
Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 1

Between Chaos and Order: A Behavioural Portrait of Keçeci and

Oresme Numbers

Mehmet Keçeci1

1ORCID : https://orcid.org/0000-0001-9937-9839, İstanbul, Türkiye

Received: 07.10.2025

Abstract:

This study presents a comparative analysis of static and dynamic number sequences, using the

classical Oresme numbers and the novel Keçeci numbers, developed by Mehmet Keçeci, as primary case

studies. Static sequences are characterized by a fixed, predictable recurrence relation. The Oresme numbers—

the partial sums of the harmonic series (Η𝑛 = ∑
1

𝑘
𝑛
𝑘=1)—exemplify this category. Their generation follows a

simple, deterministic rule (Η𝑛 = Η𝑛−1 +
1

𝑛
), and their predictable divergence, proven by Nicole Oresme,

serves as a foundational concept in mathematical analysis and pedagogy. In stark contrast, Keçeci numbers

are defined as a dynamic sequence generated by a state-dependent algorithm. Their progression is not linear

but determined by the properties of the terms themselves. The algorithm initiates with a value and an

increment, but each subsequent term is derived through a conditional pathway involving division by an

alternating divisor (2 or 3). If division fails, a primality check is performed on the term's principal component

(e.g., the real part of a complex number). A prime result triggers the unique "Augment/Shrink & Check

(ASK)" rule, modifying the term before re-attempting division. This process, implemented in Python for

number sets including integers, rationals, complex numbers, and quaternions, generates a complex, path-

dependent behavior. The comparison reveals a fundamental dichotomy. Oresme numbers provide a robust,

transparent framework ideal for theoretical exploration and teaching mathematical series. Conversely, the

dynamic and adaptive structure of Keçeci numbers offers significant flexibility, suggesting potential

applications in modern computational fields such as algorithm design, cryptographic systems, and procedural

generation in simulations. While the predictable nature of static sequences like Oresme's provides a solid

theoretical bedrock for analysis, the computationally intensive and pseudo-random characteristics of dynamic

sequences like Keçeci numbers open new research avenues in computer science and complex systems

modeling.

Keywords:

Keçeci Numbers, Oresme Numbers, Number Sequence, Dynamic sequence generation, Algorithmic

mathematics, Series convergence, Primality test, Division rules, Recurrence Relation, State-Dependent

Algorithm, Visualization, Mathematics in education, Chaos, Order.

https://orcid.org/0000-0001-9937-9839

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 2

I. From Theoretical Prediction to Algorithmic Discovery: A Historical Perspective on Static and

Dynamic Number Sequences

The human fascination with numbers is as ancient as civilization itself, rooted in a fundamental desire

to find order, pattern, and predictability in a seemingly chaotic universe. This pursuit has historically led to

the study of number sequences: ordered lists of numbers that follow a specific rule or pattern. For millennia,

the prevailing paradigm in mathematics was the exploration of what can be termed static sequences. These

are sequences defined by a fixed, time-invariant recurrence relation or an explicit formula where the value

of a term depends solely on its position (index) or a fixed number of preceding terms. Their behavior,

whether simple or complex, is entirely determined from the outset. The Pythagorean school's obsession with

figurate numbers (triangular, square), which could be generated by simple additive rules, represents an early

formalization of this static worldview [8, 9]. This tradition was epitomized by Leonardo of Pisa’s famous

sequence, now named after him. The Fibonacci sequence, where each term is the sum of the two preceding

ones

(𝐅𝒏 = 𝐅𝒏−𝟏 + 𝐅𝒏−𝟐), (1)

is a quintessential static sequence. Despite its simple recursive definition, its properties are

remarkably rich and appear in disparate fields, yet its generation remains a predictable, unwavering process

[10]. This classical view treated sequences as discoverable truths—Platonic ideals waiting to be uncovered

through logical deduction and rigorous proof.

A profound, albeit subtle, shift in this perspective began to emerge in the late Middle Ages,

foreshadowing the dynamism of the calculus to come. Nicole Oresme, a 14th-century philosopher and

mathematician, provided one of the most elegant and counter-intuitive results in the history of sequences.

By examining the partial sums of the harmonic series,

𝜢𝒏 = ∑
𝟏

𝒌

𝒏
𝒌=𝟏 , (2)

Nicole Oresme (1320–1382) proved that [1–6] the series diverges, meaning its sum grows infinitely

large [11]. This was a landmark discovery. While the harmonic sequence itself is static—generated by the

simple, predictable rule of adding the next unit fraction—its collective behavior defied the intuition that a

series whose terms shrink towards zero must converge to a finite value. Oresme’s work demonstrated that

even the simplest static rules could yield infinite and unexpected outcomes, hinting that the behavior of a

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 3

sequence was a more complex phenomenon than its mere definition suggested. This tension between simple

rules and complex emergent behavior would become a central theme in mathematics. The subsequent

development of calculus by Newton and Leibniz further explored this domain, using infinite series (like the

Taylor and Maclaurin series) as static, predictable tools to approximate dynamic and continuous functions,

effectively bridging the world of discrete steps and continuous change [8].

The true conceptual break from static-centric thinking, however, occurred centuries later with the

birth of dynamical systems theory. In the late 19th century, Henri Poincaré, while studying the three-body

problem in celestial mechanics, made a startling discovery. He found that the deterministic equations

governing the motion of three celestial bodies could lead to trajectories so complex and sensitive to initial

conditions that they were, for all practical purposes, unpredictable [12]. This was the genesis of chaos theory.

It revealed that systems governed by simple, fixed (static) laws could exhibit behavior that was anything but

simple or predictable. This idea was crystallized in the 20th century with the advent of the computer, which

allowed for the exploration of such systems.

A canonical example that brought this concept to the forefront of science is the logistic map, a simple

quadratic recurrence relation

𝐱𝒏+𝟏 = 𝐫. 𝐱𝒏 (𝟏 − 𝐱𝒏) (3)

modeling population growth. As biologist Robert May demonstrated in a seminal 1976 paper, varying

the parameter r causes the sequence's behavior to transition from stable points to periodic oscillations and

finally to full-blown chaos, where its behavior appears completely random despite its deterministic origin

[13]. Similarly, the work of Benoît Mandelbrot on fractals, particularly the Mandelbrot set generated by the

simple iteration

𝔃𝒏+𝟏 = 𝔃𝒏
𝟐 + 𝓬 (4)

in the complex plane, showed how a static rule could generate infinite complexity and intricate, self-

similar patterns [14]. These examples established a new reality: the most interesting behaviours often arise

not from complicated rules, but from the repeated application of simple ones. Yet, even these systems remain

"statically defined" in the sense that the rule itself never changes.

This historical trajectory has culminated in the contemporary algorithmic era, where the very

definition of a sequence can be inherently dynamic and computational. We are now exploring a new class of

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 4

sequences whose generating rules are not fixed but are state-dependent, changing based on the properties

of the terms they produce. A prime example of this new paradigm is the recently developed Keçeci numbers

[16, 42]. Unlike the Fibonacci sequence or the logistic map, the rule for generating the next Keçeci number

is not a single, immutable formula. Instead, it is an algorithm—a set of conditional instructions. The process

begins with a starting value and an additive constant. At each step, the algorithm attempts to divide the

current term by a primary divisor (alternating between 2 and 3). If this fails, a secondary division is

attempted. If both fail, the algorithm performs a primality test on the term (or its principal component, in the

case of complex numbers or quaternions). If the term is found to be prime, a unique "Augment/Shrink &

Check (ASK)" rule is triggered, modifying the number before re-attempting the division process [17].

The stateful nature of this algorithm is its defining characteristic. The system must "remember" the

last successful divisor to determine the next primary divisor and track an internal counter to decide whether

to augment or shrink a term during an ASK operation. This generates a path-dependent sequence where the

generation of a term is contingent on the history of the sequence's progression. Keçeci numbers can be

generated across diverse number fields, including integers, rationals, complex numbers, and quaternions, all

governed by the same dynamic logic [17]. This research has been disseminated through various open-science

platforms, including preprints, datasets, and open-source code packages, reflecting a modern approach to

mathematical discovery that emphasizes reproducibility and computational exploration [7, 18–20].

In conclusion, the history of number sequences traces a clear path from a belief in static, predictable

order to an embrace of dynamic, emergent complexity. The journey began with the ancient Greeks' search

for perfect, unchanging forms and progressed through Oresme's paradoxical discovery of infinite sums from

simple static rules. It was revolutionized by Poincaré's unveiling of deterministic chaos and visualized

through the computational lens of the logistic map and fractals. Today, we have entered an era of algorithmic

discovery, exemplified by Keçeci numbers, where a sequence is no longer just a formula but a computational

process. In this new landscape, the rules themselves are adaptive, state-dependent, and intrinsically tied to

the very numbers they generate. This shift from theoretical prediction to experimental and algorithmic

discovery marks a fundamental progression in our understanding of mathematical patterns, opening new

frontiers in number theory, computer science, and complex systems modeling.

II. A Tale of Two Sequences: The Static Predictability of Oresme and the Dynamic Complexity

of Keçeci Numbers

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 5

The fundamental distinction between static and dynamic sequences is best illustrated through a direct

comparison of their archetypal representatives. For the static paradigm, we consider the Oresme numbers,

rooted in classical analysis, and for the dynamic paradigm, the algorithmically defined Keçeci numbers.

Their juxtaposition reveals not just a difference in mathematical structure, but a profound divergence in their

conceptual underpinnings, behavior, and potential applications.

