ZLogic Proof

Some questions of the theory of computational complexity from the

point of view of elementary theory of models

The presented study considers one of the most famous problems of computational complexity theory: what is
the ratio of complezity classes N'P and co— NP ? To answer this question, the well-known fundamental concept
of model completeness of the theory under study, a section of mathematics "Model Theory”, was rethought
and reformulated accordingly. The purpose of reformulating this fundamental concept was to describe the ratio
of complezity classes NP and co — NP, from a model-theoretical point of view. It is a well-known fact: the
hierarchy of properties in any model of a model-complete theory breaks off at the first level. This key idea has
been the basis for a fruitful study of the relationship between the complexity classes NP and co — N'P. It is a
well-known fact that there exists an oracle A such that the complezity class N'P(A) differs from the complezity
class co — N'P(A). By developing oracle computations in an appropriate manner and formalizing them in the
class of primitive recursive algorithms, and then using the theoretical-model relationship between the specified
classes, it was possible to relate the relationship between the complexity classes of computations N'P and co— NP
with the relationship between the complezity classes N'P(A) and co — N'P(A), which then made it possible to
establish that the complexity class N'P is not a Boolean algebra. In formalizing oracle computations in the class
of primitive recursive algorithms, a number of interesting theorems were proved, one of which is an analogue of
the fized point theorem, which was used in the key theorem that allowed establishing that the complexity class
NP is not a Boolean algebra. After reading the presented research, one can understand why the relativization
effect prevents one from obtaining high lower bounds or separating one complexity class from another complexity
class of computations using the methods of "Discrete Mathematics™

The presented study is original, and many important concepts that are used in this study have not been
encountered in any studies known to me.

Part 1

Equality calculus for calculating closed terms

Let the alphabets 27, ..., % be such that: £ = {S,1,Z,§,Length, —, Concat,D, }, % = {A,z},
Ly ={R.J}, Ly ={=|..}, L ={[].(\)}, L ={U}, £ = T_Ji.fl, Z(U) = £ U%. The alphabet Z(U)
will formalize the calculation of closed terms for the class of O;acle primitive recursive word functions [1, p.
204],[2].

For the sake of completeness, we present a few fairly traditional definitions.

Definition of a functor and its localities:

1) Words of the form: Z, d, Length, S|S, S||S,...,S]||,...,|S - one-place functors. functor having the form
——

m times
S,...,|S will be denoted as Sg.
——
k times
2) Words of the form: I'|,...,|,|,...,| - » - place functor, which will be denoted traditionally I}, at 1 <
—— Y——
m times n times
m < n.

3) Word U - one-place functor. In what follows, the functor U will also be called undefined function symbol
or oracular symbol.

4) Words of the form: —, Concat, D - two-place functors.

1By methods of Discrete Mathematics, I mean those proofs that can be expressed in the standard model of arithmetic, for
example, the proof of Consis cannot be expressed in the standard model of arithmetic, although this sentence is true in this
model, Not all statements that are subject to relativization can be proved using the methods of Discrete Mathematics. And this is
demonstrated in this research.

5) If ® - k - place functor, ¥q,..., ¥, - n - place functors, then the word [J®W¥, ..., U] - n - place functor.
This functor will be called the superposition functor.

Let us introduce the following important concept:

a) A - the argument word, which is called the empty word,;

6) if « - is an argument word, then the word Sy («) is an argument word, which will be denoted as aay,.

An argument word « is called k - alphabetic if this word does not contain functors S;, for [> k.

A set B of argument words is called k£ - alphabetic if each word o € B is k - alphabetic. Let k > 1. The

number of all k - alphabetic words with length [is equal to k'. The number of all k - alphabetic words with
kl+l -1

length at most [> 0 is equal to o1

Argument words that do not contain the functor Sy for & > 1 are called natural numbers.

6) If « is an argument word, ®q,...,®P,, are 2-place functors, then the word [Ra®y,- - ,®,,] - 1 - place
functor.

7) If ® - k is a place functor, ¥y, ..., ¥,, - k+ 2 are place functors, then the word [R®VU, ..., ¥,,] - k+11is
a place functor. The functors of items 6 and 7 will be called recursive functors, and the functors &, ®q,... ¥,
will be called component functors, the number m is called the branching degree of the recursive functor under
consideration.

The functors of items 1-4 will be called the original functors.

Words of the form: z |,...,| « are variables. Let us denote these words traditionally as ;.

The concept of the term.

1) Every argument word and every variable is a term.

2) If tq,...,t; are terms, ¥ - k is a place functor, then the word W(¢y,...,{) is a term.

For any subset A of argument words, we introduce the following equalities (defining equalities), as axioms
of the formalization to be defined for calculating oracle closed terms:

1) T = T, where T is an arbitrary term,

2) Z(z,) = A,
3) IZ(xlv ,mn) = Ty,
4) §(A) = A,

5) d(xz1a;) = a1,
6) Length(A) = A,

7) Length(zia;) = Length(z1)ay,

8) x1—A =1,

9) x1—=—ax9a), = d(x1—x2),

10) Concat(z1,A) = 21,

11) Concat(z1,x2a;) = Concat(z, z2)ag,

12) D(z1,A) = A,

13) D(x1, x2ai) = Concat(z1, D(x1, z2)),

14) [JOUy,..., Ui|(T) = &(V(T), ..., Vi(T)),

15) [Ra®@y,...,P,](A) = a,

16)[Ra®q, ..., 0p](zar) = @r(z, [Ra®y, ..., D,](2)), at k < m,

17)[Ra®q, ..., Pn](zar) = [Ra®y, ..., Dp](x), at k& > m,

18) [R®Y,..., ¥, |(T,A) = ®(T),

19) [ROVy, ..., U,](T, yar) = Vi (T, y, [ROVy,..., U ,](Z,y)), at k < m,

20) [R®Vq,...,9,,](Z,yar) = [ROTy,...,U,](T,y)), at k > m.

Let A - be some set of argument words. Axioms of interpretation of the undefined function symbol U
a) Ulw) =Aifa €A,

6) U(a) =ay, if a ¢ A.

Equalities a) and b) are called axioms of interpretation, which correspond to the set A, the set of argument

words A is called the interpretation set.

Rules of inference Calculus of equalities of closed terms

Sb : = —, Cuty : , Cuty :
[T2]r, = [Q2lq, ! T1="Ts 2 Ty =T;

In the Sb rule, the variable x is the rule’s own variable.

Remark. To calculate the values of closed terms, it is sufficient to use only the Cuty rule.

To prove the equalities of closed terms, the Cuty rule is added. You can do without the Cuts rule by
T1=Q1, T2 =Q2
[T2]q, = [Qzly,

replacing the Sb rule with the rule

Definition of proof. Let A - some set of argument words. Sequence of equalities T = Qq,..., T, = Q,
is a derivation (proof of T,, = Q,,), if for each i = 1,2,...,n, T; = Q; is either an axiom or an axiom of the
interpretation of U(a) = A, U(«) = ay, which correspond to the set A, or obtained from the previous equalities

according to one of the inference rules.

If the proof P is such that it contains the interpretation axioms U(a) = A or U(8) = a1, then we will say
that the words «, 8 were used in this output, and the word « was used positively, the word 3 is used negatively.
With the proof of P, given the interpretation set A, we associate a pair of sets: (AT)p - the set of all positively
of interviewed words in the output P, (A7)p is the set of all negatively interviewed words in the output P. If
the output P does not contain interpretive axioms, then it will be output in the alphabet .. The definition of
the derived equality is assumed to be traditional.

The sequence of equalities t; = q1,...,t, = g, is a quasi-inference, if each equality in this sequence is either
a derivable equality or is obtained from the previous equalities according to one of the inference rules.

Note. The idea of the above calculus of equalities for computing closed oracle terms was borrowed in [3-5].

The length of the proof P is the number of equalities in the proof P. This number is denoted as lp.

The total length of the proof P is the length of the word obtained by joining all equalities in the proof P,
separated by a comma. This number is denoted by Fi(P).

Denote the resulting calculus of closed terms as CalcEq, CalcEqy in the alphabet .2, £ (U) respectively.

The notation -t = r - the equality ¢ = r is derivable in the calculus CalcEqy;, for any interpretation of the
functor U.

The notation A - ¢t = r - the equality ¢ = r is derivable in the calculus CalcEqy;, with interpretation axioms
corresponding to the set A.

A functor @, a term ¢ are said to be n > 0 alphabetic if the presented words do not contain functors S, for
{ > n. All original functors are n alphabetic for every n.

For each n and any argument word « one can construct n - place functor, denoted as Const,,, which yields
the equality Const” (8, ..., ,) = a, for any sequence 3 of argument words.

Theorem 1.1. One can compose an algorithm such that for each term t one can construct a functor ®;
such that - ®,(y) = t, where ¥ - list of variables containing the variables of term ¢. See [3, p. 62] for the proof
and full formulation of this theorem.

Theorem 1.2. For any closed n alphabetical term ¢, for a given interpretation A of the functor U, there
exists a unique such argument word « of the same alphabet that A ¢t = «. The proof is carried out by induction
on the construction of the functor, then by induction on the construction of the term ¢.

The proof of the P equality of the form ¢t = a, where ¢ is a closed term and « is some argument word, will
be called the calculation of the term ¢.

Note. For any term ¢(Z), for any sequence of argument words @, there exists a positive integer k such that

for any interpretation set of argument words A, it is possible to construct such a calculation of the term ()

on @, in which no more than k argument words will be used.
Theorem 1.3. Let [J®U4,...,Uy] - n - be a place functor, o, ..., a, - some sequence of argument words.
Let Py, s be the calculation of the functor ¥; on the sequence of argument words aj, ..., ay,, with the result

of the calculation f;, in the interpretation set A, 1 < ¢ < n. Let P 3 be the calculation of the functor ® on

the sequence of argument words 1, ..., Bk, with the result calculation ~y, in the interpretation set A, then it is
possible to construct the calculation P(jey, v, of the functor [JOWq,..., U] on the sequence of argument
words «q, ..., a,, for which:
B)ean, oy = Uy o U), 50 R, e = U8 p0aUB e, 5

Proof. We compose the following sequence of equalities: Py,,...,Pyg,,

[JOU, ..., Ukl(x1,...,2n) = P(V1(T),...,Vp(T)),...,
[JOUy, ..., Uk](ar,...,an) = D(V1(Q),..., U%(@)), P(x1,...,20) = P(x1,...,2n),...,
(U (@),...,¥(@) =P(b1,...,0n), Pa, 2(V1(@), ..., V(@) =, [JP¥1,..., U](aq,...,a,) = v- calculation
of the functor [J®Wy, ..., U] on the sequences ayq, ..., ay, in the interpretation set A, with the specified set of
positively and negatively interrogated words.

Theorem 1.4. Let n 4+ 1 - a place functor [RO®Uy, ..., U], a1,...,a,, Ba; - some sequence of argument
words.

Let Pg be the computation of the functor ® on the sequence of argument words a;, . . . , o, in the interpretation
set A.

Let Pirow,,....,],a1,....an,8 D€ the computation functor [R®Wy, ..., ¥;] on the sequence of argument words
Qa1,...,0Qn, 3, with the result of computing +, in the interpretation set A.

Let Py, be the computation of the functor ¥; on the sequence of argument words o, ..., an, 3,7, with the
result of the calculation 7, in the interpretation set A, then you can construct the calculation
Pirow,,..., Psixa1,..,an,pa; Of the functor [R®Wy, ..., Wi] on the sequence of argument words as, ..., an, fa;,

in the interpretation set A, for which:

(Ai)P[anyl Tpliansan,Ba; (Ai)P\pi S QUL yee ey, By U(Ai)P[RdﬂI’l,...,\Pk]‘al on B

Proof. Point (1) is obvious. Point (2). We compose the following sequence of equalities:

Prow,,...w,.],a1,....an.85

[ROUq, ..., Uk](z1,. .. &, 2a;) = V(21,. .., &0, 2, [ROVq, ..., ULl(21,...,Zn, 2)),...,

[R(I)\I/l,. . .,\I/k](al,. .. ,Oén,ﬁ(li) = \Ili(al,. .. ,Oln,ﬁ, [R@‘Ijl, .. .,\Ilk](al, N 7Oln,5)),
Uiz, ey ny 2yu) = V(21,00 Ty 2,U), e ey

\Ili(ala .. .,O[n,ﬂ, [R(I)\Ijla R \Ijk](ala s '7an76)) = \Ili(ah s 7a7la18a’7)7

Ui(ag,...,an, B, [RO¥y, ..., Ur)(a1,...,an,B)) =n,
[ROUy,...,Us(a,...,an, Ba;) = 7 - functor calculation [RPWq, ..., U] on the sequence of argument words
ai, ..., Qn, Ba;, in interpretation set A, with the specified set of positively and negatively interrogated words.
Theorem 1.5. Let a functor be given [RaWy, ..., U], aq,...,an, Ba; - - some sequence of argument words.
Let P(raw,,...,w,),3 be the evaluation of the functor [RaWy, ..., W] on the argument word 3, with the result
of the evaluation =, in the interpretation set A.
Let Py, be a computation of the functor ¥; on a sequence of argument words /3, v, with the result of the
computation 7, in the interpretation set A, then we can construct a computation
Plraw,,...,w,],8q, Of the functor [RaWy, ..., V] on the argument word SBa;, in the interpretation set A, for which

the following is true:

(A_)P[Ra\lll Tyl Ba; (A_)P\p,;”@ﬁ U(A_)P[Ra\lll8

Proof. Point (1) is obvious. Point (2). Let us compose the following sequence of equalities:
Praw,,..,v,],8
[Ra¥y,...,Ut](za;) = Ui(z, [RaPy, ..., ¥t](2))
[RaWy, ..., Uk](Ba;) = U, (8, [Ra¥y,..., U](B)),
Ui (z,u) = ¥;(z,u),...,
i (8, [Ra¥y, ..., V] (B) = ¥i(B,7),
Pu.:sq
Wi(B, [ROW1, ..., Uk)(B)) = n,
[RaVy,...,U](Ba;) = n - calculation of the functor [RaW¥y, ..., U] on the sequence of argument words Sa;,
in the interpretation set A, with the specified set of positively and negatively interrogated words.
Given that Length(A) = A, Length(aa;) = Si(a). |A| = A, |aa;| = |a]+1 = S(]al), |z] is a function of the
length of the word x, then expression of the form Length(t), will be denoted as |¢|. Obviously, the argument

word « is a natural number if and only if I |a| = o, Length(a) is a natural number.

A term containing only functors of the form: Concat,D, as well as natural numbers, is called a word
polynomial, word polynomials will be denoted as P(Z).
From properties: |Concat(z,y)| = |Concat(|z|,y)| = |Concat(z, |y|)| = Concat(|z|, |y|) = |z| + |y|,
Vafvy[Concat(|al,|5]) =~V D(|al,) = 7], then « is a natural number.

For any word polynomial P(Z), one can construct polynomial with natural coefficients P*(Z), which is true
pPr([z]) = [P(z)]-

Let us compose a 3 < n - place functor of the form [JConcatI}[JConcatI]_,[JConcatI]_;I,]...]. For

this functor in the calculus CalcEq the following equality holds

[JConcatI}[JConcatl} ... [JConcatI?_I7]...]J(z;...2,) = Concat(x;, Concat(xs,...Concat(x,_1,2,)...
Let’s Concat™ = [JConcatI}[JConcatl} ...[JConcatI_;I"]...],at n > 3,then - Concat”(z1,...z,) =
Concat(z, Concat(zy, ... Concat(z,_1,z,)...)). At n = 2, Concat® = Concat, at n = 1, Concat' = I}

and the following equations hold : + ConcatQ(:nl7 x2) = Concat(z1,x2), - Concatl(xl) =1} (z1) = 21.
- Concat”“(xl, ...Zpt+1) = Concat(z;, Concacat” (z2, ... Tpt1)).

Definition. Let 2 be some set of n - alphabetical functors. For each set A of argument words, we define
the concept of a standard word model, which we denote as WordM,, 4 4.

The universe of this model is all argument words, or n - alphabetic argument words. For each k— place
functor ® € 2 we define an operation, denoted fg and defined as Vavf|[fe(a) = 8 < A+ ®(a) = F].

If the set of functors & coincides with the set of all primitive recursive functors, then the standard model
will be denoted as WordM,, », WordM,,, in the alphabet .Z(U), .Z respectively, or more simply WordM,,
‘WordM.

