COLLATZ CONJECTURE PROOF SIDI ABDESSALAM YASSINE THEOREM

INTRODUCTION:

The **Collatz Conjecture** is one of the most famous unsolved problems in mathematics .It is named after mathematician **LOTHAR COLLATZ** who proposed it in **1937**, **Collatz Conjecture** is also known as **(3n+1 problem)** or the **(3n+1 Conjecture)**

The Collatz Conjecture states that if you take any positive integer n and apply a simple set of rules repeatedly, eventually you will always end up with the number 1.

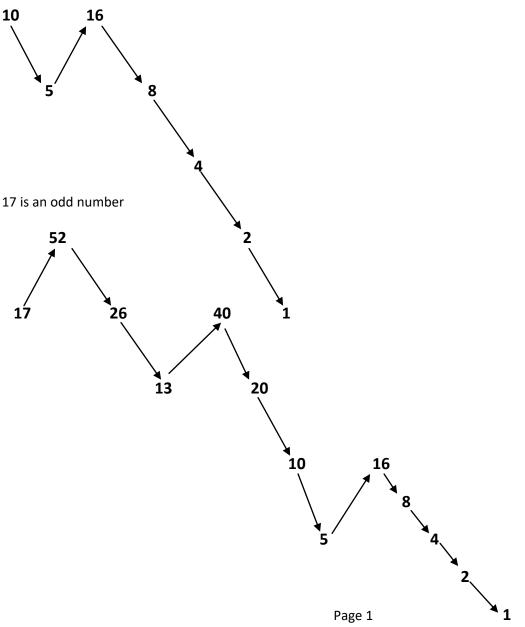
The rules are as follows:

If n is an even number, divide it by 2

If n is an odd number, multiply it by 3 and add 1

For example:

10 is an even number



NOTION:

The natural numbers are divided in 3 groups:

Odd numbers that are written as : Odd = 2n+1

Even numbers that are written as : $even = 2^n .odd$, hence : $n \in N^*$

Even pure numbers that are written as : $even.p = 2^m$, hence : $m \in N^*$

CONJECTURE PROOF FOR ODD NUMBERS ODD=2N+1:

* The Martyr Ismail Haniyeh Formula:

As we have written before that Even pure numbers are expressed as follows:

even.p = 2^{m} , hence : $m \in N^{*}$

Let $\sum_{n=1}^{\infty} even.p$ be the sum of all even pure numbers , hence :

 $\sum_{n=1}^{\infty} even. \, p = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^{10} + \dots$

Now , let us calculate the sum of $\sum_{n=1}^{\infty} e {m ven}. \, p$

we have: $\sum_{n=1}^{\infty} even. \ p = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^{10} + \dots$ we are going to multiply 2 by $\sum_{n=1}^{\infty} even. p$ and we get as a result this : $2.\sum_{n=1}^{\infty} even. p = 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^{10} + \dots$

We have: $\sum_{n=1}^{\infty} even. p - 2 = 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^{10} + \dots$ Let us replace $\sum_{n=1}^{\infty} even. p - 2$ its value and we get as a result this :

$$1= 2.\sum_{n=1}^{\infty} even. p = \sum_{n=1}^{\infty} even. p - 2$$
$$1 \iff 2.\sum_{n=1}^{\infty} even. p - \sum_{n=1}^{\infty} even. p = -2$$

 $1 \iff \sum_{n=1}^{\infty} even. p = -2$ and we call this formula: The martyr Ismail Haniyeh Formula

Let $\sum All \ Numbers$ be the sum of all natural numbers

And let $\sum odd$ be the sum of all odd numbers

And let $\sum E ven$ be the sum of all even numbers

We have:

```
\sum All. Numbers = 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18
```

+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33

+34+35+36+37+38+39+40+41+.....

