УДК 577.112.854 ЦИАНОКОБАЛАМИН-СВЯЗЫВАЮЩИЙ БЕЛОК ТЕРМОФИЛЬНОГО 2 МИКРООРГАНИЗМА ДЛЯ СОЗДАНИЯ ГЕНЕТИЧЕСКИ КОДИРУЕМЫХ 3 БИОСЕНСОРОВ ВИТАМИНА В12 4 5 Колонтитул: ЦИАНОКОБАЛАМИН-СВЯЗЫВАЮЩИЙ БЕЛОК ТЕРМОФИЛЬНОГО МИКРООРГАНИЗМА ДЛЯ СОЗДАНИЯ ГЕНЕТИЧЕСКИ 6 7 КОДИРУЕМЫХ БИОСЕНСОРОВ ВИТАМИНА В12 8 9 © 2025 С. Ю. Симоненко<sup>\*</sup>, И. В. Артамонов, В.С. Лактюшкин, Н. А. Кульдюшев 10 Симоненко и др. 11 12 Научно-технологический университет «Сириус», Россия, 354340, Краснодарский 13 14 край, пгт «Сириус», проспект Олимпийский, д.1 15 Электронная novma: Simonenko.SY@talantiuspeh.ru 16 17 Поступила в редакцию 18 После доработки Принята к публикации 19 20 Генетические технологии, такие как редактирование генома или 21 22 репрограммирование клеток с помощью вирусов, изменяют последовательности ДНК. Витамин B<sub>12</sub> участвует в метаболизме фолата и SAM, которые необходимы для 23 24 репликации, синтеза нуклеотидов, восстановления и метилирования ДНК и гистонов, а значит его дефицит может снизить эффективность и безопасность 25 26 применения генетических технологий. В геномах термофильных микроорганизмов, 27 собранных на территории Российской Федерации, нами был найден и клонирован ген периплазматического B<sub>12</sub>-связывающего белка термофильной бактерии 28 Fervidobacterium riparium. Рекомбинантный белок обладает высокой 29 30 термостабильностью, а также связывается с витамином  $B_{12}$  по результатам абсорбционной спектрофотомерии и дифференциальной сканирующей 31 32 калориметрии. На данный момент не существует чувствительных неинвазивных 33 методик для динамического определения внутриклеточных концентраций B<sub>12</sub>, но 34 охарактеризованный нами белок мог бы стать сенсорным доменом генетически кодируемого флуоресцентного биосенсора В<sub>12</sub> в перспективе заменив 35

- 36 неоптимальные подобные биосенсоры и предоставив новый молекулярный
- 37 инструмент, в том числе для оптимизации применения генетических технологий.
- 38
- 39 КЛЮЧЕВЫЕ СЛОВА: витамин В<sub>12</sub>, цианокобаламин, термофильные
- 40 микроорганизмы, генетические технологии, рекомбинантные белки,
- 41 периплазматические связывающие белки.
- 42
- 43 **DOI:**
- 44
- 45 Принятые сокращения: ДСК дифференциальная сканирующая калориметрия;
- 46 ДСФ дифференциальная сканирующая флуориметрия; ИПСК индуцированные
- 47 плюрипотентные стволовые клетки; МАТ метионин аденозилтрансфераза; МС –
- 48 метионинсинтаза; ТГФК тетрагидрофолиевая кислота; CNCbl цианокобаламин;
- 49 CRISPR clustered regularly interspaced short palindromic repeats, регулярно
- 50 расположенные группы коротких повторов; FR исследуемый белок из
- 51 Fervidobacterium riparium; FRET Förster resonance energy transfer, Фёрстеровский
- 52 перенос энергии; GFP green fluorescent protein, зелёный флуоресцентный белок;
- 53 Нсу гомоцистеин; ТС исследуемый белок из Thermogladius calderae; Tlet\_1275 –
- 54 исследуемый белок из *Thermotoga lettingae*; SAM S-аденозилметионин.
- 55 \* Адресат для корреспонденции.
- 56

## 57 ВВЕДЕНИЕ

58

59 Витамин В<sub>12</sub> представляет собой необходимые клеткам человека производные кобаламина, выполняющие функции кофакторов двух ферментов: метионинсинтазы 60 61 (МС), активной в цитоплазме, и 2-метилмалонил-S-CoA мутазы, активной в 62 митохондриях. Для первого фермента B<sub>12</sub> является кофактором в форме метилкобаламина, для второго – аденозилкобаламина [1]. Метилкобаламин 63 участвует в метаболизме фолата и S-аденозилметионина (SAM), которые 64 необходимы для синтеза нуклеотидов, репликации, восстановления ДНК, 65 метилирования ДНК и гистонов, а его дефицит в клетках приводит к нарушениям 66 67 этих процессов, дестабилизации эпигенома [2, 3, 4], что также может приводить к 68 переходу клеток в состояние сенесенса [5]. Цианокобаламин (CNCbl) используется 69 для компенсации дефицита витамина B<sub>12</sub> у пациентов [6]. Фермент ММАСНС 70 отщепляет его цианогруппу для дальнейшего превращения кобаламина в

71 коферментные формы [7].

72 Физиологическая концентрация витамина В<sub>12</sub> в плазме крови человека 73 находится в суб-наномолярном диапазоне [8]. Для диагностики дефицита В<sub>12</sub> у 74 пациентов его концентрация определяется в плазме крови, однако концентрация В<sub>12</sub> 75 в крови может не отражать выраженный его дефицит в клетках [9]. Концентрация SAM в значительной степени кореллирует с концентрацией фолата [10, 11] – еще 76 одного продукта МС. Фолат является активной формой витамина В<sub>9</sub>, которая 77 восполняется комплексом МС и В<sub>12</sub> из 5-метилТГФК [12]. Дефицит фолата нарушает 78 79 процессы синтеза пуринов и SAM, что приводит к нарушениям в процессах репликации и репарации ДНК, её гипометилированию. Эти процессы ассоциированы 80 с нестабильностью генетического материала, изменениями экспрессионного 81 82 профиля клеток, их онкогенной трансформации [13]. 83 Генетические технологии, такие как редактирование генома, направлены на 84 изменение последовательностей ДНК [14]. Хотя сам витамин В<sub>12</sub> не является 85 объектом генетических технологий, его дефицит может влиять на стабильность и 86 целостность генетического материала, что делает его важным фактором эффективности и безопасности генной терапии, генетических исследований и их 87 приложений, например, при получении индуцированных стволовых клеток или 88 89 репрограммировании клеток *in vivo*. На рис. 1 изображена схема, отражающая роль 90 витамина B<sub>12</sub> в клеточных процессах и современных генетических технологиях. Роль 91 витамина B<sub>12</sub> как лимитирующего фактора при репрограммировании факторами Яманаки была недавно показана на мышах [15], при этом дополнительный В<sub>12</sub> не 92 влиял на скорость образования индуцированных плюрипотентных стволовых клеток 93 94 (ИПСК). Оптимизация концентрации  $B_{12}$  в клетках во время репрограммирования в перспективе может значительно повысить его эффективность. 95 96 Репрограммированные клетки могут как быть получены с помощью генной терапии 97 in vivo для частичного возвращения физиологической молодости [16], так и 98 использоваться для ex vivo генной терапии для трансплантации пациенту клеток с in 99 *vitro* отредактированным геном при этиотропной терапии моногенных врожденных 100 иммунодефицитов, патологий гемостаза, бета-талассемии [17]. Эффективность и точность редактирования генома с помощью CRISPR-Cas9 зависит от 101 102 эпигенетических факторов: для промоторных областей эффективность 103 редактирования снижается и соотношение вставок к делециям изменяется при 104 метилировании этих областей [18], а активность Cas9 подавляется, если целевая 105 последовательность связана с нуклеосомой in vitro [19] и в клетках дрожжей [20].

