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Abstract 

Euler's formula for polyhedra is one of the most famous mathematical results. It is also widely used outside

mathematics. In particular, it is used in the analysis of molecular structures, many of which have a polyhedral

shape. Generalizations of Euler's formula for non-simply connected and multidimensional polyhedra are well

known. This article presents a generalization of Euler's formula for adjacent polyhedra. Various cases of

adjacency  are  considered:  face-sharing,  edge-sharing  and  vertex-sharing  connections.  For  a  system  of

adjacent polyhedra, a single formula relates the number of vertices, edges and faces in the form V – E + F =

N + 1, where N is the number of polyhedra.
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1  Introduction

Euler's formula for polyhedra is one of the most famous mathematical formulas. It reflects

the most fundamental  topological  properties  of three-dimensional  bodies [1]. Naturally,

this formula is widely used in the study of molecular structures that have a polyhedral

shape. In chemistry, the most famous examples of polyhedral structures are fullerenes with

pentagonal and hexagonal faces. Euler's formula characterizes the shape of the cavities of

clathrate frameworks, as well as their polyhedral fragments. In one way or another, this

formula can also be used to describe the structure of several adjacent polyhedra, which

may be of interest for describing various processes of structure formation.

Euler's formula relates the number of vertices, edges, and faces of a single polyhedron

by a simple ratio. Spatial structures in the form of several adjacent polyhedra are rather

difficult to perceive. The most natural approach to the analysis of such molecular structures
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is based on the use of an adjacency matrix.  The total  number of particles (vertices)  is

usually known. The total number of bonds (edges) is easy to calculate. No distinction is

made  here  between  internal  and  external  edges.  Elementary  cycles  are  conveniently

considered as faces of complex structures. There are explicit formulas that allow one to

calculate the number of cycles of different lengths using the adjacency matrix [2–4]. This

approach requires  caution,  since  it  is  necessary  to  check the  elementary  nature  of  the

cycles.  In  tetrahedrally  coordinated  systems,  problems with  the  number  of  square  and

pentagonal cycles usually do not arise when calculating using the adjacency matrix. In real

systems, it is also difficult to confuse adjacent squares with a hexagonal ring. Therefore,

using the total number of elementary cycles significantly simplifies the analysis. In this

article  we will  analyze purely mathematical  relationships  between the total  numbers of

vertices, edges and faces of spatial structures formed by adjacent polyhedra.

The impetus for writing this paper was a recently obtained formula that relates the

number of vertices, edges, and faces for water clusters in the form of edge-sharing prisms

[5]. Analysis of geometric  examples  showed the presence of very general relationships

similar to Euler's formula. This article is devoted to demonstrating these examples, as well

as proving general formulas.

2  Description of the problem

To depict the structure of polyhedra, their flat images (planar graph) are

often used, called Schlegel diagrams (Fig. 1a). These diagrams take also

into account the framing face. Euler's formula for convex polyhedra has

the following form

V−E+F=2 (1)

Where  V,  E and  F are the number of  vertices,  edges and faces.  The

simplest consequence of equation (1) is the following relation for a flat

meshwork without taking into account the “back” face (Fig. 1b)

V−E+F=1 (2)
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Fig. 1 (a ) Schlegel diagrams of cube, (b) Meshwork of adjacent polygons.

Fig.  2 (a)  Edge-sharing  pentagonal  prisms,  (b)  four  vertex-sharing  polyhedra  (two

superimposed polyhedra on the left)

We  will  use  both  of  these  relations.  Note  that  equation  (2)  is  valid  for  any  simply

connected set of adjacent polygons, since the perimeter of such a region can be considered

the "back" face, which, if taken into account, we obtain (1). And if we do not take it into

account, we obtain (2). The shape of the enclosing polygon is not important, since we are

talking about topological properties. A widely known generalization of Euler's formula for

non-simply connected polyhedra has the following form.

V−E+F=2−2 g (3)

Here, g is the genus of a surface which is equal to the number of "holes" of a surface. 

The  right  side  of  equation  (3)  is  called  the  Euler  characteristic  of  a  surface.  Its

maximum value is 2. A relation similar  to formula (1) was obtained by us for various

combinations of three edge-sharing prisms (Fig. 2a) [5].