2.1 The Oresme Numbers: A Benchmark of Static, Rule-Bound Generation

The Oresme numbers, as they are most consequentially known in mathematical history, are the partial

sums of the harmonic series. They are defined by the explicit recurrence relation:

 𝜢𝒏 = 𝜢𝒏−𝟏 +
𝟏

𝒏
, (5)

with the initial condition

𝜢𝒏 = 𝟎. (6)

This can also be expressed in summation notation as (1). The first few terms of the sequence are:

𝜢𝟏 = 𝟏, 𝜢𝟐 = 𝟏 +
𝟏

𝟐
= 𝟏. 𝟓, 𝜢𝟑 = 𝟏. 𝟓 +

𝟏

𝟑
≈ 𝟏. 𝟖𝟑𝟑 … , 𝜢𝟒 = 𝟏. 𝟖𝟑𝟑 … +

𝟏

𝟒
≈ 𝟐. 𝟎𝟖𝟑 (7)

The defining characteristics of the Oresme numbers as a static sequence are threefold. First, the rule

of generation is immutable; the method for calculating the n-th term is fixed for all n and does not depend

on the value of the previous terms, only their existence. Second, the sequence is entirely predictable. Given

any index n, the value of Η𝑛 can be calculated directly without needing to compute the entire preceding

sequence, and its trajectory is smooth and monotonically increasing. Third, its behavior, while counter-

intuitive, is analytically determined. Nicole Oresme’s 14th-century proof of its divergence established, with

certainty, the sequence's ultimate fate [11]. The Oresme numbers are thus a perfect embodiment of a static

system: their path is predetermined, their structure is transparent, and their properties are discoverable

through traditional analytical methods. Their pedagogical value lies precisely in this clarity, serving as a

foundational example of series behavior in calculus and analysis [15].

2.2 The Keçeci Numbers: An Exemplar of Dynamic, State-Dependent Time Development

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 6

In stark contrast, Keçeci numbers are not defined by a simple recurrence relation but by a state-

dependent algorithm. The generation of each term is a computational process contingent upon the

properties of the preceding term and the internal state of the algorithm. As detailed by Keçeci [16, 17], the

core process for a given sequence type (e.g., integer, complex, quaternion) is as follows:

1. Initialization: The sequence begins with a user-defined starting value (𝑘0) and an additive constant

(a).

2. Iteration Step: For a current term k𝑖 , the next potential term is calculated as 𝑘𝑖,𝑡𝑒𝑚𝑝 = 𝑘𝑖 + 𝑎. This

temporary value is added to the sequence.

3. Conditional Division Rule: The algorithm attempts to divide k𝑖,𝑡𝑒𝑚𝑝 by a primary divisor, which

alternates between 3 and 2. The state of the "last used divisor" determines the primary choice for the

current step.

• If divisible, the result becomes the next term, 𝑘𝑖+1, and the "last used divisor" state is updated. The

process moves to the next iteration.

• If not divisible, the algorithm attempts division by the alternative divisor (2 or 3). If successful, the

result becomes 𝑘𝑖+1, and the state is updated.

4. Primality and the ASK Rule: If both division attempts fail, a primality test is performed on the

principal component of k𝑖,𝑡𝑒𝑚𝑝 (e.g., the integer itself, or the real part of a complex number).

• If the number is not prime, 𝑘𝑖+1 is set to 𝑘𝑖,𝑡𝑒𝑚𝑝, and the process continues.

• If the number is prime, the "Augment/Shrink & Check (ASK)" mechanism is activated. Based on an

internal toggle state, a type-specific unit value (e.g., 1 for integers, 1+1j for complex numbers) is

either added to or subtracted from 𝑘𝑖,𝑡𝑒𝑚𝑝. This new, modified value is added to the sequence, and

the division rules (Step 3) are re-applied to it to determine the final 𝑘𝑖+1.

This algorithm produces a sequence whose trajectory is inherently unpredictable. Two Keçeci

sequences with infinitesimally different starting parameters can diverge dramatically, exhibiting a sensitivity

to initial conditions reminiscent of chaotic systems [13]. The sequence's progression is path-dependent; the

choice made at step i (e.g., which divisor worked, or whether the ASK rule was triggered) directly influences

the rules and possibilities available at step i+1.

2.3 Comparative Analysis: Predictability vs. Path-Dependence

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 7

The table below summarizes the core differences between the two sequences, highlighting the static-

dynamic dichotomy:

Feature Oresme Numbers (𝛨𝑛) Keçeci Numbers (𝑘𝑛)

Definition Fixed recurrence relation: 𝛨𝑛 =

 𝛨𝑛−1 +
1

𝑛

State-dependent algorithm with

conditional logic

Generation Rule Immutable, analytical, time-invariant Adaptive, computational, state-

variant

Predictability Fully predictable; any term can be

calculated directly.

Inherently unpredictable;

requires step-by-step simulation.

Statefulness Stateless; each step is independent of

past choices.

Stateful; requires memory of last

divisor and ASK toggle.

Dependence Index-dependent Path-dependent and value-

dependent

Complexity Structural simplicity, analytical

complexity (divergence).

Algorithmic complexity,

emergent behavioural

complexity.

Domain Primarily defined for real (rational)

numbers.

Defined across integers,

rationals, complex, quaternions

[3].

Primary Field of Study Mathematical Analysis, Calculus Number Theory, Computer

Science, Dynamical Systems

Table 1: The core differences between the two sequences, highlighting the static-dynamic dichotomy

In essence, Oresme numbers represent a system of theoretical prediction. Their properties can be

deduced and proven using the established tools of mathematical analysis. Keçeci numbers, by contrast,

belong to a world of algorithmic discovery. Their behavior, patterns, and emergent properties (such as the

"Keçeci Prime Number," a statistically significant prime within a sequence [2]) are best explored through

computational simulation and empirical analysis. While Oresme’s sequence provides a clear, unwavering

path to infinity, a Keçeci sequence charts a complex, pseudo-random walk through the number space, its

journey shaped by the very nature of the numbers it encounters. This contrast forms the basis for exploring

their distinct applications in theoretical mathematics versus modern computational sciences.

III. Computational Exploration: Comparing Oresme and Keçeci Numbers through Python

Implementations

The theoretical distinctions between static and dynamic number sequences, as exemplified by

Oresme and Keçeci numbers, are best appreciated through their computational implementations. Python,

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 8

with its extensive libraries for numerical computation, data visualization, and algorithm development, serves

as an ideal environment to explore these differences. This chapter presents a comparative analysis using

Python code, examining textual and graphical outputs to illustrate the predictable nature of Oresme numbers

against the emergent complexity of Keçeci numbers. We will explore distinct use cases for each type of

sequence.

3.1 Oresme Numbers in Python: Demonstrating Predictability and Analytical Convergence

The static nature of Oresme numbers [43–46, 65–71, 74–77], being the partial sums of the harmonic

series, makes them straightforward to implement. Their behavior is entirely dictated by the simple addition

of successive unit fractions.

Figure 1: Oresme numbers

--- Oresme Numbers: Textual Output ---

First 10 Oresme numbers (as fractions): [Fraction(1, 1), Fraction(3, 2), Fraction(11, 6), Fraction(25, 12),

Fraction(137, 60), Fraction(49, 20), Fraction(363, 140), Fraction(761, 280), Fraction(7129, 2520),

Fraction(7381, 2520)]

First 10 Oresme numbers (as floats): [1.0, 1.5, 1.8333333333333333, 2.0833333333333335,

2.283333333333333, 2.45, 2.592857142857143, 2.717857142857143, 2.828968253968254,

2.9289682539682538]

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 9

Observation: The values grow slowly but steadily, and the increment (1/n) decreases, indicating divergence

to infinity.

Code Example 3.1: Generating and Analysing Oresme Numbers

import matplotlib.pyplot as plt
from fractions import Fraction
import numpy as np
import oresme as ore

def plot_oresme_sequence(oresme_seq, title="Oresme Numbers Sequence"):
 """Plots the Oresme sequence and highlights its convergence behavior."""
 n_values = np.arange(1, len(oresme_seq) + 1)

 plt.figure(figsize=(14, 7))

 # Plotting the sequence values
 plt.subplot(1, 2, 1)
 plt.plot(n_values, [float(h) for h in oresme_seq], marker='o', linestyle='-',
markersize=5)
 plt.title(title + "\n(Values)")
 plt.xlabel("n (Term Index)")
 plt.ylabel("H_n (Partial Sum)")
 plt.grid(True)

 # Highlighting the divergence (or slow growth) conceptually
 # While not explicitly showing infinity, we can show the increasing rate of growth of
difference from a fixed point if needed.
 # For demonstration, we'll show the increase itself.
 plt.subplot(1, 2, 2)
 differences = np.diff([float(h) for h in oresme_seq])
 plt.plot(n_values[1:], differences, marker='x', linestyle='--', color='red',
markersize=5)
 plt.title(title + "\n(Incremental Growth)")
 plt.xlabel("n (Term Index)")
 plt.ylabel("H_n - H_{n-1} (Incremental Growth)")
 plt.grid(True)

 plt.tight_layout()
 plt.show()

Parameters for Oresme numbers
num_terms_oresme = 50 # Calculate first 50 terms
oresme_data = ore.harmonic_numbers(num_terms_oresme)

print("--- Oresme Numbers: Textual Output ---")
print(f"First 10 Oresme numbers (as fractions): {oresme_data[:10]}")
print(f"First 10 Oresme numbers (as floats): {[float(o) for o in oresme_data[:10]]}")
print("\nObservation: The values grow slowly but steadily, and the increment (1/n) decreases,
indicating divergence to infinity.")

plot_oresme_sequence(oresme_data)

Listing 1: Generating and Analysing Oresme Numbers

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 10

Explanation of Outputs and Interpretation:

Textual Output: The code first prints the Oresme numbers as Fraction objects, preserving their exact

rational form, and then as floating-point numbers for easier interpretation. This output demonstrates the

sequence's slow but steady increase. Even after 50 terms, the values are not astronomically large, but the

trend of slow growth continues.