- 106 Более того, состояние хроматина влияет на эффективность не только Cas9 нуклеазы,
- 107 но и TALEN [21]. Таким образом, эпигенетическая стабильность клеток является
- 108 важным фактором, влияющим на эффективность и точность редактирования генома.



109

110 Рис. 1. Роль витамина В<sub>12</sub> в повышении стабильности генома и эпигенома клетки.
111 Поддержание его достаточного уровня в клетках повышает эффективность их
112 репрограммирования и получения из них ИПСК, может повысить точность и
113 эффективность редактирования генома, в том числе, для использования в *ex vivo*114 генной терапии.

115 Для определения концентрации B<sub>12</sub> в клетках могут применяться генетически 116 кодируемые биосенсоры на основе периплазматических связывающих белков [22, 117 23]. Периплазматические белки термофильных микроорганизмов характеризуются высокой устойчивостью к денатурации, сохраняют стабильность структуры при 118 заменах аминокислот и встраивании в них доменов, ортогональны по отношению к 119 120 млекопитающим, характеризуются схожими механизмами взаимодействий с 121 субстратом [24, 25, 26]. В геномах термофильных микроорганизмов мы обнаружили 122 гены не охарактеризованных ранее периплазматических белков, предположительно 123 обладающих В<sub>12</sub>-связывающими доменами. Мы клонировали и экспрессировали 124 гены этих белков. После выделения и очистки способность белка Fervidobacterium 125 riparium связывать CNCbl была подтверждена in vitro. В перспективе данные белки могут быть использованы для создания флуоресцентных биосенсоров витамина В12. 126 127

## 128 МАТЕРИАЛЫ И МЕТОДЫ

| 130 | Поиск генов В12-связывающих белков, их получение, подготовка к экспрессии.                      |
|-----|-------------------------------------------------------------------------------------------------|
| 131 | Поиск проводился по каталогу ВКМ с выбором организмов, для которых                              |
| 132 | оптимальная температура роста составляет 65, 70, 75, 80, 85° С, собранных на                    |
| 133 | территории РФ и с опубликованными геномами. В базах данных UniProt, InterPro                    |
| 134 | [27], PROSITE [28], PANTHER [29] проверялось наличие белков с В <sub>12</sub> -                 |
| 135 | связывающими доменами и укладкой периплазматических связывающих белков.                         |
| 136 | Аминокислотные последовательности анализировались при помощи SOSUI для                          |
| 137 | удаления трансмембранных участков и сигнального пептида [30], выравнивались с                   |
| 138 | помощью ClustalΩ [31] и визуализировались с помощью JalView [32].                               |
| 139 | Получение экспрессионных векторов. Жидкие культуры термофильных                                 |
| 140 | микроорганизмов Thermogladius calderae штамм 1633 (номер в ВКМ В-2946) [33] и                   |
| 141 | Fervidobacterium riparium штамм 1445t <sup>т</sup> (В-2549) [34] были получены из               |
| 142 | Всероссийской коллекции микроорганизмов. Геномная ДНК из клеток была                            |
| 143 | извлечена с помощью набора Genomic DNA from any sample («Lumiprobe», CША) по                    |
| 144 | протоколу от производителя. Ампликоны для клонирования в экспрессионный                         |
| 145 | вектор рЕТ30а были получены ПЦР с полимеразой Q5 с горячим стартом («NEB»,                      |
| 146 | США) (нуклеотидные последовательности приведены в табл. S1 ESM_1.pdf).                          |
| 147 | Фрагмент из T. calderae (TC) был клонирован в 2 этапа с помощью                                 |
| 148 | олигонуклеотидов 1, 2 и 7, 8 по сайтам NdeI и XhoI. Фрагмент из F. riparium (FR) с              |
| 149 | помощью олигонуклеотидов 3, 4 и 5, 6 по сайтам BamHI и XhoI. Для рестрикции                     |
| 150 | использовались ферменты («NEB», США и «SibEnzyme», РФ), лигирование                             |
| 151 | выполнялось с помощью Т4 ДНК лигазы («ThermoFisher Scientific», США).                           |
| 152 | Ген В <sub>12</sub> -связывающего [35, 36] белка btuF из геномной ДНК <i>Е</i> . был клонирован |
| 153 | в вектор pcDNA3.1LIC с помощью олигонуклеотидов 12, 13, HS Таq полимеразы                       |
| 154 | («Биолабмикс», РФ), Т4 полимеразы («SibEnzyme», РФ) и Т4 ДНК лигазы. Затем он                   |
| 155 | был амплифицирован с помощью полимеразы Tersus («Евроген», РФ) и                                |
| 156 | олигонуклеотидов 16, 17, клонирован в рЕТЗОа по сайтам NdeI и XhoI. С помощью                   |
| 157 | данных плазмид, Phusion 2.0 полимеразы («Биолабмикс», РФ) и олигонуклеотидов                    |
| 158 | 64-69 были получены фрагменты гена <i>btuF</i> , содержащего вместо кодонов для Cys             |
| 159 | кодоны Ser. Они были клонированы в вектор pATT-Dest методом Golden Gate c                       |
| 160 | использованием ферментов BsaI-HFv2 («NEB», США) и Т4 ДНК лигазы.                                |
| 161 | Векторы экспрессии гена SenVitAL были собраны методом Golden Gate с                             |
| 162 | помощью BsmBIv2 («NEB», США). Последовательности, кодирующие                                    |
| 163 | флуоресцентные белки CFP, YFP и В <sub>12</sub> -связывающий домен btuF E. coli, были           |

амплифицированы с помощью полимеразы Phusion 2.0. Для сборки бактериального
экспрессионного вектора использовался вектор pTKEI-Dest и олигонуклеотиды 4651, для вектора для экспрессии в HEK 293TN – олигонуклеотиды 54-63 и вектор
pcDNA3.1.

168 Кодирующая последовательность В<sub>12</sub>-связывающего белка из *Thermotoga*169 *lettingae* (Tlet\_1275) была синтезирована из олигонуклеотидов 23-45 с помощью
170 Phusion 2.0 полимеразы методом AESOE2 [37] с небольшими изменениями:

171 продукты каждой ПЦР очищались с помощью Cleanup mini («Евроген», РФ),

172 точечные мутации были исправлены с помощью ПЦР с перекрывающимися173 олигонуклеотидами 52, 53.

174 Корректность всех собранных конструкций подтверждалась секвенированием

175 плазмид по Сэнгеру обеих цепей ДНК. Последовательности всех использованных в

176 работе олигонуклеотидов размещены в табл. S2 ESM\_1.pdf.

