
A proof of the Riemann hypothesis

on nontrivial zeros of the Riemann zeta function

© Nail Musin

April 04, 2025

Abstract

The Riemann hypothesis on nontrivial zeros of the Riemann zeta function is proved.

A complex number s0 = σ0 + it0 is a nontrivial zero i� (σ0, t0) is a solution to a system of

two equations of two real variables σ and t.

Considering one of that two equations, we found that one side of it is strictly increasing and

the other one is nonincreasing as functions on the set of so called critical values σ ∈ (0; 1) at

the "height" t = t0, so (σ0, t0) is a unique solution at t = t0. As nontrivial zeros are symmetric

about the line Re s =
1

2
, it follows that σ0 =

1

2
.
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Setting the problem

Let s = σ + it be a complex variable, where σ = Re s, t = Im s, and

x ∈ R be a real variable.

For Re s > 0, s ̸= 1, it is known [1] that the Riemann zeta function ζ(s) can be expressed

by the formula

ζ(s) = 1 +
1

s− 1
− s

∞∫
1

{x}
xs+1

dx. (1)

Here, {x} denotes the fractional part of a number x.

Let us rewrite equality 1 in the form

ζ(s) = s

 1

s− 1
−

∞∫
1

{x}
xs+1

dx

 .
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Thus, to obtain nontrivial zeros of the function ζ(s), we must solve the following equation:

∞∫
1

{x}
xs+1

=
1

s− 1
. (2)

This implies two equations:

1

xs+1
=

1

xσ+1
(cos(t lnx)− i sin(t lnx)) ,

1

s− 1
=

σ − 1

(σ − 1)2 + t2
− i

t

(σ − 1)2 + t2
.

Therefore, equation 2 is equivalent to the following system:



∞∫
1

{x}
xσ+1

cos(t lnx)dx =
σ − 1

(σ − 1)2 + t2
,

∞∫
1

{x}
xσ+1

sin(t lnx)dx =
t

(σ − 1)2 + t2
.

(3)

It is known that nontrivial zeros are symmetric about the real axis, therefore we consider

only the case t > 0.

We always assume that 0 < σ < 1, t > 0.

Let s0 = σ0 + it0 be a nontrivial zero.

The Riemann hypothesis states that σ0 =
1

2
.

Left and right sides of the equations of system 3

Let us introduce four useful functions as follows:

u1(σ, t) =

∞∫
1

{x}
xσ+1

cos(t lnx)dx,

v1(σ, t) =

∞∫
1

{x}
xσ+1

sin(t lnx)dx,

u2(σ, t) =
σ − 1

(σ − 1)2 + t2
,

v2(σ, t) =
t

(σ − 1)2 + t2
.

Equation 2 can be expressed as follows:

u1(σ, t)− iv1(σ, t) = u2(σ, t)− iv2(σ, t).
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We represent system 3 in the form


u1(σ, t) = u2(σ, t),

v1(σ, t) = v2(σ, t).
(4)

s = σ + it is a nontrivial zero if and only if (σ, t) is a solution to system 4.

Figure 1: The plane t = t0

Let s0 = σ0 + it0 be a nontrivial zero.

Lemma 1. The function w = v2(σ, t0) increases as a function of one variable σ ∈ (0; 1).

Proof. It follows from the inequality

dv2
dσ

= − 2(σ − 1)t0
(t20 + (σ − 1)2)2

> 0.

The range of the function w = v2(σ, t0) is U =

(
t0

1 + t20
,
1

t0

)
.

Obviously, the graph of the function w = v2(σ, t0) lies in the rectangle

Π =
{
(σ,w)

∣∣∣ σ ∈ (0; 1), w ∈ U
}
.

We consider the part of the graph of the function v1(σ, t0) that lies in this rectangle.

