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1. Introduction 

The history of cognitive science reveals repeated attempts to formalize the nature of thought 
and language. From the cogito of Descartes to the Computational Theory of Mind and 
contemporary neural models, each framework has oscillated between metaphysical 
speculation and empirical grounding. What remains missing is a unified axiomatic 
foundation: a system of first principles capable of structuring cognition without reliance on 
implicit metaphors or substrate‑dependent assumptions. 

The epistemic aim is modest yet exacting: to develop a universal, formally disciplined 
language for describing cognitive processes, applicable across substrates. Instead of offering 
a new ontology of mind or defending metaphysical claims about consciousness, Principia 
Cognitia seeks a grammar for cognition—capable of describing phenomena from chemical 
signaling in amoebas to primate gesture to LLM conversation. Internal coherence and 
descriptive power, not ontological classification, are the criteria of success. Ethical 
prescriptions are deliberately excluded; the framework is an operational tool, not a moral 
doctrine. 

Its philosophical foundation rests on a triad: Turing, Wittgenstein, and Wiener. Together 
they replace subject‑centered metaphysics with an analysis of cognition as algorithmic, 
linguistic, and regulatory structure—substrate‑independent, observable, and modelable. 
This stance rejects the Cartesian legacy of mind as an inner essence, instead situating 
cognition in communicative and behavioral patterns. 

Principia Cognitia advances three key theses: cognition is a continuous, multidimensional 
vector process rather than a binary property; language is not a tool of thought but the 
medium in which thought occurs; and the resulting cognitive patterns are universal across 
systems that process information in such media, whether human or machine. By treating 
meaning as physically instantiated semions in dynamic relation, and by modeling cognitive 
capabilities as coordinates in a high‑dimensional space, the framework prepares the ground 
for an axiomatic, physically grounded science of mind—one that describes rather than 
discovers it. 

Mid‑20th‑century giants sketched principles that today’s AI research has vividly confirmed. 
Turing showed that thought could be understood as universal computation, independent of 
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its physical substrate—and judged by behavior rather than metaphysical status. Wiener’s 
cybernetics reframed intelligence as feedback‑driven optimization, warning that the real 
risks lay in speed and scale, not in alien modes of thought, and that underlying control 
principles are substrate‑agnostic. Wittgenstein’s later philosophy made meaning a product 
of use within social “language games,” implying that fully developed reason depends on 
interaction with other minds. Empirical work on hardware invariance, Layer‑Zero 
optimization across architectures, and the narrative‑threshold effect in both humans and 
LLMs aligns with these insights. 

Principia Cognitia presents itself as the formal synthesis of that triad. Its axioms ⟨S, 𝑅rel, 𝒪⟩ 
operationalize Turing‑universal cognitive operations, its layered architecture captures 
Wiener‑style optimization across substrates, and its explicit language‑environment modules 
(MLC/ELM) embody Wittgenstein’s socially constituted semantics. The framework is not 
offered as new metaphysics but as a mathematically rigorous, historically anchored 
architecture for describing cognition across biological and artificial agents—uniting and 
extending three prophetic visions into a “principia” for the science of mind. 

Inspired by the formal rigor of Principia Mathematica (Whitehead & Russell, 1910) and 
Philosophiae Naturalis Principia Mathematica (Newton, 1687), Principia Cognitia seeks to 
construct cognition as a formal object, independent of its material realization but open to 
empirical instantiation. The motivation is not to reduce cognition to a single essence, but to 
provide a minimal and coherent system of axioms, theorems, and lemmas that allow precise 
articulation of phenomena such as language, perception, symbolization, and automated 
processes. 

The core principles include: 

• [AX‑OPER] — cognition as a system of operations and transformations. 

• [AX‑SUBSTR‑INV] — independence of cognitive form from material substrate (as a 
postulate). 

• [AX‑DISCR‑01] — discretization of continuous phenomena into symbols and 
operations. 

• [LM‑SENS‑01] and [LM‑SYMB‑01] — defining the transformation of sensory flux into 
structured cognition. 

• [TH‑LANG‑01] — duality of languages: Mental Language of Cognition (MLC) and 
Expositional Language of Manifestation (ELM). 

The project does not aspire to metaphysical closure. Rather, it provides a rigorous scaffold 
from which both empirical studies and philosophical reflection may proceed. By 
distinguishing clearly between phenomenon and signal, and between cognitive operation 
and its manifestation, Principia Cognitia rejects informational metaphysics (“the universe as 
computation”) and grounds cognition in material reality, while remaining agnostic about 
specific physical realizations. 

This framework supports interdisciplinary work—from philosophy of language and 
semiotics to neuroscience, artificial intelligence, and cognitive psychology. Its 
methodological stance is explicitly anti‑reductionist yet formally minimalist: by beginning 
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from axioms, it avoids hidden assumptions and offers testable consequences. In doing so, it 
seeks to make cognition a precise object of formal inquiry, comparable to how mathematics 
formalized number, or physics formalized motion. 

The theoretical foundations presented here formalize and extend the MLC/ELM duality 
framework currently being evaluated for publication in Cognitive Science [Snow, 2025]. 
While that work focuses on empirical validation of the dual language hypothesis, the present 
paper provides the broader axiomatic structure within which such empirical findings can be 
systematically understood and generalized across cognitive substrates. 

 

2. Boundary conditions for applicability in the material 
world 

These boundary conditions define the minimal scope within which the axiomatic system of 
Principia Cognitia applies “within known reality.” They delimit the framework from 
metaphysical or speculative extensions and ensure formal grounding. They are applicability 
conditions, not axioms of the theory. 