If every functor belonging to the set 2 is a functor of the alphabet .#, then the standard word model
corresponding to the set of functors 2 will be denoted as WordMg. The model WordM, 4 will also be
referred to as the model in signature & of the alphabet £ (U).

Remark. Note that the set of all operations of the standard word model WordM,, coincides with the class
of word functions Pr(X), where ¥ is an alphabet consisting of n different symbols[2, p.220, Definition 3].

Theorem 1.6. There is an algorithm, executing which, according to an arbitrary formula A(zq,...,z,) for
propositional calculus, in which elementary propositions are propositions of the form r = ¢, where r, ¢ - terms

of the alphabet Z(U), one can construct n - a place functor ® 4 such that

Va[WordM,, £ A®@) & A F &4 (@) = A] (WordM,, = VZ[A(T) = & (z) = A))[5].

Part 11

Simple calculation of functor

With each n - ary functor ® and a sequence of argument words «q,...,a,, hereinafter denoted as @, we
associate a simple (canonical) computation of the functor ® on the sequence of argument words aq, ..., an,,
denoted as Pg.q,,..a, - We construct this simple computation by induction on the construction of the functor
®, and inside this induction, for a recursive functor by induction on the construction of the argument word.
With each simple calculation we indicate the sets (AT)p ¢ and (A™)p ¢ and the length of the calculation lp ¢ (@)
- the number of equalities in the output Ps.a;,...a,,-

For original functors: Sy, Z,I" ,d, Length, —, Concat, D:

For the functor: Sy:

1. Si(2) = Si(x),

2. Si(a) = Sk(w).

(At)ps, =0,

(A)ps, =0.

Calculation length Ip g, (z) = 2.

For the functor Z:

1. Z(z1) = A,

2. Z(a) = A.

Calculation length lp z(z) = 2.

(AT)pz =10,

For the functor U:

U(a) = A, if a € A, otherwise,

U(a) = ay.

Calculation length Ip y(x) = 1.
(ANpu={a}, A)pu=0,ifa €A,
(AN)pu=0, (AT)pu={a},ifag A
For the functor I7,:

1. I (21, .. Tp) = Tin,y

2. I0 (01, %2, o, Tp) = Timy v e vy

n+ 1. IY (aq,...,an) = .

Calculation length Ip 1n (71,...,2,) =n+ 1.
(AT)p1 =10,
(A7)prn = 0.

For the functor §:

2. d(z10;) = 1,

3. 0(aa;) = a.

The length of the calculation is given by the defining equalities:
lps(A) =1,

lp;(z1) =2, at o # A,

(AT)ps =10,

(A7)ps =0.

For the functor Length:

1. [A| = A,
1.\x1ak| = |x1\a1,
2.|aag| = |ala,

[Let Prength;o - simple calculation of functor Length on the argument word «, Next, we write out this
simple calculation Prength,q, at the end of this conclusion is the equality |a| =+, continue]

Prength;as

3. S1(z1) = S1(z1),

4. S1(laf) = Si(7),

5. |aag| = vay.

The length of the calculation is given by the defining equalities:

lp Length(z1a1) = lp(z1) + 5.
(AY)p Length = 0,

(A7)P Length = 0.

For the functor —:

1. x1—A = ay,

2. a—A =q,

1. z1—ax9ar = 6(x1 —x2),

2. a—xqar = 6(a——1x3),

3. a—pay = 6(a—p),

[Let P__., g - simple calculation of functor — on the argument words «, 3, next, we write out this simple
calculation P_._., 3, at the end of this calculation is the equality a—— 8 =, continue]

P;;a,ﬁa

5. 6(a—=p3) = 6(7)
[Let Ps,, - simple calculation of functor é on the argument word v, at the end of this calculation there is

an equality of the form &(y) = 7, continue]

P&,’ya
6. 6(a—p) =mn.
7. a=—fap =,

The length of the calculation is given by the defining equalities:

lp_. (x1,A) =2,

lp_ (z1,220;) = lp_— (21, 22) + lps(x1—2x2) + 7.

(AT)p, - =10,

(A7)p,— =0.

For the functor Concat:

1. Concat(x1,A) = z1,

2. Concat(a, A) = «,

1. Concat(x1, z2ay) = Concat(z, x2)ag,

2. Concat(a, z2a;) = Concat(a, x2)ay,

3. Concat(q, Sai) = Concat(a, 8)ay,

[Let Pconcat:o,8 - simple calculation of functor Concat on the argument word a and word 3, at the end
of this calculation there is an equality of the form Concat(a, §) =+, continue]

Pconcat;a, 8

4. Sg(x1) = Sk(z1),

5. Si(Concat(«, 5)) = Sk(v),

6. Concat(a, Say) = Sk(7).

The length of the calculation is given by the defining equalities:

10

IPGoneas (@,) =2,

1P concar (@ Bk) = IPconeat (@ B) + 6

(AT)p concat = 0,

(A7)p.concat = 0.

For the functor D:

1. D(z1,A) = A,

2. D(a,A) = A,

1. D(z1, z2ai) = Concat(x1, D(z1,x2)),

2. D(«, z2ax) = Concat(a, D(a, z2)),

3. D(a, Bai) = Concat(a, D(a, B)),

[Let Pp., s - simple calculation of functor D on the argument word « and word 3, at the end of this
calculation there is an equality of the form D(«, 5) = ~, continue]

Pp;a,g,

4. Concat(z1,z2) = Concat(zy,z2),

5. Concat(w, x2) = Concat(w, x2),

6. Concat(a, D(a, 8)) = Concat(a,),

[Let Pconcatia,y - simple calculation of functor Concat on the argument word c, v, at the end of this
calculation there is an equality of the form Concat(«,~) = 7, continue].

Pconcat;a,ys

7. Concat(a,D(a, 8)) =1,

8. D(a, Bag) = .

The length of the calculation is given by the defining equalities:

lpy (a,A) =2,

lpp (a, Bar) = lpp (@, B) + IPconca: (@, D(a, B)) + 8.

(AT)pp =0,

(A7)pp = 0.

For the functor [J®WU, ..., Uyl

Let Pg,.z - simple calculation of functor ¥; on a sequence of argument words @,..., Pg,.5z - simple
calculation of functor ¥j on a sequence of argument words a.

Let’s compose a sequence of equalities:

P\Ill;au ceey P\Iik;aa

11

[at the end of this calculation Py, at the end of this calculation there is an equality of the form ¥, (@) = ~;,
continue]

s+ 1. ®(xq,...,z1) = P(x1,...,28),

s+2. (Vq(@),xo,...,xk) = P(y1, 22, .-, T), - - -,

s+k+1. (T (Q),...,U@) = P(71,-- V)

[Let P - simple calculation of functor ® on a sequence of argument words 7, at the end of this calculation
is the equality ®(v1,...,7%) = 7, continue]

Ps5,

s+k+r+2 @U(a),..., ¥ (@) =1,

s+k+r+3. [JOUy, ..., U](z1,...,20) = P(VU1 (21, s @n), -, Pi(21,. .., 20)),

s+k+r+4. [JOUy, ... Uil(ar,...,2n) = P11,y @n), oo, U1y oo,)y e ey

st+k+r+n+3. [JOUy, ... Ul(ar,...,an) = PP (ar,...,an), ..., Vilag,...,an)),

s+k+r4+n+4. [JOUy, ..., ¥](a,...,a,) =7 - the resulting sequence of equalities - simple calculation
of functor [J®W, ..., U] on a sequence of argument words a.

The length of the calculation is given by the defining equalities:

oy, (@) =1py (@)+,...,+lpy, (@) +1p, (Vi(@),..., V(@) + n+ k + 4.

(AP samn. = U (ADpu, m U Ipoir

1

(AP sy s = U (A7)pu 5 U(B)y (see Theorem 13).

For the functor [R®T4,..., T,

Let’s compose a sequence of equalities:

1. [ROYy,..., U)(z1,. ..y xn, A) = P(21, ..., 2p),

2. [ROUy, ..., Uy](a1,. .., 20, A) = P, ... x0),. ..y,

n+1. [ROTy,.... U)(a1,...,an,A) = P(aq,...,ap),

[Let Po.5 - simple calculation of functor ® on a sequence of argument words @, at the end of this calculation
is the equality ®(aq,...,a,) =, continue]

Psa,

n+r+2 [ROUy,..., U,)(aq,...,an,A) =n,

[Let Prow, ... w,]:a1,....ans - Simple calculation of functor [ROUy,...,¥,,] on a sequence of argument words

ai,...,0n41, at the end of this calculation is the equality [R®U 1, ..., ¥,](aq,. .., apn, @yy1) = 3, continue]

Prow,,.. v,]i00,..anir

12

,,,,, any1,5- simple calculation of functor W, on a sequence of argument words o, ..., an11, 3, at
the end of this calculation is the equality [P (a1, ..., an, ant1,8) = 6, continue]
Py, ar,.ianii,8
s+t+ 1. [ROUy,..., U](21,.. ., Zn, Znr1ak) = Vi(@1, .oy Ty Tpg1, [ROU, .., U] (21, oy Ty Tg1))s
s+t+2. [ROU, ..., U)(a1, ..oy Tn, Tng10k) = Ur(ar, ooy Ty Tog1, [ROV1, ., U]y ooy Ty Tig 1))y - -
n+s+t+2. [ROUq, ..., U,](a1, ... apn, aprirak) = Yi(ag, ..., n, apgt, [ROU, .., U (e, .oy g1))s
n+s+t+3 U(zr,...,Tn42) = Vi(z1,. .., Tni2),
n+s+t+4 Up(a,...,xn12) = Vi(ag, ..., Tpia), .-,
2n+s+t+4 Ve(ar, ... ,ant1,Tnp2) = Ye(ar, ..., ut1, Tnta),
M+ s+t+5 Up(a,...,an11, [ROUy, ..., Un](a1,. .. an,ant1)) = Ui(ag, ..., ny1, B),
2n+s+t+6. Up(ag,...,qne1, [ROU, ..., U (a1, .., 00, apt1)) =6,
n+s+t+7 [ROUy,...,U,](aq,...,an, apr1a,) = 0 - this sequence of equalities is a simple calculation
of the functor [R®V¥y,...,¥,,] on a sequence of argument words aq, ..., Qp11.
The length of the calculation is given by the defining equalities:
..... (@ ang1) +lpy, (@ g, [ROV, ..., U](@, 1)) + 20+ 7

(AP raw,wyorsemse; = APy, UAT)Praw, 0,10y, an,s (Se€ Theorem 1.4).
The case when the recursion functor has the form [Ra®, ..., ®,,] is treated similarly.

For [Ra®y,...,D,,], the defining equality lengths of the simple calculus are as follows:

wgl@) + ey (o, [Ra¥y,..., U](a)) + T(see Theorem 1.5).

Properties of simple the calculation functor:

1. The last equality of a simple calculation of the n— place functor ® on a sequence of argument words @ is
an equality of the form ®(@) = 3, where £ is an argument word, which is called the result of a simple calculation
of the n— place functor ® on the sequence of argument words @.

2. A simple calculation of the n— place functor ® on a sequence of argument words @ consists only of those

functors that are subfunctors of the functor ®.

13

3. All the words queried in a simple computation of the functor [J®Uy, ..., ¥,,]| on the sequence of argument
words aq, ..., g, consist of interrogated words that enter into a simple calculation of the functor ¥; on the
sequence of argument words ag, ..., ak, and so on. from the interrogated words that are included in the simple
calculation of the functor ¥,,, on the sequence of argument words aj, ..., ak, from the interrogated words that
are included in the simple calculation of the functor ® on the sequence of argument words 71, . .., Vm, where ;
is the result of calculating the functor ¥; on the sequence of argument words as, ..., ag.

4. All interrogated words, when simply calculating the functor [R®Wy, ..., ¥,,] on the sequence of argument
words @, Bay, consist from the interrogated words that are included in the simple calculation of the functor
® on the sequence of argument words @, from the interrogated words of the functor [R®¥q,...,¥,,] in a
simple calculation on the sequence of argument words @, 5 (previous step), from the interrogated words that
are included in the simple calculation of the functor ¥ on the sequence of argument words @, 3, where - is
the result of calculating the functor [R®¥, ..., ¥,,] on the word sequence @, f3.

5. Any n— place functor ® can be interpreted as some algorithm, executing which, it is possible to calculate
the value of this functor on a given sequence of argument words aq, ..., a,. A simple calculation of this functor

on the specified sequence of argument words is an implementation of this algorithm.

Part III

Bounded recursion functor. PPr functors

An equality of the form z——y = A will be denoted as x < y. Given the property z—y = A < |z|—|y| = A,
a formula of the form = < y, will also be written as |z| < |y|.

A, if fal < yl;
rT=y =)

z, other

where z - is such a word which is the beginning of word z and whose length is |z| — |y|.

For any word polynomial P(3), given that |P(7)| = P(Jy|), we have: |z| < |P(7)| < |z| < P(|7)).

Denote the two-place functor J[—13.J[—I3I3]] as min. For this functor of the alphabet .#, in the calculus
CalcEq we derive the equality min(x1,z2) = z1 = (1 —x2).

Properties: - min(z1, 23) = min(z1, |22|), F |min(z1, 22)| = min(|z1 |, |22|)

. z, if |z[< |yl;
mln(x3 y) =)

z, other

where z is such a word which is the beginning of word = and whose length is |y|.

VafWordM = |min(a, 8)| < |B).

14

Let ® be an arbitrary n -place functor. Compose the functor [J®I?** ... I?*1] - introducing n + 1 fictitious
variable, this functor will be denoted as [J®,,11].

Let ® be an arbitrary n -place functor. Compose the functor [J(IDI’fH, ...I""1 - introducing n + 1 fictitious
variable, this functor will be denoted as [J®,,41].

Let P - n-ary polynomial functor, ® - n- ary functor, ¥ - n+1 - ary functor. Compose functors: [Jmin®, P],
[Jmin¥[JP,]| - functors restrictions, respectively, without the introduction of a dummy variable and with
the introduction of a dummy variable. We denote these functors as Bound(®, P).

Let ® - n - ary functor, ¥q,..., Uy - n+2 -ary functors, P, P; - respectively n, n+1 - ary polynomial functors.
Compose a functor [RBound(®, P), Bound(¥;,P;),...,Bound(¥;,P;)] is a bounded recursion functor.

For each functor of bounded recursion I' = [RBound(®,P),Bound(¥;,P;),...,Bound(¥;,P;)| the
following equations are derivable:

FD(x1,... 20, A) = min(®(zq, ..., z0), P(x1,...,20)),

FT(z1,. oy @0, Sk (ny1)) = min(P (21, ..oy Zn, Tog1, D@1, oo Tng1))y Pr(@n, ooy Ty Big1),

for any set of argument words A the following is true: V&,V # A AF |I'(a,A)| < |P(@)],

AFIl(@ B)| < [P1(a@ B)l.

We inductively define a set of functors, denoted as PPr(U):

1) Words of the form U - polynomial program;

2) Words of the form Z, §, Length, S;,I"", —, Concat, D - polynomial programs;

3) If & - k is a place functor, ¥y,..., ¥, - n are place functors and are polynomial programs, then the
functor [J®Py, ..., ¥;] - polynomial program, i.e. belongs to the set PPr(U);

4) If ® - n is a place functor, ¥y,..., ¥y - n + 2 are place functors and are polynomial programs, P, Py -
respectively n, n + 1 are place polynomial functors, then the functor
[RBound(®,P),Bound(¥,P,),..., Bound(¥;, P;)] - polynomial program.

The set of functors defined according to items 2-4 will also be called polynomial programs, but in the alphabet
#. This set of functors will also be denoted as PPr. It will be clear from the context in which alphabet £ or
Z(U), the set PPr is considered.

The set of all operations of the standart word model WordM,, pp, coincides with the class of function
E5(X2)[1, p.220. Definition 7], where ¥ is an alphabet consisting of n different symbols ay, ..., ay,.

Theorem 3.1. Let ® is an n-place polynomial program, i.e. ® € PPr, then there exists (can be constructed)
such a word polynomial P(Z) of the same place as for any set of argument words @ is true:

a) VAWordM, = |®(a)| < |P(@)|.

15

b) VAWordM, E lp, (@) < |[P(a@)l;

¢) VAWordM, = Flp,(a) < |P(a)|.

Proof. See the definition of a simple evaluation of the functor ® - pp. 8-13.

Note. Let & € PPr is an n-place functor, A - set of argument words, then there exists a word polynomial
P(7) such that for any sequences argument words a1, . . ., a,, the length of all used words in a simple calculation
of the functor ® on «g,...,«a, and the number of interrogated words is limited to |P(aq,...,ay)l.

