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Abstract  

Euler's formula for polyhedra is one of the most famous mathematical results. It is also widely used outside 

mathematics. In particular, it is used in the analysis of molecular structures, many of which have a polyhedral 

shape. Generalizations of Euler's formula for non-simply connected and multidimensional polyhedra are well 

known. This article presents a generalization of Euler's formula for adjacent polyhedra. Various cases of 

adjacency are considered: face-sharing, edge-sharing and vertex-sharing connections. For a system of 

adjacent polyhedra, a single formula relates the number of vertices, edges and faces in the form V – E + F = 

N + 1, where N is the number of polyhedra. 

Keywords Convex Polyhedra · Euler’s formula · Adjacency matrix   

Формула Эйлера для полиэдров относится к числу самых известных математических результатов. 

Она находит широкое применение и за пределами математики. В частности она используется при 

анализе молекулярных структур, многие из которых имеют полиэдрическую форму. Широко 

известны обобщения формулы Эйлера для неодносвязных, а также многомерных полиэдров. В 

настоящей статье представлено обобщение формулы Эйлера для смежных полиэдров. Рассмотрены 

различные варианты смежности полиэдров: с общей гранью, с общим ребром и с общей вершиной. 

Для системы смежных полиэдров единая формула связывает число вершин, ребер и граней в виде V – 

E + F = N + 1, где N – число полиэдров. 

MSC: 52B05; 05C92 

1  Introduction 

Euler's formula for polyhedra is one of the most famous mathematical formulas. It reflects 

the most fundamental topological properties of three-dimensional bodies [1]. Naturally, 

this formula is widely used in the study of molecular structures that have a polyhedral 

shape. In chemistry, the most famous examples of polyhedral structures are fullerenes with 

pentagonal and hexagonal faces. Euler's formula characterizes the shape of the cavities of 

clathrate frameworks, as well as their polyhedral fragments. In one way or another, this 

formula can also be used to describe the structure of several adjacent polyhedra, which 

may be of interest for describing various processes of structure formation. 

 Euler's formula relates the number of vertices, edges, and faces of a single polyhedron 

by a simple ratio. Spatial structures in the form of several adjacent polyhedra are rather 

difficult to perceive. The most natural approach to the analysis of such molecular structures 
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is based on the use of an adjacency matrix. The total number of particles (vertices) is 

usually known. The total number of bonds (edges) is easy to calculate. No distinction is 

made here between internal and external edges. Elementary cycles are conveniently 

considered as faces of complex structures. There are explicit formulas that allow one to 

calculate the number of cycles of different lengths using the adjacency matrix [2–4]. This 

approach requires caution, since it is necessary to check the elementary nature of the 

cycles. In tetrahedrally coordinated systems, problems with the number of square and 

pentagonal cycles usually do not arise when calculating using the adjacency matrix. In real 

systems, it is also difficult to confuse adjacent squares with a hexagonal ring. Therefore, 

using the total number of elementary cycles significantly simplifies the analysis. In this 

article we will analyze purely mathematical relationships between the total numbers of 

vertices, edges and faces of spatial structures formed by adjacent polyhedra. 

 The impetus for writing this paper was a recently obtained formula that relates the 

number of vertices, edges, and faces for water clusters in the form of edge-sharing prisms 

[5]. Analysis of geometric examples showed the presence of very general relationships 

similar to Euler's formula. This article is devoted to demonstrating these examples, as well 

as proving general formulas. 

2  Description of the problem 

To depict the structure of polyhedra, their flat images (planar graph) are often used, called 

Schlegel diagrams (Fig. 1a). These diagrams take also into account the framing face. 

Euler's formula for convex polyhedra has the following form 
 

               (1) 
 

Where V, E and F are the number of vertices, edges and faces. The simplest consequence 

of equation (1) is the following relation for a flat meshwork without taking into account the 

“back” face (Fig. 1b) 

               (2) 

 

 

Fig. 1 (a ) Schlegel diagrams of cube, (b) Meshwork of adjacent polygons. 



3 

 
 
 

Fig. 2 (a) Edge-sharing pentagonal prisms, (b) four vertex-sharing polyhedra (two 

superimposed polyhedra on the left) 

 

We will use both of these relations. Note that equation (2) is valid for any simply 

connected set of adjacent polygons, since the perimeter of such a region can be considered 

the "back" face, which, if taken into account, we obtain (1). And if we do not take it into 

account, we obtain (2). The shape of the enclosing polygon is not important, since we are 

talking about topological properties. A widely known generalization of Euler's formula for 

non-simply connected polyhedra has the following form. 