V−E+F=4 (4)

The question arises  whether  it  is  possible  to  obtain a  general  formula for  an arbitrary

number  of  edge-sharing  prisms  and  an  arbitrary  number  of  any  polyhedra.  No  less

interesting is the case of vertex-sharing polyhedra, i.e. a set of polyhedra with a common

vertex.  As an  example  of  such a  structure,  Fig.  2b shows a fragment  of  the  clathrate

frameworks consisting of four 24-vertex polyhedra with one common vertex.
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3  Results and discussion

3.1  Face sharing

First, let us consider an example of the simplest union of two polyhedra of arbitrary shape:

when they have an n-gonal common face. For the total number of vertices, edges and faces,

the following obvious relationships are true: V = ∑v – n, E = ∑e – n, F = ∑f – 1. Here the

summation is over two polyhedra. Taking into account (1), we get

 

V−E+F=3 (5)

3.2  Edge sharing

Let us now consider a set of  N polyhedra that have one common edge. We consider the

case when their adjacent dihedral angles add up to 2π. Usually their number is small, but

we are considering the general case. Let such a structure have N adjacent faces, which are

polygons  with  the  number  of  sides  nk,  where  k varies  from  1  to  N (Fig.  3).  When

calculating the number of vertices  of the general  structure,  it  is  necessary to eliminate

multiple enumerations of vertices in the center. More exactly, (N – 1) pairs of vertices are

redundant.  In  addition,  to  eliminate  repetition,  it  is  necessary  to  subtract  once  all  the

remaining (ni – 2) vertices of each of the N adjacent faces.

V=∑ v−2 ( N−1 )−∑ (n i−2 )=∑ v−∑ ni−2 N+2+2 N=∑ v−∑ ni+2     (6)

Similar relations are not difficult to obtain for the number of edges and faces.

    E=∑ e−( N−1 )−∑ (n i−1 )=∑ e−∑ ni−N+N+1=∑ e−∑ ni+1        (7)

F=∑ f −N (8)

Combining these expressions, we obtain the following general formula for edge-sharing

polyhedra

V−E+F=N+1 (9)
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Fig. 3 (a ) Edge-sharing polyhedron

3.3  Vertex sharing

3.3.1 Examples

Let us first  analyze the simplest  examples of structures formed by polyhedra with one

common vertex (Fig. 4). We consider the case when their adjacent polyhedral angles add

up to 4π. For a tetrahedron divided into four smaller tetrahedra, V = 5, E = 10, and F = 10.

Therefore, V – E + F = 5 and we again arrive at formula (9), since in this case N = 4.

Let us now consider the entire class of  n-gonal bipyramids. It is obvious that in this

case V = n + 3. For the edges we have two sets of inclined edges of n edges each and a

double set in the horizontal plane. Taking into account the two central vertical edges, we

obtain E = 4n + 2. For the faces, there are two sets of inclined faces, two sets of vertical

faces and one set of horizontal faces, i.e.  F = 5n. We obtain that  V –  E +  F = 2n + 1.

Considering that in this case the total  number of polyhedra  N = 2n,  we again arrive at

formula (9). 

A similar calculation is not difficult to perform for “biprisms” with a common base

(Fig.  4c).  Note that  most  often biprisms are called  prisms with a  common lateral  side

(Fresnel biprism, [6]). In this case, V = 3 n + 3, E = 8 n + 2, F = 7 n. Again we obtain V – E

+ F = 2 n + 1. Consequently, formula (9) is also valid in this case. It can be verified that

formula (9) is valid for cuboctahedron (Fig. 4d) and cuboid 2×2×2 (Fig. 4e). The first of

them is obtained by truncating eight vertex regions, one of which is shown in Fig. 4e. 
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Fig. 4 (a ) tetrahedron, (b) bipyramid, (c) biprism, (d) cubooctahedron, (e) cuboid 2×2×2, 

(f) small stellated dodecahedron

It can be assumed that formula (9) is valid for any set of polyhedra with a common vertex.

To prove this statement, we introduce a number of auxiliary definitions and notations.

3.3.2 Vertex classification

1) Central vertex

2) Black vertices are directly connected to the center (Fig. 4).

3) Gray vertices belong to adjacent polyhedra, without being black.

4) White vertices belong to only one polyhedron.

The numbers of such vertices will be designated as Vb,  Vg and Vw. In Fig. 4, the first

two figures (a, b, c) have only black vertices in addition to the central vertex. Figure (d)

also has gray vertices, and figures (e, f) also have white vertices, although the latter has no

gray vertices. The structure in Fig. 2b also has all the types of vertices.