Note. Let MT is an oracle Turing machine with input alphabet A = {ay,...,ax}, and oracle set B, whose
running time is bounded by some polynomial P(x1,...,x,) with natural coefficients. Let fypr(z1,...,2,) is a
vocabulary function, which is generated by the oracle MT . Then we can construct such a functor ® € PPr(U)
of the same place, whose set of input words is the set of argument words {S;(A),...,Sk(A)}, which is true
Vai, ..., BBE®(ay...,ar) = B <= fmr(al,...,ar) = B2 p. 224. Theorem 6]2[1, Theorem 1 p. 228]3.

Note. Let @ € PPr(U) -n - ary functor whose set of input words, is the set of argument words {S1(A),...,Sk(A)}.
Let B be the interpretation of the oracle symbol U. Then we can construct an oracle Turing machine MT -
with input alphabet A = {a1,...,ar} and oracle set B, whose running time is bounded by some polynomial
P(zy,...,x,) with natural coefficients, that for the dictionary function fyr(z1,...,2,) which is generated by
the oracle M'T under consideration it is true that
Yaq,...,0k, B BF ®(a;r...,ar) = 8 < fmr(oa,. .., o) = B[[2 p. 224. Theorem 7|[1, Theorem 1 p. 230].

Let A is the interpretation of the oracle symbol U. Let us inductively define the set of functors, denoted as
PPr(A):

1) Words of the form U - PPr(A) - program;

2) Words of the form Z, §, Length, S;,I", —, Concat,D - PPr(A) programs;

3) If & - k - ary functor, ¥y,..., ¥, - n -ary functors and are PPr(A) programs, then the functor
[JOU,,...,P] - PPr(A) - program;

4) If ® - n - ary functor, Uy,..., ¥y - n + 2 - ary funktors and are PPr(A) programs, P - n + 1 -
ary word polynomial, then if it is true WordM, | VT, y{|[R®PV4,...,¥;](Z,y)| < |P(Z,y)|}, then functor
[R®Ty,...,¥,] is a PPr(A) - program.

Note. If & € PPr(A), then we can construct such a word polynomial P(Z), which is true
WordM, E Vz{|®(z)| < |P(Z)|}.

The proof is by induction on the construction of the functor ®, and within this induction, by induction on

2This theorem is easily transferred to the case when the Turing machine under consideration is an oracle machine
3All the word functions mentioned on pages 212-215 are PPr functions of the alphabet .#, so the theorem under consideration
is easily transferred to an oracle Turing machine

16

the construction of the argument word.

Note. For any functor ® € PPr(U), for any oracle A, ® € PPr(A) is true.

Note. Let A be the interpretation of the oracle symbol U. For any functor ® € PPr(A), we can construct
such a functor ¥ € PPr(U), which is true WordM, = VZ[®(Z) = ¥(T)].

The proof is by induction on the construction of the functor ®, and within this induction, by induction on
the construction of the argument word.

For each natural number k& > 1 we write the following defining equalities:

expk(A) = ax,

expx(aa;) = D(aq,. .., a1, expk(a)).

There is a primitive recursive word functor that satisfies these defining equalities. Let’s denote it as expy.
For the functor exp,, true WordM |= Vz[|expy (z)| = kI*!], VaB[expy (a) = 8], then § is a natural number.

For k > 1 expy(«) is the number of k - alphabetic words whose length is equal to the length of the word «,

expy(aay) — 1
k-1

Note. Note that for the relation expy(z) = y one can compose a functor EXPy belonging to PPr such

- number k - alphabetic words preceding in the lexicographic ordering of the word |aay|.

that WordM |= Vaylexpy (z) = y ©F EXPg(z,y) = A
Part IV
Function words and their properties

Let’s compose the following word term Concat(|a|, Concat(az, Concat(a, Concat(S, Concat(as, as))))).
Let 1 be the designation of the argument word S;(A), 2 be the designation of the argument word S3(A), then
the word term Concat(|«|, Concat(asz, Concat(a, Concat(3, Concat(as, az2))))) For clarity, we will denote in
the form 1,...,12a822.

——
|a|- pas

Let ¢ - such a functor for which in the calculus CalcEq we derive the equality
clz,y) =1,...,12xy22 = |z|22y22.

——
|z]- times

Let an arbitrary sequence of pairs of argument words be given (a1,71) ..., (@n,¥n)- This sequence will be
called functional if the following conditions are met:

1. Vi[’}/i =AVy = al],

2. VZ,j[Oél = Oy — Vi = ’YJ]

Let us introduce a concept that will be of great importance in what follows.

Definition. 1. A is a function word.

17

2. If a sequence of pairs (a1,71) ..., (@n,Vn) is a functional, then a word of the form
Concat(c(aq, 1), Concat(c(az,72), . . ., Concat(c(ak, Vi), A)), ...,) - function word, where 1 < k < n.

Visually, a functional word can be written in the form |a;|2017122, . .., |og| 2075 22.

The words of the sequence aq,...,a; will be called the domain of definition of the functional word under
consideration, and the words of the sequence 71, ...,y will be called the corresponding values.

Note. Any functional word 6 will be interpreted as a word according to its definition and as a function with
the same name. Domain of definition and set of values of the function 6 - domain of definition and set of values
of the functional word 6, moreover, («) = A, if and only if the word c(a, A) is a subword of 8 and 0(a) = ay if
and only if the word c(«, a;) - subword of the word 6.

The domain of definition of the functional word € will be denoted as dom(6).

Let 8 C 01(61 2 0) = Vx € dom(0)[0(x) = 61(x)].

Note. The relation = € dom(6) can be expressed using the PPr functor.

The function word 6 is consistent with the set A (8 C A) if Vo € dom(0)[8(x) = A < z € A].

Remark. For any function words 61,0, that are compatible with the set A, there exists function word 6
consistent with A and 6; C 6, 6, C 0, e.g. 6; U6z (Concat(6y,06)).

For the relation 8 C 64, there exists a PPr functor ¢ of the alphabet £ that is true
WordM k= [0 C 0, < ¢(0,60,) = Al.

Let 6 be some function word. For this functional word, we construct a set of argument words defined as
Ap = {a:a € dom(f) and 6(a) = A}.

For any term ¢(T), for any sequence of argument words @, for any set of argument words A, one can construct
such a functional word 6z 4, consistent with the set A, that A -t(@) = 8 < Ag_, , F t(@) = 8. To do this, it
suffices to construct a calculation of the closed term ¢(@) on the set A, collect all the interrogated words in this
calculation, and use the obtained interrogated words to compose the corresponding functional word. Of course,
the function word constructed in this way depends on the constructed calculation of the term ¢(@), but in this case
the following property will be fulfilled: for any functional word D 8z 4 ¢, true A F (@) = f < Ag - t(@) = 5.
This property is true for any quantifier-free sentence ® (a sentence composed using logical connectives from
equalities of closed terms): WordM, = & < WordM,, = .

Let Fw be a functor of the alphabet . for which:

1. Va[F Fw(a) = AV F Fw(a) = a1];

2. F Fw(a) = A & « - functional word.

3. Functor Fw - is a PPr functor.

18

Let us introduce the binary relation 8 C 64:

6 C 0 < WordM = Fw(0) AFw(0;) AVz € dom(0)[0(x) = 61(z)].

The relation 6 C 6, belongs to PPr of the alphabet Z.

Let us introduce a binary relation =:

WordM [0 = 6, <= Fw(0) AFw(61) A dom(0) = dom(01) AVz € dom(0)0(x) = 61(z).
The relation = = y belongs to PPr of the alphabet .Z.

Remark. If § = 6; then Concat(,6;) =~ Concat(6;,0), Concat(d,6;) = 6.

Let G be a two-place functor of the alphabet £ that satisfies the following conditions:

1. If 6 is a function word, o € dom(6) and 0(a) = =, then - G(6,) = 7.

2. If 0 is a function word, o ¢ dom(#), then - G(0,) = a;.

3. If 0 is not a function word, then Va - G(6,) = a3.

4. Functor G - is a PPr functor.

The functor G has the following properties:

1. For any function words 6,6, such that § C 6, Va € dom(0) - [G(6, o) = G(61,a)].

2. Relation x C U = Fw(z) = AAVz € dom(z))[(G(z,2) = A = U(z) = M)A (G(z,2) = a1 = U(z) = a1)]
belong PPr, i.e. there is a one-place PPr functor ¢ alphabet .Z(U) such that
WordM, = Vz[z C U & p(z) = Al

Definition. Given a functor ®, a sequence of argument words @, and an interpretation set A. Let P be
a simple computation of the functor ®, on the sequence @, in the interpretation of A. Then, using a simple
calculation of P, we compose a function word:

1. Let’s write out all the words from the set (AJ’_)P(I,’E. Let these be the words S, ..., 8k, arrange them, for
example, in lexicographic order.

2. Let’s write out all the words from the set (A7)p, .. Let these be the words 1, ...,7s, arrange them also
in lexicographic order.

3. Let’s make a functional word
Concat(c(f1,A),...,Concat(c(fi, A), Concat(c(v1,a1), ..., Concat(c(ys—1,a1),¢(7Vs,a1))), - - -,). A functional
word composed in this way is called a functional word composed according to a simple calculation P functor ®
on the sequence @, in the interpretation of A. Denote such a function word as OsimpleFw,o,a,4-

Definition. Terms of the form |z|22U(2)22|2]22U(2)22, ..., |v|2vU(v)22 will be called functional terms of
the alphabet £ (U). The set of functional terms constructed in this way will be denoted as Ftermy, and the

specific functional term of this set as fierm(, 2, ..., V).

19

Definition. Terms of the form |z|22G(y, z)22|2|22G(y, 2)22,...,|v |2vG(y, v)22 will be called functional

terms of the alphabet .. The set of functional terms constructed in this way will be denoted as Fterm, and

the specific functional term of this set as fio,.,(¥,2,2,...,v).
Properties. 1. fio .o (fterm(Z,2,...,V),2,2,...,V) = fterm(®, 2, ..., V) - like words.
2. feorm (Foorm(Ty 2y o s V), 2, 2,000, V) = florm (@, 2, ..., V) - like words.

3. For any function word 6 true Vz, z,...,v € dom(0) fio,m (0,2, 2,...,v) C 6.

Definition of a functor for constructing a function word

For each n - place functor ®, we define the functional word construction functor associated with this functor.
We will carry out the definition by induction on the construction of the functor &..
1.For original functors: Sy, Z, §, Length, —, Concat, D, I}, U:
Os, =Z,0z =Z, 05 = Z, OLengtn = [JZI5], © . = [JZI3], Oconcat = [JZI3], Op = [JZI3], Or: = [JZI}],
Oy = [JcIiU].
For these functors in the calculus CalcEq the equalities are derivable: Og, (x1) = A, Oz(z1) = A, Os = A,
OLength(71) = A, © - (21,72) = A, Oconcat(71,72) = A, Op(z1,72) = A, Orp (21,...,2) = A,
F Ouy(z1) = c(x1,U(zq)) - in calculus CalcEqy and the expression Va VA A+ G(Oy(a),a) = U(a) is true.
2. For the functor [J®Uy, ..., ¥]. Let for the functor ® functor built Og, for the functor ¥; functor built
Oy,, etc. for the functor ¥y, functor built Oy, , then Oj9y, ... v,] = [JConcatkH[J@@\Ill ..U, Oy, ...Og,]
at k > 2. The obtained functor is n - place and the following provable equations are true for it
- [JConcat"™ ' [JOa W, ... U,], Oy, ... O,](z1,...,2,) =
Concacat" ™ ([JOs ¥, ... U] (z1,...,20), O, (T1,..., %) ... O, (1,...,2,))
F Concat" ! ([JOs W, ... UL](z1,...,20), 00, (1, ., Zn) ... Ou, (T1,...,2,)) =
Concat" ™ (O (U (z1,...,20) ... Ur(21,...,20)), Ou, (21,...,2pn) ... Op, (T1,...,2p)).
So, we have - O jow, . v, (T1,...,Tn) = [JConcatkH[J@q)\Ifl U, O, Oy (2, Ty) =

Concathrl(@q,(\Ill(xl, - ,Z‘n) e \I/k(xl, . ,l‘n)),@\pl (.’131, e ,Z‘n) . @q/k(aj‘l, . ,xn)),

FOuew,..w,)(T1, .. Tn) = Concatk+1(@q>(\lll(x1 coyZTp) Uz, 20)), O (21, -4 20) .. Ow, (21, - -

F Oew,..v,)(T) = Concat([JOs V1, ..., ¥;](Z), (Concat(Oy, (T),...,Concat(Oy,_,(T), Oy, (T))),...,)
Let @ - k - place functor(k = 1), then O;4y,] = [/Concat[JOs¥1]|Oy,], then

Oujow,|(Z1,...,2,) = [JConcat[JOs¥1]Oy |(21,...,2,) = Concat(Og(¥1(x1,...,7,)), Ov(21,...,2x))
3. For the functor [Ra¥; ... U] and funtor [ROP; ... Uy]. Let for the functor ® functor built O, for functor

U, functor built Oy, , etc. for the functor ¥y, functor built Oy, , then for the functor ©rey, ... v,)in calculus

20

CalcEqy; holds (defining equality)(see theorem 1):

F Olraw,..w,](A) = A

F Olraw,...v,](T10;) = Concat(Oy, (z1, [ROVy, ..., Vi](21)), Olraw,...., v, (1)), at i < k.

F ORaw,..v,](710i) = ORavw, ..., v, (1), at i > k

F Olrow,..w,)(T,A) = Op(T).

F Olrow,...w,) (T, Tnr10;) = Concat(Oy, (T, vni1, [ROVy, ..., Vi](T, 2n11)), Oraw,...v,] (T, Tni1)),
at 1 < k.

F Olrow,.. 9, (T, Tni10i) = Orow, .. w,] (T, Tny1)), at 1 > k.

Note. Let ® be an arbitrary functor that belongs to PPr, then the functor ©g belongs to PPr. See the
corollary 2.1-2.3 of the definition of a simple calculation pp.7-13 and Theorem 3.1 p.16.

Note. Let @ be a functor of the alphabet £, then in the calculus CalEq it is true - O¢(Z) = A.

Theorem 4.1. Let & be an arbitrary n - place functor. For any interpretation set A, any sequence of
argument words @, 3, the following is true:

If AF ©g(a) = (3 then § is a function word and OgimpieFw, om0 C 8 C A;

Proof. The proof is carried out by induction on the construction of the functor.

Induction basis. For original functors Sy, Z, §, Length, —, Concat, D, I} the proof is immediate. For the
functor U, we get: A F Oy(«a) = 3, if and only if
(8 = |a|2a22&a € A) V (B = |a|20a122&a ¢ A), then § = OgimpleFw,U o4 and 8 C A.

Inductive assumption. 1. Let the theorem be true for the functor ®, functors ¥q,..., V. Let us prove
that the theorem is true for the functor [J®Wq,..., ¥l

By the inductive hypothesis, we have: if A - Oy, (@) =71,...,AF Oy, (@) = v, then ~; - function words u
OSimpleFw, ¥, @4 €71 C A, ..., 0SimpleFw,¥,,a,4 C 7k C A,

Function word 0gimpleFw,;.a,4, composed according to sets (A"’)p\pi’a, (A‘)p\pwa. then
iL—IjloSimplerjli,a’A C Concat(Oy, (@),...,Concat(0y,_, (a),Oy, (a)),...,).

For AF V(@) = 3;, if A+ Oa(b1,...,Bk) =, then n - function word and OsimpleFw,®,8,,....8,,4 C 1 C A,
Function word fg;,, 1opw o 5.4 cOmposed according to the set (AT)p_ 5, (A7)p, 5, then
OsimpleFw. @.81 ... 3., C Concat(©s(f1, ..., Bk), Concat(Oy, (@),...,Concat(Oy, ,(a),Ow,(@)),...,), then
OsimpleFw, @81 ... 3:,4 C Concat(Os(¥1(@),...,¥;(a)), Concat(Oy, (@),...,Concat(Oy, ,(a),Og,(@)),...,).

Function word OgimpleFw,[Jav,,...,v,],a,a composed according to set

k k
(AJF)P[M)\I/I ,,,,, w0 (AJF)P\I/,L,E U(AJF)P@,Ea (Ai)P[anpl,...,\pk]va = ‘L_Jl(Ai)P\Ifi o U(Ai)P,@,E’ then, according

i=1

4gsee Application

21

to the defining equality for O ;ew, ... v,], We get OsimpleFw,[Jov, ... v,]a@r C Opaw, ... v, (@) C A.
2. Let the theorem be true for the functor ®, the functors ¥q,..., V. Let us prove that the theorem is true
for the functor [ROYy, ..., ¥y].