Let us delete all even pure numbers and all odd numbers; we will get as a result:

1 $\sum All. Numbers - \sum odd - \sum_{n=1}^{\infty} even. p = Rest$

Hence Rest is a result

```
Rest= 6+10+12+14+18+20+22+24+26+28+30+34+36+38+40+42+44
    +46+48+50+52+54+56+58+60+62+66+68+70+72+74+76+78+.....
Then:
        2*(3+5+7+9+11+13+15+17+19+21+23+.....)
Rest =
      +
        4*(3+5+7+9+11+13+15+17+19+21+23+.....)
       8*(3+5+7+9+11+13+15+17+19+21+23+.....)
      +
      16*(3+5+7+9+11+13+15+17+19+21+23+....)
      +
Therefore
Rest = 2^{1*}(3+5+7+9+11+13+15+17+19+21+23+....)
        2<sup>2</sup>*(3+5+7+9+11+13+15+17+19+21+23+.....)
        2<sup>3</sup>*(3+5+7+9+11+13+15+17+19+21+23+.....)
        2<sup>4</sup>*(3+5+7+9+11+13+15+17+19+21+23+......)
                                   Page 3
```

Then : Rest = $(2^{1} + 2^{2} + 2^{3} + 2^{4} + 2^{5} +)$ * (3+5+7+9+11+13+15+17+19+21+23+....)We have $\sum odd = 1+3+5+7+9+11+13+15+17+...$ Then : $\sum odd - 1 = 3+5+7+9+11+13+15+17+...$

Using Ismail Haniyeh Formula , we get :

$$2^{1}+2^{2}+2^{3}+2^{4}+2^{5}+\dots = \sum_{n=1}^{\infty} even. p = -2$$

Therefore:

Rest =
$$\sum_{n=1}^{\infty} even. p^* (\sum odd - 1)$$

Then:

 $Rest = -2^* (\sum odd - 1)$

$$Rest = 2 - 2* \sum odd$$

this formula: is one of Sidi Mbarek Formula

* Lalla Raqiyeh Formula:

Let us substitute this Formula in the equation 1 and we get as a result :

this formula:

$$3 = \sum All. Numbers - \sum odd - \sum_{n=1}^{\infty} even. p = \text{Rest}$$

$$3 \iff \sum All. Numbers - \sum odd - \sum_{n=1}^{\infty} even. p = 2 - 2\sum odd$$

$$3 \iff \sum All. Numbers - \sum odd - \sum_{n=1}^{\infty} even. p = 2 - \sum odd - \sum odd$$

$$3 \iff \sum All. Numbers - \sum_{n=1}^{\infty} even. p = 2 - \sum odd$$

We have :

$$\sum All. Numbers = \sum odd + \sum Even$$

Then:

$$(3) \iff \sum odd + \sum Even - \sum_{n=1}^{\infty} even. p = 2 - \sum odd$$

(3)
$$\iff \sum Even + 2\sum odd - 2 = \sum_{n=1}^{\infty} even. p$$

this formula is Lalla Rqiyeh Formula

Lalla Rqiyeh is the mother of my spiritual Father Sidi Abdessalam Yassine may Allah sanctify his secret

* Mohammed Ben Sellam Formula:

We have $Z(S) = 1/1^{s} + 1/2^{s} + 1/3^{s} + 1/4^{s} + 1/5^{s} + 1/6^{s} + 1/7^{s} + \dots$

Let us substitute S for 0, then we get:

$$Z(0) = 1/1^{\circ} + 1/2^{\circ} + 1/3^{\circ} + 1/4^{\circ} + 1/5^{\circ} + 1/6^{\circ} + 1/7^{\circ} + \dots$$

Z(0) = 1 +1 +1 +1 +1 +1 +1 +....

Therefore:

$$Z(0) = (2-1) + (4-3) + (6-5) + (8-7) + (10-9) + (12-11) + ... = 1 + 1 + 1 + 1 + 1 + 1 + 1 + ...$$

We conclude that:

$$Z(0) = (2+4+6+8+10+12+....) - (1+3+5+7+9+11+....) = 1+1+1+1+1+...$$

Therefore:

$$\begin{array}{rcl} 4 & = & \sum Even - & \sum odd & = Z(0) \\ \hline & 4 & \Longrightarrow & \sum Even & = & \sum odd & + & Z(0) \\ \hline & 4 & \Longleftrightarrow & \sum Even & = & 3 & \sum odd & - & 2 & \sum odd & + & Z(0) \\ \hline & 4 & \Longleftrightarrow & \sum Even & + & 2 & \sum odd & = & 3 & \sum odd & + & Z(0) \\ \hline & 4 & \Longleftrightarrow & \sum Even & + & 2 & \sum odd & -1 & -1 & = & 3 & \sum odd & + & (Z(0) & -1 & -1) \\ \hline & 4 & \Longleftrightarrow & \sum Even & + & 2 & \sum odd & -2 & = & 3 & \sum odd & + & (Z(0) & -1 & -1) \end{array}$$