177 Выделение, очистка, концентрирование и обессоливание белков. Экспрессия в

178 *Е. coli* штамм BL21 (DE3) проводилась аналогично ранее описанной процедуре [38] с

179 небольшими изменениями, а именно: клетки после осаждения обрабатывались 0,5

180 г/л лизоцимом («Helicon», РФ) в PBS (pH=8,0), после металл-хелатной

181 хроматографии буфер для элюирования заменялся буфером для спектрофотометрии

182 (50 мМ имидазол-HCl, 500 мМ NaCl, 0,5 мМ дитиотреитол; pH=7,8) с помощью

183 обессоливания в колонках для ультрафильтрации до 3 кДа Amicon® Ultra-2

184 («Millipore Corporation», США) или до 5 кДа JetSpin («Biofil», КНР) до достижения

185 расчётной концентрации имидазола 50 мМ, также не отщеплялась полигистидиновая

186 метка. Целевые белки очищались из лизатов методом металл-хелатной

187 хроматографии с помощью хроматографической системы NGC («Bio Rad», США) на

188 колонке с сорбентом Ni-NTA SA00405 («Smart-LifeSciences», КНР). Молекулярную

189 массу белков во фракциях оценивали с помощью Ds-Na-ПААГ-электрофореза в 10%

190 ПААГ в Tris-глициновом буфере в присутствии маркеров молекулярных масс Protein

191 Blue Plus<sup>®</sup> II, либо IV («TransGen BioTech», KHP).

192 Абсорбционная спектрофотометрия. Все спектрофотометрические эксперименты

193 выполнялись на спектрофотометре U-3900 под управлением UV Solutions («Hitachi»,

194 Япония). Молярные концентрации обессоленных белков оценивались по

195 поглощению на 280 нм (A<sub>280</sub>) с коэффициентами молярной экстинкции: FR – 42400

196 л/(моль·см), Tlet\_1275 – 30370 л/(моль·см), предсказанными с помощью ProtParam

197 [39]. В экспериментах с кобаламином спектры регистрировались в диапазоне длин

198 волн 340-580 нм со скоростью 2 нм/с. Сначала регистрировали спектр 15 мкМ CNCbl (Дальхимфарм, РФ), затем добавляли избыток белка до конечной концентрации 50 199 мкМ и регистрировали спектр повторно. В качестве отрицательного контроля было 200 использовано антитело канакинумаб [40], не способное связывать CNCbl. Для белка 201 202 Tlet\_1275 было выполнено суммарно 10 измерений (2 биологические повторности), для белка FR – 6 измерений (2 биологические повторности), для канакинумаба – 3 203 204 технические повторности. В эксперименте с канакинумабом концентрации были уменьшены в 3 раза. Стандартные отклонения рассчитывались с помощью Microsoft 205 206 Office Excel. Визуализация выполнялась с использованием matplotlib. Дифференциальная сканирующая калориметрия (ДСК). Образец с 207 208 концентрацией 1 г/л исследуемого белка, растворенного в буфере для спектрофотометрии в присутствии 100 мкМ В<sub>12</sub> или без него, загружался в ячейку 209 210 микрокалориметра NanoDSC («TA Instruments», США). В качестве образца 211 сравнения использовался буфер для спектрофотометрии со 100 мкМ витамином В<sub>12</sub> 212 или без него, соответственно. Определение тепловых переходов проводилось в соответствии с программой: ячейка охлаждалась до 5°С, уравновешивалась в 213 течение 10 мин, затем образец и раствор сравнения нагревались в ней до 100°С со 214 скоростью 1°С/мин. Чтобы исключить возможное наложение пиков тепловых 215 216 переходов белка, витамина В<sub>12</sub> и компонентов буфера для спектрофотометрии, также 217 были исследованы эти растворы в диапазоне от 5 до 130°C, что гарантировано 218 перекрывает температурный диапазон, в котором определялись тепловые переходы исследуемого белка. Определялась пиковая температура термоперехода (T<sub>m</sub>) образца 219 220 в присутствии CNCbl и без него. 221 Флуоресцентная микроскопия. За день до трансфекции клетки HEK 293TN 222 рассеивали в лунки 6-луночного планшета («Service Bio», КНР) в среде DMEM с 4,5 223 г/л глюкозы («Панэко», РФ) и 10% фетальной бычьей сыворотки («Service Bio», КНР). При конфлюентности 40-50% трансфицировали 2 мг плазмиды pcDNA3.1 при 224 225 помощи 6 мкг PEI MAX («Polysciences», США). Через 2 дня производили измерения 226 на конфокальном микроскопе LSM 980 («Carl Zeiss Microscopy GmbH», ФРГ). Для 227 съёмки использовался объектив 10х/0.3 ЕС Plan-Neofluar и лазер 405 нм. Сигнал СFP 228 (донора) регистрировался в диапазоне 409-505 нм, сигнал YFP (акцептора) в 229 диапазоне 529-618 нм. Также регистрировался канал проходящего света (Т-РМТ). 230 Измерения проводили в атмосфере с 5% CO<sub>2</sub> при 37°C. 231

## 232 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Воспроизведение биосенсора SenVitAL. При экспрессии SenViTAL в клетках НЕК 234 235 293TN большая часть флуоресцентных белков была сосредоточена в «точках», либо 236 в круглых клетках (изображения размещены на рис. S1 ESM\_1.pdf), что указывает на 237 неоптимальность этого биосенсора витамина В<sub>12</sub> и расходится с данными в оригинальной работе [22]. Известно, что GFP-подобные белки могут агрегировать в 238 239 клетках, однако, мы проверили другие возможные причины. В результате выделения 240 и очистки биосенсора SenVitAL после экспрессии в бактериальной системе 241 обнаружено, что при 20°C и 37°C он экспрессируется с низким выходом, причем слабо растворим при 37°С (электрофореграммы размещены на рис. S2 ESM\_1.pdf). 242 243 Флуоресцентные генетически кодируемые биосенсоры состоят из сенсорного и флуоресцентного доменов. Белок btuF E. coli, использованный в SenVitAL в качестве 244 245 сенсорного домена, содержит два остатка Cys, которые образуют дисульфидную 246 связь [36]. Растворимость и выход btuF E. coli, содержащего остатки Cys, и варианта 247 с замененными на Ser остатками Cys настолько же низкие, насколько и для SenVitAL. Это указывает на то, что некорректная локализация SenVitAL хотя бы 248 частично обусловлена сенсорным доменом, но не необходимостью дисульфидной 249 связи. Поэтому мы провели поиск альтернативных В<sub>12</sub>-связывающих белков. 250 251 Выбор белка для исследований. При выборе белка для использования в качестве 252 сенсорного домена высокая стабильность будет преимуществом, т. к. такой домен с 253 большей вероятностью сохранит свою функцию после слияния с флуоресцентным 254 доменом. Белки термофильных микроорганизмов отличаются высокой 255 стабильностью из-за суровых условий обитания. Поэтому мы провели виртуальный 256 поиск предполагаемых В12-связывающих белков термофильных организмов. 257 Критериями для микроорганизма-источника были: организм обитает при 258 температуре более 65° С на территории РФ, принадлежит к царству бактерий или 259 архей для обеспечения ортогональности к клеткам эукариот, имеется во 260 Всероссийской коллекции микроорганизмов, и его геном опубликован. Критериями для белка были: наличие предположительно укладок периплазматического 261 262 связывающего и В<sub>12</sub>-связывающего белков, а также отсутствие цистеинов, чтобы 263 исключить потенциальные окислительные пост-трансляционные модификации. В 264 результате для экспериментальной проверки были выбраны 2 белка: AFK51173.1 265 (сокращенно TC) из T. calderae штамм 1633 и UXF00406.1 (сокращенно FR) из F. *riparium* штамм 1445t<sup>T</sup> (названия белков соответствуют записям в GenBank [41], 266 267 последовательности белков приведены в табл. S3 ESM\_1.pdf и рис. S3 ESM\_1.pdf в