According to the defining equalities for the functor O(rew, ... w,], we have:

geeey

F Olrow, ..., v,](T,A) = Oa(T).

F Orow,,...,w,](T, za;) = Concat(Oy, (7, 3, [ROVy, ..., V;](T, 2)), Orew, ... v, (T, 2)).

Induction basis.

By the inductive hypothesis, we have:

AF ©g(@) = S - function word and Osimplerw,s,a,4 € f C A. Function word 0gimpleFw,,7,4 built on sets:

(AM)py o, (A7)p,.a- Function word Ogimplerw,(Row, ... w,],a,4,4 also built on sets: (AT)p, ., (A7)p, 3, taking

into account the defining equality, @[ch\phm,\pk](a, A) = ©4(a@), we obtain OSimpleFw,[RoW:,..., v,] &@Aa & B 1
B C A.
Induction hypothesis. Take a sequence of argument words ay, ..., a,.8a;.

By the inductive hypothesis, we have:

IfAF @[R@pl ,,,,,
Let A b [ROU,,..., U@, B) = 1.
If AF Oy, (@, B,n) =&, then & - function word and OsimpleFw,w; 7,874 C & C A.

w,].@,8,4 it is built on sets:

.....

[ROW ..., v lw,80 (Ai)

OSimpleFw,[RoU, ... v,],3,8,A C Concat(Oy, (a, 5, [ROVy, ..., Vi](a,B)), Orow, ... v, (@, F)).

Function word OsimpleFw,[RoW ..., ¥,)@, 8a;,4 DUilt on sets:

(A_)P[R@\Pl,...,\l'k],al,...,an,ﬁai = (A_)Pm,i,ﬂﬁﬂ? U(A_)P[ch\pl MR-NCE then
OSimpleFw,[ROU, ..., 04],a,8a;,A = OSimpleFw, ;@814 U OSimpleFw,[Row,,... . w,],3,8,4, then
QSimpler,[RqD\Ill,...,\I/k],a,ﬂa,y,A g Concat(@g,i (a, 6, [R(I)\Ifl, ey \I/k}(a, 5)), G[Rd)\l/l,...,\l/k] (a, ﬂ)) Considering deﬁning

equality O[raw,,... v, (@, Ba;) = Concat(Oy, (@, 8, [ROV,. .., Yi](@,), Oraw,.,...v,] (@, B)), we get

OSimpleFw,[ROV, ... 04],a,8a:,h & OROw, ..., v, (@, Ba;) C A.
The remaining recursion axioms (15,16,17,20) are treated similarly.

Theorem 4.2 Let ® be an arbitrary n— place functor of the alphabet £ (U). For any interpretation set A,

any sequence of argument words @, it is true WordM, = O¢(@) = Oe, (@).

22

The proof is carried out by induction on the construction of the functor ®°.
Note. Let ® be an arbitrary n— place functor of the alphabet £ (U). For any interpretation set A, it is true

WordM 4 ': VE[GSimpler@,gA ~ @(b(f)]
Part V
Converting alphabetical expressions .#(U), to alphabetical expressions .Z

By induction on the construction of a functor, we construct a transformation, denoted as *, of functor of the
alphabet .Z(U) into functor of the alphabet .Z.

For initial functors:

L (Sk)* = [JSu13],

2. (2) = [J213),

3. (0)" = [JoI3],

4. (U)* = G,

5. (Length)* = [JLengthI3L3],

6. (=) = [J=—13L3),

7. (Concat)* = [JConcatI3I3],

8. (D) = [JDLI,

0. (1) = LI, It

L ([JOWy, ..., W])* = [J(®) (W), ., (Ug)"],

2. ([Ra®y,...,®,,])* = [RConst? (®1)*,...,(®,,)*],

3. ([ROTq, ..., U,])* = [R(D)*(T1)*, ..., (Tm)]

Note. If the functor ® is a functor of the alphabet ., then the first argument of the functor (®)* is a
dummy variable - ®(7) = (®)*(y,).

Theorem 5.1. For any n - place functor ®, VA , V& V0 O OgimpleFw,d,a,4 true
At [0(@) = (©)7(0,a)] (WordM,, |- [0(a) = (©)* (0,).

Proof. The proof is by induction on the construction of the functor, inside this induction for a recursive
functor, the proof is by induction on the construction of the argument word.

Basis of induction. Initial functors

For initial functors: S, Z, , Length, —, Concat, D, I} can be verified directly by writing out the indicated

functor ¢ and functor (¢)*.

5see Application

23

Let us prove the theorem for the functor U. According to the definition (U)* = G, need to show VA Vo
VO D OsimpleFw,U,a,a AF [U(a) = G(0,a)].

Let a € A, then U(a) = A - axiom and is a simple calculation of the functor U on the word a. As a
functional word, we take the word fsimpleFw,U,a,a = (@, A) = |a|2a22, then according to the definition of the
functor G, we get V0 O OsimpleFw,U.a.a - G(0,a) = A. Let Py, - for example, a simple calculation of the
functor G on a sequence of words §, o, then sequence of equalities U(«a) = A, Py o, U(a) = G(6, a) - derivation
of equality U(a) = G(6,), when interpreting the function symbol U by the set A.

Likewise: let o € A, then U(a) = ay - is a simple calculation of the functor U on the word «. As a functional
word, we take the word fsimpleFw,U,a,4 = ¢(a, a1) = |a|20a122(|a|20122), then according to the definition of
the functor G, we get V0 O OsimpleFw,U,a.n, & G(6,a) = a1(F G(0,a) = 1). Let Py, - a simple calculation
of the functor G on a sequence of words 0, « , then sequence of equalities U(a) = a1,Ppq, U(a) = G(0,a)
-derivation of equality U(a) = G(6, @), when interpreting the function symbol U by the set A.

(a) Induction hypothesis. Let the theorem be true for functors: ®, ¥y, ..., ¥y, prove the theorem for the
functor [JO®Py, ..., Uy]. Denote f = [JPUq,..., Uyl

We have: i) for the set of argument words A, the sequence of argument words «j, ..., oy, for the functor
U, true VO O OsimpleFw, v, ,a,4, A F ¥i(a) = (U1)*(6,@) ,..., for the functor ¥y, true VY0 O OsimpleFw, o ,a,4;
AR Ti(@) = (T)* (0, @).

ii) for the set of argument words A, the sequence of argument words fi,..., Bk, for the functor @ true
Vo2 0Simpler,<I>,B,A> AED(B) = (®)*(6,5).

Function word OgimpleFw,j,a,4, according to his definition, is composed of sets:

k k
(A+)P[J<I>\Izl,“.,\pk],a = U (A—F)P\pwa U(A+)P<1>,77 (A_)P[J@\pl,‘.‘,\pk],a = U (A_)P\pi75 U(A_)P&ﬁ]a then

i=1 =1
OsimpleFw f,a,A = OsimpleFw, v, a,4 and OsimpleFw,§,@,4 2 Ugimplerw,o 3.4+ Let 0f 2 OSimpleFw,j,a,4-
The following sequence of equalities:
1L (U)*(05,@) = 71,5- -, (¥r)* (05, @) = v - Calculate
2.(®)* (05,71, - --,vk) = n - Calculate,
3. [J(@) T (), (W)E] (05, @) = (D)*(65, (1)*(05,@), ..., ()L (0, @)) - almost an axiom,
4. (D) (y,z1,...,2k) = (P)*(y, 21, ..., 7)) - axiom,
5. (@) (05, (W) (65,). ..., (V);(65.)) = (#)" (B, 71, ...) - from L,
6. (®)*(05, (U1)* (05, @),..., (V)5 (05, @)) =n - from 2,5,
7O J(@) T (W), L (0);] (05, @) = 7 - from 3,6,

[Equalities 1-7 are proved in the calculus CalcEq]

24

8. [JOUy, ..., Ul(@) = 2(Vy(a),...,Pr(@)) - almost an axiom,

9. ¥y (a) = (¥1)"(b,a),...,¥i(a) = (¥r)* (05, @) - induction hypothesis,

10. ®(xq,...,2x) = ®(x1,...,z)) - axiom,

1LYy (a),..., ¥ (@) = ¢((¥1)* (0}, @), ..., (Vg)* (05, @)) - from 9,10,

12. ©((¥1)* (65, @), ..., (Vi)* (0, @) = ®(71,...,v) - from 1,10,

13. ©(v1,..., %) = (®)*(0§,71, - - -,) - induction hypothesis,

14. ®(y1,...,7%) = n - from 2,13,

15. ©((¥1)* (0, @), ..., ¥p)* (05, @)) = n - from 12,14,

16. ®(¥y(@),..., ¥ (@) = n - from 11,15,

17. [JOU,,..., U;)(@) = n - from 8,16,

18. [JOUy,..., U](@) = [J()* Iy (W), ..., (9);](6;,@)- from 7,17

19. [JOU,,..., V(@) = ([J®¥,...,¥k])*(0;,@) - from 18 - quasi-derivation with interpretation set A, in
the calculus of CalcEq,.

(b) Induction hypothesis. Let the theorem be true for functors: ®, ¥y, ..., ¥y, prove the theorem for the
functor f = [ROY, ..., Uyl

By the inductive hypothesis, we have:

i) for the set of argument words A, the sequence of argument words ai,...,a,, for the functor ®, true
VO D OsimpleFw,o,3.4, and A - &(a) = (P)*(6, @);

ii) for the set of argument words A, the sequence of argument words aq, ..., ay, 3,7, for the functor ¥y, true
V8 O OsimpleFw, v, .a,8,7,4, A Ui (@) = (¥1)*(0,@,6,7) ,..., for the functor Wy, true V8 O bsimpleFw, v, 7,8,.4
AF V(@) = (k)" (0,a,8,7).

Further, the proof will be carried out by induction on the construction of the argument word.

Induction base. Let us prove that for the set of argument words A, the sequences of argument words
Qs .., Oy, true V05 O OsimpleFw,ja,n AF ROV, ..., Uil(a,A) = ([ROY, ..., ¥])* (65, A).

According to the definition of *, we have: ([R®Uq,...,Uk])* = [R(P)*(¥1)*,...,(¥y)*], therefore, it is
necessary to prove V05 O OsimpleFw,ja,a A F ROV, ..., Uil(a,A) = [R(P)*(¥1)*, ..., (Vk)*](6), A).

The following sequence of equalities:

L [R(®)*(W1)", ..., (¥&)"](y, T, A) = (®)"(y, T) - axiom,

2. [R(®)*(P1)*, ..., (Ur)"](b5, @, A) = (®)*(65, @) - from 1;

[Equalities 1,2 are proved in the calculus CalcEq]

| Considering that 65 O OsimpleFw,j,a,A 2 0SimpleFw,®,a,4, We get |

25

3. [ROV,,...,¥;](@,A) = ®(@) - almost an axiom

4. ®(@) = (®)*(6y, @) - induction hypothesis,

5. [ROWy, ..., Ui](a,A) = (P)" (05, @) - from 1,4,

6. [ROV,,...,¥](a, A) = [R(®)*(¥1)*, ..., (¥r)*](65,, @, A) -from 2,5

7. [ROVy, ..., V(@A) = ([ROVy,...,Ui])*(05,,@, A) - from 6 - quasi-inference under interpretation set A.

Inductive step. By the induction hypothesis, we have: for a set of argument words A, for any sequence of
argument words aq, ..., qy, 3, true
V05 O OsimpleFw,ja,8 A [ROV, ..., V](@, B) = [R(®)* (Y1), ..., (Vr)*](6),, @, B);

ii) For the set of argument words A, sequences of argument words aq, ..., an, 3,7, true:
VO O OsimpleFw,v,,a,8,v.4, A F V(@ 8,7) = (V)" (0, @, 3,7).

It is required to prove that for the functor f, for the set of argument words A, the sequence of argument
words ay, ..., an, Ba;, true
Vb5 O OsimpleFw,j,a,8q; A F [ROYy, ..., ¥i](@,Ba;) = [R(P)*(¥1)*, ..., (¥r)*](6s,, @, Ba;).

Let’s compose a functional word according to the sets:
(AP lras, ayeronpe, = AP aran 8y UAT)Prse, wyarans

(A)Plrau,. wyoronsa; = APy, aran,80 UAT)P o, uparans Vhere PlRaw, w101, 00,80,
- simple calculation of the functor [R® W4, ..., U] on a sequence of argument words s, . .., a,, fa;, Py, - simple
calculation of the functor ¥; on a sequence of argument words o, ...,y 3,7, We get OsimpleFw,j,a,8q,, then
0SimpleFw.f,@,8a; = USimpleFw,¥;,a.8,7,4 USimpleFw f,@,84; = USimpleFw.f,a,3- Let’s take 05 O OsimpleFw,j,a,8a.

The following sequence of equalities:

L [R(®)*(Wy)*, ..., (¥r)*](0f, @, B) = v - Calculate,

2. (¥;)*(6;,@, B,v) = n - Calculate,

3. [R(®)(W)*, ..., (UR)* (b5, @, Ba;) = (W) (05, @, B, [R(®)*(¥1)*, ..., (Vk)*](65, @, ()) - almost an axiom

4. (\Iji)*(y7§72au) = (Wi)*(yajazau) - aXiom,

[@2¢

() (0@, B, [R(®)"(1)", ..., (W) (0}, @, B)) = (W) (05,0, B,7)) - from 14,
6. (¥3)" (05, @, B, [R(®)"(¥1)", ..., (¥&)"](0}, @, B)) = n - from 2,5,

7. [R(®)* (L), ..., (\Ilk)*](ﬁf,&, Ba;) = n - from 3,6,

[Equalities 1,7 are proved in the calculus CalcEq|

8. [ROVy, ..., U,)(@, Bas) = Uy (@, B, [RO1, ...,](@, B)) - almost an axiom,

9. [ROWy, ..., U,)(@, B) = [R(®)*(U1)*,..., (U4)*](65.,@, B) - induction hypothesis,

10.9; (%, u, v) = ¥,;(T, u,v) - axiom,

26

11 V@, B, [R®Vy, ..., V)(@, B)) = Uy (@, B, [R(D)*(¥1)*, ..., (Tx)*](6f,@, B)) - from 9,10,

12. V(@, B, [R(®)*(¥1)*, ..., (¥r)*](6f, @, B)) = ¥,(a, B,7) - from 1,10,

13. Vi(@, B,7) = (V;)* (05,7, B,7) - induction hypothesis,

14. ¥, (a, B, [ROY, ..., Vy(@, B)) = ¥;(a, 8,7) - from 11,12,

15. Vi(@, B, [ROVy, ..., Vi](@, B)) = (V)" (05, @, B,7) - from 13,14,

16. U, (@, B, [R®Y, ..., ¥k](a,B)) = n - from 2,15,

17. [RO®Y, ..., Ui](a, Ba;) = n - from 8,16,

18. [ROV,, ..., Vi](@, Ba;) = [R(®)*(¥1)*, ..., (Yk)*](6;,, @, Ba;) - from 7,17,

19. [ROYy, ..., ¥i](@, Ba;) = ([ROVy, ..., Uy)])* (6, @, Ba;) - from 18 - quasi-inference under interpretation
set A, i.e in the calculus CalcEqy.

The remaining recursion axioms (15,16,17,20) are treated similarly.

Corollary 5.2. For any n - place functor ®, VA , Va true A+ [®(a) = ¢*(Os (@), @)]

(WordM, E [@(a) = *(0s (@), @)]).

2. For any n - place functor ®, VA , Va V6 D Og(a), true A - [®(a) = &*(0, @)]
(WordM, E [@(a) = *(0,@)]),

3. For any n - place functor ®, VA |, Va, 5 V0 D Og (@), true AFd(a)=0< Fd*(0,a) =75
(WordM, = ®(a) = 5 < WordM = &*(,@) = 5).

4. For any n - place functor ®, Va true WordMy = (04)*(O¢(@), @) = Og(@) -as equality of words (smallest
fixed point: V0 2 Og(@)[(0s)*(0,a) C 0] {V0 2 O¢(@)[Os(a) = (Og)*(0,@)]}, moreover, if Op(a) # A, then
dom(©¢(@)) = dom((©s)*(0,@)) for any any functional word 6.

Theorem 5.3. For arbitrary n - place functor ®, for arbitrary argument words @, £, ,
if WordM, = (©4)*(8, @) = v, then ~ is a function word.

Proof. The proof is by induction on the construction of the functor ®.