 

                 (3) 

 

Here, g is the genus of a surface which is equal to the number of "holes" of a surface.  

 The right side of equation (3) is called the Euler characteristic of a surface. Its 

maximum value is 2. A relation similar to formula (1) was obtained by us for various 

combinations of three edge-sharing prisms (Fig. 2a) [5]. 

 

                (4) 

 

The question arises whether it is possible to obtain a general formula for an arbitrary 

number of edge-sharing prisms and an arbitrary number of any polyhedra. No less 

interesting is the case of vertex-sharing polyhedra, i.e. a set of polyhedra with a common 

vertex. As an example of such a structure, Fig. 2b shows a fragment of the clathrate 

frameworks consisting of four 24-vertex polyhedra with one common vertex. 
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3  Results and discussion 

3.1  Face sharing 

First, let us consider an example of the simplest union of two polyhedra of arbitrary shape: 

when they have an n-gonal common face. For the total number of vertices, edges and faces, 

the following obvious relationships are true: V = ∑v – n, E = ∑e – n, F = ∑f – 1. Here the 

summation is over two polyhedra. Taking into account (1), we get 

  

               (5) 

 

3.2   Edge sharing 
 

Let us now consider a set of N polyhedra that have one common edge. We consider the 

case when their adjacent dihedral angles add up to 2π. Usually their number is small, but 

we are considering the general case. Let such a structure have N adjacent faces, which are 

polygons with the number of sides nk, where k varies from 1 to N (Fig. 3). When 

calculating the number of vertices of the general structure, it is necessary to eliminate 

multiple enumerations of vertices in the center. More exactly, (N – 1) pairs of vertices are 

redundant. In addition, to eliminate repetition, it is necessary to subtract once all the 

remaining (ni – 2) vertices of each of the N adjacent faces. 

 

                                                 (6) 

 

Similar relations are not difficult to obtain for the number of edges and faces. 

 

                                                     (7) 

 

              (8) 

Combining these expressions, we obtain the following general formula for edge-sharing 

polyhedra 

                (9) 

 

Fig. 3 (a ) Edge-sharing polyhedron 
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3.3   Vertex sharing 

3.3.1 Examples 

Let us first analyze the simplest examples of structures formed by polyhedra with one 

common vertex (Fig. 4). We consider the case when their adjacent polyhedral angles add 

up to 4π. For a tetrahedron divided into four smaller tetrahedra, V = 5, E = 10, and F = 10. 

Therefore, V – E + F = 5 and we again arrive at formula (9), since in this case N = 4. 

 Let us now consider the entire class of n-gonal bipyramids. It is obvious that in this 

case V = n + 3. For the edges we have two sets of inclined edges of n edges each and a 

double set in the horizontal plane. Taking into account the two central vertical edges, we 

obtain E = 4n + 2. For the faces, there are two sets of inclined faces, two sets of vertical 

faces and one set of horizontal faces, i.e. F = 5n. We obtain that V – E + F = 2n + 1. 

Considering that in this case the total number of polyhedra N = 2n, we again arrive at 

formula (9).  

 A similar calculation is not difficult to perform for “biprisms” with a common base 

(Fig. 4c). Note that most often biprisms are called prisms with a common lateral side 

(Fresnel biprism, [6]). In this case, V = 3 n + 3, E = 8 n + 2, F = 7 n. Again we obtain V – E 

+ F = 2 n + 1. Consequently, formula (9) is also valid in this case. It can be verified that 

formula (9) is valid for cuboctahedron (Fig. 4d) and cuboid 2×2×2 (Fig. 4e). The first of 

them is obtained by truncating eight vertex regions, one of which is shown in Fig. 4e.  

 

 

Fig. 4 (a ) tetrahedron, (b) bipyramid, (c) biprism, (d) cubooctahedron, (e) cuboid 2×2×2, 

(f) small stellated dodecahedron 
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It can be assumed that formula (9) is valid for any set of polyhedra with a common vertex. 

To prove this statement, we introduce a number of auxiliary definitions and notations. 

 

3.3.2 Vertex classification 

1) Central vertex 

2) Black vertices are directly connected to the center (Fig. 4). 

3) Gray vertices belong to adjacent polyhedra, without being black. 