268 виде множественного выравнивания). Анаэробная термофильная архея T. calderae 269 обитает в наземном горячем источнике в кальдере вулкана Узон, Камчатка, с оптимальной температурой для роста 85° С [33]. *F. riparium* обитает в горячем 270 источнике острова Кунашир, с оптимальной температурой для роста 65° С [34]. 271 272 Домены белков TC и FR относятся к В<sub>12</sub>-связывающим периплазматическим белкам по классификаторам доменов белков InterPro [27], PROSITE [28], PANTHER [29]. 273 274 Сборка генетических конструкций. Экспрессия, выделение, очистка, анализ, 275 обессоливание белков. Аминокислотные последовательности предполагаемых В<sub>12</sub>-276 связывающих белков были проанализированы с помощью сервиса SOSUI [30] и 277 отредактированы (измененные и исходные аминокислотные последовательности 278 указаны в табл. S3 ESM\_1.pdf): исключались N-концевые сигнальные 279 последовательности и концевые гидрофобные последовательности, характерные для 280 мембранных белков. Полученные участки кодирующей последовательности были 281 клонированы в экспрессионный вектор. Была проведена контролируемая экспрессия, 282 клетки были лизированы ультразвуком, растворимые целевые белки очищены с помощью металл-хелатной хроматографии, фракции с целевыми белками 283 284 определены с помощью Ds-Na-ПААГ-электрофореза, затем буфер при обессоливании был заменен на буфер для спектрофотометрии. После выделения 285 286 белка с помощью металл-хелатной хроматографии, наличие целевых белков во 287 фракциях было подтверждено с помощью Ds-Na-ПААГ (электрофореграммы 288 размещены на рис. S2 ESM\_1.pdf). Белки btuF E. coli, TC оказались слабо растворимы по результатам Ds-Na-ПААГ-электрофореза растворимых и 289 нерастворимых фракций после лизиса бактерий, поэтому этапы очистки, 290 291 обессоливания и проверки связывания с CNCbl выполнялись только для растворимых белков Tlet\_1275 и FR. 292 293 Абсорбционная спектрофотометрия. CNCbl обладает характерным спектром 294 поглощения со спектральными полосами вблизи 280, 360, 500 и 550 нм [42]. При 295 связывании CNCbl белками спектр цианокобаламина меняется: изменяется 296 амплитуда полос вблизи 360 нм, 550 нм, появляются дополнительные спектральные 297 полосы (например, на 405 нм, 473 нм), не характерные ни для свободного CNCbl [43, 44]. Для подтверждения связывания белков Tlet 1275 и FR с CNCbl анализировались 298 299 изменения в спектрах поглощения витамина без белков и в присутствии белков в 300 области 340-580 нм. Мы использовали избыточное количество белка, чтобы весь 301 CNCbl был связан для максимально выраженного эффекта. При инкубации CNCbl с 302 белком Tlet\_1275 увеличивалась амплитуды полос вблизи 360 нм и 550 нм,

303 регистрировались новые спектральные полосы вблизи 405 нм, 515 нм. При
304 инкубации CNCbl с белком FR амплитуда полосы вблизи 360 нм не увеличивалась,
305 но максимум этой полосы сдвигался к 363 нм, также были выявлены новые
306 спектральные полосы вблизи 405 нм и при 515 нм, увеличивалась амплитуда полосы
307 вблизи 550 нм. Подобные изменения спектра В<sub>12</sub> не наблюдались при инкубации
308 CNCbl с канакинумабом. Спектры изображены на рис. 2, разностный спектр
309 действия белков на CNCbl приведен на рис. S4 ESM\_1.pdf.



310

911 Рис. 2. Спектры поглощения растворами: а – белка Tlet\_1275 без CNCbl (1), только
912 CNCbl (2), белка Tlet\_1275 и CNCbl (3); б – белка FR без CNCbl (1), только CNCbl
913 (2), белка FR и CNCbl (3); в – не связывающего B<sub>12</sub> антитела канакинумаб без CNCbl
914 (1), только CNCbl (2), CNCbl и канакинумаба (3). Концентрации белков – 50 мкМ (а,
915 б) и 16,7 мкМ (в); концентрации CNCbl – 15 мкМ (а, б) и 5 мкМ (в). Кривыми
916 показаны средние значения поглощения, стандартные отклонения обозначены
917 соответствующими областями.

318 ДСК. В результате проведенных исследований было показано, что на термограммах 319 буфера для спектрофотометрии и витамина  $B_{12}$  отсутствуют тепловые переходы (на рис. 3) компонентов в диапазоне тепловых переходов белка, что позволило 320 321 исследовать белок в их присутствии. Мы использовали избыточную концентрацию CNCbl для гарантированного насыщения сайта связывания в белке. Исследуемый 322 323 белок имеет выраженный тепловой переход в диапазоне от 68 до 86 градусов, в зависимости от присутствия витамина В<sub>12</sub> в буфере. Установлено, что единственный 324 325 пик теплового перехода комплекса 1 г/л белка с 100 мкМ CNCbl регистрируется при 73,5±0,1°С (2 технических повторности), тогда как пик теплового перехода белка без 326 327 CNCbl – при 79,7±0,2°С (3 технических повторности). Примеры полученных 328 термограмм представлены на рис. 3.



329

330 Рис. 3. Термограммы, полученные методом ДСК: 1 – белка FR (1 г/л) без CNCbl;

331 2 – белка FR (1 г/л) в присутствии 100 мкМ CNCbl; 3 – буфера без белка и без

332 CNCbl; 4 – буфера с 100 мкМ CNCbl. Кривыми обозначены средние значения,

333 стандартные отклонения от которых обозначены соответствующими областями.

## 334 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

335

336 Проведенное нами исследование позволило найти и охарактеризовать В<sub>12</sub>-337 связывающий белок F. riparium с ранее неизвестной функцией. Связывание рекомбинантного белка с витамином В<sub>12</sub> было подтверждено двумя независимыми 338 методами, экспериментально подтверждены его высокие термостабильность, 339 340 растворимость и уровень экспрессии в E. coli при 37°C. Белок Tlet\_1275 ранее был 341 охарактеризован как связывающий витамин B<sub>12</sub>, в нашем исследовании это свойство 342 было также подтверждено. В настоящее время периплазматические связывающие 343 белки часто используются для создания флуоресцентных биосенсоров малых 344 молекул: аминокислот, глюкозы, лактата, азотистых оснований и неорганических 345 ионов [24, 45, 46], поэтому исследованные нами белки могут быть использованы в 346 качестве сенсорных доменов для генетически кодируемых биосенсоров витамина 347 **B**<sub>12</sub>. 348 Экспрессия гена биосенсора витамина B<sub>12</sub> SenViTAL в клетках E. coli оказалась 349 невысока. Белок btuF E. coli, на основе которого данный биосенсор был 350 сконструирован, после экспрессии при 37°С обнаруживался в осадке. Его низкая растворимость не зависела от наличия остатков Cys, не влияющих на связывающую 351