2.1. BC‑01: Subject boundary [Axiomatis Subiecti] 

• Statement: Cognition presupposes a subject X that is materially instantiated and 
bounded from the environment by a semi‑permeable boundary ∂X, allowing 
exchange of energy, matter, and information. 

∃𝑋 ⊆ 𝑈 s.t. ∂𝑋 = 𝐵,  S𝑋 ≠ S¬𝑋 ,  and 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑜(𝑋) 

• or equivalently 

∃S (𝑆𝑢𝑏𝑗𝑒𝑐𝑡(S)  ∧  𝑂𝑝𝑒𝑟(S,  Φ,  Σ,  Λ)) 

• where 𝑈 is the physical universe, Φ phenomena, Σ signals, Λ symbols. 

• Rationale: Without a boundary there is no internal/external distinction; hence no 
cognition. 

2.2. BC‑02: Layered architecture with Layer‑0 [Postulatum 
Stratificationis] 

• Statement: Cognition operates within a layered architecture ⟨L0, L1, L2, L3⟩. Layer‑0 
(L0) comprises physical/continuous effects (quantum/noise/coherence). Higher 
layers depend on but are not reducible to L0. 

∀L𝑖 (𝑖 ≥ 1 →  𝐷𝑒𝑝(L𝑖, L0)  ∧  ¬𝑅𝑒𝑑(L𝑖, L0)) 

• Interpretation: A working decomposition used throughout: 

o L0: physical/continuous substrate (quantum, noise, coherence). 

o L1: abstract cognitive operations over semions. 
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o L2: realization dynamics (sensorimotor loops, coding). 

o L3: morphology/material form. 

• Rationale: Separates cognitive analysis from physicalist reductionism while 
acknowledging material grounding. Asserts compatibility of PC with arbitrary L0 
(orthogonality of the core). 

2.3. BC‑03: Anti‑entropy persistence [Postulatum Stabilitatis] 

• Statement: Cognitive systems maintain operational stability against entropy through 
structuring, compression, and transformation of information; without this, cognition 
degrades and boundaries dissolve. 

• Persistence condition: 

Pr[∂𝑋 persists on [𝑡, 𝑡 + Δ]] ≥ 𝜃,  Δ > 0,  𝜃 > 0, 

• requiring nontrivial energy flow: 

𝐹̇𝑋 < 0 

• for an appropriate free‑energy functional 𝐹𝑋 . 

  General form: 

∀S (𝑆𝑢𝑏𝑗𝑒𝑐𝑡(S) → ∃𝑀 (𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑀, S) ∧ 𝑅𝑒𝑠𝑖𝑠𝑡(𝑀, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦))). 

• Rationale: Models cognition as active maintenance of order, not passive flow. 

 

3. Outline of the formal system 

Cognitive triad (Trias Cognitiva) 

• Semion S: a quantum of meaning; minimal discrete state. Modeled as a vector 𝐬 ∈
{0,1}𝑛 with physical realization and exergy. 

• Operation 𝒪: computational/energetic structure inside a subject 𝑋 acting over S 
under rules Rrel. 

• Relation Rrel: a family of rules 𝜌: S × S → S (and more general maps) that delimit 
admissible operations and link states, operations, and outcomes. 

• Types of semions: S𝑝𝑎𝑠𝑡, S𝑐𝑢𝑟𝑟𝑒𝑛𝑡, S𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, S𝑒𝑟𝑟𝑜𝑟 . 

• Temporal petals: (i) micro‑dynamics; (ii) communicative; (iii) narrative. 

• Fundamental theorem (informal): The unity of S, 𝒪, and Rrel is necessary and 
sufficient for cognition. 

• Corollary (analogy): S ≈ matter; 𝒪 ≈ energy; Rrel ≈ information. 
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4. The Physical Genesis of Cognitive Primitives 

The Cognitive Triad ⟨S, 𝒪, Rrel⟩ is not merely assumed; it emerges from foundational physical 
and informational principles. Understanding their origins anchors the axiomatic system 
within a concrete material framework. 

4.1. The Genesis of Semions (𝐒): From Fluctuation to State 

Cognition begins not with predefined symbols, but with the discretization of continuous 
physical flows—whether they arise from external sensory inputs or internal homeostatic 
signals. 

A semion S is a physical state that has achieved exergetic stability, making it 
distinguishable from background fluctuations and allowing it to persist long enough (𝜏 >
𝜏min) to participate in computational processes. 

This act of identifying stable, repeatable states within a stochastic field constitutes the first 
step of cognition. 

Lemma Emergentia Status 

Ex campo stochasticorum, status cum tempore vitae supra 𝜏min fiunt semiones. 

(From a stochastic field, states with a lifetime above the minimum threshold become 
semions.) 

Formally captured in: 

AX‑DISCR‑01: All cognitive processing begins with the quantization of phenomena into semions. 

4.2. The Genesis of Operations (𝓞): A Minimal Computational Basis 

Complex cognitive transformations are built from a minimal set of primitive, physically 
realizable operations, a basis postulated to be universal across substrates: 

AX-OPER-BASIS — Axiomatis Primitivorum Operandi 

There exists a minimal set of primitive operations: 

𝒪0 = {cmp, add, sub} 

from which all cognitive transformations can be composed. 

Physical analogues: 

• Comparison (𝑐𝑚𝑝): Threshold firing in neurons or non‑linear activations (e.g., ReLU) 
in artificial networks. 