De�nition 1. A rectangle Π is called critical.
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Figure 2: A critical rectangle

Remark 1. Critical rectangles are very thin, their width equals
1

t0
− t0

1 + t20
=

1

(1 + t20)t0
. Take

the nontrivial zero with the least positive imaginary part t0 = 14.134725141... and get the width

0.0003523461812...

De�nition 2. σ is critical if (σ, v1(σ, t0)) ∈ Π.

Thus the value σ0 is critical. The graphs of v1(σ, t0) and v2(σ, t0) intersect in the point

(σ0, v1(σ0, t0)) ∈ Π.

This implies the inequality

v1(σ0, t0) =

+∞∫
1

{x}
xσ0+1

sin(t0 lnx)dx =
t0

σ2
0 + t20

> 0.

Moreover, by de�nition, we get v1(σ, t0) ∈
(

t0
1 + t20

,
1

t0

)
for all critical σ; this implies that

v1(σ, t0) > 0.

Let us introduce the function

Ψ(σ, x) =
{x}
xσ+1

sin(t0 lnx).

Then we have the equality

v1(σ, t0) =

∞∫
1

Ψ(σ, x)dx.

Lemma 2. The function v1(σ, t0) does not increase on the set of all critical σ.

Proof. Let σ′ be a positive number such that σ + σ′ is critical.

We must prove that v1(σ, t0) ≥ v1(σ + σ′, t0).

It is obvious that

Ψ(σ + σ′, x) =
1

xσ′ Ψ(σ, x).
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Then we get

v1(σ + σ′, t0) =

∞∫
1

1

xσ′ Ψ(σ, x)dx.

Since σ and σ + σ′ are critical, we obtain v1(σ, t0) > 0 and v1(σ + σ′, t0) > 0. This implies

that there exists a X0 such that for all X > X0 we get the inequalities

X∫
1

Ψ(σ, x)dx > 0 and

X∫
1

1

xσ′ Ψ(σ, x)dx > 0.

We must prove the inequality

X∫
1

1

xσ′ Ψ(σ, x)dx ≤
X∫
1

Ψ(σ, x)dx. (5)

The proof consists of two parts.

Part 1

Let ℜ[a, b] be the set of Riemann-integrable functions on an interval [a, b].

We use the following[2]

Theorem (the second mean-value theorem for the integral1). If f, g ∈ ℜ[a, b] and g is a

monotonic function on [a,b], then there exists a point ξ ∈ [a, b] such that

b∫
a

f(x)g(x)dx = g(a)

ξ∫
a

f(x)dx+ g(b)

b∫
ξ

f(x)dx.

If g(x) =
1

xσ′ and f(x) = Ψ(σ, x), then there exists a point ξ = ξ(X) ∈ [1, X] such that

X∫
1

1

xσ′ Ψ(σ, x)dx = A+ γB,

where γ =
1

Xσ′ , A = A(ξ) =

ξ∫
1

Ψ(σ, x)dx, and B = B(ξ) =

X∫
ξ

Ψ(σ, x)dx.

We have 0 < γ < 1, A+B > 0, A+ γB > 0.

Let us prove inequality 5; this implies Lemma 2.

If ξ = 1, then A = 0. It follows from A+γB > 0 that γB > 0. As B > 0, we have γB < B,

and inequality 5 is true.

1It states the equality which is often colled Bonnet's formula
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If ξ = X, then B = 0, we get A+ γB = A, and inequality 5 is true as well.

Assume that 1 < ξ < X.

If A ≤ 0, then B > 0, otherwise it would be A+B ≤ 0. Inequality 5 is true as well.

If A > 0 and B ≥ 0, then inequality 5 is true.

Case remainded is A > 0, B < 0. In the sequel it turnes out impossimle.

Part 2

Let us introduce the function Φ1(x) =

ξ∫
x

Ψ(σ, x)dx+ γB, defned on [1, ξ].

As Φ1(1) > 0,Φ1(ξ) = B < 0, there exists ξ′ ∈ (1, ξ) such that Φ1(ξ
′) = 0.