3.3.3 Black polyhedron

The black vertices are the vertices of a certain polyhedron, which we will also call black.

The black vertices belonging to one of polyhedra can be considered as the vertices of the

outer face of the black polyhedron. For topological analysis, it does not matter that such

"faces" may not be flat. It is enough that the black polyhedron is topologically equivalent

to a sphere. Therefore, we can consider that the black polyhedron is formed by a set of

pyramids  with  a  common  vertex.  Fig.  5a  shows  a  set  of  black  vertices  of  a  certain

structure. A square face of the black polyhedron is highlighted.

The  main  characteristics  of  the  compound  black  polyhedron,  including  both  its

external and internal elements, will be marked with an asterisk. In parallel, we will 

Fig. 5 (a ) black vertexes of a polydedron,  (b) vertices located on the outer surface of a

polyhedron at vertex-sharing connection. Black vertexes are connected with center. Grey
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vertices  lie  on  adjacent  faces  of  two  polyhedrons.  White  vertices  belong  to  only  one

polyhedron.

consider the surface polyhedron, the characteristics of which we will designate with the

symbol "S". There are following simple relationships between them

V ¿
=V s

+1

E¿
=ES

+V S (10)

F=FS
+ES

Here we have taken into account that the number of internal edges of the black polyhedron

is equal to the number of vertices on the surface, and the number of internal faces between

adjacent pyramids is equal to the number of surface edges. For the black polyhedron as a

whole, we obtain the following relation.

V ¿
−E¿

+F¿
=V s

+1−ES
−V S

+FS
+ES

=1+FS (11)

And since FS is equal to the number of composite figures N (pyramids), we obtain the same

relationship for the elements of the black polyhedron.

V ¿
−E¿

+F¿
=N+1 (12)

Note that for the surface polyhedron considered here, the usual Euler equation is naturally

satisfied

V S
−ES

+FS
=2, (13)

which can be rewritten as follows

ES
=V S

+N−2 (14)

3.3.4 Designations of external elements 

A part of the external surface of the general structure, limited by the planes of the faces of

one of the internal pyramids, will be called a cap. Each cap in turn can be composed of a

certain number of faces that are external to the structure as a whole. Some of the vertices of

such caps are in planes that are continuations of the internal faces of the black polyhedron.

Topologically, we can assume that they are located on the boundaries of the faces of the

black polyhedron. The remaining vertices are internal to one of the caps (Fig. 5b). Vertices

located on the boundaries between the faces of the black polyhedron are gray, and internal

vertices are white. Recall that we designated the number of such vertices as  Vg and  Vw,

respectively. 
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Both black and gray vertices are located on the boundaries between faces of the black

polyhedron. The total number of boundary edges between the nearest boundary vertices

will be designated as Eb. We will also introduce notations for the number of edges between

gray  and  white  vertices  Egw and  for  the  number  of  edges  between  white  vertices  Ew.

Finally, the number of faces near the boundary and internal faces for each cap is denoted as

Fb and Fw, respectively.
3.3.5 Formula derivation

To derive the main formula, we need two auxiliary relations. First, note that the number of

boundary edges of a single cap is equal to the sum of the black and gray vertices located on

this boundary, i.e.  Eb
i = VS

i + Vg
i. Let us sum this relation over all  N caps, taking into

account the doubling of edges and of the number of gray vertices.

2 Eb
=∑ deg (V k

S )+2 V g
=2 ES

+2 V g (15)

Here we took into account that when summing over all polyhedra, each black vertex is

repeated as many times as its degree, i.e. the number of converging black edges. In the

total sum over all black vertices, such edges are also repeated twice, i.e.

∑V i
S
=2 ES (16)

Therefore,

Eb
=ES

+V g (17)

Based on formula (2) for a separate cap we have

(V i
S
+V i

g
+V i

w )−( Ei
b
+Ei

gw
+E i

w )+(F i
b
+F i

w )=1 (18)

Summing this expression over all caps, taking into account (16), we obtain

(2 ES
+2V g

+V w )−( 2Eb
+ Egw

+Ew )+( Fb
+Fw )=N (19)

Now we transform the combination of the main parameters of the general structure using

the characteristics of the black polyhedron, and then rearrange the terms of this expression

so as to use formula (19).