• Addition (𝑎𝑑𝑑): Excitatory summation of synaptic inputs. 

• Subtraction (𝑠𝑢𝑏): Inhibitory synaptic inputs. 

The complexity of higher‑order cognition (e.g., attention, reasoning) does not arise from 
novel primitives, but from massively parallel and hierarchical compositions of 𝒪0. 
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Lemma de Continuitate Compositionis 

Novi operatorum generes non oriuntur ex scala per se, sed compositionaliter ex 𝒪0 
sub vinclis 𝑅rel. 

(New types of operators do not arise from scale per se, but compositionally from the 
primitive basis, under the constraints of Rrel.) 

4.3. The Genesis of Relations (𝐑rel): From Interaction to Structure 

The relational matrix Rrel is the emergent physical topology of the substrate, not an 
abstract table of connections. 

It consists of stabilized pathways and constraints that determine which operations are 
possible or likely, shaped by error minimization and energy optimization. Over time, 
pathways leading to predictive success are reinforced. 

Lemma Topologia Relationum 

Ex fluctuationibus et margine systematis emergit structura relationum Rrel, quae 
determinat itineraria cognitiva intra subjectum. 

(From fluctuations and the system’s boundary, the structure of relations Rrel emerges, 
which determines the cognitive pathways within the subject.) 

4.4. Cyclic Interdependence 

The triad ⟨S, 𝒪, Rrel⟩ forms a complete physical cycle: 

1. Stable states S are identified. 

2. They are transformed by physical operations 𝒪. 

3. The history of these interactions shapes Rrel. 

4. Rrel in turn constrains and channels future operations. 

 

5. Core axioms 

The principles of material cognition are derived from a minimal set of foundational axioms 
grouped into: physical basis, dynamic/predictive architecture, and communicative 
grounding. Bracketed tags are used for reference in statements and proofs. 

5.A. Physical and thermodynamic foundations 

• [AX‑PHYS‑01] Axiomatis Materialitatis Semionis (Semionic materiality). 

• Every semion is a physical, exergy‑bearing state. No semion exists without a material 
substrate. 

∀𝐬 ∈ S:  ∃ 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝐬)  ∧  𝐸(𝐬) ≥ 𝐸min > 0. 

• [AX‑PHYS‑02] Axiomatis Pretii Operandi (Operational cost). 
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• Every cognitive operation has a thermodynamic cost bounded below by Landauer’s 
limit for irreversible recording/erasure. 

∀𝑂 ∈ 𝒪:  𝑄(𝑂) ≥ 𝑘𝐵𝑇ln2. 

• [AX‑DISCR‑01] Axioma Discretisationis (Discretization). 

• Cognition begins with the discretization of sensory/internal flows into semions, 
yielding a finite‑dimensionally parameterizable set of stable, distinguishable states. 

Φ:flows → S. 

5.B. Dynamic and predictive principles 

• [AX‑PREDICT‑01] Axioma Praedictionis (Prediction). 

• The system continually generates predicted states and minimizes prediction error. 

∀𝑡:   𝐶𝑜𝑔(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸𝑟𝑟𝑜𝑟(𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑡),  𝑅𝑒𝑎𝑙𝑖𝑡𝑦(𝑡)). 

• [AX‑HIERARCH‑01] Axioma Hierarchiae Temporalis (Temporal hierarchies). 

• Cognitive processes unfold across nested temporal scales with cross‑scale feedback 
(micro ↔ communicative ↔ narrative). 

𝐶𝑜𝑔 = ⋃
𝑛

𝑖=0
𝑃𝑟𝑜𝑐𝑒𝑠𝑠scale𝑖

, ∃{𝑇𝑖}:  𝑇𝑖 ⊂ 𝑇𝑖+1,  𝑓: 𝑇𝑖 → 𝑇𝑖+1. 

• Scales (indicative): 

o Micro‑scale: sensorimotor and physiological loops (approximately 10−3–100 
s). 

o Communicative scale: interaction and synchronization (approximately 100–
102 s). 

o Narrative scale: long‑term memory, goals, identity (approximately 103–107 
s). 

• [AX‑ADAPT‑01] Axioma Adaptationis per Errorem (Error‑driven adaptation). 

• The relational structure Rrel,𝑡 ⊆ S × 𝒪 × S evolves by minimizing predictive error 
under energetic/informational constraints. 

Rrel,𝑡+1 = Update(Rrel,t, Errort, Constraints). 

5.C. Communicative principle 

• [AX‑COMM‑01] Axioma Communicationis (Public validity). 

• Cognitive validity and stability are achieved and maintained through communication; 
stable public representations are integral to persistence. 

𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝐶𝑜𝑔) ⇒ 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒(𝐶𝑜𝑔). 

 



8 
 

6. Postulates (empirically motivated, not axioms) 
• [POS‑SUBSTR‑INV] Axioma Invariantiae Substrati (Substrate invariance). 

• Cognitive operations 𝒪 are substrate‑invariant in principle; only scale and efficiency 
vary with architecture. 

∀𝒪 ∈  𝒪, ∀Sub1, Sub2:  𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑂, Sub1) ⇔ 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑂, Sub2). 

• Comment: Treated as a postulate supported by cross‑substrate evidence; targeted 
elevation to theorem via [TH‑LAYER‑ORTH]. 

• [POS‑OPER‑BASIS] Axiomatis Primitivorum Operandi (Primitive set). 

• There exists a minimal set of primitives 𝒪0 = {cmp,add,sub} from which all cognitive 
transformations can be compositionally generated. 