4) White vertices belong to only one polyhedron. 

 The numbers of such vertices will be designated as V
b
, V

g
 and V

w
. In Fig. 4, the first 

two figures (a, b, c) have only black vertices in addition to the central vertex. Figure (d) 

also has gray vertices, and figures (e, f) also have white vertices, although the latter has no 

gray vertices. The structure in Fig. 2b also has all the types of vertices. 

 

3.3.3 Black polyhedron 

The black vertices are the vertices of a certain polyhedron, which we will also call black. 

The black vertices belonging to one of polyhedra can be considered as the vertices of the 

outer face of the black polyhedron. For topological analysis, it does not matter that such 

"faces" may not be flat. It is enough that the black polyhedron is topologically equivalent 

to a sphere. Therefore, we can consider that the black polyhedron is formed by a set of 

pyramids with a common vertex. Fig. 5a shows a set of black vertices of a certain 

structure. A square face of the black polyhedron is highlighted. 

 The main characteristics of the compound black polyhedron, including both its 

external and internal elements, will be marked with an asterisk. In parallel, we will  

 

 
 

Fig. 5 (a ) black vertexes of a polydedron, (b) vertices located on the outer surface of a 

polyhedron at vertex-sharing connection. Black vertexes are connected with center. Grey 

vertices lie on adjacent faces of two polyhedrons. White vertices belong to only one 

polyhedron. 
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consider the surface polyhedron, the characteristics of which we will designate with the 

symbol "S". There are following simple relationships between them 

 

        

               (10) 

          

 

Here we have taken into account that the number of internal edges of the black polyhedron 

is equal to the number of vertices on the surface, and the number of internal faces between 

adjacent pyramids is equal to the number of surface edges. For the black polyhedron as a 

whole, we obtain the following relation. 

 

                                    (11) 

 

And since F
S
 is equal to the number of composite figures N (pyramids), we obtain the same 

relationship for the elements of the black polyhedron. 

 

                   (12) 

 

Note that for the surface polyhedron considered here, the usual Euler equation is naturally 

satisfied 

 

          ,       (13) 

 

which can be rewritten as follows 

 

                 (14) 

 

3.3.4 Designations of external elements  

A part of the external surface of the general structure, limited by the planes of the faces of 

one of the internal pyramids, will be called a cap. Each cap in turn can be composed of a 

certain number of faces that are external to the structure as a whole. Some of the vertices of 

such caps are in planes that are continuations of the internal faces of the black polyhedron. 

Topologically, we can assume that they are located on the boundaries of the faces of the 

black polyhedron. The remaining vertices are internal to one of the caps (Fig. 5b). Vertices 

located on the boundaries between the faces of the black polyhedron are gray, and internal 

vertices are white. Recall that we designated the number of such vertices as V
g
 and V

w
, 

respectively.  

 Both black and gray vertices are located on the boundaries between faces of the black 

polyhedron. The total number of boundary edges between the nearest boundary vertices 
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will be designated as E
b
. We will also introduce notations for the number of edges between 

gray and white vertices E
gw

 and for the number of edges between white vertices E
w
. 

Finally, the number of faces near the boundary and internal faces for each cap is denoted as 

F
b
 and F

w
, respectively. 

 

3.3.5 Formula derivation 

To derive the main formula, we need two auxiliary relations. First, note that the number of 

boundary edges of a single cap is equal to the sum of the black and gray vertices located on 

this boundary, i.e. E
b

i = V
S

i + V
g
i. Let us sum this relation over all N caps, taking into 

account the doubling of edges and of the number of gray vertices. 

  

            
                    (15) 

 

Here we took into account that when summing over all polyhedra, each black vertex is 

repeated as many times as its degree, i.e. the number of converging black edges. In the 

total sum over all black vertices, such edges are also repeated twice, i.e. 

 

   
             (16) 

Therefore, 

                (17) 

 

Based on formula (2) for a separate cap we have 

 

   
    

 
   

      
    

  
   

      
    

        (18) 

 

Summing this expression over all caps, taking into account (16), we obtain 

 

                                       (19) 

 

Now we transform the combination of the main parameters of the general structure using 

the characteristics of the black polyhedron, and then rearrange the terms of this expression 

so as to use formula (19). 