Graphical Output:

The first plot shows the Oresme numbers (𝛨𝑛) against their index (n). It clearly illustrates the

monotonically increasing nature of the sequence. The curve appears to flatten, but this is an artifact of

plotting on a finite scale; the sequence is known to diverge [11, 15].

The second plot shows the incremental growth

𝜢𝒏 − 𝜢𝒏−𝟏 = 𝟏/𝒏. (8)

This highlights how the difference between consecutive terms decreases over time. This decreasing

increment is characteristic of a sequence that diverges slowly to infinity, a key insight from Oresme’s

work [11].

Potential Uses of Oresme Numbers:

Oresme numbers, due to their predictable behavior and historical significance, find applications in:

Mathematical Education: As a fundamental example for teaching convergence, divergence, series, and

limits in calculus and analysis courses [15].

Numerical Analysis: While they diverge, understanding their rate of growth and the behavior of partial

sums is crucial for analysing the convergence properties of other series.

Theoretical Computer Science: As a basis for discussing algorithms related to summation and

approximation, and as a simple model for systems that exhibit slow but unbounded growth.

3.2 Keçeci Numbers in Python: Illustrating Dynamic Progression and Algorithmic Complexity

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 11

Keçeci numbers are generated by a complex, state-dependent algorithm, making their

implementation more intricate than Oresme numbers. We will use the kececinumbers Python library to

showcase their dynamic behavior across different data types.

Figure 2: Keçeci numbers

--- Keçeci Numbers (Integers): Textual Output ---

Sequence generated from start=5, add_base=7, iterations=30:

First 15 terms: [5, 12, 4, 11, 12, 6, 13, 12, 4, 11, 12, 6, 13, 12, 4]

Observations: Notice how terms change based on divisibility and primality checks. Numbers can jump

significantly

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 12

Figure 3: Keçeci numbers

--- Keçeci Numbers (Complex): Textual Output ---

Sequence generated from start=2+2j, add_base=3.0, iterations=8:

First 10 terms: ['2.00+2.00j', '5.00+5.00j', '6.00+6.00j', '2.00+2.00j', '5.00+5.00j', '4.00+4.00j', '2.00+2.00j',

'5.00+5.00j', '6.00+6.00j']

Observations: Complex numbers progression as both their real and imaginary parts change according to

the rules. The trajectory is non-linear and can show complex interactions.

Code Example 3.2: Keçeci Numbers (Integers) - Textual and Graphical Comparison

import matplotlib.pyplot as plt
import numpy as np
import quaternion # pip install numpy numpy-quaternion
import collections
from fractions import Fraction

We import the Keçeci Numbers library as 'kn'.
This library must be installed via pip: pip install kececinumbers
import kececinumbers as kn

--- Integer Keçeci Numbers Example ---
int_start = "5"
int_add_base = 7
int_iterations = 30 # This will generate approximately 20-30 terms.

We generate the sequence using the library's own unified_generator function.
The placeholder functions are no longer necessary.
int_kececi_data = kn.unified_generator(1, int_start, int_add_base, int_iterations)

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 13

print("\n--- Keçeci Numbers (Integers): Textual Output ---")
print(f"Sequence generated from start={int_start}, add_base={int_add_base},
iterations={int_iterations}:")
print(f"First 15 terms: {int_kececi_data[:15]}")
print("\nObservations: Notice how terms change based on divisibility and primality checks.
Numbers can jump significantly.")

def plot_kececi_integer_sequence(kececi_seq, title="Keçeci Numbers (Integers)"):
 """Plots the integer Keçeci sequence, highlighting jumps and non-linear behavior."""
 plt.figure(figsize=(12, 6))
 plt.plot(range(len(kececi_seq)), kececi_seq, marker='o', linestyle='-', markersize=4,
label='Keçeci Number Value')
 plt.title(title)
 plt.xlabel("Step Index (0-based)")
 plt.ylabel("Value")
 plt.grid(True)
 plt.legend()
 plt.show()

plot_kececi_integer_sequence(int_kececi_data)

--- Complex Keçeci Numbers Example ---
complex_start = "2+2j"
complex_add_base = 3.0 # This will be interpreted as 3+3j by the library
complex_iterations = 8 # This will generate approximately 16-24 terms.

We generate the complex sequence using the library's own unified_generator function.
complex_kececi_data = kn.unified_generator(3, complex_start, complex_add_base,
complex_iterations)

print("\n--- Keçeci Numbers (Complex): Textual Output ---")
print(f"Sequence generated from start={complex_start}, add_base={complex_add_base},
iterations={complex_iterations}:")
Added formatting for more readable output
formatted_complex_output = [f"{c.real:.2f}{c.imag:+.2f}j" if isinstance(c, complex) else c for
c in complex_kececi_data[:10]]
print(f"First 10 terms: {formatted_complex_output}")
print("\nObservations: Complex numbers progression as both their real and imaginary parts change
according to the rules. The trajectory is non-linear and can show complex interactions.")

def plot_kececi_complex_sequence(kececi_seq, title="Keçeci Numbers (Complex)"):
 """Plots the complex Keçeci sequence, showing its real and imaginary parts."""
 # Filter for only complex-type data
 complex_numbers = [c for c in kececi_seq if isinstance(c, complex)]
 real_parts = [c.real for c in complex_numbers]
 imag_parts = [c.imag for c in complex_numbers]

 plt.figure(figsize=(14, 7))

 # Plot 1: Real and Imaginary Parts over Time
 plt.subplot(1, 2, 1)
 plt.plot(range(len(real_parts)), real_parts, marker='o', linestyle='-', markersize=4,
label='Real Part')
 plt.plot(range(len(imag_parts)), imag_parts, marker='x', linestyle='--', color='red',
markersize=4, label='Imaginary Part')
 plt.title(title + "\n(Components)")

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 14

 plt.xlabel("Step Index (Complex Numbers)")
 plt.ylabel("Value")
 plt.grid(True)
 plt.legend()

 # Plot 2: Trajectory in the Complex Plane
 plt.subplot(1, 2, 2)
 plt.plot(real_parts, imag_parts, marker='.', linestyle='-', label='Trajectory')
 if real_parts:
 plt.plot(real_parts[0], imag_parts[0], 'go', markersize=10, label='Start')
 plt.plot(real_parts[-1], imag_parts[-1], 'ro', markersize=10, label='End')
 plt.title(title + "\n(Complex Plane Trajectory)")
 plt.xlabel("Real Axis")
 plt.ylabel("Imaginary Axis")
 plt.axhline(0, color='black', lw=0.5)
 plt.axvline(0, color='black', lw=0.5)
 plt.grid(True)
 plt.legend()
 plt.axis('equal')

 plt.tight_layout()
 plt.show()

plot_kececi_complex_sequence(complex_kececi_data)

Listing 2: Keçeci Numbers (Integers) - Textual and Graphical Comparison

Explanation of Outputs and Interpretation:

Integer Keçeci Numbers:

Textual Output: The integer sequence demonstrates the core logic: terms are generated by adding an

increment, then attempting division by 3, then 2. If divisibility fails, primality is checked. If prime, the

"ASK" rule (add or subtract the unit) is applied before re-attempting division. This results in jumps and

non-linear changes, unlike the steady growth of Oresme numbers. For instance, if a number is prime and

then modified, it might become divisible by 3 or 2, producing a sudden drop.

Graphical Output: The integer plot visually represents these unpredictable jumps. The sequence does

not follow a smooth curve but rather a jagged path, illustrating the dynamic, state-dependent nature of

the generation. The value changes are not merely incremental but can be multiplicative or drastically

reduced depending on the algorithm's path.

Complex Keçeci Numbers:

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 15

Textual Output: The complex sequence shows how the real and imaginary parts are updated

simultaneously based on the same set of rules, applied to both components. This means that divisibility

and primality checks (on the real part) can influence both parts of the complex number in tandem.

Graphical Output: The first plot shows the progression of the real and imaginary parts over steps. The

second plot provides a trajectory in the complex plane. This trajectory is significantly more complex

than a simple curve. It can exhibit intricate patterns, self-similar structures, or chaotic wandering,

depending on the parameters and the number of iterations. This visualizes how the dynamic rules, when

applied to complex arithmetic, can lead to rich, non-linear dynamics.

Potential Uses of Keçeci Numbers:

The dynamic, state-dependent, and computational nature of Keçeci numbers makes them suitable for

applications where complexity, unpredictability, and adaptability are desired:

Algorithm Design and Cryptography: The pseudo-random behavior and sensitivity to initial

conditions make them potential candidates for pseudorandom number generators (PRNGs) or

components in cryptographic algorithms where complex, non-linear transformations are needed [17, 42].

Computer Science Education: They serve as excellent, tangible examples for teaching concepts in

algorithmic thinking, state machines, conditional logic, the difference between static and dynamic

systems, and the emergence of complexity from simple rules.