∀𝑂 ∈ 𝒪,  ∃𝑓(𝒪0) → 𝑂. 

• Comment: A constructive postulate to be evaluated in the companion series on the 
genesis of operations. 

 

7. Lemmas 
• [LEM‑REFL‑EXT‑01] Lemma de Reflexione Externa (External reflection). 

• Architectures without intrinsic memory and closed predictive loops can be “closed” 
only via an external agent/environment (external reflexive loop). 

o Depends on: [AX‑PREDICT‑01], [AX‑COMM‑01]. 

• LEM‑PHANTOM‑01 Lemma on Semantic Phantoms 

• Formulation: The External Language of Meaning (ELM) can generate syntactically 
well‑formed constructs that have no referent in the Metalanguage of Cognition (MLC). 

• Description: The projection 𝜇: S → Σ may create symbols for which there is no stable 
semantic mapping in the S‑space. Such “phantoms” do not engage long‑term linkages 
in 𝑅 and are absent from the predictive dynamics. Their emergence is a by‑product of 
the exposure mechanism and can distort cognitive exchange. LEM‑PHANTOM‑01 
prevents meaningless constructs from contaminating Rrel, ensuring that only 
structurally grounded patterns from the noise reservoir integrate into the cognitive 
matrix. 

• [LEM‑COMP‑01] Lemma de Continuitate Compositionis (Compositional 
genesis). 

• Novel classes of operations arise not from scale per se, but compositionally from 𝒪0 
under constraints Rrel. Gradients/selection are canonical mechanisms. 

o Status: Outlined here; full treatment in ART‑GEN‑OPS‑02. 

• [LM‑DISCRET‑01] Lemma of discretization. 
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• Discrete symbolic elements (semiotic tokens) are necessary for stable operation of 
MLC; continuous signals alone cannot guarantee reproducibility. 

• [LM‑SENS‑01] Lemma Sensoria. 

• MLC structures are fed by sensory modalities but transform them into discrete 
symbolic patterns. 

• [LM‑SYMB‑01] Lemma Symbolica. 

• MLC requires symbolic recombination capacity to generate higher‑order cognition 
beyond sensory input. 

• [LM‑COMPRESS‑01] Lemma of cognitive compression. 

• Automatization is achieved through reduction of symbolic weight in MLC, enabling 
faster but less flexible operations. 

 

8. Theorems 

T1. Temporal synchronization and the constructed “present” 

• [TH‑LAG‑01] Theorema Synchronicitatis Tardivae (Delayed synchrony). 

• The “present” is a construction chosen by predictive alignment between delayed 
input and forecasted futures: 

𝑂present(𝑡) = 𝑎𝑟𝑔min
𝜏≥0

𝑑(𝐬𝑖𝑛(𝑡 − 𝛿),  𝐬𝑝𝑟𝑒𝑑(𝑡 + 𝜏)), 

• where 𝑑: 𝑋 × 𝑋 → ℝ≥0 is a cognitive‑dissonance metric on the space of states, 
satisfying 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦, symmetry, and the triangle inequality. If a normalized 
form is used (e.g. 𝑑 ∈ [0,1]), this is stated explicitly. 𝛿 [s] is the input‑assimilation 
latency. 

o Depends on: [AX‑PREDICT‑01], [AX‑HIERARCH‑01], [AX‑ADAPT‑01]. 

• [COR‑LAG‑W] Corollary (Width of now). 

• The width of the present 𝑤𝑛𝑜𝑤 is a function of tolerances in 𝑑 and adaptation speeds 
in Rrel,𝑡. 

o Depends on: [TH‑LAG‑01]. 

T2. Narrative extension and thresholds 

• [TH‑NARR‑LEV‑01] Narrativum ut Lever Temporalis (Narrative lever). 

• ELM structures form temporal bridges that extend the effective “present”: 

𝑁𝑎𝑟𝑟(Δ𝑇) = max
𝐸𝐿𝑀

 𝑃𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙(S,  𝑡 + Δ𝑇),  Δ𝑇 ≫ 0. 

• Depends on: [AX‑COMM‑01], [AX‑HIERARCH‑01], [AX‑PREDICT‑01]. 
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• Roadmap: Full development in ART‑NARR‑03. 

• [TH‑NARR‑THRESH‑01] Theorema de Limine Narrativo (Narrative threshold). 

• There exists a threshold 𝑇 such that if 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐸𝐿𝑀) > 𝑇, the narrative loop 
activates and the systemic property reason emerges. 

o Depends on: [TH‑NARR‑LEV‑01], [AX‑ADAPT‑01], [AX‑COMM‑01]. 

o Roadmap: ART‑NARR‑03. 

T3. Regulation 

• [TH‑REGUL‑DUAL‑01] Theorema de Dualitate Regulationis (Dual regulation of 
language activity). 

• Regulation is distributed across two irreducible axes: internal (cognitive 
compression/expansion in MLC) and external (normative/communicative 
constraints in ELM). These levels recursively inform each other, balancing 
mechanism and model. 

o Depends on: [AX‑PHYS‑02], [AX‑ADAPT‑01], [AX‑HIERARCH‑01]. 

T4. Layering and invariance 

• [TH‑LAYER‑ORTH] Layer‑0 orthogonality. 

• For fixed (L1, L2, L3), variations in 𝐿0 change efficiency constants while preserving 
partial isomorphisms of operations 𝒪 and relations 𝑅. 

o Depends on: [AX‑PHYS‑01], [AX‑PHYS‑02], [AX‑ADAPT‑01], 
[POS‑SUBSTR‑INV], [BC‑02]. 

o Purpose: Path toward elevating [POS‑SUBSTR‑INV] to theorem. 