V−E+F=(V ¿
+V g

+V w )− ( E¿
+Eb

+ Egw
+Ew

−ES )+ ( F¿
+Fb

+Fw
−FS )

¿ (V ¿
−E¿

+F¿ )+V g
+V w

−( Eb
+Egw

+Ew )+ES
+ ( Fb

+Fw
−N )

¿ (V ¿
−E¿

+F ¿ )+2ES
+2V g

+V w
−(2 Eb

+Egw
+Ew

)+(F¿¿b+Fw
)−N ¿
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¿V ¿
−E¿

+F¿ (20)

Here we have added the right side of equation (17) and subtracted its left side.
Thus, taking into account (12), it can be stated that for any system of adjacent convex

polyhedra with one common vertex, the following expression is indeed valid.

V−E+F=N+1 (21)

3.4. Multiple connections

3.4.1 Examples

We have considered the cases of adjacency of polyhedra with one common element. But,

as the examples show, expression (21) remains valid for case of multiple connections of

polyhedra.  Various examples  are  shown in Fig.  6.  The simplest  case of multiple  face-

sharing of polyhedra is N-section prismatic tubes (Fig. 5a) with k-gonal rings. In this case,

the following relations are valid: V = k + k N, E = k + 2 k N, F = 1 + (k + 1) N. Therefore,

in this case we also obtain the previous relation

V−E+F=k+kN−k−2 kN+1+kN +N=N+1 (22)

An example of double edge-sharing is shown in Fig. 6b. It is easy to check that in this

case V = 12, E = 12 + 12 = 24, F = 4 + 8 + 5 = 17. That is, V – E + F = 12 – 24 + 17 = 5.

This means that formula (21) is satisfied in this case as well.

Formula (21) is also valid for more complex vertex-sharing structures. Figures 6c–e

shows various multi-cage fragments of the two most common gas hydrate frameworks sI

and sII. Each of these tetrahedrally coordinated frameworks is formed by two types of
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Fig. 6 (a ) hexagonal tube with multiple face-sharing of prisms, (b) double edge-sharing 

connection of prisms, (c) multi-cage fragments of gas hydrate frameworks.

Table Topological characteristics of multiple vertex-sharing fragments

Cage D/sI T/sI D/sII H/sII

n1 20 24 20 28

V 172 184 172 198

E 296 320 296 346

F 138 152 138 166

V – E + F 14 16 14 18

f = n1/2 + 2 12 14 12 16

polyhedra. The polyhedra of the first framework are D (20) and T(24), and those of the

second are  again  D and H (28).  The number  of  vertices  n1 is  given in  brackets.  The

fragments  in  Figure  6c–e  represent  different  dense  single-layer  sheaths  of  polyhedra

around the central polyhedron. The total numbers of vertices (molecules), edges (hydrogen

bonds), and faces (H-bonded cycles) were previously calculated for these fragments [7].

This statistics is convenient for checking relation (21). For each fragment, the number of

vertex-sharing connections is equal to the number of vertices of the internal polyhedron.

Table 1 shows the main characteristics of these fragments that were calculated earlier.

The total number of polyhedra on the surface of each fragment is equal to the number of

faces  of  the  internal  polyhedron.  With  tetrahedral  coordination  of  bonds,  three  edges

converge  at  each  vertex  of  individual  polyhedra  (cubic  graphs).  Therefore,  for  each

polyhedron,  the  number  of  edges  is  one  and  a  half  times  greater  than  the  number  of

vertices. According to Euler's formula (1), the number of faces of the internal polyhedron,

equal to the number of polyhedra on the surface, is determined by the ratio f = n1/2 + 2 (last

line in Table). Taking into account the internal polyhedron, it is easy to verify the validity

of formula (21) for the considered multi-cage fragments.

3.4.2 Proof of the basic formula for multiple connections

The method of proving the validity of formula (21) for any multiple connections consists

of analyzing the changes in the system parameters when one polyhedron is disconnected

from the original multi-polyhedral structure. In this case, the validity of this formula for

one connection has already been proven. This is the method of backward induction. The
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validity  of  Euler's  formula  (1)  itself  is  proven  in  a  similar  way  when  one  vertex  is

successively removed.

First, let us consider the case of a face-sharing compound, where the face is an n-gon.

Let us also denote the parameters of the removed polyhedron as  v,  e,  f. In this case, the

change in the parameters of the general structure is ∆V = v – n, ∆E = e – n, ∆F = f – 1, i.e.