Modeling Complex Systems: Their path-dependent nature and the interplay between divisibility and

primality checks could potentially be used to model phenomena exhibiting similar characteristics, such

as certain biological growth patterns, financial market fluctuations, or simulated physical systems [17].

Number Theory Exploration: The identification of a "Keçeci Prime Number" suggests they can be

used as an exploratory tool in number theory, potentially revealing new properties of numbers through

computational observation [16, 42].

In summary, Python implementations clearly demonstrate the contrast: Oresme numbers are a static,

predictable sequence with analytical depth, ideal for foundational mathematical education. Keçeci

numbers are a dynamic, computationally driven sequence with emergent complexity, opening avenues

in modern computational fields and novel algorithmic applications.

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 16

IV. From Mathematical Abstraction to Practical Application: Novel Use Cases

The utility of a number sequence is determined not only by its mathematical properties but also by

its applicability to real-world or computational problems. While Oresme numbers are foundational in

analysis and Keçeci numbers are intrinsically tied to algorithmic theory, their unique characteristics open

doors to less obvious, yet powerful, applications. This chapter explores one such advanced application for

each sequence, demonstrating how their static predictability and dynamic complexity can be harnessed in

distinct problem domains.

4.1 Oresme Numbers: Modeling Expectation in Probabilistic Systems

Beyond their role in calculus, the partial sums of the harmonic series (Oresme numbers) appear

naturally in probability theory, most famously in the Coupon Collector's Problem. This classic problem

asks: "Suppose there are N unique coupons, and you acquire one at random in each trial (with replacement).

What is the expected number of trials needed to collect all N unique coupons?"

The solution is elegantly tied to Oresme numbers. The expected number of trials to get the first

coupon is 1. After collecting k unique coupons, the probability of getting a new, unique coupon in the next

trial is

(N-k)/N. (9)

The expected number of trials to get this new coupon is the reciprocal of this probability,

N/(N-k). (10)

Therefore, the total expected number of trials, E(T), is the sum of these expectations:

𝑬(𝑻) =
𝑵

𝑵
+

𝑵

𝑵−𝟏
+

𝑵

𝑵−𝟐
+ ⋯ +

𝑵

𝟏
= 𝑵 ∑

𝟏

𝒌

𝑵
𝒌=𝟏 = 𝑵. 𝑯𝑵 (11)

Here, 𝐻𝑁 is precisely the N-th Oresme number. This direct connection allows Oresme numbers to

model scenarios involving waiting times, random sampling, and completion targets. Potential applications

include:

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 17

• Systems Biology: Estimating the time required to observe all possible states of a protein or gene

expression pattern.

• Network Analysis: Calculating the expected number of random walks needed to visit every node in

a complete graph.

• Quality Assurance: Determining the expected number of product samples needed to identify all

potential defect types.

• Data Science: Modeling the effort required to gather a complete and representative dataset from a

large population.

The static and predictable nature of Oresme numbers makes them perfect for these analytical models,

where a well-defined, calculable expectation is required.

4.2 Keçeci Numbers: A Tool for Generative Art and Procedural Content

In contrast, the strength of Keçeci numbers lies in their unpredictability and emergent complexity.

This makes them an ideal tool for procedural content generation (PCG) and generative art, fields that

require systems capable of producing complex, non-repeating, and aesthetically interesting outputs from a

simple set of rules and a starting seed.

Traditional PRNGs can produce randomness, but the state-dependent, path-dependent nature of the

Keçeci algorithm offers a different kind of complexity. The sequence is not merely random; its progression

is shaped by the number-theoretic properties (divisibility, primality) of the values it generates. This can lead

to artifacts with a more "organic" or structured feel than pure noise. The ASK rule, in particular, acts as a

"glitch" or a sudden "decision point" that can dramatically alter the trajectory, producing visually compelling

shifts in the generated artwork.

The following Python code demonstrates this concept by using a sequence of complex Keçeci

numbers to draw a "trajectory" in a 2D plane. The real and imaginary parts of each number in the sequence

dictate the coordinates of a line segment, while the sequence's progression determines the color, producing

a unique digital artwork from a given set of initial parameters.

Code Example 4.1: Generative Art from Complex Keçeci Numbers (This code requires the

kececinumbers library to be installed or the placeholder functions from the previous chapter to be defined).

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 18

Figure 4: Generative Art from Complex Keçeci Numbers

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 19

Figure 5: Generative Art from Complex Keçeci Numbers

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 20

Figure 6: Generative Art from Complex Keçeci Numbers

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 21

Figure 7: Generative Art from Complex Keçeci Numbers

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import RegularPolygon, Circle
import warnings

Import Keçeci Numbers library
import kececinumbers as kn

--- Mathematical Transformation Functions (Same as before) ---
def transform_inversion(points):

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 22

 return [1 / p if p != 0 else complex(0, 0) for p in points]

def transform_log_spiral(points):
 with warnings.catch_warnings():
 warnings.simplefilter("ignore", RuntimeWarning)
 return [np.log(p) if p != 0 else complex(0, 0) for p in points]

def transform_power(points, power=2):
 return [p**power for p in points]

--- Main Artwork Generation Function (Completely Renewed) ---
def crystalline_art(start_val, add_val, iterations,
 cmap_name='hot', num_symmetries=7,
 transformation=None, power_val=2):
 """
 Uses Keçeci sequence as a seed to generate crystal-like artworks by drawing
 parametric polygons and energy cores instead of lines.
 """
 print(f"Generating crystal art... Symmetry: {num_symmetries}, Transformation:
{transformation or 'None'}")

 # 1. Generate Keçeci sequence
 points = kn.unified_generator(3, start_val, add_val, iterations)
 points = [p for p in points if isinstance(p, complex) and np.isfinite(p)]

 # 2. Apply optional mathematical transformation
 if transformation == 'inversion':
 points = transform_inversion(points)
 elif transformation == 'log':
 points = transform_log_spiral(points)
 elif transformation == 'power':
 points = transform_power(points, power_val)

 points = [p for p in points if np.isfinite(p)]

 if len(points) < 10:
 print("Insufficient points generated to generate artwork.")
 return

 # 3. Set up drawing area
 fig, ax = plt.subplots(figsize=(14, 14), dpi=150)
 ax.set_facecolor('#08040A') # Dark purple-black background
 ax.set_aspect('equal', adjustable='box')
 ax.axis('off')

 cmap = plt.get_cmap(cmap_name)
 angle_step = 2 * np.pi / num_symmetries

 # 4. Draw shapes instead of lines
 for i in range(1, len(points)):
 p1 = points[i-1]
 p2 = points[i]

 # --- Dynamically determine shape properties ---
 jump_distance = abs(p2 - p1)
 magnitude = abs(p2)

 # Size: Proportional to jump distance (clamped to 0-1 using tanh)

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 23

 radius = np.tanh(jump_distance) * 0.2 + 0.01

 # Number of Sides: Based on distance from center (3 to 8 sides)
 num_vertices = int(np.log1p(magnitude) * 2) % 6 + 3

 # Rotation Angle: The point's own angle
 orientation = np.angle(p2)

 # Color: Based on time progression
 current_color = cmap(i / len(points))
 edge_color = cmap(i / len(points) * 0.8) # Slightly darker edge color

 # Draw shapes for each symmetry axis
 for j in range(num_symmetries):
 rotation = np.exp(1j * j * angle_step)
 sp = p2 * rotation

 # MAIN SHAPE: CRYSTAL (Polygon)
 # Generate dynamic-edged shapes using RegularPolygon
 crystal = RegularPolygon(
 (sp.real, sp.imag),
 numVertices=num_vertices,
 radius=radius,
 orientation=orientation + (j * angle_step),
 facecolor=current_color,
 edgecolor=edge_color,
 alpha=0.4, # Transparency to show layers
 linewidth=0.5
)
 ax.add_patch(crystal)

 # SECONDARY SHAPE: ENERGY CORE (Circle)
 # Add a bright dot at each crystal's center
 core_radius = radius * 0.2
 if core_radius > 0.005: # Don't draw very small ones
 core = Circle(
 (sp.real, sp.imag),
 radius=core_radius,
 facecolor='#FFFFFF', # Bright white
 alpha=0.5,
 edgecolor=None
)
 ax.add_patch(core)

 ax.autoscale_view()
 ax.set_title(f"Keçeci Crystalline Art\nStart:{start_val}, Add:{add_val},
Symm:{num_symmetries}, Trans:{transformation or 'None'}",
 color='white', fontsize=14, pad=20)
 plt.tight_layout()
 plt.show()

--- Generate Artworks with Different Combinations ---

print("--- Example 1: Floral Mandala ---")
crystalline_art("0.1+0.1j", 1.1, 400, cmap_name='spring', num_symmetries=8)

print("\n--- Example 2: Sci-Fi Emblem (With power transformation) ---")

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 24

crystalline_art("0.2+0.1j", 0.9, 350, cmap_name='cool', num_symmetries=4,
transformation='power', power_val=2)

print("\n--- Example 3: Mystical Jewel (With inversion transformation) ---")
crystalline_art("1+1j", 2.7, 500, cmap_name='Wistia', num_symmetries=5,
transformation='inversion')

print("\n--- Example 4: Organic Cell Growth (With logarithmic spiral) ---")
crystalline_art("0.05-0.05j", 1.618, 600, cmap_name='summer', num_symmetries=6,
transformation='log')

Listing 3: Generative Art from Complex Keçeci Numbers

Interpretation and Broader Implications:

The visual output from the code is not a data plot but a unique artifact. The jagged lines, sharp turns,

and color shifts are direct manifestations of the Keçeci algorithm's internal decisions. A sudden change in

color or direction might correspond to an ASK rule being triggered after a primality test. The overall structure

is deterministic—the same initial parameters will always produce the same image—but its visual complexity

is emergent.