352 функцию [47], но потенциально способных нарушать укладку. Это было показано

при экспрессии варианта *btuF*, где кодоны для Cys были заменены на кодоны для 353 354 Ser. Для белка TC также была показана низкая растворимость, в его структуре 355 остатки Cys отсутствуют. Для эффективной экспрессии в E. coli генов термофильных 356 микроорганизмов может требоваться оптимизация кодонов, тщательный подбор 357 условий культивирования и индукции, влияющих на фолдинг [48, 49]. К<sub>d</sub> комплекса btuF E. coli с витамином B<sub>12</sub> составляет, по различным оценкам, от 11,5-15 нМ до 30-358 50 нМ [47, 50, 51]. В то же время,  $K_d$  биосенсоров на его основе на порядки выше и 359 составляет 157 мкМ для SenVitAL и 93,36 мкМ для его улучшенной версии, 360 361 опубликованной позже [23]. Поскольку указанные выше биосенсоры не позволяют различать суб-наномолярные концентрации витамина B<sub>12</sub> в физиологическом 362 диапазоне в клетках [52], создание новых биосенсоров B<sub>12</sub> на основе 363 периплазматических связывающих белков из F. riparium или T. lettingae на текущий 364 365 момент перспективнее. 366 Результаты спектрофотометрии B<sub>12</sub> с белком Tlet\_1275, полученные в работе 367 [43] в похожих условиях (концентрация имидазола в составе буфера для спектрофотометрии была нами повышена в 50 раз для повышения буферной 368 емкости, компенсирующей снижение pH раствором цианокобаламина), отличаются 369 370 от полученных нами: по нашим данным, изменения спектра, вызванные добавлением 371 данного белка, значительно менее интенсивные. Полученные нами спектры CNCbl с 372 Tlet 1275 лучше сходятся со спектром CNCbl при добавлении к нему белка TM0080, 373 чем при добавлении к нему Tlet\_1275. В этой же работе описано увеличение пиковой 374 температуры теплового перехода (T<sub>m</sub>) В<sub>12</sub>-связывающих белков как признак 375 взаимодействия с витамином, определяемый с помощью дифференциальной сканирующей флуориметрии (ДСФ), что расходится с нашими результатами ДСК 376 377 для белка FR, где, напротив, наблюдается снижение его T<sub>m</sub> в присутствии избытка 378 витамина B<sub>12</sub>. Это может указывать на дестабилизацию структуры FR при 379 связывании с ним витамина В<sub>12</sub>, что облегчает термическую денатурацию, тогда как 380 связывание  $B_{12}$  с белком Tlet 1275, по данным авторов работы [43], наоборот, стабилизирует его структуру. В работе [44] описана стабилизация комплекса В<sub>12</sub> с 381 382 ферментом CblC Trichoplax adhaerens, обусловленная их связыванием и зарегистрированная с помощью ДСФ, причём разница в T<sub>m</sub> достигала примерно 383 384 13°С, тогда как в нашей – 6°С. В той же работе описаны изменения в спектре CNCbl 385 при переходе в связанное состояние: уменьшение амплитуды пика при 361 нм с 386 небольшим спектральным сдвигом вправо хорошо согласуется с результатами 387 спектрофотометрии, выполненной с белком FR. В той же работе пики в спектре

388 связанного CNCbl вблизи 515 нм и 550 нм также выражены сильнее, чем у 389 свободного CNCbl, однако имеют меньшую амплитуду, что может 390 свидетельствовать о слабом связывании витамина с данным ферментом. 391 Поскольку витамин В<sub>12</sub> в клетках млекопитающих замедляет апоптоз, 392 способствует пролиферации [53], поддерживает соотношение SAM/SAH, влияющее на метилирование ДНК и модификации гистонов [54]; опосредует биосинтез 393 394 нуклеотидов, обеспечивает стабильный одноуглеродный метаболизм, стабильность генома и эпигенома [55], важно поддержание в клетках его достаточного уровня для 395 396 эффективной реализации экспериментов, связанных с индукцией плюрипотентности, 397 редактированием генома, механизмами репликации и репарации ДНК. В связи с 398 этим целесообразна разработка молекулярных инструментов для динамического 399 неинвазивного отслеживания дефицита витамина В<sub>12</sub> в клеточных культурах. 400 Вклад авторов. С. Ю. Симоненко, Н.А. Кульдюшев, И. В. Артамонов, В.С. 401 Лактюшкин – проведение экспериментов, написание первоначального текста; С. Ю. 402 Симоненко, Н. А. Кульдюшев – обсуждение результатов исследования, редактирование текста; Н. А. Кульдюшев – концепция и руководство работой. 403 404 Финансирование. Работа выполнена при финансовой поддержке Российского 405 научного фонда (проект 23-75-01141 «Создание генетически кодируемого биосенсора 406 витамина B<sub>12</sub> для повышения эффективности сенесенс-зависимых стратегий лечения 407 онкологических заболеваний»). 408 Благодарности. Авторы выражают благодарность сотрудникам НЦ ТМ Научно-409 технологического университета «Сириус»: Василию Владимировичу Решетникову за предоставление химически компетентных клеток E. coli BL21 (DE3) и плазмиды 410 рЕТЗОа; Загоскину Александру Александровичу за обучение Ds-Na-ПААГ-411 412 электрофорезу и аффинной хроматографии; Сергею Альбертовичу Чувпило за предоставление плазмид pcDNA3.1, pcDNA3.1LIC. 413 414 Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов. 415 Соблюдение этических норм. Настоящая статья не содержит описания 416 выполненных авторами исследований с участием людей или использованием 417 животных в качестве объектов. 418 СПИСОК ЛИТЕРАТУРЫ 419 420 1. Kräutler, B. (2012) Biochemistry of B<sub>12</sub>-Cofactors in Human Metabolism. in Water Soluble Vitamins (Stanger, O. ed.), Springer Netherlands, Dordrecht. pp 323-346 421

422 2. Froese, D. S., Fowler, B., and Baumgartner, M. R. (2019) Vitamin B<sub>12</sub>, folate, and

| 423 |     | the methionine remethylation cycle—biochemistry, pathways, and regulation, J of                  |
|-----|-----|--------------------------------------------------------------------------------------------------|
| 424 |     | Inher Metab Disea, 42, 673-685, doi: 10.1002/jimd.12009.                                         |
| 425 | 3.  | Halczuk, K., Kaźmierczak-Barańska, J., Karwowski, B. T., Karmańska, A., and                      |
| 426 |     | Cieślak, M. (2023) Vitamin B <sub>12</sub> —Multifaceted In Vivo Functions and In Vitro          |
| 427 |     | Applications, Nutrients, 15, 2734, doi: 10.3390/nu15122734.                                      |
| 428 | 4.  | Guéant, JL., Caillerez-Fofou, M., Battaglia-Hsu, S., Alberto, JM., Freund, JN.,                  |
| 429 |     | Dulluc, I., Adjalla, C., Maury, F., Merle, C., Nicolas, JP., Namour, F., and Daval,              |
| 430 |     | JL. (2013) Molecular and cellular effects of vitamin $B_{12}$ in brain, myocardium and           |
| 431 |     | liver through its role as co-factor of methionine synthase, Biochimie, 95, 1033-                 |
| 432 |     | 1040, doi: 10.1016/j.biochi.2013.01.020.                                                         |
| 433 | 5.  | Li, F., Liu, P., Mi, W., Li, L., Anderson, N. M., Lesner, N. P., Burrows, M., Plesset,           |
| 434 |     | J., Majer, A., Wang, G., Li, J., Zhu, L., Keith, B., and Simon, M. C. (2024)                     |
| 435 |     | Blocking methionine catabolism induces senescence and confers vulnerability to                   |
| 436 |     | GSK3 inhibition in liver cancer, Nat Cancer, 5, 131-146, doi: 10.1038/s43018-023-                |
| 437 |     | 00671-3.                                                                                         |
| 438 | 6.  | Obeid, R., Fedosov, S. N., and Nexo, E. (2015) Cobalamin coenzyme forms are not                  |
| 439 |     | likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment                |
| 440 |     | of cobalamin deficiency, Molecular Nutrition Food Res, 59, 1364-1372, doi:                       |
| 441 |     | 10.1002/mnfr.201500019.                                                                          |
| 442 | 7.  | Hannibal, L., Kim, J., Brasch, N. E., Wang, S., Rosenblatt, D. S., Banerjee, R., and             |
| 443 |     | Jacobsen, D. W. (2009) Processing of alkylcobalamins in mammalian cells: A role                  |
| 444 |     | for the MMACHC (cblC) gene product, Molecular Genetics and Metabolism, 97,                       |
| 445 |     | 260-266, doi: 10.1016/j.ymgme.2009.04.005.                                                       |
| 446 | 8.  | Harrington, D. J. (2017) Laboratory assessment of vitamin B <sub>12</sub> status, J Clin Pathol, |
| 447 |     | 70, 168-173, doi: 10.1136/jclinpath-2015-203502.                                                 |
| 448 | 9.  | Zhang, Y., Hodgson, N. W., Trivedi, M. S., Abdolmaleky, H. M., Fournier, M.,                     |
| 449 |     | Cuenod, M., Do, K. Q., and Deth, R. C. (2016) Decreased Brain Levels of Vitamin                  |
| 450 |     | B <sub>12</sub> in Aging, Autism and Schizophrenia, PLoS ONE, 11, e0146797, doi:                 |
| 451 |     | 10.1371/journal.pone.0146797.                                                                    |
| 452 | 10. | Hirsch, S., Ronco, A. M., Guerrero-Bosagna, C., De La Maza, M. P., Leiva, L.,                    |
| 453 |     | Barrera, G., Llanos, M., Alliende, M. A., Silva, F., and Bunout, D. (2008)                       |
| 454 |     | Methylation status in healthy subjects with normal and high serum folate                         |
| 455 |     | concentration, Nutrition, 24, 1103-1109, doi: 10.1016/j.nut.2008.05.018.                         |
| 456 | 11. | Stabler, S. P., Allen, R. H., Dolce, E. T., and Johnson, M. A. (2006) Elevated serum             |
| 457 |     | S-adenosylhomocysteine in cobalamin-deficient elderly and response to treatment,                 |