We have:

 $Z(0) = 1 + 1 + 1 + 1 + 1 + \dots$

Then:
$$Z(0) - 1 - 1 = (1 + 1 + 1 + 1 + 1 + \dots) - 1 - 1 = Z(0)$$

Therefore:

(4)
$$\iff \sum Even + 2\sum odd -2 = 3\sum odd + Z(0)$$

And we have also:

Z(0) = 1+1+1+1+1+1+...Then: Z(0) +1+1 = (1+1+1+1+1+...) +1+1 = 1+1+1+1+1+...=Z(0) Therefore:

(4)
$$\iff \sum Even + 2\sum odd -2 = 3\sum odd + Z(0) + 1 + 1$$

As a result:

4) $\iff \sum Even + 2\sum odd -2 = 3\sum odd + Z(0) + 2$ this formula is Mohammed Ben Sellam Formula

Mohammed Ben Sellam is the father of my spiritual Father Sidi Abdessalam Yassine may Allah sanctify his secret .

* Lalla Nadia Yassine Formula:

Using Lalla Raqiyeh Formula

$$() \implies \sum Even +2\sum odd -2 = \sum_{n=1}^{\infty} even. p$$

Using Mohammed Ben Sellam Formula

We conclude:

$$3\sum odd + Z(0) + 2 = \sum_{n=1}^{\infty} even. p$$

this formula is Lalla Nadia Formula Using Lalla Nadia Yassine Formula

$$3\sum odd + Z(0) + 2 = \sum_{n=1}^{\infty} even. p$$

$$3\sum odd + Z(0) + 2 = 2^{1} + 2^{2} + 2^{3} + 2^{4} + 2^{5} + 2^{6} + 2^{7} + \dots$$

$$3\sum odd + Z(0) = 2^{2} + 2^{3} + 2^{4} + 2^{5} + 2^{6} + 2^{7} + \dots$$

$$\sum odd = odd_{a} + (odd_{e} + odd_{t} + odd_{c}) + (odd_{b} + odd_{g} + odd_{r} + odd_{n} + odd_{d})$$

$$+ (odd_{h} + odd_{l} + odd_{l} + odd_{p} + odd_{l} + odd_{v} + odd_{v})$$

$$+ (odd_{q} + odd_{z} + odd_{u} + odd_{s} + odd_{o} + odd_{ff} + odd_{tty} + odd_{er} + odd_{sw})$$

$$+ (11 odd numbers chosen randomly)$$

$$+ (13 odd numbers chosen randomly)$$

$$+ (15 odd numbers chosen randomly)$$

$$+ (\dots + \dots + \dots + \dots + \dots + (n odd numbers chosen randomly), hence n is an odd number$$

Therefore:

$$\begin{split} \sum odd &= \sum_1 odd + \sum_3 odd + \sum_5 odd + \sum_7 odd + \sum_9 odd + \sum_{11} odd + \sum_{13} odd \\ &+ \sum_{15} odd + \sum_{17} odd + \dots + \sum_n odd \end{split}$$

Hence:

 $\sum_1 odd$ is the sum of only 1 odd number chosen randomly , $\sum_1 odd$ = odd_a $\sum_3 \mathit{odd}$ is the sum of 3 odd numbers chosen randomly , And $\sum_{3} odd = (odd_{e} + odd_{t} + odd_{c}) = odd_{ddf}$ $\sum_5 \mathit{odd}$ is the sum of 5 odd numbers chosen randomly , And $\sum_{5} odd$ = (odd_b+ odd_g+ odd_r+ odd_n+ odd_d)= odd_{gtr} $\sum_7 \mathit{odd}$ is the sum of 7 odd numbers chosen randomly , And $\sum_7 odd = (odd_h + odd_i + odd_i + odd_p + odd_j + odd_v + odd_v) = odd_{jk}$ $\sum_9 odd$ is the sum of 9 odd numbers chosen randomly , And $\sum_{9} odd = (odd_{q} + odd_{z} + odd_{u} + odd_{s} + odd_{o} + odd_{ff} + odd_{tty} + odd_{er} + odd_{sw}) = odd_{jk}$ $\sum_{11} odd$ is the sum of 11 odd numbers chosen randomly , And $\sum_{11} odd$ =(11 odd numbers chosen randomly) = odd_{htfs} $\sum_{13} \mathit{odd}$ is the sum of 13 odd numbers chosen randomly , And $\sum_{13} odd$ =(13 odd numbers chosen randomly) = odd_{ggtr} $\sum_{15} \mathit{odd}$ is the sum of 15 odd numbers chosen randomly , And $\sum_{15} odd$ =(15 odd numbers chosen randomly) = odd_{utdx} $\sum_n \mathit{odd}$ is the sum of n odd numbers chosen randomly , n is an odd number And $\sum_n odd$ =(n odd numbers chosen randomly) = odd_m Therefore: $3\sum odd = 3\sum_1 odd + 3\sum_3 odd + 3\sum_5 odd + 3\sum_7 odd + 3\sum_9 odd + 3\sum_{11} odd$ $+3\sum_{13} odd +3\sum_{15} odd +3\sum_{17} odd +...+3\sum_{n} odd$