This application highlights the fundamental difference in utility:

• Oresme numbers are used to model and analyze a well-defined, predictable probabilistic system.

• Keçeci numbers are used to generate a complex, unpredictable artifact whose properties are to be

discovered.

This positions Keçeci numbers and similar dynamic sequences as powerful tools in generative

computing, simulation (e.g., generating cave systems in games, modeling turbulence), and any field where

controlled, reproducible complexity is a desirable feature [21].

V. Application Domains: Analytical Modeling versus Generative Systems

The fundamental dichotomy between static and dynamic sequences naturally leads to their

application in disparate domains. Static sequences, with their predictable and analysable nature, excel in

modeling and verification. Dynamic sequences, characterized by emergent complexity and unpredictability,

are better suited for generation and simulation. This chapter compares the application landscapes of Oresme

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 25

and Keçeci numbers, culminating in a case study on cryptography that starkly illustrates their divergent

utilities.

5.1 The Application Landscape of Oresme Numbers: The Realm of Analytical Models

The primary value of Oresme numbers lies in their predictability. Because their structure is

transparent and their behavior is analytically known (i.e., they diverge logarithmically), they serve as a

reliable benchmark and modeling tool in fields that require deterministic analysis.

• Algorithm Analysis: In computer science, the average-case performance of certain algorithms can

be modelled using the harmonic series. For example, the average number of comparisons in the

Quicksort algorithm is approximately 2n ln n, a behavior closely related to the growth of Oresme

numbers [22]. They provide a solid theoretical foundation for calculating expected performance.

• Physics and Engineering: Systems involving potentials that decrease with distance, such as certain

electrostatic or gravitational models, can involve sums resembling the harmonic series. In reliability

engineering, calculating the expected time to failure when components are replaced can also lead to

similar mathematical structures.

• Probabilistic Modeling: As demonstrated with the Coupon Collector's Problem [21], Oresme

numbers provide exact, calculable answers for expected values in well-defined probabilistic systems.

They are tools for understanding and quantifying randomness, not for producing it.

In all these cases, the sequence is a means to an analytical end—a tool for verification, prediction,

and formal proof.

5.2 The Application Landscape of Keçeci Numbers: The Frontier of Generative Systems

Conversely, the value of Keçeci numbers stems from their unpredictability and emergent

complexity. Their path-dependent, state-driven algorithm makes them ideal for applications where novelty,

intricacy, and pseudo-randomness are desired features.

• Procedural Content Generation (PCG): Beyond generative art, Keçeci numbers can be used in

video games to procedurally generate content like unique planetary systems, cave networks, or alien

plant life. The initial parameters can act as a "seed" that generates a vast, deterministic yet

unpredictable world, which can be regenerated perfectly every time with the same seed.

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 26

• Simulation and Complex Systems: The sequence can serve as a simplified model for systems where

history and state matter. For example, it could simulate a simplified stock market model where a

"prime" event represents a market shock, or an ecological model where divisibility represents a

resource abundance leading to population growth.

• Cryptography and Security: The high sensitivity to initial conditions (the avalanche effect) and the

computational difficulty of predicting the sequence without the key make it a strong candidate for

cryptographic applications, particularly stream ciphers.

Here, the sequence is an end in itself—a generator of complexity and a tool for generation and

simulation.

5.3 Case Study: A Comparison in Cryptography

Cryptography provides the clearest distinction between the utility of these two sequences. A core

requirement for many ciphers is a pseudo-random keystream—a sequence of numbers that is deterministic

(so it can be regenerated for decryption) but statistically indistinguishable from random noise to an attacker.

We will demonstrate this by producing two "toy" stream ciphers using a simple XOR operation. The security

of the cipher depends entirely on the unpredictability of the keystream.

--- 1. Oresme-Based Cipher (INSECURE) ---

Oresme Keystream (first 16 bytes): 40 60 75 05 45 50 59 a1 a8 48 65 ea 65 6a d4 f8

Encrypted with Oresme (as bytes):

b'\x13\x14\x14q,3y\xd7\xdbh!\x93\x0b\x0b\xb9\x91\xa3\xe4\x08\xce\xdfHv\xb8u6s\xb9\x15*M<\xb2\xa

4<\xadRi\x0ea;3\\\xd5\xa2\xc0\xb9\r\xa6w\xe4\xcb\x1b\xa9'

Decrypted with Oresme: Static vs Dynamic Sequences: A Clear Winner for Crypto

>> Analysis: This is insecure because anyone can generate the exact same keystream. The 'key' is public and

not secret.

--- 2. Keçeci-Based Cipher (POTENTIALLY SECURE) ---

Keçeci Keystream (first 16 bytes): 05 05 05 05 07 07 04 04 04 04 04 04 04 03 03 03

Encrypted with Keçeci (as bytes):

b'Vqdqndrw@}jbnj`#Pfrvfm`YO6EGofbq#Tjmmfq#jc~<_~u\x0f\x0b`'

Decrypted with CORRECT Keçeci key: Static vs Dynamic Sequences: A Clear Winner for Crypto

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 27

Attempted Decryption with WRONG Keçeci key (as bytes): b'Static vs Dynamic Sequences: A Clear Winner

for Crypto'

>> Analysis: A tiny change in the secret key generates a completely different keystream, resulting in

gibberish. This demonstrates the 'avalanche effect', a crucial property for modern cryptography.

Code Example 5.1: A Cryptographic Comparison

import numpy as np
Assuming 'kececinumbers' and 'oresme' are installed
pip install kececinumbers oresme
import kececinumbers as kn
import oresme as ore

--- Placeholder functions are no longer needed. ---
The logic from unified_generator_with_events_placeholder and is_prime_placeholder
is now handled internally by the 'kececinumbers' library.

--- Main Cipher Functions ---

def generate_oresme_keystream(length):
 """Generates a WEAK and PREDICTABLE keystream from Oresme numbers."""
 # The oresme library directly gives us the sequence of harmonic numbers.
 oresme_seq = ore.harmonic_numbers(length)

 # Convert each number in the sequence to a byte.
 # This process is deterministic and has no secret key.
 keystream = [(int(float(o) * 1e6) % 256) for o in oresme_seq]
 return bytes(keystream)

def generate_kececi_keystream(key_start, key_add, length):
 """
 Generates a POTENTIALLY STRONG and key-dependent keystream from Keçeci numbers.
 This uses the official 'kn.unified_generator'.
 """
 # Generate the Keçeci sequence. We use TYPE_COMPLEX for this example.
 # The generator returns a list of numbers directly. No events are needed here.
 kececi_seq = kn.unified_generator(kn.TYPE_COMPLEX,
 start_input_raw=key_start,
 add_input_base_scalar=key_add,
 iterations=length) # Generate enough numbers for the
message

 # Filter out any non-numeric results (like None) to be safe
 kececi_seq = [k for k in kececi_seq if isinstance(k, (int, float, complex))]

 keystream = []
 if not kececi_seq: # Handle case where sequence generation fails
 return b''

 for i in range(length):
 # Cycle through the kececi_seq if it's shorter than the message
 k = kececi_seq[i % len(kececi_seq)]

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 28

 # Deterministically convert the complex number to a single byte
 if isinstance(k, complex):
 # Take the last byte of the integer parts of real and imaginary components
 # and XOR them together. This is a simple, deterministic way to mix them.
 val_real = int(k.real).to_bytes(8, byteorder='big', signed=True)[-1]
 val_imag = int(k.imag).to_bytes(8, byteorder='big', signed=True)[-1]
 val = val_real ^ val_imag
 else: # Handle float/int case
 val = int(k) % 256
 keystream.append(val)

 return bytes(keystream)

def xor_cipher_bytes(data_bytes, keystream_bytes):
 """Encrypts or decrypts a byte string using a keystream via XOR operation."""
 if not keystream_bytes:
 raise ValueError("Keystream cannot be empty.")
 return bytes([data_byte ^ key_byte for data_byte, key_byte in zip(data_bytes,
keystream_bytes)])

--- Demonstration ---
message_to_encrypt = "Static vs Dynamic Sequences: A Clear Winner for Crypto"
message_bytes = message_to_encrypt.encode('utf-8')
msg_len = len(message_bytes)

print("--- 1. Oresme-Based Cipher (INSECURE) ---")
oresme_key = generate_oresme_keystream(msg_len)
print(f"Oresme Keystream (first 16 bytes): {oresme_key[:16].hex(' ')}")
encrypted_oresme_bytes = xor_cipher_bytes(message_bytes, oresme_key)
print(f"Encrypted with Oresme (as bytes): {encrypted_oresme_bytes}")
decrypted_oresme_bytes = xor_cipher_bytes(encrypted_oresme_bytes, oresme_key)
print(f"Decrypted with Oresme: {decrypted_oresme_bytes.decode('utf-8')}")
print("\n>> Analysis: This is insecure because anyone can generate the exact same keystream.
The 'key' is public and not secret.")

print("\n--- 2. Keçeci-Based Cipher (POTENTIALLY SECURE) ---")
The secret keys are the initial parameters for the generator
SECRET_KEY_START = "1.23+4.56j"
SECRET_KEY_ADD = 7.89

kececi_key = generate_kececi_keystream(SECRET_KEY_START, SECRET_KEY_ADD, msg_len)
print(f"Keçeci Keystream (first 16 bytes): {kececi_key[:16].hex(' ')}")
encrypted_kececi_bytes = xor_cipher_bytes(message_bytes, kececi_key)
print(f"Encrypted with Keçeci (as bytes): {encrypted_kececi_bytes}")

A) Decryption with the CORRECT key
decrypted_kececi_correct_bytes = xor_cipher_bytes(encrypted_kececi_bytes, kececi_key)
print(f"\nDecrypted with CORRECT Keçeci key: {decrypted_kececi_correct_bytes.decode('utf-
8')}")

B) Decryption attempt with a SLIGHTLY ALTERED key
WRONG_KEY_START = "1.23+4.57j" # A tiny change in the imaginary part
wrong_kececi_key = generate_kececi_keystream(WRONG_KEY_START, SECRET_KEY_ADD, msg_len)
decrypted_kececi_wrong_bytes = xor_cipher_bytes(encrypted_kececi_bytes, wrong_kececi_key)
print(f"Attempted Decryption with WRONG Keçeci key (as bytes): {decrypted_kececi_wrong_bytes}")

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 29

print("\n>> Analysis: A tiny change in the secret key generates a completely different
keystream, resulting in gibberish. This demonstrates the 'avalanche effect', a crucial property
for modern cryptography.")