| 458 |     | The American Journal of Clinical Nutrition, 84, 1422-1429, doi:                         |
|-----|-----|-----------------------------------------------------------------------------------------|
| 459 |     | 10.1093/ajcn/84.6.1422                                                                  |
| 460 | 12. | Banerjee, R. V., and Matthews, R. G. (1990) Cobalamin-dependent methionine              |
| 461 |     | synthase, FASEB j., 4, 1450-1459, doi: 10.1096/fasebj.4.5.2407589.                      |
| 462 | 13. | Duthie, S. J., Narayanan, S., Brand, G. M., Pirie, L., and Grant, G. (2002) Impact of   |
| 463 |     | Folate Deficiency on DNA Stability, The Journal of Nutrition, 132, 2444S-2449S,         |
| 464 |     | doi: 10.1093/jn/132.8.2444S.                                                            |
| 465 | 14. | Maeder, M. L., and Gersbach, C. A. (2016) Genome-editing Technologies for Gene          |
| 466 |     | and Cell Therapy, Molecular Therapy, 24, 430-446, doi: 10.1038/mt.2016.10.              |
| 467 | 15. | Kovatcheva, M., Melendez, E., Chondronasiou, D., Pietrocola, F., Bernad, R.,            |
| 468 |     | Caballe, A., Junza, A., Capellades, J., Holguín-Horcajo, A., Prats, N., Durand, S.,     |
| 469 |     | Rovira, M., Yanes, O., Stephan-Otto Attolini, C., Kroemer, G., and Serrano, M.          |
| 470 |     | (2023) Vitamin $B_{12}$ is a limiting factor for induced cellular plasticity and tissue |
| 471 |     | repair, Nat Metab, 5, 1911-1930, doi: 10.1038/s42255-023-00916-6.                       |
| 472 | 16. | Macip, C. C., Hasan, R., Hoznek, V., Kim, J., Lu, Y. R., Metzger, L. E., Sethna, S.,    |
| 473 |     | and Davidsohn, N. (2024) Gene Therapy-Mediated Partial Reprogramming Extends            |
| 474 |     | Lifespan and Reverses Age-Related Changes in Aged Mice, Cellular                        |
| 475 |     | Reprogramming, 26, 24-32, doi: 10.1089/cell.2023.0072.                                  |
| 476 | 17. | Ferrari, G., Thrasher, A. J., and Aiuti, A. (2021) Gene therapy using                   |
| 477 |     | haematopoietic stem and progenitor cells, Nat Rev Genet, 22, 216-234, doi:              |
| 478 |     | 10.1038/s41576-020-00298-5.                                                             |
| 479 | 18. | Přibylová, A., Fischer, L., Pyott, D. E., Bassett, A., and Molnar, A. (2022) DNA        |
| 480 |     | methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in           |
| 481 |     | a target-specific manner, New Phytologist, 235, 2285-2299, doi:                         |
| 482 |     | 10.1111/nph.18212.                                                                      |
| 483 | 19. | Hinz, J. M., Laughery, M. F., and Wyrick, J. J. (2015) Nucleosomes Inhibit Cas9         |
| 484 |     | Endonuclease Activity in Vitro, Biochemistry, 54, 7063-7066, doi:                       |
| 485 |     | 10.1021/acs.biochem.5b01108.                                                            |
| 486 | 20. | Yarrington, R. M., Verma, S., Schwartz, S., Trautman, J. K., and Carroll, D. (2018)     |
| 487 |     | Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo, Proc. Natl. Acad.           |
| 488 |     | Sci. U.S.A., 115, 9351-9358, doi: 10.1073/pnas.1810062115.                              |
| 489 | 21. | Chen, X., Rinsma, M., Janssen, J. M., Liu, J., Maggio, I., and Gonçalves, M. A. F.      |
| 490 |     | V. (2016) Probing the impact of chromatin conformation on genome editing tools,         |
| 491 |     | Nucleic Acids Research, 44, 6482-6492, doi: 10.1093/nar/gkw524.                         |
| 492 | 22. | Ahmad, M., Mohsin, M., Iqrar, S., Manzoor, O., Siddiqi, T. O., and Ahmad, A.            |