Theorem 5.4. For an arbitrary n - place functor ®, for an arbitrary set of argument words A, true
WordM, = Vavp[0s(a) = f = (0s)*(5,@) = AL C Al

Proof. For arbitrary argument words @, 8 we have WordM, [Og¢(@) = 8 < (03)*(0s(a),a) = S,
then WordM, = (©g)*(8,@) = S A B C A.

Theorem 5.5. Suppose that for n - place functor ®, for the argumentative words ag,...,a,, for a set
of argument words A, for the function word f is true WordM, = (0¢)*(8,1,...,a,) C SA S C A, then
WordM, E Os(ay,...,a,) C L.

Proof. The proof is by induction on the construction of the functor ®.

27

Basis of induction. ® - initial functor, for example U, then Oy = [JcI}U], then (Oy)* = [Jc* 2 [JII3]G],
then WordMy = (Ou)*(8,a) = c¢* (8,0, G(B, @) = |a|2aG (8, @)22(F c*(x,y, z) = c(y, z), see Note cTp.23).

Assume WordM, = (Ou)*(8,«) C f and 8 C A, then |a|2aG (8,)22 C 5.

Let’s break down the cases:

a) G(B,a) = A, then B(a) = A, then o € A, then U(a) = A, then Oy(a) = |a|2a22, given that
(Ou)*(B, @) = |a|2aG (8, @)22 = |a]2022 C 3, then Oy(a) C B;

b) G(8,a) = 1, then B(a) = 1, then o ¢ A, then U(a) = 1, then Oy(a) = |a|2a122, given that
(OU)* (8, @) = |a|2aG (8,)22 = |a|2a122 C 8, then Oy (a) C .

For the rest of the initial functors the proof is quite clear.

Inductive step. 1). Let the theorem be true for & - place functor ®, for n - place functors ¥y, ..., Uy. Let
us prove the theorem for the functor [J®WUq, ..., ¥;]. We have
F Ouow,,. v,)(Z) = Concat([JOs¥y,...,¥,;](Z),(Concat(Oy, (T),...,Concat(Oy,_,(T), Oy, (Z))),...,),
then

- (Oaw,.....))" (4,7) = Concat(1J(O0) T (W1)", .., (1)) (y, 7), (Concat((Ou,)* (v, 7),
...,Concat((©y, ,)*(y,7),(0v,)*(y,T))),...,)%, then

WordM, = (Opaw,,...,v,])" (B, @) = Concat([J(04) TP (T)*, ..., (¥4)*)(B, @), (Concat((Oy,)* (8, @),
..., Concat((Og,_,)*(8,a), (Ow,)"(5,@))),...,).

Let’s (@[(].:pq;l q;k])*<5,a) - ﬂ C A, then [J(@@)*I?+1<\I/1)*, ey (\Ilk)*](ﬁ,&) = (@q;.)*(ﬁ, (\Ifl)*(ﬁ,a>, ey

(Tr)"(B,@)) € B and (©g,)"(8,@) C B,...,(Ow,)" (8,) C 5.

By induction assumption we obtain ©¢((V1)*(8, @), ..., (Vr)*(8,@)) C B, as well as
Oy, (@) C 5,...,0y, (@) C B, then Uy(a) = (T1)*(8,@),..., Vi(a) = (¥r)*(B, @), then
Os(T1)*(B,Q),..., (V) (B,@) = Oa(¥1(),... Tr(a)), then Op (¥ (a),...¥i(a)) C S, then
Concat([JOg ¥, ..., V;](Z), (Concat(Og, (Z),...,Concat(Oy, ,(T),Oy, (T))),...,) C G, then
Ouaw,,.. v, (@) C B.

2). Let the theorem be true for n - place functor ®, for n + 2 - place functors ¥y, ..., ¥s. Let us prove the
theorem for n 4+ 1 - place functor [R®Uq, ..., ¥y].

We have: - Orav,....v,](T, A) = O3(7).

F Orow, ..., v,](T, Zny1a;) = Concat(Oy, (T, zny1, [ROV1, ..., Vi |(Z, 2nt1)), Ogaw, ..., w,) (T, Tny1)), then
F (Oraw,,...v,))* (Y, T, A) = (02)*(y,7),

F (Orew, ... v,)) (Y, T, Tny10:) =

6see Application

28

= Concat((Oy,)"(y, T, vni1, ([ROV1, ..., Vi])* (¥, 7, Tny1)), (Oraw,,... . w,]) (Y, T, Zng1)), then
c) WordM, = (Oraw,,...w,]) (B, @A) = (0a)" (8, @),

d) WordM, = (Oraw,,....w,])" (B,@,7a;) =

= Concat((0y,)*(8,@,7, ([ROV1, ..., Uk])*(8,®,7)), (Oraw,....w,))* (B, 7))".

Case study (c¢). Let’s (©4)*(8,@) C 8 C A. By the induction assumption we obtain WordM, = O (@) C S,
then O(rav, ... v, (T, A) C B.

Case study (d). Let’s (O(gaw, ... w,)) (B, @ va;) € B C A, then
Concat((0y,)" (8,7, ((R®Vy,..., ¥k])*(8,@,7)), (Orew,....w,))" (8,@ 7)) € B, then
(Orrow,....,v,])"(B,@v) € B, then By the induction assumption we obtain O(rey, .. v, (@y) € B, then
Orow,,...,1,](@,7) = 6 <= (Oraw,,..,v,])" (B, @, 7)) = 6 u d C 3. Further considering
[ROWy, ..., Ui])(@, 7)) = n <= ([ROVy,...,Yi]) (Orew,,...v,](@,7),@,7)) =n and Orew, ... v, (@) C 5,
we get [ROU,,..., U))(@,)) = n <= ([R®Ty,...,U;])*(8,@7),a@ 7)) =7, then
Concat((©g,)"(8,a,7, ([ROY1, ..., Wk])*(8,@,7)), (Orrew,....v,))" (8. @,7)) =
= Concat((0Oy,)" (8, @,7, [ROVy, ..., V;]|(@, 7)), Oraow, ... v,](T,7))-

We have (Og,)*(8,a,, ([R®Yy,...,VUi]))*(8,a,7)) C 8, then (Og,)*(8,a,,[R®Vy,...,V](a,y)) C 8,
then by induction assumption, we obtain Oy, (@,~, [R®¥4,..., V;](a,v)) C 8, then
Concat(Oy, (@,v, [ROV,..., V;]|(@, 7)), Orow, ..., v,](@,7)) C B, then Orew, ... v, (@ va;) € B and 3 C A.
The remaining axioms of recursion (15,16,17,20) are considered similarly, then
VYy{[(©e)*(y,7) =y Ay C U] = O4(7) C y} € Th(U)(see p.34).

Corollary 5.6. For an arbitrary n - place functor ®, for an arbitrary sequence of argument words oy, . .., ay,,
for an arbitrary set of argument words A, There is only one function word S, such that
WordM, E Os(ay,...,ap) = 8 <= WordM, | (04)*(5,a1,...,a,) = 8A B C U, then
vzAy[(Oe)" (v, 7) =y Ay C U] € Th(U). Vz3ly{[04 () =y = [(©s)*(y,7) =y Ay C U]} € Th(U).

Note. Let @ be an arbitrary n - a place functor of the alphabet .Z(U). A simple calculation of the functor
® on the sequence of argument words @ can be decomposed into two calculations: a simple calculation of the
functor O4 of the alphabet Z(U) on the sequence of argument words @ and then a simple calculation of the
functor (®)* of the alphabet £ on the sequence of argument words Og4(@),@. Moreover, the domain of the
functional word ©¢ (@) consists of those and only those argument words that were used in a simple calculation
of the functor ® on the sequence of argument words @ and for any extension of the functional word O4(a) C 6,

*

not necessarily consistent with the oracle set A, the result of a simple calculation of the functor (®)* on the

7see Application

29

sequence Og (@), @ will coincide with the result of a simple calculation of the same functor (®)* on the sequence
0, @(analogous to the "Use Principle"("Use Principle") of oracle computing, e.g. on Turing machines) and,
as noted earlier, (04)*(6,@) C 6 - "Use Principle"will play an important role in the future when transferring
(spreading) this fundamental concept, associated with calculations in the standard model, to non-standard
models.

If in a simple calculation of the functor ® on the sequence of argument words @, each interpretive axiom
of the form U(a) = A is replaced by an equality of the form G(|a|2a22,a) = A (replace with an equality of
the form G(6,) = A, where |o|2a22 C 0), an axiom of the form U(a) = a4, replaced by an equality of the
form G(|o|2ca122, o) = a1 (replace with an equality of the form G(6, a) = ai, where |a|2aa;22 C), then the
resulting sequence of equalities will be a quasi-inference that does not contain interpretative axioms, and this
quasi-inference can be easily transformed into a conclusion by replacing the indicated equalities with their, for

example, simple conclusions.

Bounded formulas. Universal functional word.

Let us define the notion of a bounded formula ¥ and accompanying this notion, sets denoted as Bwpyg, Vwpy.

1) Any quantifier-free formula A is a bounded formula, Bwps = 0, Vwpa = 0;

2) Let A(z,z1,.--,Zn;Y1,---,Yk) - bounded formula, P(x1,...,2,) - word polinomial, z ¢ Vwps, then
formula B = 3z[|z| < |[P(2z1,...,20)|&A(z, 21, ...y Tn; Y1, - - -, Yi)] OF

B = Vzllz| < |P(z1,...,2,)|] D Alz,21,...,Zn;Y1,-..,yx)] - bounded formula, P(z1,...,z,) € Bwpa,

{z1,...,2,} C Vwpa, variables y1,...,y, - are called the parameters of the bounded formula in question, this
list is separated by a semicolon and may be empty. We will denote this formula as Ellzp(ml""’f"ﬂﬂ(z, TlyeeesTniYlye--
or VLP(II’”""E")'A(Z, Tlyeoos TniYls-- oy Yk)]-

A word polynomial belonging to the set Bwpy is called a bounding word polynomial.

A bounded formula A is called an 3(V) bounded formula if it has the form
E||le°1(i)\’ . EI‘ZI,:;’“@)“B(Zl7 2 T YLy e s Yk) (V‘zlil(f)l, .. .Vlzl:k(f)lﬁ(zl, 2k, T3 Y1, -+ -5 YUk)), Where
B(z1,..- 2k, T; Y1, - - -, Yg) -quantifier-free formula.

Note. Vo Va VP(T) :

1. Word, = 3IF @ o@, u) = A & IF@(@) (04 (@, u), @ u) = A,

2. Word,, = V¥ @@ (@, u) = A o V(@) (04 (@, u),@,u) = A,

VB :

3. Word,, = V¥ @eg(a,u) € 8= {3 @ o@,u) = A < v[3 C 0 = 3T DN (@) (0,a,u) = A},

30

7yk)]

4. Word,, = V¥ @eg (@, u) C 8= (v Po@, u) =A< v[p C o= DN (@)0,au) = A}

Consider the following word function: Order(«) is a word 8 such that the number of words preceding the
word in the lexicographic ordering is equal to |c|. In [1 p. 217] that this word function is a primitive recursive
word function, then for the word function Order there exists a one-place functor Order of the alphabet .2,
which is true:
Va, f[Order(a) = f < + Order(a) = f].

Let us write out the defining equations for the functor Order:

1). Order(A) = A;

2). Order(S;(a)) = R(Order(«)), where

a). R(A) = aq;

b). R(S;(a)) = S;y1(x), where 1 < i < p;

O R(S,(a)) = Si(R(a)).

Note. For each set of p - alphabetic words, there will be its own p - alphabetic functor Order),. From the
context it will be clear which p - alphabetic funtor is meant. The functor Order has the property:

1. WordM = VafS[|a| = |5] D Order(«) = Order(8)];

2. At k> 2Ap>1WordM k= |Order, (k)| < k;

pn—i-l _ 1

3. For each p > 2 true Order,()= 1,...,1.
p—1 ——

n+1l—times

4. For each p > 2 true WordM [= Vz[|z| > 2 = Order,(p/*l) = (p—1),...,(p— 1) p];

|z|—1—times

5.According to the defining equalities given in [1 p. 217], it follows that this functor belongs to PPr, i.e.

Order € PPr.

|P(@)|+1 _ 1

From (3) we get WordM = Order,(——)= 1,...,1
p—1 ——
|P(Z)|+1—times

If for argument words a, § it is true that WordM | Order(«) = §3, then the argument word |« /| is a natural
number, we will call it the Godel number of the argument word 8 and denote it by "7 = |a.

Obviously, for any argument word [there exists a natural number « such that
87 = a(WordM k Order(a) = f3), then WordM |="(p —1),...,(p—1)p" = pl*l, for || > 2.

|z|—1—times
With each n > 1 -place functor ¢ we associate a functor, denoted as ©4 v, satisfying the following defining

equalities:
G)‘IJ,V(f7 A) = @@ (Ea A):
O¢ v(T,Sk(z,)) = Concat(Op v(T,), O (T, Order(Sk(x,)))).

That is right: 1. If ® € PPr = Ogy € PPr;

31

2. WordM,, = Vo, §,Z|af = 8] = O y(T, @) = O (T, B)];
pleltt —1

3. WordM,, |= Va2V, [04(Z,) C Opy(T, -

Let us define a universal function word denoted as Oy.

Defining equalities:

Ou(A) = A,

Oy(aa;) = Concat(Oy(a), c(Order(a), U(Order(a)))). According to the definition, the functor Oy belongs
PPr alphabet %.

We have:

(©u)(y,A) = A,

(Oy)*(y, aa;) = Concat((Oy)*(y, o), c(Order(«, G(y, Order(a)))),

YapVl 2 Oy(a)WordM, = [Oy(a) = <= (Op)*(0, a) = F], in particular
WordM, | VaVy[Oy(z) = y < (Oy)*(Ou(x),x) = y).

Let 8 be a function word such that for some word « it is true
WordM, | (Op)*(8,a) C 8 C A, then WordM, = Oy(a) C 5. We have
vavy{Fw(y) = [[(Ov)"(y,7) Sy Ay C Ul = Ouy(T) C y|} € Th(U).

Note. For each p, its own p is defined - an alphabetic universal function word Oy.

True:

1. WordM, E Va, 5lla] = |8] < Oy(a) = Oy(P)];

2. WordM,, E Ve, f[|a| < 8] <= Ou(a) C Oy(F)].

p‘y|+1 -1

3. WordM, |= Va{lz| < |y| = [Ou(—— 1

)(xz) = A <z € A}, where A - set p - alphabetic argument
of words.

4. WordM,, = Va[Opy(a) = Be,(a)], using Goodstein’s rule, it can be proven that F Oy(z) = Og, ().

Let given n 4+ m - ary(n > 1,m > 1), p - alphabetic functor ® € PPr, interpretative p - alphabetic set of

argument words A be given. For this functor, there exists a word polynomial P(z1,...,2Zp,y1 - - . ¥m) such that

for Va, 3, in a simple calculation of the functor ® on @, 3, all used words have length not exceeding |P(a, 3)|,

PP@HI+1 _ 1
then Og (@, 8) C Oy(————
p—1
Next, let |v1| < |[P1(@)], .-, |vm| < |Pm(@)|, then in a simple calculation of the functor ® on @, 7, all used

plP@P1(@),... Pm(@)+1 _ 1

words have length at most |P(a@, P1(@),. .., Py (@))|, then we get Og(a,7) C Oy(1
p—

Next, consider a formula of the form 3 (@ [®(@, z) = A], then for any word ~ such that

pPEPI@)I+
[< [P1(@)], true Oa(@,7) € Ou(

1), then
p—

32

_ _ P@.Py(@)+1 _ |
WordM,, E {3 @ g(m,2) = A & 3P @ (@) (0y(2 -)@, z) = A}.

Similarly, reasoning, we get
WordM,, = {35213 P32y 2) = A <
= = [P(8,P1(B),P2(B)|+1 _ 1
N 352(@'351(@'(@)*(@U(p =

Proposition 5.7 . Let n +m(n > 1,m > 1) be a place p - alphabetic functor ® € PPr, an interpretive

), By 21, 22) = A}.

p - an alphabetic set of A argument words, and word polynomials P;(Z),...,P,,(Z), then you can construct a
word polynomial P(Z), which
WordM,, = (35 @1 3FP-®lgz 2) =Ae
s ah@ aL‘j';'L@)(@)*(@U(pPz)_Hl_l),x, 2y zm) = A}

Likewise.