Listing 4: A Cryptographic Comparison

Conclusion of the Case Study

The cryptographic example provides an unequivocal verdict.

• Oresme numbers are fundamentally unsuitable for cryptographic applications because their

predictability is a critical vulnerability. Security through obscurity (hiding the algorithm) is not real

security; the generating principle must be public, and the security must reside only in the key. Oresme

numbers have no "key."

• Keçeci numbers are conceptually well-suited for cryptography. Security resides in the initial

parameters (the key), which are kept secret. The algorithm itself can be public. The complex, state-

dependent nature of the sequence makes it computationally difficult to reverse-engineer the key from

the output, and the avalanche effect ensures that key guessing is ineffective. While this "toy" cipher

is not intended for real-world use, it demonstrates that dynamic, state-dependent sequences possess

the foundational properties required for building secure cryptographic primitives [23].

Application Domain Oresme Numbers (Static) Keçeci Numbers (Dynamic)

Core Strength Predictability, Analytical Tractability Unpredictability, Emergent

Complexity

Primary Use Modeling & Analysis Generation & Simulation

Examples Algorithm performance analysis,

probabilistic expectation, physics

models.

Generative art, procedural content

(games), cryptographic keystreams.

Role A tool to understand a system. A tool to generate a system.

Table 2: Oresme Numbers (Static) and Keçeci Numbers (Dynamic)

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 30

Figure 8: Analytical Comparison Oresme vs. Keçeci Numbers

Figure 8: Artistic Interpretation: The Dance of Oresme and Keçeci Numbers

VI. Interdisciplinary Horizons and Future Perspectives

The distinction between static and dynamic number sequences is not merely a mathematical

curiosity; it represents a fundamental philosophical and practical divide that resonates across multiple

scientific disciplines. As we look to the future, the potential applications of Oresme and Keçeci numbers

extend far beyond their initial domains, suggesting novel syntheses in fields ranging from quantum physics

to data visualization and artificial intelligence. This chapter explores these future interdisciplinary

perspectives, framing the two sequences as complementary tools for navigating the landscapes of modern

science.

6.1 Oresme Numbers: The Foundation of Analytical Certainty

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 31

The future utility of Oresme numbers lies in their unwavering role as a benchmark of analytical

certainty and predictable growth. In an age increasingly dominated by complex, often opaque algorithms,

the transparency of the harmonic series provides an essential touchstone.

• Algorithmic Benchmarking: As machine learning and AI models become more complex, verifying

their resource consumption (e.g., computational steps, memory access) becomes critical. The

predictable, slow-growing nature of Oresme numbers can serve as a "lower bound" or a simple

complexity class (O(nlogn)) against which more sophisticated algorithms are measured [22]. They

represent a baseline of well-understood, non-chaotic behavior.

• Physics and Information Theory: In statistical mechanics and information theory, concepts like

entropy often involve logarithmic functions, echoing the behavior of Oresme numbers. They provide

a stable, analytical framework for modeling systems where information accumulates predictably or

where phase space expands in a well-ordered manner.

• Economic and Social Modeling: In models of fair division or resource allocation (e.g., the "last-

diminisher" method), sums resembling the harmonic series can appear. Their role is to provide a

provably fair, if idealized, basis for models that require transparent and justifiable rules.

The future of Oresme numbers is not in generating novelty, but in providing the unshakable ground

truth upon which novel, more complex systems can be built and evaluated.

6.2 Keçeci Numbers: A Bridge Between Number Theory, Quantum Physics, and Generative

Systems

The future of Keçeci numbers is far more speculative and exciting, lying at the intersection of number

theory, computational science, and fundamental physics. Their dynamic, state-dependent nature mirrors the

complex, emergent behaviours observed in quantum and topological systems. The extensive body of work

by Keçeci in seemingly disparate fields provides a roadmap for this synthesis.

• Modeling Topological Matter and Quantum States: Materials like Weyl semimetals and nodal-

line semimetals are defined by the unique, topologically protected behavior of their electrons [24–

29, 48, 72, 73]. The trajectory of a Keçeci number sequence, with its path-dependent "choices" and

sudden shifts dictated by number-theoretic properties, offers a compelling abstract model for the path

of a quantum particle navigating a complex energy landscape. The "ASK" event, triggered by

primality, could be analogous to a quantum particle encountering a topological defect, forcing it into

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 32

a new state. This conceptual link suggests Keçeci numbers could be used to generate simplified,

discrete toy models for simulating quantum transport in these exotic materials, which are themselves

candidates for building robust quantum computers [28, 29].

• Generative Frameworks for Complex Data Visualization: The Keçeci Layout is proposed as a

method for visualizing structured systems in a deterministic, order-preserving way [30–32, 50–53,

64]. A Keçeci number sequence could serve as the "engine" for this layout. For instance, the sequence

could generate coordinates for nodes in a graph, with the algorithm's state (e.g., last divisor, ASK

trigger) determining the connections or clustering. This would generate visualizations that are not

merely aesthetically pleasing but whose structure is a direct reflection of underlying number-

theoretic properties, potentially revealing hidden patterns in complex datasets. The Keçeci Zigzag

Layout [33] and Keçeci's Arithmetical Square [34] could similarly be powered by the stateful

progression of a Keçeci number sequence.

• Procedural Generation of Fractal and Complex Geometries: Keçeci's work on Keçeci Fractals

[35, 36] explores scalable complexity. A dynamic number sequence is a natural engine for generating

such structures. Instead of using a fixed iterative formula (like in the Mandelbrot set), a Keçeci fractal

could progression based on the sequence's algorithmic path. A division by 3 might correspond to a

right turn, a division by 2 to a left turn, and an ASK event to a change in scale or color. This would

produce fractals that are not perfectly self-similar but exhibit a more organic, "mutating" complexity.

• Synergies with Quantum Computing and AI: The path to scalable quantum computing is fraught

with challenges in error correction and noise management [37, 38, 39]. Keçeci numbers, as a source

of controllable yet complex pseudo-randomness, could be explored in developing novel testbeds for

quantum error correction codes [40]. Their sensitivity to initial conditions could be used to generate

a wide variety of "noise profiles" to test the robustness of quantum algorithms. Furthermore, the

integration of AI with quantum algorithms [41] requires new ways of thinking about structured

complexity, a domain where Keçeci numbers and their associated layouts could provide a new

conceptual framework.

In essence, Keçeci's diverse research interests—from quantum materials to visualization—are not

separate silos. They can be unified by a common thread: the search for systems that generate structured,

emergent complexity from simple rules. The Keçeci number sequence [42] is the most fundamental

expression of this search, acting as a potential "source code" for these other, more applied concepts. The

future perspective is one of integration, where Keçeci numbers are not just a sequence, but a generative

engine for exploring new frontiers in physics, computation, and art.

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 33

VII. Conclusion

This study embarked on an exploration of the fundamental dichotomy between static and dynamic

number sequences, using the classical Oresme numbers and the novel, algorithmically-defined Keçeci

numbers as contrasting exemplars. By moving beyond mere mathematical definitions, we have traced their

historical change, compared their computational behavior, and analysed their divergent application domains.

The investigation has consistently reinforced a central thesis: the distinction between static and dynamic is

not just a matter of classification but represents two deeply different paradigms of mathematical and

scientific inquiry—one rooted in analytical prediction and the other in generative discovery.

Our journey began with a historical perspective, situating Oresme’s counter-intuitive discovery of

divergence within a long tradition of predictable, rule-bound sequences, and positioning Keçeci numbers as

a contemporary culmination of the shift towards state-dependent, algorithmic thinking. The direct

comparison and computational implementation underscored this divide. The Oresme numbers produced a

smooth, predictable, and analytically tractable trajectory, confirming their static nature. In stark contrast,

Keçeci numbers, whether in integer, complex, or other forms, exhibited jagged, pseudo-random, and path-

dependent behavior, producing visually complex artifacts whose progression could only be understood

through simulation.