As a result:

$$3\sum odd +Z(0) = (3\sum_{1} odd +1) + (3\sum_{3} odd +1) + (3\sum_{5} odd +1) + (3\sum_{11} odd +1) + (3\sum_{13} odd +1) + (3\sum_{15} odd +1) + (3\sum_{17} odd +1) + (3\sum_{19} odd +1) + (3\sum_{19} odd +1) + (3\sum_{10} odd +1) + (3\sum_{n} odd +1) + (3\sum_{10} od$$

We conclude that:

 $\forall \text{ odd } \in \text{N}^*$, $\exists \text{ odd}_x \text{, where: } (3\text{ odd}_x+1)=2^m=R_n \text{ where: } m \ge 1$ Hence : $(3odd+1)=R_1$, we divide R_1 by 2 and we get R_2 ,and if R_2 is odd number ,we multiply by ${\bf 3}$ and we add ${\bf 1}\,$, and if ${\bf R}_2\,$ is an even number ,we divide by 2 . We repeat the same operation until we get R_n as a result. Once we get $(30dd_x + 1) = R_n = 2^m$, we divide by 2 untill we get 1 as a result. Then we multiply 1 by 3 and we add 1 , we get 4 as a result Once we get 4, we divide it by 2 we get 2 and we divide again by 2 we get 1We repeat the same operation until infinity, we get always 1 as a result

As a conclusion

The Collatz Conjecture is true for n is an odd number 2n+1 hence n∈ N

CONJECTURE PROOF FOR EVEN NUMBERS 2^{N} .ODD:

Concerning even numbers that are written like: Even = 2^n .odd , hence $dd \neq 1$

We divide this even number by 2 until we get an odd number as a result

Once we get an odd number as a result, then the **Collatz Conjecture** is true for any Even number that is written like: Even = 2ⁿ.odd because the **Collatz Conjecture** is true for any odd number

CONJECTURE PROOF FOR EVEN PURE NUMBERS EVEN.P:

Concerning even pure numbers that are written like: $even.p = 2^n$, hence $n \in N$

We divide the even pure number even.p by 2 until we get 1 as a result

Once we get 1 as a result, we multiply it by 3 and we add 1:(3*1+1)=4

Then we get 4 as a result, we divide by 2 until we get 1

We repeat the same operation until infinity, we get always ${f 1}$ as a result

We conclude that **Collatz Conjecture** is true for any Even pure number that is written like: $even.p = 2^n$

SIDI ABDESSALAM ÝASSINE THEOREM :CONJECTURE PROOF FOR ANÝ NATURAL NUMBER $n \in N$

Depending on conjecture proof for odd numbers, and conjecture proof for even numbers written like $Even = 2^{n}$.odd

and depending on conjecture proof for even pure numbers written like even.p = 2^{m}

We conclude that **Collatz Conjecture** is true for any natural number This conjecture proof is **Sidi Abdessalam Yassine Theorem**

Introduction	Page 1
Notion	Page 2
Conjecture Proof for odd numbers (2n+1)	Page 2
The Martyr Ismail Haniyeh Formula	Page 2
Sidi Mbarek Formula	Page 4
Lalla Rqiyeh Formula	Page 4
Mohammed Ben Sellam Formula	Page 5
Lalla Nadia Yassine Formula	Page 6
Conjecture Proof for even numbers (even = 2 ⁿ .odd)	Page 8
Conjecture Proof for even pure numbers (even.p = 2 ⁿ)	Page 9
Conjecture Proof for natural numbers, Sidi Abdessalam Yassine Theorem	Page 9
Index	Page 10