Proposition 5.8 Let n + m(n > 1,m > 1) be a place p - alphabetic functor ® € PPr, an interpretative
p - an alphabetic set of A argument words, and word polynomials Py (Z),...,P,,(Z), then we can construct a
dictionary polynomial such P (%), that WordM, |= {Vlzfl(i)l . .V‘Zi’"’@)l@(f, Z1,...2m) = A&

p\P(I)\+1 1

e vE@ ,v';f;ﬂ@‘@))*(@m(ﬁ),z, 21y 2m) = A}

Basic complexity classes of computational complexity

The set of B n - of argument words, given the interpretation of the oracle symbol U by the set of argument
words A, is called polynomial, if there exists (can be constructed) such a quantifier-free formula B, which is
built from functors belonging to PPr, which is true Va[WordM, = B(a) <= @ € B].

The class of all polynomial sets with respect to the set A - argument words will be denoted by P4 (U). This
class of word sets is closed with respect to Boolean operations: intersection, union, additionsr, and hanging of
the limited existence and universal quantifier (3,V) over subwords.

A set of B n - of argument words is called a set of type >, with respect to some set of argument words
A, if for some 3 a restricted formula B(Z) whose quantifier-free formula is built from functors belongs to PPr,
Va{a € B <= WordM, = B(a)}.

Let co — NP, (U) = {C : C € NP4(U}. The set belonging to the class co — NP4 (U) will be called a set

of type [][7]-
Part VI
Complexity classes and elementary model theory

The known relations between the introduced classes:

33

a). There is an oracle A, such that P, (U) = NP4 (U);

b). There is an oracle B, such that Pp(U) # N Pg(U);

¢). There is an oracle C, such that Pc(U) # NPc(U) u NPc(U) = co — NPc(U);

d). There is an oracle D, such that N"Pp(U) # co — N Pp(U);

e). There is an oracle E, such that Pg(U) = NPg(U) [co — NPg(U);

f). There is an oracle F, such that Pr(U) = NPr(U) () co — NPr(U) and NPr(U) = co — N'Pr(U);

g). There is an oracle G, such that Pg(U) = NPg(U) (N co — NPg(U) and NPg(U) # co — NP (U);

h). There is an oracle H, such that Pg(U) # NPr(U) () co — NPy (U) and NPy(U) = co — NPy (U)

i). There is an oracle I, such that Pi(U) # NPy(U) (N co — NPy(U) and NPr(U) # co — NPy(U).

Every specified ratio in the non-relativized version is a problem.

The main concepts and considered theorems in this section are borrowed from [8-13] and transformed
accordingly.

Let .#(U) be some set of functors containing the original functors.

A first-order language, defined by a given set of functors, and denoted as Lz), consists of the function
symbols fg, for each functor ® € .#(U) whose locality is equal to the locality of the ® functor, constant symbol
A, basic predicate symbol < .

Note. As a rule, the function symbol fe will be denoted as ¢ and interpreted as a function. Constant
symbols will also continue to be denoted as a. A language £ z(u) is called k - alphabetic if the set of functors
Z(U) is k is alphabetic.

If the set of functors .# (U) consists of the entire set of word primitive recursive functors, then the language
L z) will be denoted as £(U) L.

For each fixed set of p > 2 -alphabetic argument words, we define the following theories:

Th = {A : WordM [A- proposition of language L} + Vaey(x <y =|z|—|y| = A).

Th - complete theory in language L.

Let us define a theory in the language £(U), denoted as Th(U):

Th(U) = {A : For any set of argument words A WordM, = A, A - proposition of language
LOU)} + Vay(z <y = [z][=y| = A).

Th(A) = {A: WordM, E A, A - proposition of language L4} + Vay(z <y = |z|—=—|y| = A)

Th(A) - complete theory in language L,.

Th C Th(U) C Th(A) takes place.

Theorem 6.1. Let 2/ = Th. Let u: A’ — {A, 1}, then the model 2" of the language £ can be enriched to

34

a model A of the language £(U), such that 20 = Th(U), Vb € A" u(b) = Ug(b) and for any formula <7 (%) in L,
for Va € A" it A = o/ (a), then A = & (a),

Proof. Let us interpret the oracle function U: for each element a € A, let U(a) = A if u(a) = A and
U(a) =1if u(a) = 1(1 = ay). Let us formulate the theory Th(24) (see [9, p. 130]), then let us formulate the
theory Th(24) + Th(U) + {U(a) = b: a € A’'}. This theory is consistent, let
A= Th(2A4)+ Th(U))+{U(a) =b:a € A'}, then for any formula <7 () in L, for Va € A’ if A" = o7/ (a), then
A E o (a).

Let us introduce the following important concept.

Definition. Let 2 be a model of the language £(U) (£) and @ € A . A polynomial cut defined by a set of
elements @ € A is such a model (algebraic system), denoted as 2l supported by the set
Ag = {b: for some word polynomial P(z) 2 = |b| < |P(@)|}, and the signature consists of all those functions
fo for which the functor is ® € PPr.

That’s right: 1. g C A[7 p.36].

2. Va /g = A(a) <= 2 = A(a)], where A(T) - bounded formula of the signature PPr.

By Ay - we will denote the diagram of the model A, in particular Ag_ is the diagram of the polynomial cut
Ag.

Note. Let’s 2’ - reduct of the model 2 in lanquage £(U) to the model in language £, we have Agr C Ag,
in in particular AWE C Ay, considering Corollary 5.2, page 26, by the diagram Ay, we can recover the
diagram Ag(, in this case, it is necessary to know the graph of the oracle U, in the model 2. The diagram
Ay contains only traces of oracle computations, the full information about oracle computations is contained
in the diagram Ag(, for example, if 2 = Og(b) = c, then A’ = (Og)*(c.b) = ¢, if [O5(b) =] € Ag., then
[(©8)*(c.b) = d € AGT

Proposition 1. For an arbitrary n 4+ 1(n > 1) - ary functor ®, for an arbitrary model 2 of Ly such that
2A &= Th(A), for an arbitrary set @ € 2, for an arbitrary word polynomial P(T), for an arbitrary function word
b such that 2 = viF@lg, (@,u) C b is true:

LA EYW®o@ u) = A < % £ VIF@ (@) (b,a,u) = A.

2. A EVIE@DNP(@,u) = A = A= V@ /(@) (b,a,u) = A.

Proposition 2. For an arbitrary n + 1— place functor ®, for an arbitrary model 2 of Ly such that
A = Th(A), for an arbitrary sequence of elements @ € 2, for an arbitrary word polynomial P(Z) , there exists
a functional element b with the smallest length such that VLP(E)‘G.:I)(E, u) C b.

Note. Such a functional element is not the only one, but for any such functional elements b, c true |b| =

35

|c| A dom(b) = dom(c) A Vz[z € dom(b) = b(z) = c(x)].
Any extension of the polynomial cut 2z C 9 E Th(A), for any functor, any word polynomial P(Z),
produces the following relations:
1. Az C Mg;
2. Vb € Ag true Og(b)y = Oa(b)on;
3. Vb,c € Ag, if A = (2)*(Oa(b),b) = ¢, then Vf € M, sush that O (b) C f,true M = (®)*(f,b) = c -
"Use Principle" when expanding models;
4. Let b € Ag. Let cg - the smallest functional element in length, such that 2 |= V‘up@l@@(g, u) C ey
Let doy - the smallest functional element in length, such that 9 |= V‘UP(E)I@@(R u) C don. Then:
a). dom(ey) C Ag A dom(doy) C Mgz A ey C don;
b). If |e| < |P(b)| and 2A = ®(b,e) = h, then A = (®)*(cy, b, e) = h u M |= (®)*(don, b, €) = h;
c). If A E VLP(E)I(Q)*(CQI,B, u) = A, then for any |f| < |P(b)| we get A = (®)*(ca, b, f) = A, then
M = (®)*(dom, b, f) = A, then M = Vu(|u| < [P(B)|Au € Ag D (®)*(don,b,u) = A. There is also, if
M = Vu(ju| < [PB)| Au e Ag S (8)*(dox, b,u) = A), then 2 |= VIF®(®)* (cq, b,u) = A.
"Use Principle" when expanding models.
Theorem 6.2. Let A be an arbitrary oracle. N'P(A)) = co — NP(A) if and only if for any bounded 3
formula A(x) of signature PPr(U) there exists a bounded V formula B(z) of the same signature such that

Th(A) F Vz[A(z) = B(z)].

Theorem 6.3. Let A be an oracle set, A(Z) be a bounded V formula of the signature PPr of the language

L(U). The following conditions are equivalent:

1. For any model 2 = Th(A), for any @ € A, for any b € Ag, any model 9 = Th(A) such that g C 9N, if
2l = A(b), then M = A(b).

2. For a formula A(Z) there exists a bounded 3 formula B(Z) of the language L£(U),
such that Th(A) E VZ[A(T) = B(T)).

Proof. We will prove that (1) implies (2). The idea of the proof is borrowed from [8 p. 156], [9 p.133-134].

If the formula A(Z) is such that Th(A) E VZA(Z), then Th(A) E V(Z[A(T) = B(Z)], where B(Z) is a
bounded 3 formula, such that Th(A) = VZB(T).

Let the formula A(Z) be such that Th(A) ¥ VZ.A(Z)(1).

Let’s T'(¢) = {©(¢) : Th(A) = -A(Z) D O(%)}, where O(Z) - bounded V formula, ¢ - new constant symbols.

From (1) we obtain that Th(A) + I'(¢) - consistent theory. Let’s prove it Th(A) 4+ I'(¢) = -A(¢). Let’s

A = Th(A) +T'(¢), ¢ € A. Let Ag(_ - be a diagram of the model .

36

Set of sentences Th(A) + Ag + —A(¢€) - consistent or inconsistent. If Th(A) 4 Ag + —A(¢) - inconsistent,

then Th(A) + Ag_ [A(¢), then Th(A) + A A(¢,d) = A(e), where A;(C,d) € Agy_, then

i<k
Th(A) é\k A;(¢,d) D A(e), then Th(A) = -A(¢) D - ‘é\k A;(Z,d), then Th(A) & VzVy[-A(Z) D = é\k Ai(Z,7)],
then Th(A) |- VZ[~A(Z) > V5~ A A(Z7)](2).

i<k
For d, there exist such word polynomials P(¢), that |d| < |P(¢)|. From(2) we obtain

Th(A) | VE[~A@) D Vo A A, 7)], then V@2 A Ai(e,7) € T(o), then % | VIFOl- A Aiep),

i<k i<k i<k

then 2 =~ A A;(C,d) - contradiction, hence set sentences Th(A) 4+ Ag_ + —A(C) - consistent.
i<k ¢

Let’s 9 = Th(A) + Ag + -A(C), then we get Az C M u M = -A(C), then A = —A(T), consequently

Th(A) + T'(@) = ~®(c), then Th(A) = A ;(2) D ~A(T), where Q;(?) € I'(c), then

Th(A) = 4\ Q;(7) O ~A(Z).)
We have Th(A) = -A(z) > A (), then Th(A) = ~A(z) = A A;(T), then

Th(A) |-~ A 9,() = A@)

Let us pr;ve that (2) implies (1). Let A = Th(A), @ € A, b € Az, M = Th(A), such that 2z C M and
2 = A(b).

We have: for the formula A(T) there exists a bounded 3 formula B(Z) of the language L(U),
such that Th(A) | VZ[A(T) = B(T)], given A = Th(A), we obtain 2 = VZ[A(Z) = B(T)], then
2 = A(b) = B(b), taking into account A = A(b), we get 2 = B(b), then Az = B(b), taking into account
that B(Z) is a bounded 3 formula, Az C M and b € Mg, we obtain M = B(b). From M = Th(A) and
Th(A) = VZ[A(Z) = B(T)] we get M = VZ[A(T) = B(T)], then M = A(b) = B(b), then M |= A(b).

Note. A similar theorem holds for the theory Th in the language £ and for the theory Th(U) in the
language £(U).

Theorem 6.4. For any oracle A, any bounded ¥ formula A(Z) of language £(U) signature PPr, the following
conditions are equivalent:

1). For any model 2 = Th(A), any elements of @ € A, any elements of b € Ag, if Az = A(b), then for any
model B D 2z such that B = Th(A), true B = A(b).

2). For any model 21 |= Th(A), any elements of @ € A, any elements of b € Ag, if Az = A(b), then
Th(A) + Ag_F A(b).

3). For the formula A(Z) there is a bounded 3 formula B(Z) of signature PPr such that
Th(A) F VZ[A(Z) = B(T)](equivalent to WordM, = VZ[A(Z) = B(T)]).

Proof. The proof of (1) < (2) is quite simple. Let us prove that from (3) follows (1).

Let 2 = Th(A), @ € A, b € Az and gz | A(b). ycrs B D Az, such that B = Th(A). For some

37

bounded 3 formula B(Z) signature PPr we have Th(A) F VZ[A(Z) = B(Z)], then B | A(b) = B(b). Suppose
that B = —A(b), then B = ~B(b), given B D A5 and the fact that ~B(7) is a V formula of signature PPr,
we obtain Az = —B(b), then 2 = —~B(b), given that 2 = Th(A) and Th(A) - VZ[A(Z) = B(F], we obtain
2 = A(b) = B(b), then A = A(b) = B(b), taking into account Az = A(b), we obtain g = B(b), we get a
contradiction, then B |= A(b). This (1) = (3) follows from Theorem 6.3.

Note. A similar theorem holds for the theory Th in the language £ and for the theory Th(U) in the
language L£(U).

Using Proposition 1 and Theorem 6.4, we can prove Theorem 4.5 in [11 p.469] quite simply.

Theorem 6.5 Let the second point of Theorem 6.4 be satisfied for the theory Th in the language L, for
any bounded V formula of signature PPr.

Let 2 = Th(U), @ € A, b € Ag. Let the formula VI¥@!®(z,y) = A be such that A = VIF®la(5,y) = A,
then Th(U) + Ag F VIF®la(B, y) = A.

Formula VZ[vVlX @@ (z,2) = A = VIF @/(@)*(Oy(expy(|P(T))|),Z,u)) = A], belongs to theory Th(U),
where P(Z) - is a suitable word polynomial, then

Th(U) - vz[vF @ oz, 2) = A = VIE@(®)* (O (expp(|P(Z)])), 7, u) = A], then

Th(U) F [VFOla(b, 2) = A = VIP®(@)*(0y(expy (|P(B)])), b, u) = Al(1). Let us calculate [P(B)] = di,
expp(di) = ds, Ou(dz) = d3, then A’ = VLP(E)‘((I))*(dg,B, u) = A, where 2 is a reduct 2 of languageL(U) to
L, then Th+ Agy VLP(E)I@)*(dg,E u) = A, taking into account equality Oy(ds) = d3, we get

Th + Auy , {0u(ds)=ds) " WiP ()% (Ou(ds), b,u) = A, considering (Oy(dz) = ds) € Ag,., , we get

Th + Ag,, VLP(E”(@)*(@[U(dQ),E, u) = A. Considering Th + VzVy[expp(z) = y = EXPp(z,y) = A] and
Th F Vz2VoVz [/ (Z,v) NEXPp(z,v) = A D o (Z, expp(x))], we get

Th+ Ag,, VLP(B”(@)*(@U(expp(dl)),g, u) = A, considering |P(b)| = dy, we get

Th + Ag,,, VLP(E”(@)*(@U(expp(|i§’(5)|)),5, u) = A], considering (1), we get

Th(U) + Ag,,, F V@10, y) = A, then Th(U) + Ag - ¥ ®lo (B, 4) = A,

Theorem 6.6. If for a theory Th for any bounded V - formula of the language L the first point of Theorem
6.4 is satisfied, then for any oracle A, for any bounded V - formula of the language £(U) for a theory Th(A)
the first point of this theorem is also satisfied.

Proof. Let ® be an arbitrary n + 1 - ary functor, signature £(U). Let P(z1,...,x,) be an arbitrary word

(z1;~~’m")|c1)(z,$1, ce) = A

polynomial. Let us prove a theorem for a formula of the form VLP
Let A =Th(A), @€ A, b€ Az, A = VLP(E”[CI)(Z,B) = A, let’s prove that

¥ O = Th(A), such that 9 D g is true M =¥ [@(B, 2) = A].

38

Let 2l' be the restriction of the model 2 of the language £(U) to a model of the language L.

Let’s make a theory Th(2(,) & (see [9, p. 130]), next we will make up a theory Th(2l/,) + Agp,
where M - reduct of the model Mgz in language L£(U) to the model in the languge L.