| 493 |     | (2018) Live cell imaging of vitamin $B_{12}$ dynamics by genetically encoded                 |
|-----|-----|----------------------------------------------------------------------------------------------|
| 494 |     | fluorescent nanosensor, Sensors and Actuators B: Chemical, 257, 866-874, doi:                |
| 495 |     | 10.1016/j.snb.2017.11.030.                                                                   |
| 496 | 23. | Soleja, N., Agrawal, N., Nazir, R., Ahmad, M., and Mohsin, M. (2020) Enhanced                |
| 497 |     | sensitivity and detection range of FRET-based vitamin B <sub>12</sub> nanosensor, 3 Biotech, |
| 498 |     | 10, 87, doi: 10.1007/s13205-020-2073-1.                                                      |
| 499 | 24. | Donaldson, T., Iozzino, L., Deacon, L. J., Billones, H., Ausili, A., D'Auria, S., and        |
| 500 |     | Dattelbaum, J. D. (2017) Engineering a switch-based biosensor for arginine using a           |
| 501 |     | Thermotoga maritima periplasmic binding protein, Analytical Biochemistry, 525,               |
| 502 |     | 60-66, doi: 10.1016/j.ab.2017.02.021.                                                        |
| 503 | 25. | Edwards, K. A. (2021) Periplasmic-binding protein-based biosensors and                       |
| 504 |     | bioanalytical assay platforms: Advances, considerations, and strategies for optimal          |
| 505 |     | utility, Talanta Open, 3, 100038, doi: 10.1016/j.talo.2021.100038.                           |
| 506 | 26. | Scheepers, G. H., Lycklama A Nijeholt, J. A., and Poolman, B. (2016) An updated              |
| 507 |     | structural classification of substrate-binding proteins, FEBS Letters, 590, 4393-            |
| 508 |     | 4401, doi: 10.1002/1873-3468.12445.                                                          |
| 509 | 27. | Blum, M., Andreeva, A., Florentino, Laise C., Chuguransky, Sara R., Grego, T.,               |
| 510 |     | Hobbs, E., Pinto, Beatriz L., Orr, A., Paysan-Lafosse, T., Ponamareva, I., Salazar,          |
| 511 |     | Gustavo A., Bordin, N., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, Daniel           |
| 512 |     | H., Letunic, I., Llinares-López, F., Marchler-Bauer, A., et al. (2025) InterPro: the         |
| 513 |     | protein sequence classification resource in 2025, Nucleic Acids Research, 53,                |
| 514 |     | D444-D456, doi: 10.1093/nar/gkae1082.                                                        |
| 515 | 28. | Sigrist, C. J. A., De Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A.,           |
| 516 |     | Bougueleret, L., and Xenarios, I. (2012) New and continuing developments at                  |
| 517 |     | PROSITE, Nucleic Acids Research, 41, D344-D347, doi: 10.1093/nar/gks1067.                    |
| 518 | 29. | Thomas, P. D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L. P., and                |
| 519 |     | Mi, H. (2022) PANTHER: Making genome-scale phylogenetics accessible to all,                  |
| 520 |     | Protein Science, 31, 8-22, doi: 10.1002/pro.4218.                                            |
| 521 | 30. | Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998) SOSUI: classification and               |
| 522 |     | secondary structure prediction system for membrane proteins, Bioinformatics, 14,             |
| 523 |     | 378-379, doi: 10.1093/bioinformatics/14.4.378.                                               |
| 524 | 31. | Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A.,                |
| 525 |     | McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J.               |
| 526 |     | D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0,            |
| 527 |     | Bioinformatics, 23, 2947-2948, doi: 10.1093/bioinformatics/btm404.                           |

| 528 | 32. | Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., and Barton, G. J.   |
|-----|-----|-------------------------------------------------------------------------------------|
| 529 |     | (2009) Jalview Version 2—a multiple sequence alignment editor and analysis          |
| 530 |     | workbench, Bioinformatics, 25, 1189-1191, doi: 10.1093/bioinformatics/btp033.       |
| 531 | 33. | Kochetkova, T. V., Kublanov, I. V., Toshchakov, S. V., Osburn, M. R., Novikov,      |
| 532 |     | A. A., Bonch-Osmolovskaya, E. A., and Perevalova, A. A. (2016) Thermogladius        |
| 533 |     | calderae gen. nov., sp. nov., an anaerobic, hyperthermophilic crenarchaeote from a  |
| 534 |     | Kamchatka hot spring, International Journal of Systematic and Evolutionary          |
| 535 |     | Microbiology, 66, 1407-1412, doi: 10.1099/ijsem.0.000916.                           |
| 536 | 34. | Podosokorskaya, O. A., Merkel, A. Y., Kolganova, T. V., Chernyh, N. A.,             |
| 537 |     | Miroshnichenko, M. L., Bonch-Osmolovskaya, E. A., and Kublanov, I. V. (2011)        |
| 538 |     | Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic           |
| 539 |     | bacterium isolated from a hot spring, International Journal of Systematic and       |
| 540 |     | Evolutionary Microbiology, 61, 2697-2701, doi: 10.1099/ijs.0.026070-0.              |
| 541 | 35. | Karpowich, N. K., Huang, H. H., Smith, P. C., and Hunt, J. F. (2003) Crystal        |
| 542 |     | Structures of the BtuF Periplasmic-binding Protein for Vitamin B12 Suggest a        |
| 543 |     | Functionally Important Reduction in Protein Mobility upon Ligand Binding,           |
| 544 |     | Journal of Biological Chemistry, 278, 8429-8434, doi: 10.1074/jbc.M212239200.       |
| 545 | 36. | Borths, E. L., Locher, K. P., Lee, A. T., and Rees, D. C. (2002) The structure of   |
| 546 |     | Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter,  |
| 547 |     | Proc. Natl. Acad. Sci. U.S.A., 99, 16642-16647, doi: 10.1073/pnas.262659699.        |
| 548 | 37. | Nishida, Y., Kayama, K., Endoh, T., Hanazono, K., Camer, G. A., and Endoh, D.       |
| 549 |     | (2023) PCR-Based Gene Synthesis with Overlapping Unisense-Oligomers                 |
| 550 |     | Asymmetric Extension Supported by a Simulator for Oligonucleotide Extension         |
| 551 |     | Achieved 1 kbp dsDNA, BioTechniques, 74, 317-332, doi: 10.2144/btn-2022-0127.       |
| 552 | 38. | Черных, М. А., Кульдюшев, Н. А., Пеньёр, С., Беркут, А. А., Титгат, Я.,             |
| 553 |     | Ефремов, Р. Г., Василевский, А. А., and Чугунов, А. О. (2021) Производное           |
| 554 |     | нейротоксина скорпиона ВеМ9, селективное в отношении потенциал-                     |
| 555 |     | чувствительных натриевых каналов насекомых, Биоорган. химия, 47, 495-505,           |
| 556 |     | doi: 10.31857/S0132342321040060.                                                    |
| 557 | 39. | Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, JC., Williams, K. L., Appel,   |
| 558 |     | R. D., and Hochstrasser, D. F. (1998) Protein Identification and Analysis Tools in  |
| 559 |     | the ExPASy Server. in 2-D Proteome Analysis Protocols, Humana Press, New            |
| 560 |     | Jersey. pp 531-552                                                                  |
| 561 | 40. | Dhimolea, E. (2010) Canakinumab, mAbs, 2, 3-13, doi: 10.4161/mabs.2.1.10328.        |
| 562 | 41. | Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. (2016) |