Then

X∫
1

1

xσ′ Ψ(σ, x)dx =

ξ′∫
1

Ψ(σ, x)dx+

ξ∫
ξ′

Ψ(σ, x)dx

︸ ︷︷ ︸
A

+γB =

ξ′∫
1

Ψ(σ, x)dx+

ξ∫
ξ′

Ψ(σ, x)dx+ γB

︸ ︷︷ ︸
Φ1(ξ′)=0

.

We get
X∫
1

1

xσ′ Ψ(σ, x)dx =

ξ′∫
1

Ψ(σ, x)dx), (6)

herewith
ξ∫

ξ′

Ψ(σ, x)dx+ γB = 0. (7)

Now let us introduce the function Φ2(x) =

X∫
x

Ψ(σ, x)dx.

As B < 0, we have B < γB. It follows from this that

Φ2(ξ
′) =

ξ∫
ξ′

Ψ(σ, x)dx+B <

ξ∫
ξ′

Ψ(σ, x)dx+ γB = 0.

Simultaneosly, Φ2(ξ
′) < 0 and Φ2(1) > 0, it follows from this that there exists a point

ξ′′ ∈ (1, ξ′) such that Φ2(ξ
′′) = 0.

So we get
X∫

ξ′′

Ψ(σ, x)dx = 0. (8)

Denote by I(a, b) the integral

b∫
a

Ψ(σ, x)dx.
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Then 0 = I(ξ′′, X) = I(ξ′′, ξ′) + I(ξ′, ξ) + I(ξ,X) =

= I(ξ′′, ξ′) + I(ξ′, ξ) + γI(ξ,X)︸ ︷︷ ︸
=0

+(1− γ)I(ξ,X),

we get I(ξ′′, ξ′) + (1− γ)I(ξ,X) = 0,

it follows from this that I(ξ′′, X) = I(ξ′′, ξ′) + (1− γ)I(ξ,X)︸ ︷︷ ︸
=0

+I(ξ′, ξ) + γI(ξ,X),

thus

X∫
ξ′′

Ψ(σ, x)dx =

ξ∫
ξ′

Ψ(σ, x)dx+ γ

X∫
ξ

Ψ(σ, x)dx = 0.

Ñonsequently,

ξ′′∫
1

Ψ(σ, x)dx =

X∫
1

1

xσ′ Ψ(σ, x)dx.

Taking into account equality 6, we get

ξ′∫
1

Ψ(σ, x)dx =

ξ′′∫
1

Ψ(σ, x)dx, thus

ξ′∫
ξ′′

Ψ(σ, x)dx) = 0.

With equality 7 we get

ξ∫
ξ′

Ψ(σ, x)dx+B =

ξ∫
ξ′

Ψ(σ, x)dx+ γB, but then B = γB, it follows

from this that B = 0.

As B < 0, we got a contradiction, this implies that the case A > 0, B < 0 is impossible.

Thus, for arbitrary X > X0 inequality 5 is true, consequently

X∫
1

1

xσ′ Ψ(σ, x)dx ≤
X∫
1

Ψ(σ, x)dx.

We get the inequality

∞∫
1

1

xσ′ Ψ(σ, x)dx ≤
∞∫
1

Ψ(σ, x)dx. (9)

The proof of the Riemann hypothesis

Theorem. Let s0 = σ0 + it0 be a nontrivial zero of the Riemann zeta function; then σ0 =
1

2
.

Proof. A nontrivial zero of the zeta function is a solution to equation 2, hence the pair (σ0, t0)

satis�es system 4, and, in particular, its second equality.

From Lemma 2 it follows that this pair is unique. Suppose σ0 ̸=
1

2
.

It is known that nontrivial zeros are symmetric about the line Re s =
1

2
, hence there exists
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another zero 1 − σ0 + it0 at the same "height" t = t0, therefore the pair (1 − σ0, t0) satis�es

the second equality as well.

This contradiction establishes the theorem.
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