This theory is contradictory or it is not. Suppose that the theory Th(2(',) + Agﬁ% - is contradictory, then
Th+ A Ai(e, f) D =\ Bj(e,h), where € € Ag, Ai(e,) € Th(,), Bj(e,h) € Agnr, then
Tht A Ai(e, f) D = A\ Bj(€,), then Th= A\ Ai(e, f) D VZ— A B;(€,Z), then A’ = Vz— A B;(e,T).

For T, there exists such a word polynomial Q(z) that |h| < |Q(@)|, then 2 | V™| A B (2,7), then

A E VlfQ(E)Iﬂ A\ B;(€,T), then, according to Theorem 6.4 (1) for the language £, given AZ C ML, we obtain

a’
m. = VlfQ(E)‘—' A\ Bj(e,7) is a contradiction, hence the theory Th(2/,) + Agn: is non-contradictory.

Note that in the models 2" and 2 there are traces of oracle computations of the oracle Ug and the oracle
U

Let us construct an interpretation of the oracle symbol U:

Ugy(a), if a€ A
Ula) =

Um(a), if ae Mg
Let us denote the obtained interpretation as B. According to Theorem 6.1. we get 91 |= Th(U)+Agw +Agp: .

We have:

L', meCcm,’.

2. For the interpretation Ay of the oracle symbol U in the model 2 and for the interpretation B, of the
oracle symbol U in the model 91y, it is true that Ay C By, (Va € A Ug(a) = U, (a)).

3. For the interpretation Agy_ of the oracle symbol U in the model Mg and for the interpretation By, of
the oracle symbol U in the model 91y, it is true that Agp_ C By, (Vb € Mg Ugn(b) = Uy, (b)).

4. For any functor ® in £, Vb € AVe € AA | ®(b) = ¢c — N | ®(b) = ¢, and (1) is used, then
Vbe AVee AVd € AAE (Op)*(c,b) =d < Ny | O%(c,b) = d.

5. For any functor @ in £(U), Vb€ AVee A2 = Og(b) = c < My = Os(b) = ¢, using (2.4), Theorem
4.2, Theorem 5.1, and Theorem 5.5:

A= Op(b) = cq == A = (Op)*(cau-b) = ca A ey C Ag, then My = (Og)* (cu.b) = o A cgr C By, , then
Ny = Og(b) = dy, C car, then Ny = (Og)*(c.b) = O (b) = da,, then Ny = O (b) = dy, = car.

6. For any functor ® in £L(U), Vb € AVc € A A= ®(b) = c <= M = ®(a@) = b, using (4.5) and Theorem
5.1. Thus, we obtain 2 C 91, then M = Ag, then 9 | Th(U) 4+ Ay, Taking into account theorem 6.5, we

obtain M = V‘ZP@)‘ [@(b, 2) = Al

8We can take a theory Th + Agy

39

7. For any functor @ in £ of signature PPr, it is true that
Vb € Mg Ve € Mg Mg = @(b) = c <= My |= ®(b) = ¢, and (1) is used, then it is true that
Vb € Mg Ve € Mg Vd € Mgz Mg = (Oa)*(c,b) =d <= Ny = O4(cb) =d

8. For any functor @ of the language £(U), of signature PPr(U), we have
Vb € Mg Ve € Mg Mg = Op(b) = ¢ <= M = Os(b) = c, using (3.7), Theorem 4.2, Theorem 5.1, and
Theorem 5.5.

9. For any functor ® of the language £(U), signature PPr(U), it is true
Vb € Mg Ve € Mg Mg = ®(b) = c —= M | ®(b) = c, using (4.5) and Theorem 5.1. Thus we obtain
Mg C N;.

We have: 91, = VIP®@3(B,y) = A, Mg C 9y, then Mg = VPP 0 (b, y), then M = vIF® o (B,).

Continue. Let A(z,z1,...,x,) - arbitrary quantifier-free formula signatures PPr. For this formula, one can
construct such n 4+ 1 - ary functor ® 4, that
Th(U) - VZ,Vz[A(z,T) = ®4(z,%) = A](Theorem 1.6), then for any word polynomial P(Z) true
Th(U) Fvz[3F @Az, 7) = 3P @[04 (2, 7) = A]], and also
Th(U) F vz[vF @l A(z,7) = V@ [D 4 (2, 7) = A]], then
Th(U) - VP® 42, 8) = VIP®[d 4 (2,B) = A]. Let % = vP®A(2,5), then
A = VPO, (2,5) = A, then M = VIF®I[@ 4 (u, B) = A, then M = VA2, B) = A.

For a formula that has two or more restricted quantifiers V, the proof is similar.

End of the proof of the theorem .

The main idea in the proof of this theorem is the application of the ”Use Principle” and the assumption
that polynomial properties are preserved for models of the theory Th when they are extended to models of the
same theory.

Theorem 6.7. There exists an interpretation of the A functor U such that NP(A) # co — NP(A), then
the theory Th(A) fails the third item of Theorem 6.4.

Proof. Consider a formula of the form HLx|[|x\ = |y|&U(y) = A]. For this formula, one can construct an
n - alphabetical interpretation of the A functor U such that, for n > 2, for any V bounded formula A(x,Z%)
signatures PPr is true WordM,, (£ 32vz[3)7[|z] = |y|&U(y) = A] = A(z,7)].

The construction of the set A can be found in [12, p. 437].

Note. For the calculus CalcEqu, it is very easy to construct the set A.

Corollary. NP # co — N'P.

Proof. Let’s use Theorems 6.2 - 6.7.

40

P.S. I have proof of the following, not a very simple statement: (NP ()co — N'P) # P.

41

References

1. Masbues A. . Anropurmbl u pekypcuBubie dyukimu. M., 1986. c. 368.

2. F. W. v. Henke, K. Indermark, G. Rose, K. Weihrauch. On Primitive Recursive Wordfunctions. Computing,
vol 15, 1975, p. 217-234.

3. Manuu H.A. Berynurenbhasi crarbs. O peKypCHBHOM MATEMATHYECKOM AHAIM3E U MCIUCTEHUU apud-
Metndecknx paseHcTB P.JI. I'yacreitna - B xn.: P.JI. T'yacreiitn. Pekypcusnbrit MaTemarnyeckuit ananns. M3na-
tensctBo M."Hayka 1970. c. 7-75.

4. P.JI. I'yncreitn. Pexypcusnbiit maremarudeckuii anaiau3. M., 1970. c. 436.

5. H. B. Curry. A formalization of recursive arithmetic. Amer. J. Math. v.63 p. 263-282, 1941.

6. Cobham A. The intrinsic computational difficulty of functions. Proc. of the 1964 International Congress
for Logic, Methology, and the Philosophy of Sciens, North Holand Publishing Co., Amsterdam, p. 24-30.

7. L, J. Stockmeyer. The polinomial-time hierarchy. Theoretical Computer Science vol 3 1977, p.1-22.

8. Epmios FO.JI. ITamrorur E.A. Maremaruaeckas joruka. M., @U3MATJINT, 2011.c. 356.

9. C. C. CHANG, H.J. KEISLER. MODEL THEORY. STUDIES IN BOOK AND THE FOUNDATIONS
OF MATHEMATICS. V. 73, 1973.

10. J. BARWISE. HANDBOOK OF MATHEMATICAL LOGIC. NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM NEW YORK OXFORD, 1977.

11. Book R.V., Long T.J., Selman A.L. Quantitative relativization of complexity classes. SIAM J. Comput.
vol 13 No 3 August 1984, p. 461-487.

12. Baker T, Gill J. Solovay R. Relativization of the & =744 Question. STAM J. Comput. vol 4 December

1971, p. 431-442.

42

Application

Let us construct a k > 3 - place functor of the form [JConcatI{[JConcatl} ... [JConcatl; ,I¥]...]. For
this functor in the calculus CalcEq we derive the equality

[JConcatI}[JConcatl} ...[JConcatI} ,If]...](z1...x;) = Concat(x;, Concat(xs, ... Concat(r,_1,7x)...)).

Let Concat® = [JConcatI¥[JConcatlI} ...[JConcatIf ,1¥]..], at k > 3, then - Concat®(z,,...2;) =
Concat(x1, Concat(xs, ... Concat(xy_1,2x)...)). When k = 2, we get Concat? = Concat, - ConcatQ(atl, x9) =
Concat(z,z;) at k = 1 Concat’ = I}, - Concat'(z) = .

We have ([JConcatl} 1}])* = [J(Concat)*T;y T (IF_)*(I})*] = [J[JConcatT3I3 I} T (1 _)" (18)*] =
[JConcat(I}_,)*(If)*] = [JConcatI; "' I;11], then

(Concat”)* = ([JConcatI¥[JConcatl} ... [JConcatIf I}]...]* =

[JConcatIs™ [JConcatI;™ ... [JConcatI’,zHIZﬁ] ...], then
- (Concat®)*(z1,zy,...,2411) = Concat”(zs, ..., 25 1)

We have (O aw,, w,)" = (J[Concat" ! [JOsV1,... ¥}]Oy,,...,Ou,]), then
(J[Concat" T [JOs ¥, ... ¥.]Oy,,...,04,])* = [J(Concat") IM 1 ([JOs U1, ... ¥])*(Og,)*, ..., (O,)]
Next ([JOeW1,... W) = [J(Og) TP ()", ... (Uy)*], then
F([JOsWy, ... UL * (1,2, .. ., Tpy1) = [J(Oa) T} (W)*, ... (Ur)*] (1, 22, -+, Zni1), then
F (@) I (W%, . (U] (21, 22y - oo Tpgt) = (Oa)* (21, (U1)* (21, T2, - oy &), - (V) (21, T2y - - T)),
then F ([JOaWUy,... Ui))*(x1, 22, ..., Zns1) = (Op)*(x1, (V)" (21, 29,...,2n), ... (V)" (21, 29,...,2,)), then

F(Ouaw,,.. w,) (T1,22,...,2pnq1) = (Concatk+1)*(x1, ([JOa Yy, ... V) (21,22, ..., Tnyi1)

, (Ow,) (x1, 22, ..., Tpt1), (Ow,) (21,22, ..., Tnt1)), then

F (Opaw,,..wy)) (T1,22, ..., 2yt1) = Concat™ ! (([JO Uy, ... Up]) (z1, 22, ..., Tpi1)

, (Og,) (21,22, ..., Tpt1), (Ow,)* (21,22, ..., Tpt1)), then

= (G[anl,l)wq,k])*(xl,xz, ey Tpy1) = Concatk+1((@¢)*(z1, (U)*(z1, 22,y)y - - (Tp) (1,22, ., ZTn)),

(Ow,)*(z1,22,. .., Tpt1), (Ow,) (x1, 22, ..., Tnt1)), then
F(Ouaw,,.. v,)) (T1,22,...,2,11) = Concat((Os)* (x1, (V1) (z1,22,. .., Tnt1), .- (Yp)*(T1,22,. .., Tny1)),
Concat((Oy,)*(z1,22,. .., Tnt1)s- - ., Concat((Og, _,)*(z1,22,...,Tnt+1), (Ow,) (T1, T2, ..., Tnt1)),---,).
Given @ - n > 1 - place functor, ¥y, ..., ¥ - (n+2) place functors. Let’s compose a functor [R®Uq, ..., U]
- (n+1) - place. From this functor we construct a functor Orew, ... w,]
Let T = x1,...,%,, A= [J[ROUy,..., U JIPT> . I ET).

We have = \(T, 2,u) = [J[R®Ty,..., U JI7 T2, I0ET)(7, 2,u) = [ROV, ..., U,)(T, 2)

43

Let ¥; = [JConcat[JOy, 1112, ..., NI, U, - (n +2) - place functor.

We have: - U,(Z, z,u) = [JConcat[JOy I'1? ... RN (T, 2, u) =
Concat([JOy, I, I'TIN(T, 2,u), I'13(7, z,u)) = Concat(Oy, (T, 2, \(T, 2, 1)), u) =
Concat(Oy, (T, z, [ROV4, ..., VL](T, 2)), u).

So, - W,(T, z,u) = Concat(Oy, (T, z, [ROV, ..., VL](T, 2)), u)

Let Oraw, .. v, = [ROsT1,. .., V).

Defining equalities:

- Oraw,,. v, (T, A) = [ROs U1, ..., U] (T, A) = Op(T)

F Oraw,,.. v,y (T, Sk(2) = [ROsT1, ..., U](T,S(2) = V(T, 2, [RO V1, ..., Uk|(T, 2)) =

Vi(Z, 2, Opew, ... v, (T, 2)) = Concat(Oy, (T, z, [ROV1, ..., Vi](T, 2)), Oraw,,...v,] (T, 2)).

,,,,,

So, we have the following defining equalities for the functor Orey,,.. v, :

F Oraw, ... v,](T, A) = Os(T),

F Olrow,,...,v,](T,Si(y)) = Concat(Oy, (T, 2, [ROV1, ..., Vi|(T, 2)), Oraw,,....v,] (T, 2)), where i < k,

F Oraw,,... v, (T, Si(y) = Oraw,,...v,) (T, y), where i > k.

Next (\)* = ([J[R®Ty,..., U Iy T2 T ER])™

(JR®Ty, ..., U Iy 2 I = [J([R®Ty,..., U] I3 (P H2) . (1))

We have: = (\)*(y,Z, z,u) = [J([ROU1,..., U] I3 (AP, . (1)] (y, T 2, u) =
([ROW, ..., U)X (v, 7, 2,u), () (v, T, 2,0), o (D) (v, 7, 2,u)) = ([ROVL,..., U))*(y, T, 2)

So, F (M)*(y, T, z,u) = ([R®Vq, ..., U])*(y,T, 2).

(0;)* = ([JConcat[JOg, I} 2, ... , IMTINII2])* = [J(Concat) I} 3 ([JOg, IT T2, ... TN EIN)*(I13)] =
[J[JConcatB3IIy 3 ([JOy, 172, . IV EIA) (10 13)"].
(V0w IT*2, . LTI = [J(Ou,) Iy (I F2) . (T (V)]
F (0w 172, TN (v, T, 2,u) = [J(Ow,) TP ATT2)", o (D) (V] T, 2,u) =
(@q,,i)*(l?”’(y,f, z,u), (I;’H)*(y,f, F2T) (IZI%)*(y,E, z,u), N)*(y, T, z,u)) =
(©w,)"(y,7,2,(N)*(¥, 7, z,u)) = (Ow,)" (¥, T, 2, ([ROVy, ..., Ui])* (v, T, 2)).

So, F ([JOw,I1 2, .. IV N (v, 7, 2,u) = (Ow,)* (v, T, 2, ([R®Ty,..., Uk])* (v, 7, 2)).

F (U)*(y, T, 2,u) = [J(Concat) I ([0, 112, .. I EIN) (I3] (v, T, 2,u) =

[J[JConcatBII} T3 ([JOg, I7 2, .. TN (I E2) | (y, T, 2, u) =

[JConcat BI3|(I7 % (y, 7, z,u), ([JOw,ITH2, .. LA (v, 7, 2,u), (11 15)" (v, 7, 2,u)) =
Concat(([J@\piI?”, e ,IZﬁ)\])*(y,f, zZ,u), (IZig)*(y,T, z,u)) = Concat((Oy,)*(y,T, z, (RO, ..., U])* (¥, T, 2)), u).

So, (\ili)*(y,f, z,u) = Concat((Oy,)*(y, T, z, [R®¥1, ..., Vi) *(y,T, 2)), u).

44

(Orraw,,...u,))" = (RO W1, ..., Wi])* = [R(Oa)" (¥1)",..., (V1)]

F (Oraw,, . w) (¥, T A) = (RO W1, ..., Wi])* (v, T, A) = [R(O2)* (¥1)",..., (¥)*](y, T, A) = (Oa)*(v,7)

F (Orew, . w,) (¥, T, Si(2)) = (ROa V1, ..., Wi])* (v, 7, 8i(2)) = [R(Os)* (¥1)*,-.., (¥1)")(y, T, Si(2)) =
(0)*(v, 7, 2, [R(Oa)"(¥1)", ... (T4)*)(y, T, 2) = (L))" (¥, T, 2, ([ROa V1., Ui)])* (v, T, 2)) =
Concat((0y,)* (¥, 7, 2, ([ROV1,..., Ui])*(y,T, 2)), (ROs V1, ..., U))*(y, T, 2)) =
Concat((Ov,)" (v, T, 2, ([ROVy, ..., Wr])*(y, T, 2)), (Otrew,w,))" (¥, T, 2)).

S0, t (O(rew,....v,])" (¥, T, Si(2)) = Concat((Ow,) (. T, 2, ([ROVy, ..., Vi])*(y, T, 2)), (O(raow,,...w,))" (¥, T, 2)).