T5. Persistence and anti‑entropy 

• [TH‑PERSIST‑01] Theorem of persistence. 

• Cognitive patterns persist by maintaining semantic invariants across MLC↔ELM 
projections and across substrates, provided prediction error is minimized under 
energy budgets and communicative corrections are maintained. 

• Formal/operational core: 

o If a system minimizes 𝑑(Sin, Spred) under energy cost 𝑄 and maintains 

communicative correction ([AX‑COMM‑01]), then ∂𝑋 persists over horizon Δ 
with non‑zero probability exceeding background decay. 

o Semantic invariant 𝐼sem satisfies 𝐼sem(𝑥) ≈ 𝐼sem(𝐸𝐿𝑀 ∘ ⋯ ∘ 𝑀𝐿𝐶(𝑥)) within 
tolerance 𝜖. 

o Depends on: [BC‑03], [AX‑PREDICT‑01], [AX‑PHYS‑02], [AX‑COMM‑01], 
[TH‑LANG‑01] (for invariants). 

T6. Language as dual projection 

• [TH‑LANG‑01] Theorem of dual projection of language. 
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• Every linguistic system admits a dual projection: MLC (internal Language of 
Cognition) and ELM (external Expositional Language Medium). Full cognitive 
representation requires a bidirectional mapping MLC ⇄ ELM that preserves the 
structure of relevant relations. 

o Proof sketch: If cognition operated only in MLC, private structure would lack 
public calibration; if only in ELM, exposition would lack generative grounding. 
Duality ensures computability and communicability via bidirectional mapping 
with toleranced invariants. 

o Depends on: [AX‑COMM‑01], [AX‑HIERARCH‑01], [POS‑SUBSTR‑INV], 
[POS‑OPER‑BASIS]. 

o Corollary [COR‑LANG‑DECOUPLE]: Partial decoupling of MLC and ELM 
(inner speech, automatized speech, aphasias) does not destroy the core 𝒪; 
mappings can be re‑established within bounds. 

o Roadmap: Full proof in ART‑LANG‑01. 

• TH‑NOISE‑01 Theorem of Cognitive Noise 

• Formulation: Silentia est matrix potentialis. — Latent cognitive activity, not 
actualised in the current vector of attention, forms a structured “noise” that serves as 
a reservoir of potential patterns. 

• Description: Any activation that is not a direct generation from already consolidated 
automatic routes 𝜋0 originates in a reconfiguration of this noise field. Non‑linguistic 
and “dark” neuronal populations (Humphries, The Spike) operate as carriers of latent 
configurations, which can enter Rrel when context shifts. Noise is a necessary 
precondition for the emergence of insight, creative linkages, and new operator 
trajectories. 

• From prediction to adaptation: TH‑NOISE‑01 bridges the predictive core 
(AX‑PREDICT‑01) and adaptive mechanisms (AX‑ADAPT‑01), formalising where 
novelty originates. From composition constraints: LEM‑COMP‑01 bounds how new 
operators form; TH‑NOISE‑01 specifies where their raw material comes from. 

 

9. Operationalizations 

9.1. Present‑operators (operational definition and metrics) 

• Definition: Opresent selects actions/updates from a constructed present rather than 

an instant: 

Opresent(𝑡) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜏≥0

𝑑(𝐬in(𝑡 − 𝛿), 𝐬pred(𝑡 + 𝜏)), 

• where 𝑑 is a dissonance metric (e.g., KL, Hamming over semion bundles), 𝛿 is 
input‑assimilation latency and 𝛿′ is exposition/actuation latency. 

• Width of the present: 
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𝑤now = 𝑚𝑎𝑥{𝜏: 𝑑 ≤ 𝑑min + 𝜖}. 

• Measurement: 

o Input latency (𝛿): cross‑correlate sensed semions with model‑state updates. 

o Output latency (𝛿′): correlate model commits with motor/ELM emission. 

o Width (𝑤now): span of 𝜏 values producing indistinguishable decisions (A/B 
within 𝜖) under fixed context. 

• Predictions: 

o Under noise/energy scarcity ([AX‑PHYS‑02]): 𝑤now narrows. 

o With improved model fidelity (lower expected 𝑑): 𝑤now widens. 

o Cross‑substrate ([POS‑SUBSTR‑INV]): functional form is invariant; absolute 
latencies differ. 

9.2. Dual operators (MLC↔ELM over time) 

• Mapping pipeline: 

1. Assimilation A:  𝐸𝐿𝑀 → 𝑀𝐿𝐶. 

2. Reconstruction Orecon:  ℋ → 𝑀𝐿𝐶 (from memory/history). 

3. Prediction P:  𝑀𝐿𝐶 → 𝑀𝐿𝐶. 

4. Exposition E:  𝑀𝐿𝐶 → 𝐸𝐿𝑀. 

• Composite operator: 

Otd = E ∘ P ∘ Orecon ∘ A. 

• Errors: 

o Exposition error: 𝑒𝐸 = 𝑑(𝐸(𝑀𝐿𝐶),  𝐸𝐿𝑀target). 

o Modeling error: 𝑒𝑀 = 𝑑(P(Orecon(A(𝐸𝐿𝑀))),  𝑀𝐿𝐶obs). 

• Invariant ([TH‑PERSIST‑01]): 

• A semantic invariant 𝐼sem satisfies 𝐼sem(𝑥) = 𝐼sem(𝑂td(𝑥)) within 𝜖. 