This inherent difference in nature dictates their utility. We have shown that Oresme numbers excel

as tools for analytical modeling, providing a bedrock of certainty for calculating expected values in

probability, benchmarking algorithm complexity, and teaching the foundational principles of calculus. Their

value lies in their transparency and predictability. Conversely, Keçeci numbers thrive as engines of

generative systems. Their emergent complexity and sensitivity to initial conditions make them conceptually

ideal for applications in procedural content generation, generative art, and, as demonstrated in our

cryptographic case study, the generation of pseudo-random keystreams. The case study unequivocally

showed that the predictability of Oresme numbers is a cryptographic vulnerability, while the state-dependent

unpredictability of Keçeci numbers provides the conceptual foundation required for security.

Looking forward, the interdisciplinary potential [47–63] of these paradigms is vast. While static

sequences will continue to provide the essential, verifiable frameworks for science, the future of exploration

in complex fields like quantum computing, artificial intelligence, and topological physics may increasingly

rely on the generative, exploratory power of dynamic systems. Keçeci numbers, with their intrinsic links to

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 34

number theory and their potential to model emergent phenomena, stand as a compelling example of this new

frontier. Ultimately, this study posits that the future of mathematical and scientific discovery lies not in

choosing one paradigm over the other, but in understanding their complementary strengths and generatively

harnessing both the predictable order of the static and the emergent complexity of the dynamic.

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 35

VII. References

1. Oresme, N. (1350). De proportionibus proportionum. Paris.

2. Gowers, T. (2008). The Princeton Companion to Mathematics. Princeton University Press.

3. Grant, E. (1974). A Source Book in Medieval Science. Harvard University Press.

4. Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers, The Fibonacci

Quarterly, 3(3), 161-176. https://doi.org/10.1080/00150517.1965.12431416

5. Cerda Morales, G. (2019). Oresme polynomials and their derivatives.

https://doi.org/10.48550/arXiv.1904.01165

6. Mangueira, M. C. dos S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. (2021). The Oresme

sequence: The generalization of its matrix form and its hybridization process. Notes on Number

Theory and Discrete Mathematics, 27(1), 101-111. https://doi.org/10.7546/nntdm.2021.27.1.101-111

7. Halıcı, S., & Sayın, E. (2025). On some k- Oresme hybrid numbers including negative indices.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics,

74(1), 17-26. https://doi.org/10.31801/cfsuasmas.1369953

8. Boyer, C. B., & Merzbach, U. C. (2011). A history of mathematics (3rd ed.). John Wiley & Sons.

9. Heath, T. L. (1981). A history of Greek mathematics, Volume 1: From Thales to Euclid. Dover

Publications.

10. Livio, M. (2002). The golden ratio: The story of Phi, the world's most astonishing number. Broadway

Books.

11. O'Connor, J. J., & Robertson, E. F. (1996). Nicole Oresme. MacTutor History of Mathematics archive,

University of St Andrews. https://mathshistory.st-andrews.ac.uk/Biographies/Oresme/

12. Diacu, F., & Holmes, P. (1996). Celestial encounters: The origins of chaos and stability. Princeton

University Press.

13. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature,

261(5560), 459–467. https://doi.org/10.1038/261459a0

14. Mandelbrot, B. B. (1982). The fractal geometry of nature. W. H. Freeman.

15. Stewart, J. (2015). Calculus: Early Transcendentals (8th ed.). Cengage Learning.

16. Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A potential number

theoretic exploratory tool. Open Science Articles (OSAs), Zenodo.

https://doi.org/10.5281/zenodo.15381697

17. Keçeci, M. (2025). Diversity of Keçeci numbers and their application to Prešić-type fixed-point

iterations: A numerical exploration. Open Science Articles (OSAs), Zenodo.

https://doi.org/10.5281/zenodo.15481711

https://doi.org/10.1080/00150517.1965.12431416
https://doi.org/10.48550/arXiv.1904.01165
https://doi.org/10.7546/nntdm.2021.27.1.101-111
https://doi.org/10.31801/cfsuasmas.1369953
https://doi.org/10.5281/zenodo.15381697
https://doi.org/10.5281/zenodo.15481711

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 36

18. Keçeci, M. (2025, May 10). Kececinumbers. Open Science Articles (OSAs), Zenodo.

https://doi.org/10.5281/zenodo.15377659 (Kütüphanenin varlığı ve genel tanım için [4]'e atıf)

19. Keçeci, M. (2024). kececinumbers [Computer software]. GitHub.

https://github.com/WhiteSymmetry/kececinumbers

20. Keçeci, M. (2024). kececinumbers (Version 0.1.5) [Computer software]. Anaconda.

https://anaconda.org/bilgi/kececinumbers

21. Feller, W. (1968). An introduction to probability theory and its applications (Vol. 1, 3rd ed.). John

Wiley & Sons.

22. Sedgewick, R., & Flajolet, P. (2013). An introduction to the analysis of algorithms (2nd ed.). Addison-

Wesley Professional.

23. Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography (2nd ed.). Chapman and

Hall/CRC.

24. Keçeci, M. (2025). Weyl Semimetals: Unveiling Novel Electronic Structures and Topological

Properties. WorkflowHub. https://doi.org/10.48546/workflowhub.document.35.3

25. Keçeci, M. (2025). Nodal-line semimetals: A geometric advantage in quantum information. Open

Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15455271

26. Keçeci, M. (2025). Exploring Weyl Semimetals: Emergence of Exotic Electrons and Topological

Order. HAL open science. https://hal.science/hal-05146435

27. Keçeci, M. (2025). From Weyl Fermions to Topological Matter: The Physics of Weyl Semimetals.

Knowledge Commons. https://doi.org/10.17613/p79v7-kje79

28. Keçeci, M. (2025). Harnessing Geometry for Quantum Computation: Lessons from Nodal-Line

Materials. Knowledge Commons. https://doi.org/10.17613/w6vmd-4vb84

29. Keçeci, M. (2025). Quantum Information at the Edge: Topological Opportunities in Nodal-Line

Materials. figshare. https://doi.org/10.6084/m9.figshare.29484947

30. Keçeci, M. (2025). The Keçeci Layout: A Cross-Disciplinary Graphical Framework for Structural

Analysis of Ordered Systems. Authorea. https://doi.org/10.22541/au.175156702.26421899/v1

31. Keçeci, M. (2025). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific

Analysis. figshare. https://doi.org/10.6084/m9.figshare.29468135

32. Keçeci, M. (2025). Beyond Topology: Deterministic and Order-Preserving Graph Visualization with

the Keçeci Layout. WorkflowHub. https://doi.org/10.48546/workflowhub.document.34.4

33. Keçeci, M. (2025). Keçeci Deterministic Zigzag Layout. WorkflowHub.

https://doi.org/10.48546/workflowhub.document.31.1

https://github.com/WhiteSymmetry/kececinumbers
https://anaconda.org/bilgi/kececinumbers
https://doi.org/10.48546/workflowhub.document.35.3
https://doi.org/10.5281/zenodo.15455271
https://hal.science/hal-05146435
https://doi.org/10.17613/p79v7-kje79
https://doi.org/10.17613/w6vmd-4vb84
https://doi.org/10.6084/m9.figshare.29484947
https://doi.org/10.22541/au.175156702.26421899/v1
https://doi.org/10.6084/m9.figshare.29468135
https://doi.org/10.48546/workflowhub.document.34.4
https://doi.org/10.48546/workflowhub.document.31.1

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 37

34. Keçeci, M. (2025). Keçeci's Arithmetical Square. Authorea.

https://doi.org/10.22541/au.175070836.63624913/v1

35. Keçeci, M. (2025). Scalable Complexity in Fractal Geometry: The Keçeci Fractal Approach.

Authorea. https://doi.org/10.22541/au.175131225.56823239/v1

36. Keçeci, M. (2025). Keçeci Fractals. WorkflowHub.

https://doi.org/10.48546/workflowhub.document.32.2

37. Keçeci, M. (2025). Accuracy, Noise, and Scalability in Quantum Computation: Strategies for the

NISQ Era and Beyond. Open Science Articles (OSAs), Zenodo.

https://doi.org/10.5281/zenodo.15515113

38. Keçeci, M. (2025). Yüksek Kübit Sayılı Kuantum Hesaplamada Ölçeklenebilirlik ve Hata Yönetimi:

Yüzey Kodları, Topolojik Malzemeler ve Hibrit Algoritmik Yaklaşımlar. Open Science Articles

(OSAs), Zenodo. https://doi.org/10.5281/zenodo.15558153

39. Keçeci, M. (2025). Quantum Error Correction Codes and Their Impact on Scalable Quantum

Computation: Current Approaches and Future Perspectives. Open Science Articles (OSAs), Zenodo.

https://doi.org/10.5281/zenodo.15499657

40. Keçeci, M. (2025). Kuantum Hata Düzeltmede Metrik Seçimi ve Algoritmik Optimizasyonun Büyük

Ölçekli Yüzey Kodları Üzerindeki Etkileri. Open Science Articles (OSAs), Zenodo.

https://doi.org/10.5281/zenodo.15572200

41. Keçeci, M. (2025). Künneth Teoremi Bağlamında Özdevinimli ve Evrişimli Kuantum

Algoritmalarında Yapay Zekâ Entegrasyonu ile Hata Minimizasyonu. Open Science Articles (OSAs),