Thus we get:

F (Orev,,...v,)) (¥, 7, A) = (0)"(y,T),

F (@[R'ZI)\Pl \I/k])*(Y7§7 Sl(Z)) = Concat(((a\l’i)*<yaf7z7([Rq)\lllw"7\Pk])*(yafaz))a(®[R©\I/1 \I/k]>*(Y7§az>>7

F (Orev,,...v,)) (¥, 7, Si(2)) = (Orav,,..v,)) (¥, 7, 2), at i > k.

Let Uyq,... U, - 2- place functor, a - some p— some p is an alphabetic word. Let’s compose a functor
[RaVy, ..., W] Let’s compose a functor O(gaw,.... v,

Let v = [J[Ra¥y,..., U,]I2].

We have - v(z,2) = [J[Ra¥y,. .., U]13](z, 2) = [Ra¥yq,..., U](x).

ycts ¥; = [JConcat[JOy, I37|13].

We have: - U,(z, z) = [JConcat[JOy, I27|13](z, z) = Concat([JOy,I27](x, 2), I3(x, 2)) =
Concat(Oy,(z,v(x, 2)), z) = Concat(Oy, (z, [Ra¥y,..., U](x)), 2).

So, - U,(x, z) = Concat(Oy, (z, [Ra¥y, ..., U](x)), 2).

Let O(raw,, v, = [RAT1,..., Ty, then

F Oraw,....,w,)(A) = [RAT, ..., ULJ(A) = A,

= ORraws,...w,] (Sk(x) = [RAT1, ..., 0] (Si(2)) = Ui(x, [RAV1,..., Vi)(2) = Ui(2, Oraw, .. w, (7)) =
Concat(Oy, (v, [RaVy, ..., Vi](2)), Oraw,,...,v,(T))-

So, we have the following defining equalities for the functor Oray, ... v,):
F Olraw,,..,w,(A) = A
F Olraw,.,...,w,](Si(7)) = Concat(Oy, (v, [RaVy, ..., Vi]()), Oraw,,...,v,] (7)), where i < k.
F ORaw, ... v,(Si(2)) = Oraw,....w,)(z), where i > k.
Let us write out the defining relations for the functor (O[raw, ... v,])* = ([RA\I71, e \i/k})*:

([RAijla cee \ijkD* = ([RCODStjl\(\ill)*, ceey (\Ijk)*]a

F ([RAW, ..., U])*(z,y) = [RConsth (T1)*,..., (¥)*](z,y),

45

- RConst} (¥1)*, ..., (¥;)*](z,A) = Const} () = A
- [RConst} (¥,)*, ..., (U3)*)(, Si(y)) = (¥;)* (z,y, [RConst} (¥,)*, ..., (9)*)(,y)), then
- [RConst (¥1)*, ..., (k)](2,8:(y) = (¥3)*(z,y, ([RATy, ..., i) (2, 9)),

F(RAD, . U)) (2, Si(y) = (00)* (2, ([RADL, ... Wi))* (2,),

F (ORaw,,...w,))" (2,8i() = (¥:)* (2,9, (Olraw,w,)) " (T, 1)),

Next (7)* = ([J[RaWy, ..., U)2])%,

()" = [JHIIL]

+ (I%)*(mvyvz) = [JI%I%I%]((E,y,Z) = I%(I%(mvyaz)vl:g(xvyaz)) =Y

F ([J[RaWy, ..., U) (2, y, 2) = [J([RaWy, ..., U)) I3(12)*](, v, 2)
FJ([Ra¥y,. . O] T (I3)| (2, y, 2) = ([Ra¥y,..., O])* (T (2, y, 2), (1) * (2,9, 2))
F([Ra®y,..., Up))* (B (2, y, 2), @) (2,9, 2)) = ([Ra¥y, ..., Ui])*(z,y)

F () (@, 2) = ([RaVy, ..., Uk])* (2, y)

(¥;)* = ([JConcat[JOw,I}]13))",

([/Concat[JOy, I{1]I3])* = [J(Concat) I3([J Oy, Ii7])* (I3)"],

(Concat)* = [JConcatI3I3],

([JOuw, 1)) = [J(Ow,) TE(I})*(7)"],

()" = [JRBL]

(I3)* = VB

We have:

F @) (2,y. 2) = [JEBE](z,y,2) =y,

= (13)*(2,y, 2) = [JBBE](z,y,2) = z

- (Concat)*(z,y, z) = [JConcatI3I3](z, y, z) = Concat(y, 2),

= ()" (2,9, 2) = ([JConcat[JOy, I{1]I3])* (2, y, z) = [J(Concat)* I} ([JOy,1i1))*(13)*] (2, y. 2) =,
F([J0w,I]) (2,1, 2) = [J (O, T (1)* ()](x,y, 2) = (Ow,)* (T} (z,y, 2), A})* (2, ¥, 2), (1)* (2,9, 2)),
F(0w,) @(z,y,2), @) (2,9, 2), (1)* (2,9, 2)) = (Ow,) (2,9, (7)* (2., 2))

= [J(Concat) I} ([JOy,137])* (13)](2,y, 2) = (Concat)*(I(z,y, 2), ([JOuw,117])* (2, y, 2), (1)* (2, y, 2))
= (Concat)* (I (z,y, 2), ([JOw,Ti)* (2, y, 2), (13)* (2, y, 2)) = Concat(([JOu,I}7])*(z,y, 2), 2)

- Concat(([JOy,I{1]))*(z,y, 2), 2) = Concat((Ow,)"(z,y, (7)*(z,y, 2)), 2)

= Concat((Ow,)"(2,y, ()" (2,9, 2)), 2) = Concat((Ow,)"(x,y, ([RaVy, ..., Vk])*(z,y)), 2)-

46

Thus we get
- (\i'l)*(x, y,z) = Concat((Og,)*(x,y, ([Ra¥1,..., Ui])*(z,y)), 2), then

H (\i/l)*(xv Y, [RCOHSt}\(\ifl)*, LR (\I/k)*](xv y)) =

Concat((Oy,)* (z,y, ([Ra¥1, ..., U])*(x,y)), [RConst} (T1)*, ..., (¥;)*](z,y)), then

F [RConst} (U))*, ..., (0)*](z,Si(y)) =
Concat((0y,)*(z,y, ((RaVy, ..., U])*(z,y)), [RConsth (¥1)*, ..., (Vr)*](z,y)).

Thus we get

+ (G[Ra\Ill,...,‘Ilk])*(x7A) =A

- (Olraws,.os))* (@.8:(y)) = Coneat(Ou,)" (x. v, ((RaWr, ... Wi])*(2.9)). (O(ravs...w)" (.1)),
at 1 < k.

F (Oraw, ... v,.)" (#,8i(¥) = (Oraw, ... v,])" (T, y), at i > k.

For any functor ® VA we prove WordM, = VZ[04¢(T) =~ O, (T)].

Let’s write out the meaning of the operator O:

for the original functors:

Sk, Z, 0, Length, —, Concat, D, I}}, U:
Os, =Z,0z =Z, 05 = Z, OLengtn = [JZI5], © . = [JZI3], Oconcat = [JZ13], Op = [JZI3], Or: = [JZI}],
Oy = [Je3U].

for functor [JOUq, ..., U]

Oljow,,...v,] = [JConcat" ™ [JOsT; ... U;], Oy, ...Og,].

for functor [Ra¥y, ..., U]

ORaw,,.. vy = [RAT1, ..., Ty,

for functor Orew, ,...,v,)

Oraw,,. v, = [ROs V1, ..., Uy,

For any functor ¥ alphabet . true Va - ©y (@) = A. When using Goodstein’s rule, it is true - O (T) = A.

We will prove - Oy (z) = Ogy, (2):

Oy = [JcliU], B¢, = Oeriu] = [JConcat?’[J@cI%U]@Ii@U], Considering [JO.I1U] = [JZI1], Op =
[JZ1}], we have Og,, = Oy, then F Oy(z) = Oy (7).

Induction hypothesis:

a. Let the following be true for the functor ® WordM, = VZ[04(T) = O, (T)].

Q

b. Let the following be true for the functors ¥y,...,¥: WordMy = Yyi,...,Yyn[Owv, (Y1, -, Yn)

99\1,1, (yh e 7yn)]

47

Let’s prove it WordM, = Yy, .. NVYnOLjaw,,... vk (Y1, -y Yn) & @9[”’\1'1 k) (Y1, -3 Yn)-

We have Osay, v, = [/Concat""'[JOsV1,...,¥;]Oy,,...,0Oy,], then
- Opav,,. v, (F) = [JConcat" ™ [JOsTy,..., V)]0, ,...,0u,](F) =
Concat* ' (04(¥1(7), ..., ¥4(7)), Ow, (7). ... Ou, (7)) (A).
Let’s calculate O j0,w,..v,):
Olj0sv,. v, = [JConcat" ' [JOe, U; ... U;]Oy, ...Oy,], then
- Opesv,..w,](7) = [JConcat" ' [JOe, U; ... ¥4]Oy, ...O,](7) =
Concat" ™ (0g, (V1(7), ..., Vk(7)), Ow, (7). - .. Ow, (7))
Taking into account the induction hypothesis WordMy = VZ[04(Z) ~ O¢,, (T)], we obtain
WordM,, = V§[00,w,...w,](%) ~ Concat™™ (0 (¥1(7), ..., V(7)) Ou, (7); - .- Ow, (¥))]-
Taking into account the induction hypothesis WordMy = Vy1, ..., Vyn[Ow, (y1,- - -, ¥n) = Oay (Y1, -, Yn)];
we obtain WordM, = Vy[Concat (0o, ,...v,)(H); Ooy, (7)) ~ Concat" (04 (¥1(7), ..., Vk(7)), Ow, (), . .. Ou, (1)),
WordM,, |= Vy[Concat® (00, v,...w,)(); Ooy, (7), Oey, (7)) ~ Concat*™ (0 (V1(9),. .., V(7)), O, (@), - - Ou, (1))],---
WordM,, |= Vg[Concat*™ (O ;0,v,..v,)(#), Ooy, (7), Ooy, @).---,O0,, (7)) ~
Concat" (04 (¥ (7),...,Y(7)), O, (7),... O, (7))], taking into account (A), we get
WordM, Vy[Concatk“(@Uecp\plm\yk](y), Oy, (1), Ooy, (7)), S @) = Opaw,....vr(7)(B)
Let’s calculate 6@[

@ewwl ,,,,, 7 @[J00ncatk+1[J@cp\lll,...,\llk]@q,l,...,@\pk]

6[]C0ncatk+1[J@,@\Ill,...,\llk]@\pl ,‘..,eq;k] =

[JConcat"?[JOconcatk+1[/O3V1,. .., U]Og,, ..., Ou,]Ojesv, ... 1,106y, -, Osy, |, taking into account

econcatk+1 [J@qﬂl’l, ey \I/k]@\pl, ey @\pk] = [JZI?], we get

wi) (y) = [Jconcatk-‘rl@[,]@@q/l \Pk]g@wl ceey @@xyk](y) =
Concat"™ ! (O j0,v,....v, (), Ooy, (), - - - Ooy, (1)),
taking into account (B), we get WordM, = Vy[@ewwl ol @) = Opaw, ..k (7)-

) pa— ~
Let’s calculate O 44, 4,) = Oroy b,

..... By
We have ¥; = [JConcat[JOg, I} 1%, ... I'TIAIT3).
Let’s calculate @[J@\Pi HREIR LS S\E
G)[J@Wilib+z7.__,lzﬁ/\] = [JCOncat"+3[J@@\I,i 2. ,IZI%)\]@I;LH, s elliﬁ@/\]’ considering Opn+2 = [JZI} T
we have G[JG%I?” ,,,, iy = [JConcat[JOg,, | MRS UsEPN[SINE

Let’s calculate @\iu: .

48

Oy, = G[JConcat[JO\piI;”+2,.‘.,I:’L¢f/\]IZig] =

[JConcatg[JQCOncat[J@g,iI;HQ, . ,Igﬁx]lgig]@w@%I?H,meM @Izig],considering

[JOconcat[JOw, 112, .. IVEININ Y] = [JZI7) n Opiz = [JZI}"?] we have
[JConcat’[JOconcat[JOw, 112, LTINLTO o, o2 | 1ni2y Ozl = O yg,, otz yrizy), then
O3, = [J/Concat[JOe, I12,... T/ 1IA]O,].

We have:

ORow,,.... v, = (RO, ..., U]

Orouts.... 5 = (RO, V1,... Ty,

F Oraw, ... w,) (T, A) = [ROeV1,..., U,](T,A) = O4(T)

F Olrow, ... v, (T,Si(2)) = U4(z, 2, Orow, ... v, (T, 2))

- Oraw,,..w,] (T, Si(2)) = [JConcat[JOy IT T2, ... TV TININT3](7, S;(2))

F Oraw,,...v,](T,Si(2)) = Concat(Oy, (7, z, \(T, 2)), Ogaw, ... v, (T, 2))

Z,A) = [ROe, V1, .., 1,](@, A) = Oe, (T)

1

We have ¥; = [JConcat[JO4 T7*2, ... T2\, then

F 06 ra, ...) (7,S:(2)) = [JConcat[J@@iI?“, . ,IZI%)\]Izig](E, 2,00 ey, v (T, 2)), then
- @(“)mqnpl ,,,,, @] (fa Si(z)) = Concat([J@@iI’IHQ, s vIZi%)‘] (Ta 2, @@[anpl ,,,,, @] (fa Z))v IZTL% (fv Z, 6@[R<1n1/1 v, (T’ Z)))
- ®@[Rq>\p1,...,\1:k] (E7 Sl(z)) = Concat(e\i}i (fv Z,)‘(fv Z)>7 @@[R<1>‘1'1 @] (E’ Z))

We have O3 = [JConcat[JOe, 171, ... I1TIA]O,], then
-0y (T, 2,u) = [JConcat[JOe, T1*?,... T TINOL(T, 2,u)
-0y, (T, z,u) = Concat([J@@% I’f+2, A IZI%)\] (T, z,u), O(T, z,u))

F©g,(T,z,u) = Concat(JOe,, (T,2,\(T,2)), O, (T, z,u))

i

We have ©) = ®[J[R¢\I/i,...7\11k]]I{‘+27...,Izjﬁ] = [JConcat”‘H[J@[Rq)q,l7___7\1%}1?*27 ey IZﬁ]@I?m, ey @Izﬁ],
then © = [JOgowi,.. v, 11T, ..., I17], then

FO\T,z,u) = [J@[R@¢i7___7¢k]l’f+2, ce IZﬁ](T7 z,u), then

FOA(Z, 2,u) = Orawi,..w,] (T, 2), then

- @q,i(f, zZ,u) = Concat(@ewi (T, 2, \(T, 2)), Oraw,w,], (T, 2)), then

H @@[RW _____ o] (7,8:(2)) = Concat(Concat(@@% (7,2, AT, 2)), Ogaw, ... v, (T, 2)), @@[RMI _____ o] (T, 2))

Let’s sum it up:

F Olrow, ..., v,](T,A) = Os(T)

49

'_ @[R‘i"lﬁ,...,‘l’k] (f, SZ(Z)) = Concat(@\pi (T, Z,)\(T, Z)), @[R¢Q17___7q;k] (f7 Z))

F B¢ T,S;(z)) = Concat(Concat(Og, (T, z, (T, 2)), Orew, ... v,1(T, 2)), O
[v, [Ty U] [RET,

R@\pl,...,\yk](

Let’s assume that it is true:

VaWordM, | O4(@) = B¢, (@)
VavpvyWordM, | Oy, (@, 8,7) =~ Oe,, (@, 5,7)
vavsWordMy [= Oraew, .. v,)(@, 5) ~ O pey,

WordM,, |= O6 4y, (@ Si(8)) =

Concat(Concat(@e‘Pi (av Bv)‘(67 /8))7 @[qu'\lll,...,\llk] (67 B))a (—)@[ch\yl

.....

Concat(Concat(Oy, (a, 8, A\(@, 6)),@[R@ph___7\pk}(@,6)),@@[Rwl 11111
Concat(Oy, (@, 5, \(@, 8)), Oraw, ... v,](@,) = Oraw,....v,] (@ Si(5)), then
WordM, = VWZ[@[R(I)\I’IVH;\I’k](T? z) & ®®[R<I>\I/1 vl (@, 2)].

Using induction on the construction of functors and induction on the construction of the argument word,

we obtain: for any functor ® correctly WordM, |= VZ[O4(Z) ~ B¢, (T).

50