 

                                                  

 

                                           

 

                                              
 

                 (20) 

 

Here we have added the right side of equation (17) and subtracted its left side. 
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 Thus, taking into account (12), it can be stated that for any system of adjacent convex 

polyhedra with one common vertex, the following expression is indeed valid. 

 

                (21) 

 

3.4. Multiple connections 

3.4.1 Examples 

We have considered the cases of adjacency of polyhedra with one common element. But, 

as the examples show, expression (21) remains valid for case of multiple connections of 

polyhedra. Various examples are shown in Fig. 6. The simplest case of multiple face-

sharing of polyhedra is N-section prismatic tubes (Fig. 5a) with k-gonal rings. In this case, 

the following relations are valid: V = k + k N, E = k + 2 k N, F = 1 + (k + 1) N. Therefore, 

in this case we also obtain the previous relation 

 

                               (22) 

 

 An example of double edge-sharing is shown in Fig. 6b. It is easy to check that in this 

case V = 12, E = 12 + 12 = 24, F = 4 + 8 + 5 = 17. That is, V – E + F = 12 – 24 + 17 = 5. 

This means that formula (21) is satisfied in this case as well. 

 Formula (21) is also valid for more complex vertex-sharing structures. Figures 6c–e 

shows various multi-cage fragments of the two most common gas hydrate frameworks sI 

and sII. Each of these tetrahedrally coordinated frameworks is formed by two types of 

 

 
 

Fig. 6 (a ) hexagonal tube with multiple face-sharing of prisms, (b) double edge-sharing 

connection of prisms, (c) multi-cage fragments of gas hydrate frameworks. 
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Table Topological characteristics of multiple vertex-sharing fragments 

 

 

Cage D/sI T/sI D/sII H/sII 

n1 20 24 20 28 

V 172 184 172 198 

E 296 320 296 346 

F 138 152 138 166 

V – E + F 14 16 14 18 

f = n1/2 + 2 12 14 12 16 

 

polyhedra. The polyhedra of the first framework are D (20) and T(24), and those of the 

second are again D and H (28). The number of vertices n1 is given in brackets. The 

fragments in Figure 6c–e represent different dense single-layer sheaths of polyhedra 

around the central polyhedron. The total numbers of vertices (molecules), edges (hydrogen 

bonds), and faces (H-bonded cycles) were previously calculated for these fragments [7]. 

This statistics is convenient for checking relation (21). For each fragment, the number of 

vertex-sharing connections is equal to the number of vertices of the internal polyhedron. 

 Table 1 shows the main characteristics of these fragments that were calculated earlier. 

The total number of polyhedra on the surface of each fragment is equal to the number of 

faces of the internal polyhedron. With tetrahedral coordination of bonds, three edges 

converge at each vertex of individual polyhedra (cubic graphs). Therefore, for each 

polyhedron, the number of edges is one and a half times greater than the number of 

vertices. According to Euler's formula (1), the number of faces of the internal polyhedron, 

equal to the number of polyhedra on the surface, is determined by the ratio f = n1/2 + 2 

(last line in Table). Taking into account the internal polyhedron, it is easy to verify the 

validity of formula (21) for the considered multi-cage fragments. 

 

3.4.2 Proof of the basic formula for multiple connections 

The method of proving the validity of formula (21) for any multiple connections consists 

of analyzing the changes in the system parameters when one polyhedron is disconnected 

from the original multi-polyhedral structure. In this case, the validity of this formula for 

one connection has already been proven. This is the method of backward induction. The 

validity of Euler's formula (1) itself is proven in a similar way when one vertex is 

successively removed. 
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 First, let us consider the case of a face-sharing compound, where the face is an n-gon. 

Let us also denote the parameters of the removed polyhedron as v, e, f. In this case, the 

change in the parameters of the general structure is ∆V = v – n, ∆E = e – n, ∆F = f – 1, i.e. 

∆(V – E + F) = (v – e + f) – 1 = 2 – 1 = 1. We have established that with successive 

removal of one polyhedron, the expression V – E + F decreases by one. But for two 

polyhedra, equation (3) is valid. Therefore, in the general case, this expression is indeed 

equal to N + 1. 

 A similar situation occurs in the case of edge sharing (Fig. 3) when removing one 

polyhedron, which has two adjacent faces in the form of polygons with the number of sides 

n1 and n2. Here, ∆V = v – n1 – n2 + 2, ∆E = e – n1 – n2 + 1, ∆F = f – 2, i.e. ∆(V – E + F) = (v 

– e + f) – 1 = 1.  