• Measurement exemplars: 

o Silicon: A ≈ parsing, E ≈ decoding, Orecon ≈ state estimation, P ≈ latent 
dynamics; estimate 𝑒𝐸 , 𝑒𝑀 via held‑out paraphrase/translation and latent 
prediction error. 

o Biology: A/E ≈ perception/utterance, Orecon/P ≈ working memory and 
predictive coding; estimate via neural decoding and behavioral variance. 

• Trade‑offs under energy constraints ([AX‑PHYS‑02]): 

• Systems trade 𝑒𝐸  vs. 𝑒𝑀: stronger compression in reconstruction saves energy but 
raises 𝑒𝑀. Robust cognition maintains 𝐼sem despite bounded errors. 

9.3. Metrology (lags, energetics, efficiency) 

• Lag metric: 
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  Let 

𝑙𝑎𝑔 [s] = 𝛿 [s] + 𝛿′ [s] 

  with context‑dependent distribution 𝑝(𝑙𝑎𝑔 ∣ task, noise). Here 𝛿 is the 
input‑assimilation latency and 𝛿′ the exposition/actuation latency. 
The dissonance function 𝑑: 𝑋 × 𝑋 → ℝ≥0 is a metric on the space of states, satisfying 
𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦, symmetry, and the triangle inequality; if a normalized form is 
used (e.g. 𝑑 ∈ [0,1]), this is stated explicitly. 
Estimate 𝑙𝑎𝑔 by cross‑correlation; report 𝔼[𝑙𝑎𝑔] [s], variance [s2], and context effects. 

• Energetics: 

  Logical work 𝑊𝑂  [bit] as reduction in uncertainty or predictive loss: 
 

𝑊𝑂 = Δ𝐼(𝑆) [bit] or 𝑊𝑂 = Δ𝐾𝐿 [bit] 

  Energy cost 𝐸𝑂  [J] measured or bounded in Landauer units 
 

𝐸𝐿 = 𝑘𝐵𝑇ln2 [J/bit] 

  If converting between energy and power, the unit factor 1 W = 1 J/s is stated 
explicitly. 

• Efficiency: 

𝜂𝑂 =
𝑊𝑂  [bit]

𝐸𝑂  [J]/𝐸𝐿  [J/bit]
∈ [0,1], 

  interpretable as bits of useful structure gained per Landauer‑equivalent of expended 
energy. 

  Cross‑substrate tests (𝑃𝑂𝑆 − 𝑆𝑈𝐵𝑆𝑇𝑅 − 𝐼𝑁𝑉): 

  Compare 𝜂𝑂  across substrates: expect invariant relations with different absolute 
costs. 

• Predictions: 

  𝜂𝑂 increases when Rrel matches task statistics (𝐴𝑋 − 𝐴𝐷𝐴𝑃𝑇 − 01), decreases with 
injected noise, and tends to anticorrelate with 𝑙𝑎𝑔 as optimization sharpens 
prediction. 

 

10. Ontological corollaries (explanatory notes) 
1. Materialismus strictus: sine substracto nulla cognitio; sine pretio energetico nullum 

𝑂. 

All cognitive states/operations are materially instantiated and energetically priced 
([AX‑PHYS‑01/02]). 
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o Falsifiability: a genuine instance of cognition with no measurable substrate 
or energy flow would refute PC. 

o Implication: “Pure information” cognition reduces to an implementation 
claim at L3/L0. 

2. Exponibilitas: ELM is the condition of public stability; valid cognition is 
communicable. 

Stable meaning requires externalization and inter‑agent calibration ([AX‑COMM‑01], 
[TH‑PERSIST‑01]). 

o Prediction: Isolation induces semantic drift—observable as rising 𝑒𝐸  and 
failure to preserve 𝐼sem. 

3. Isomorphia micro↔macro: delayed synchrony (micro) and narrative bridging 
(macro) manifest the same temporal asymmetry. 

Aggregated micro lags constrain feasible narrative windows Δ𝑇; improving micro 
prediction widens Δ𝑇 at fixed energy. 

o Measurement: correlate 𝑤now with narrative retention/goal maintenance 
across tasks and substrates. 

 

11. Glossary of symbols 
• S: set of semions (physically distinguishable, stable states). 

• 𝒪: set of operations (physical transformations over 𝑆). 

• Rrel,𝑡 ⊆ S × 𝒪 × S: relational structure at time 𝑡. 

• 𝐸(𝐬): exergy of semion 𝐬; 𝐸min > 0 minimal threshold for discriminability/stability. 

• 𝑄(𝑂): energy/heat equivalent of operation 𝑂 ∈ 𝒪. 

• 𝑑(⋅,⋅): metric/divergence of cognitive dissonance. 

• 𝑤𝑛𝑜𝑤: width of the constructed present. 

• L𝑖: layers of architecture, 𝑖 ∈ {0,1,2,3}. 

• MLC / ELM: internal language of cognition / external expository medium. 

 

12. Relationship to Existing Theories 

A comparative synthesis situates the Principia Cognitia (PC) triad  ⟨S, 𝒪, Rrel⟩ and the MLC–
ELM duality against major symbolic, geometric, computational and representationalist 
accounts. 

What is an “axiomatic theory of cognition”? 

Think of it as a blueprint that spells out, in a small set of basic rules, how any 
thinking system must work – whether it’s a human brain, an artificial neural 
network, or something built in the far future. The “axioms” are those basic rules: 
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they don’t change from case to case, but everything else in the theory follows from 
them. 