∆(V –  E +  F) = (v –  e +  f) – 1 = 2 – 1 = 1. We have established that with successive

removal  of  one polyhedron,  the expression  V –  E +  F decreases  by one.  But  for  two

polyhedra, equation (3) is valid. Therefore, in the general case, this expression is indeed

equal to N + 1.

A similar situation occurs in the case of edge sharing (Fig.  3) when removing one

polyhedron, which has two adjacent faces in the form of polygons with the number of sides

n1 and n2. Here, ∆V = v – n1 – n2 + 2, ∆E = e – n1 – n2 + 1, ∆F = f – 2, i.e. ∆(V – E + F) = (v

– e + f) – 1 = 1. 

In the vertex-sharing case, when deleting one polyhedron, it is necessary to consider k

faces  with  a  common vertex  (Fig.  3,  upper  part).  Let  these  faces  be  polygons with  ni

angles, where i varies from 1 to k. In this case, ∆V = v – (n1 + n2 + ….+ nk) + k + k – 1.

Here the sum (n1 +  n2 + …nk) compensates for the deletion of vertices belonging to the

faces adjacent to the central vertex (black and gray vertices). The first term k eliminates

double counting of black vertices. The second k eliminates k-fold counting repetition of the

central vertex in the sum (n1 + n2 + …+ nk). It remains to subtract one, since the central

vertex still needs to be excluded from the total number of vertices of the polyhedron being

deleted. Similarly, ∆E = e – (n1 + n2 + ….+ nk) + k, ∆F = f – k. Therefore, ∆(V – E + F) = (v

– e + f) – 1 = 1. Thus, for any removal of one adjacent polyhedron, ∆(V – E + F) = 1.  

Now consider the general case of a structure without holes. Let an arbitrary number of

faces become external when a polyhedron is removed (Fig. 1b). These faces form a simply

connected set. One can always perform such a deletion.  Otherwise the connectivity of the

structure as  a whole changes  (the number of  holes changes  or  the general  structure  is

divided into two parts).  The set of components of the polyhedron to be deleted (vertices,

edges, and faces,  the  numbers of  which are  denoted as v,  e,  f) can be divided into two

subsets: the external components to be deleted and the internal components shared with the

remaining part (vin, ein, fin). In this case, we get:

∆ (V −E+F )=( v−e+ f )−(v¿−e¿+ f ¿ )=2−1=1 (23)

11



Here, for the polyhedron to be removed, we used formulas (1) and (2). This is also true

when  two  parts  of  the  inner  surface  of  the  polyhedron  being  removed  (Fig.  1b)  are

connected by a single vertex (articulation point of the graph). To prove formula (2) in this

case, you only need to add one edge, forming a triangle at the junction. In this case, ∆V =

0, ∆E = 1, ∆F = 1, i.e. the value of V – E + F does not change. Thus, for any removal of

one adjacent polyhedron ∆(V – E + F) = 1, which means that the general formula is valid

for any system of adjacent polyhedra.

3.5  Weak compounds

Stable  structures  are  of  primary  interest.  But  the  general  formula  obtained  is  easily

generalized to the case of "light touches". For cases when two polyhedra have only one

common vertex or one common edge, the validity of formula (21) is proved by following

simple transformations.

(V 1+V 2−1 )−( E1+E2 )+( F1+F2 )=2+2−1=N +1 (24)

(V 1+V 2−2 )−( E1+E2−1 )+( F1+F2 )=2+2−1=N+1 (25)

4  Conclusions

The right side of expression (5) for face sharing of polyhedra can also be written as N + 1,

since in this case two polyhedra are adjacent. That is, the range of applicability of formula

(21) turns out to be very wide.

The  formulas  for  adjacent  polyhedra  are  based  on  the  Euler  formula  for  a  single

polyhedron and are a consequence of this formula. At the same time, formula (21) is a

generalization  of  the  Euler  formula  and  passes  into  it  when  the  number  of  adjacent

polyhedra is two. This allows us to take a new look at the Euler formula itself, in which 2

is  1  +  N,  as  well  as  at  the  concept  of  topological  simple-connectedness  and  multi-

connectedness.

Physicochemical  applications  of  the  obtained  formula  can  be  related  to  computer

modeling and structural analysis algorithms based on the adjacency matrix, since in this

case the characteristics V, E and F are quite easily calculated.
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