| 563 |     | GenBank, Nucleic Acids Research, 44, D67-D72, doi: 10.1093/nar/gkv1276.             |
|-----|-----|-------------------------------------------------------------------------------------|
| 564 | 42. | Chen, P., Wolf, W. R., Castanheira, I., and Sanches-Silva, A. (2010) A LC/UV/Vis    |
| 565 |     | method for determination of cyanocobalamin (VB12) in multivitamin dietary           |
| 566 |     | supplements with on-line sample clean-up, Anal. Methods, 2, 1171, doi:              |
| 567 |     | 10.1039/c0ay00177e.                                                                 |
| 568 | 43. | Butzin, N. C., Secinaro, M. A., Swithers, K. S., Gogarten, J. P., and Noll, K. M.   |
| 569 |     | (2013) Thermotoga lettingae Can Salvage Cobinamide To Synthesize Vitamin $B_{12}$ , |
| 570 |     | Appl Environ Microbiol, 79, 7006-7012, doi: 10.1128/AEM.01800-13.                   |
| 571 | 44. | Krams, C., Esser, A. J., Klenzendorf, M., Klotz, K., Spiekerkoetter, U., Jacobsen,  |
| 572 |     | D. W., Smith, C. A., Maggiolo, A. O., and Hannibal, L. (2024) The cobalamin         |
| 573 |     | processing enzyme of Trichoplax adhaerens, Journal of Biological Chemistry,         |
| 574 |     | 108089, doi: 10.1016/j.jbc.2024.108089.                                             |
| 575 | 45. | Chino, S., Sakaguchi, A., Yamoto, R., Ferri, S., and Sode, K. (2007) Branched-      |
| 576 |     | chain Amino Acid Biosensing Using Fluorescent Modified Engineered                   |
| 577 |     | Leucine/Isoleucine/Valine Binding Protein, IJMS, 8, 513-525, doi:                   |
| 578 |     | 10.3390/i8060513.                                                                   |
| 579 | 46. | Nasu, Y., Murphy-Royal, C., Wen, Y., Haidey, J. N., Molina, R. S., Aggarwal, A.,    |
| 580 |     | Zhang, S., Kamijo, Y., Paquet, ME., Podgorski, K., Drobizhev, M., Bains, J. S.,     |
| 581 |     | Lemieux, M. J., Gordon, G. R., and Campbell, R. E. (2021) A genetically encoded     |
| 582 |     | fluorescent biosensor for extracellular L-lactate, Nat Commun, 12, 7058, doi:       |
| 583 |     | 10.1038/s41467-021-27332-2.                                                         |
| 584 | 47. | Nijland, M., Lefebvre, S. N., Thangaratnarajah, C., and Slotboom, D. J. (2024)      |
| 585 |     | Bidirectional ATP-driven transport of cobalamin by the mycobacterial ABC            |
| 586 |     | transporter BacA, Nat Commun, 15, 2626, doi: 10.1038/s41467-024-46917-1.            |
| 587 | 48. | Kruglikov, A., Wei, Y., and Xia, X. (2022) Proteins from Thermophilic Thermus       |
| 588 |     | thermophilus Often Do Not Fold Correctly in a Mesophilic Expression System          |
| 589 |     | Such as Escherichia coli, ACS Omega, 7, 37797-37806, doi:                           |
| 590 |     | 10.1021/acsomega.2c04786.                                                           |
| 591 | 49. | Wang, Y., and Zhang, Y. H. P. (2009) Overexpression and simple purification of      |
| 592 |     | the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli        |
| 593 |     | and its application for NADPH regeneration, Microb Cell Fact, 8, 30, doi:           |
| 594 |     | 10.1186/1475-2859-8-30.                                                             |
| 595 | 50. | Cadieux, N., Bradbeer, C., Reeger-Schneider, E., Köster, W., Mohanty, A. K.,        |
| 596 |     | Wiener, M. C., and Kadner, R. J. (2002) Identification of the Periplasmic           |
| 597 |     | Cobalamin-Binding Protein BtuF of Escherichia coli, J Bacteriol, 184, 706-717,      |

| 598 |         | doi: 10.1128/JB.184.3.706-717.2002.                                                         |
|-----|---------|---------------------------------------------------------------------------------------------|
| 599 | 51.     | Mireku, S. A., Ruetz, M., Zhou, T., Korkhov, V. M., Kräutler, B., and Locher, K.            |
| 600 |         | P. (2017) Conformational Change of a Tryptophan Residue in BtuF Facilitates                 |
| 601 |         | Binding and Transport of Cobinamide by the Vitamin B <sub>12</sub> Transporter BtuCD-F,     |
| 602 |         | Sci Rep, 7, 41575, doi: 10.1038/srep41575.                                                  |
| 603 | 52.     | Boachie, J., Adaikalakoteswari, A., Goljan, I., Samavat, J., Cagampang, F. R., and          |
| 604 |         | Saravanan, P. (2021) Intracellular and Tissue Levels of Vitamin $B_{12}$ in Hepatocytes     |
| 605 |         | Are Modulated by CD320 Receptor and TCN2 Transporter, IJMS, 22, 3089, doi:                  |
| 606 |         | 10.3390/ijms22063089.                                                                       |
| 607 | 53.     | Battaglia-Hsu, Sf., Akchiche, N., Noel, N., Alberto, JM., Jeannesson, E.,                   |
| 608 |         | Orozco-Barrios, C. E., Martinez-Fong, D., Daval, JL., and Guéant, JL. (2009)                |
| 609 |         | Vitamin $B_{12}$ deficiency reduces proliferation and promotes differentiation of           |
| 610 |         | neuroblastoma cells and up-regulates PP2A, proNGF, and TACE, Proc. Natl. Acad.              |
| 611 |         | Sci. U.S.A., 106, 21930-21935, doi: 10.1073/pnas.0811794106.                                |
| 612 | 54.     | Guéant, JL., Guéant-Rodriguez, RM., Kosgei, V. J., and Coelho, D. (2022)                    |
| 613 |         | Causes and consequences of impaired methionine synthase activity in acquired and            |
| 614 |         | inherited disorders of vitamin B <sub>12</sub> metabolism, Critical Reviews in Biochemistry |
| 615 |         | and Molecular Biology, 57, 133-155, doi: 10.1080/10409238.2021.1979459.                     |
| 616 | 55.     | Smith, D. (2023) Folate and Folic Acid Metabolism: A Significant Nutrient-Gene-             |
| 617 |         | Environment Interaction, MRAJ, 11, doi: 10.18103/mra.v11i5.3824.                            |
| 618 |         |                                                                                             |
| 619 | CYAN    | OCOBALAMIN-BINDING PROTEIN OF A THERMOPHILIC                                                |
| 620 | MICR    | OORGANISM FOR THE DEVELOPMENT OF GENETICALLY ENCODED                                        |
| 621 | VITA    | MIN B12 BIOSENSORS                                                                          |
| 622 | S.Y. S  | imonenko <sup>*</sup> , I.V. Artamonov, V.S. Laktyushkin, N.A. Kuldyushev                   |
| 623 | Resear  | ch Center for Translational Medicine, Sirius University of Science and Technology,          |
| 624 | 35434(  | ) Sochi, Russia; E-mail: Simonenko.SY@talantiuspeh.ru.                                      |
| 625 | Using   | genetic technologies such as genome editing and cell reprogramming, it is possible          |
| 626 | to char | nge DNA sequences. Intracellular vitamin $B_{12}$ is involved in the metabolism of folate   |
| 627 | and SA  | M, which are necessary for the replication, nucleotide synthesis, repair, and               |
| 628 | methyl  | ation of DNA and histones. Therefore, its deficiency can reduce the effectiveness           |
| 629 | and sat | fety of genetic technologies. In the genomes of thermophilic microorganisms                 |
| 630 | collect | ed in the Russian Federation, we found and cloned the gene for the periplasmic $B_{12}$ -   |
| 631 | binding | g protein of the thermophilic bacterium Fervidobacterium riparium. The                      |
| 632 | recom   | binant protein is highly thermostable and binds to vitamin $B_{12}$ , as indicated by the   |

- results of absorption spectrophotometry and differential scanning calorimetry. Currently,
- there are no sufficiently sensitive non-invasive methods for the dynamic measurement of
- intracellular  $B_{12}$  concentrations. However, the protein we characterized could serve as a
- 636 sensor domain for a genetically encoded fluorescent  $B_{12}$  biosensor, potentially replacing
- 637 suboptimal similar biosensors and providing a new molecular tool that can be used, in
- 638 particular, to optimize the application of genetic technologies.
- 639 *Keywords*: vitamin B<sub>12</sub>, cyanocobalamin, thermophilic microorganisms, genetic
- 640 technologies, recombinant proteins, periplasmic binding proteins.