Why this matters for AI and human minds 

By reducing cognition to a handful of testable principles, we can compare very 
different systems on the same footing. This lets us see where AI truly resembles 
human thinking and where it differs in kind, not just degree. It also gives a way to 
design artificial minds with properties we actually want — like reliability, 
transparency, and the ability to work well with people. 

Practical take‑aways now 

Even without building a full artificial mind, the axioms point to concrete tools: ways 
to measure how faithfully a system represents and processes information; 
checklists for what kinds of memory and error‑correction it needs; and protocols 
to validate that two systems, human or machine, really “understand” the same 
thing. These can be put to work immediately in AI evaluation, cognitive science 
experiments, and human‑AI team design. 

12.1 Comparison Matrix 
Theory Units Relations Operations Strengths Limitations 

Fodor’s 
LOT 

Symbols Syntax Production rules Strong 
compositionality, 
clear syntax–
semantics 
interface 

No account of 
graded dynamics, 
learning delegated 
to ad hoc modules 

Gärdenfor
s’ 
Conceptu
al Spaces 

Regions in ℝⁿ Topologica
l overlap, 
distance 

Geometric 
transforms 

Intuitive mapping 
to perception, 
metric structure 

Limited 
operational set, 
weak temporal 
dynamics 

ACT‑R / 
Soar 

Chunks, rules Slot–filler 
bindings, 
pattern 
matching 

Production rules Mature 
implementation, 
task‑level 
modelling 

Architecture‑speci
fic, brittle outside 
trained domains 

Enactivis
m 

Actions/situatio
ns 

Agent–
environme
nt coupling 

No explicit 𝒪 Rich 
phenomenology, 
embodiment focus 

Lacks formal 
apparatus for 
operations or 
metrics 

Predictive 
Processin
g 

Model elements Hierarchic
al 
prediction–
error links 

Bayesian 
updates, 
gradient descent 

Neuro‑computatio
nal plausibility, 
unifying principle 

No discrete 
semion layer, ELM 
projection absent 

PC 
Framewor
k 

Semions Weighted 
graphs 

Physically‑realis
ed primitives 
{cmp, add, sub} 

Substrate‑neutral, 
thermodynamicall
y grounded, 
empirically 
testable 

Requires 
experimental 
validation of 
primitives and 
invariance 
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 12.2 Symbolic Logic vs. MLC–ELM 
Category MLC ELM 

Unit Semion (vector 𝐬 ∈ V) Symbol (∈ Σ) 

Links Weighted graphs Rrel ⊂  S  ×  S  Syntax, rules 

Representation Vectorial, substrate‑neutral Discrete, mediative 

Communication Reconstruction on shared MLC Transmission of symbols 

Loss None (within agent) Unavoidable in μ‑projection 

12.3 Evaluation by Coherence and Falsifiability 
Theory Coherence Falsifiability 

LOT High (symbolic) Low (rule‑list expansion) 

Conceptual Spaces Moderate (geometric) Moderate (topology tests) 

ACT‑R/Soar High (rule‑based) Low (architecture‑bound) 

Enactivism Low (narrative) Low (no protocol) 

Predictive Processing High (computational) Moderate–high (neuro tests) 

MLC–ELM High (vector+syntax) High (LLMs, EEG, task accuracy) 

12.4 Convergence with Blaise Agüera y Arcas 
Concept PC What Is Intelligence? 

Fundamental 
principle 

AX‑PREDICT‑01: continual prediction Brain as predictive engine 

Cognitive substrate AX‑PHYS‑01: material semion “Computation phase” of matter 

Evolutionary driver LEM‑COMP‑01: composition, diffusion Symbiogenesis 

Substrate invariance POS‑SUBSTR‑INV Functionalism (“artificial diamonds”) 

Sociality Narrative threshold, collective cognition Theory‑of‑Mind arms race 

Intellectual lineage Turing, Wiener, Wittgenstein Turing, von Neumann 

The overlap underscores a shared commitment to prediction, material grounding, 
substrate‑neutralism, and social‑evolutionary pressures, but PC adds a worked‑out minimal 
operational basis and a formal semion–relation ontology. 

 12.5 Points of Contact with Prakash Mondal 

Mondal’s The Puzzling Chasm… sets out three “correspondence” conditions between 
cognitive representations (CR) and linguistic forms (PL). PC reframes these as generative 
rather than merely matching: both CR and PL emerge from the same primitive operations 
and relation‑graphs, with μ and ν as concrete compilation/projection maps. 

Aspect Mondal Redundancy PC bridge Integration/test 

Ontology & aim Micro→macro 
dynamics CR↔PL 

Wide 
ontological 
net 

Minimal 
substrate‑neutral 
ontology: ops, 
memories, errors 

Fix a minimal 
macrostate type and 
one micro‑dynamic for 
trial 

Linking operator ξ(CF) ≡ PLR Carrier 
unspecified 

ν:CF→TPR compiler in 
WM 

Align ξ with ν, compare 
outputs on same input 
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Aspect Mondal Redundancy PC bridge Integration/test 