Zenodo. https://doi.org/10.5281/zenodo.15540875

42. Keçeci, M. (2025). Keçeci Numbers and the Keçeci Prime Number. Authorea.

https://doi.org/10.22541/au.174890181.14730464/v1

43. https://github.com/WhiteSymmetry/Oresme

44. Keçeci, M. (2025). Oresme (0.1.0). Open Science Articles (OSAs), Zenodo.

https://doi.org/10.5281/zenodo.15833238

45. https://pypi.org/project/oresme

46. https://anaconda.org/bilgi/oresme

47. Keçeci, M. (2025). Exploring Weyl Semimetals: Emergence of Exotic Electrons and Topological

Order. HAL open science. https://hal.science/hal-05146435;

https://doi.org/10.13140/RG.2.2.35594.17606

48. Keçeci, M. (2025). Nodal-Line Semimetals: Unlocking Geometric Potential in Quantum Information.

WorkflowHub. https://doi.org/10.48546/workflowhub.document.36.1

https://doi.org/10.22541/au.175070836.63624913/v1
https://doi.org/10.22541/au.175131225.56823239/v1
https://doi.org/10.48546/workflowhub.document.32.2
https://doi.org/10.5281/zenodo.15515113
https://doi.org/10.5281/zenodo.15558153
https://doi.org/10.5281/zenodo.15499657
https://doi.org/10.5281/zenodo.15572200
https://doi.org/10.5281/zenodo.15540875
https://doi.org/10.22541/au.174890181.14730464/v1
https://github.com/WhiteSymmetry/Oresme
https://doi.org/10.5281/zenodo.15833238
https://pypi.org/project/oresme
https://anaconda.org/bilgi/oresme
https://hal.science/hal-05146435
https://doi.org/10.13140/RG.2.2.35594.17606
https://doi.org/10.48546/workflowhub.document.36.1

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 38

49. Keçeci, M. (2025). Weyl Semimetals and Their Unique Electronic and Topological Characteristics.

figshare. https://doi.org/10.6084/m9.figshare.29483816

50. Keçeci, M. (2025). When Nodes Have an Order: The Keçeci Layout for Structured System

Visualization. HAL open science. https://hal.science/hal-05143155;

https://doi.org/10.13140/RG.2.2.19098.76484

51. Keçeci, M. (2025). Beyond Traditional Diagrams: The Keçeci Layout for Structural Thinking.

Knowledge Commons. https://doi.org/10.17613/v4w94-ak572

52. Keçeci, M. (2025, July 3). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific

Analysis. OSF. https://doi.org/10.17605/OSF.IO/9HTG3

53. Keçeci, M. (2025). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific

Analysis. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15792684

54. Keçeci, M. (2025). Technical and Theoretical Bridges Between Gravitational Wave Observations and

Quantum Information Processing Systems. Authorea. July, 2025.

https://doi.org/10.22541/au.175138854.46819184/v1

55. Keçeci, M. (2025). New Technological and Methodological Approaches in Gravitational Wave

Detection and Quantum Computing Development. WorkflowHub.

https://doi.org/10.48546/workflowhub.document.33.1

56. Veliev, E. V., Günaydın, S., & Sundu, H. (2018). Thermal properties of the exotic X(3872) state via

QCD sum rule. The European Physical Journal Plus, 133(3), 139. https://doi.org/10.1140/epjp/i2018-

11977-0

57. Yıldız, F., Przybylski, M., & Kirschner, J. (2009). Direct evidence of a nonorthogonal magnetization

configuration in single crystalline Fe₁₋ₓCoₓ/Rh/Fe/Rh(001) system. Physical Review Letters, 103(14),

147203. https://doi.org/10.1103/PhysRevLett.103.147203

58. Yalçın, O., et al. (2023). Crystallographic, structural, optical, and dielectric properties of aniline and

aniline halide imprinted hydrogels for optoelectronic applications. Journal of Materials Science:

Materials in Electronics, 34(22). https://doi.org/10.1007/s10854-023-10915-8

59. Mikailzade, F., Maksutoglu, M., Khaibullin, R.I., Valeev, V.F., Nuzhdin, V.I., Aliyeva, V.B., &

Mammadov, T.G. (2016). Magnetodielectric Effects in Co-implanted TlInS₂ and TlGaSe₂ Crystals.

Phase Transitions, 89(6), 568–577. https://doi.org/10.1080/01411594.2015.1080259

60. Garrett, J., Luis, E., Peng, H.-H., Cera, T., Gobinathj, Borrow, J., Keçeci, M., Splines, Iyer, S., Liu,

Y., cjw, & Gasanov, M. (2023). garrettj403/SciencePlots: 2.1.1 (2.1.1). Zenodo.

https://doi.org/10.5281/zenodo.10206719

https://doi.org/10.6084/m9.figshare.29483816
https://hal.science/hal-05143155
https://doi.org/10.13140/RG.2.2.19098.76484
https://doi.org/10.17613/v4w94-ak572
https://doi.org/10.17605/OSF.IO/9HTG3
https://doi.org/10.5281/zenodo.15792684
https://doi.org/10.22541/au.175138854.46819184/v1
https://doi.org/10.48546/workflowhub.document.33.1
https://doi.org/10.1140/epjp/i2018-11977-0
https://doi.org/10.1140/epjp/i2018-11977-0
https://doi.org/10.1103/PhysRevLett.103.147203
https://doi.org/10.1007/s10854-023-10915-8
https://doi.org/10.1080/01411594.2015.1080259
https://doi.org/10.5281/zenodo.10206719

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 39

61. Rameev, B. (2020). Magnetic Resonance and Microwave Techniques for Security Applications. 2019

Photonics & Electromagnetics Research Symposium-Spring (PIERS-Spring).

https://doi.org/10.1109/PIERS-Spring46901.2019.9017563

62. Yaman, M., Misir, Z. Finite-Time Behaviour of Solutions to Nonlinear Parabolic equation. New

Trends in Mathematical Sciences, 2022, Vol. 10, no. 4, pp. 47–53.

https://doi.org/10.20852/ntmsci.2022.487

63. Bidai, K., Tabeti, A., Mohammed, D. S., Seddik, T., Batouche, M., Özdemir, M., & Bakhti, B. (2020).

Carbon substitution enhanced electronic and optical properties of MgSiP₂ chalcopyrite through TB-

mBJ approximation. Computational Condensed Matter, 24, e00490.

https://doi.org/10.1016/j.cocom.2020.e00490

64. Keçeci, M. (2025). A Graph-Theoretic Perspective on the Keçeci Layout: Structuring Cross-

Disciplinary Inquiry. Preprints. https://doi.org/10.20944/preprints202507.0589

65. Keçeci, M. (2025). Oresme. figshare. https://doi.org/10.6084/m9.figshare.29504708

66. Keçeci, M. (2025). Oresme [Data set]. WorkflowHub.

https://doi.org/10.48546/workflowhub.datafile.18.1

67. Keçeci, M. (2025). Dynamic vs Static Number Sequences: The Case of Keçeci and Oresme Numbers.

Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15833351

68. Keçeci, M. (2025). Variability and Stability in Number Sequences: An Analysis of Keçeci and Oresme

Numbers. WorkflowHub. https://doi.org/10.48546/workflowhub.document.37.1

69. Keçeci, Mehmet (2025). Dynamic-Static Properties of Keçeci and Oresme Number Sequences: A

Comparative Examination. figshare. Journal contribution.

https://doi.org/10.6084/m9.figshare.29504960

70. Keçeci, Mehmet (2025). Dynamic and Static Approaches in Mathematics: Investigating Keçeci and

Oresme Sequences. Knowledge Commons. https://doi.org/10.17613/gbdgx-d8y63

71. Keçeci, M. (2025). Characteristic Features of Keçeci and Oresme Number Sequences: Dynamic and

Static Perspectives. HAL open science.

72. Keçeci, M. (2025). Geometric Resilience in Quantum Systems: The Case of Nodal-Line Semimetals.

Authorea. Authorea. https://doi.org/10.22541/au.175192307.76278430/v1

73. Keçeci, M. (2025). The Rise of Weyl Semimetals: Exotic States and Topological Transitions.

Authorea. https://doi.org/10.22541/au.175192231.19609379/v1

74. Keçeci, M. (2025). Analysing the Dynamic and Static Structures of Keçeci and Oresme Sequences.

Authorea.

https://doi.org/10.1109/PIERS-Spring46901.2019.9017563
https://doi.org/10.20852/ntmsci.2022.487
https://doi.org/10.1016/j.cocom.2020.e00490
https://doi.org/10.20944/preprints202507.0589
https://doi.org/10.6084/m9.figshare.29504708
https://doi.org/10.48546/workflowhub.datafile.18.1
https://doi.org/10.5281/zenodo.15833351
https://doi.org/10.48546/workflowhub.document.37.1
https://doi.org/10.6084/m9.figshare.29504960
https://doi.org/10.17613/gbdgx-d8y63
https://doi.org/10.22541/au.175192307.76278430/v1
https://doi.org/10.22541/au.175192231.19609379/v1

Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers, Mehmet Keçeci, 2025

 40

75. Keçeci, M. (2025). Mobility and Constancy in Mathematical Sequences: A Study on Keçeci and

Oresme Numbers. OSF. https://doi.org/10.17605/osf.io/68r4v

76. Keçeci, M. (2025). Analysing the Dynamic and Static Structures of Keçeci and Oresme Sequences.

Authorea. https://doi.org/10.22541/au.175199926.64529709/v1

77. Keçeci, M. (2025). Dynamic Sequences Versus Static Sequences: Keçeci and Oresme Numbers in

Focus. Preprints. https://doi.org/10.20944/preprints202507.0781

https://doi.org/10.17605/osf.io/68r4v
https://doi.org/10.22541/au.175199926.64529709/v1
https://doi.org/10.20944/preprints202507.0781

