclidean (pseudo-Euclidean) space. The Pauli 

matrices (σi) for 3-dimensional Euclidean space and the 

Dirac matrices (γi) for 4-dimensional pseudo-Euclidean 

(Minkowski) space were used as basis vectors and 

hypercomplex numbers. Thus, a bijection is established 

between basis vectors and hypercomplex numbers by 

definition.  

2. The Stokes and Ostrogradsky - Gauss theorems are 

combined and generalized for 4-dimensional pseudo-

Euclidean space.   

3. Hypercomplex analysis (Cauchy's theorem and formula 

and its consequences for derivatives) were performed for 

both line and surface integrals.   

4. The results of the analysis of hypercomplex numbers are 

applied to the study of the laws of physics: within the 

framework of Clifford algebra, the law of conservation of 4-

dimensional electromagnetic current is derived. The 

replacement of integrals over “temporal” surfaces tx, ty, tz 

by integrals over “spatial” surfaces xy, yz, zx (integration 

over dual space) is applied.    
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