 In the vertex-sharing case, when deleting one polyhedron, it is necessary to consider k 

faces with a common vertex (Fig. 3, upper part). Let these faces be polygons with ni 

angles, where i varies from 1 to k. In this case, ∆V = v – (n1 + n2 + ….+ nk) + k + k – 1. 

Here the sum (n1 + n2 + …nk) compensates for the deletion of vertices belonging to the 

faces adjacent to the central vertex (black and gray vertices). The first term k eliminates 

double counting of black vertices. The second k eliminates k-fold counting repetition of the 

central vertex in the sum (n1 + n2 + …+ nk). It remains to subtract one, since the central 

vertex still needs to be excluded from the total number of vertices of the polyhedron being 

deleted. Similarly, ∆E = e – (n1 + n2 + ….+ nk) + k, ∆F = f – k. Therefore, ∆(V – E + F) = 

(v – e + f) – 1 = 1. Thus, for any removal of one adjacent polyhedron, ∆(V – E + F) = 1.  

 Now consider the general case of a structure without holes. Let an arbitrary number of 

faces become external when a polyhedron is removed (Fig. 1b). These faces form a simply 

connected set. One can always perform such a deletion.  Otherwise the connectivity of the 

structure as a whole changes (the number of holes changes or the general structure is 

divided into two parts).  The set of components of the polyhedron to be deleted (vertices, 

edges, and faces, the numbers of which are denoted as v, e, f) can be divided into two 

subsets: the external components to be deleted and the internal components shared with the 

remaining part (vin, ein, fin). In this case, we get: 

 

                                        (23) 

 

Here, for the polyhedron to be removed, we used formulas (1) and (2). This is also true 

when two parts of the inner surface of the polyhedron being removed (Fig. 1b) are 

connected by a single vertex (articulation point of the graph). To prove formula (2) in this 

https://en.wikipedia.org/wiki/Articulation_point
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case, you only need to add one edge, forming a triangle at the junction. In this case, ∆V = 

0, ∆E = 1, ∆F = 1, i.e. the value of V – E + F does not change. Thus, for any removal of 

one adjacent polyhedron ∆(V – E + F) = 1, which means that the general formula is valid 

for any system of adjacent polyhedra. 

 

3.5  Weak compounds 

 

Stable structures are of primary interest. But the general formula obtained is easily 

generalized to the case of "light touches". For cases when two polyhedra have only one 

common vertex or one common edge, the validity of formula (21) is proved by following 

simple transformations. 

 

                                       (24) 

                                        (25) 

 

4  Conclusions 

The right side of expression (5) for face sharing of polyhedra can also be written as N + 1, 

since in this case two polyhedra are adjacent. That is, the range of applicability of formula 

(21) turns out to be very wide. 

 The formulas for adjacent polyhedra are based on the Euler formula for a single 

polyhedron and are a consequence of this formula. At the same time, formula (21) is a 

generalization of the Euler formula and passes into it when the number of adjacent 

polyhedra is two. This allows us to take a new look at the Euler formula itself, in which 2 

is 1 + N, as well as at the concept of topological simple-connectedness and multi-

connectedness. 

 Physicochemical applications of the obtained formula can be related to computer 

modeling and structural analysis algorithms based on the adjacency matrix, since in this 

case the characteristics V, E and F are quite easily calculated. 
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Figure Captions 

Fig. 1 (a ) Schlegel diagrams of cube, (b) Meshwork of adjacent polygons. 

 

Fig. 2 (a) Edge-sharing pentagonal prisms, (b) four vertex-sharing polyhedra (two 

superimposed polyhedra on the left) 

 

Fig. 3 (a ) Edge-sharing polyhedron 

 

Fig. 4 (a ) tetrahedron, (b) bipyramid, (c) biprism, (d) cubooctahedron, (e) cuboid 2×2×2, 

(f) small stellated dodecahedron 

 

Fig. 5 (a ) black vertexes of a polydedron, (b) vertices located on the outer surface of a 

polyhedron at vertex-sharing connection. Black vertexes are connected with center. Grey 

vertices lie on adjacent faces of two polyhedrons. White vertices belong to only one 

polyhedron. 

 

Fig. 6 (a ) hexagonal tube with multiple face-sharing of prisms, (b) double edge-sharing 

connection of prisms, (c) multi-cage fragments of gas hydrate frameworks. 

 