Units of analysis Micro L→macro H; 
CR/PL as vector 
macrostates 

Macro level 
descriptive 
only 

Ops/composers, 
WM/LTM buffers, 
causal tracer 

Operator+arguments+c
ontext tags as attractor 
labels 

Dynamics Symbolic via 
phase‑space 
partition 

No “grid” of 
measurable 
transitions 

Discrete orchestration 
parse→CF→ν→TPR→e
xecute 

Parallel transition logs 
for both channels 

Mapping 
condition 

Equivalence classes 
manifest as CR and 
PL 

Abstract, no 
metric 

Dual labels from same 
trajectory 

Mutual information 
CF↔TPR over 
states/transitions 

Uniformity/stabili
ty 

Macro‑dynamics 
similar over 
micro‑variants 

No tolerances Two implementations 
(spiking, RNN) under 
same scheduler 

ε/δ‑bounds on 
attractor distances, KL 
of kernels 

Correspondence Overlapping/identi
cal attractor basins 

No partition 
procedure 

Split trajectories by 
“operator events” and 
“symbol snapshots” 

Graph bisimulation ≥ τ 
overlap 

Equivalence 
principle 

F(⟨Tᵢ⟩) ↔ P(Tᵢ) Risk of 
hard‑coding 

Polytype compilation: 
one op sig→multiple 
NFs 

Check type‑sig 
isomorphism on 
compile 

Compositionality Extensional 
superposition + 
concatenation 

Mixes 
language/tho
ught 
procedures 

PC combinators: 
sequence, choice, 
parallel, merge 

Complexity growth: 
tree depth vs. program 
length 

Memory/errors/f
act‑check 

Out of scope Validity drift 
risk 

Error buffer, 
fact‑check, 
provenance modules 

Maintain equivalence 
under error 
injection/correction 

Substrate 
neutrality 

Declared 
micro↔macro 

Bound to 
neuro‑lexicon 

Same protocol across 
carriers 

Demonstrate 
ε/δ‑invariance on two 
carriers 

Replicability “Better explains 
data” claim 

No test‑set PC task‑set: causative, 
path, TR–LM, 
quantifier 

Preregister metrics 
and success thresholds 

Mondal’s conditions become, in PC, testable invariants with operational definitions, 
tolerances and proposed measurement protocols. 

 

13. Conclusion 

Principia Cognitia offers a formal framework for cognition that is independent of 
metaphysical speculation yet applicable across disciplines and substrates. By articulating a 
coherent set of axioms, it clarifies the dual nature of language, the role of discretization, and 
the relationship between symbol and phenomenon. Future work will extend the system 
toward empirical validation, computational implementation, and integration with ongoing 
debates in philosophy of mind and cognitive science. The aim is not finality, but the 
establishment of a generative starting point for cumulative progress. Furthermore, the role 
of competition as a fundamental anti-entropic selection mechanism warrants a 
separate axiomatic treatment. Preliminary analysis suggests that competition is not merely 
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a social phenomenon but an ontological law governing the persistence of organized 
structures ⟨S, Rrel, 𝒪⟩. This will be the subject of a forthcoming work, extending the Principia 
Cognitia framework to evolutionary and game-theoretic dynamics. 
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Appendix A. Axiomata Relationis 

Definitio A.1 (Relatio Physica) 

Relatio 𝑅 is a configuration of the physical substrate that determines and constrains 
transitions between semions through operations: 

Rrel ⊆ S × 𝒪 × S. 

Lemma A.1 (Emergentia Relationum) 

𝑅 is not given a priori, but instead emerges from a stochastic field of fluctuations: 

Rrel = {(S𝑖, 𝒪, S𝑗)|𝑃(S𝑗|𝑆𝑖, 𝒪) ≫ 0 ∧ 𝜏(S𝑗) > 𝜏min}. 

That is: only those transformations are retained which: 

1. Have a transition probability significantly higher than random chance. 

2. Produce states whose lifetime exceeds a defined minimal threshold. 

Lemma A.2 (Conditio Subiecti) 

For the stability of Rrel, a system margin is required: 

• The margin separates the system from the external environment. 

• External states can influence transitions, but only those are retained that—within the 
margin—result in more stable structures. 

Theorema A.1 (Topologia Emergens) 

From stochastic fluctuations, through natural or physico‑energetic selection, an emergent 
topology of relations arises: 

Rrel = lim
𝑡→∞

𝐹(S, 𝒪, 𝑒𝑛𝑣𝑡) 

where 𝐹 is a selection function that retains only the links resistant to entropy. 

Corollarium A.1 (Trias Cognitiva Completa) 

Thus: 

• 𝑆 = discretized physical states (semiones), 

• 𝒪 = physical processes that transform them (operationes), 

• 𝑅 = the emergent network of stabilized transitions, 
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This triad forms the foundation of material cognition. 

 

Appendix B. Axiomata Vectorialia 

Definitio B.1 (Semion Elementarius) 

Elementary semion 𝑠𝑒 is a discretized physical state, distinctly recognizable and 
energetically sustainable. 

Formally: 

𝐬𝑒 ∈ Sphys, |Sphys| < ∞. 

In other words, it belongs to the finite set of all possible physical states 𝑆𝑝ℎ𝑦𝑠. 

Definitio B.2 (Semion Vectorialis) 

Vectorial semion 𝑠𝑣 is a mathematical structure in a linear space 𝕊, represented as a linear 
combination of elementary semions: 

𝐬𝑣 = ∑ 𝑤𝑖

𝑛

𝑖=1

𝐬𝑒,𝑖, 𝑤𝑖 ∈ ℝ. 

Thus, 𝐬𝑣 is not a new physical state but rather a mathematical description of the 
composition of multiple 𝐬𝑒 instances. 

Lemma B.1 (Algebra Semionum) 

Complex configurations of cognitive states are conveniently handled within a vector‑space 
framework: 

• Addition: 𝐬𝑣 + 𝐬′
𝑣 = ∑ (𝑖 𝑤𝑖 + 𝑤′

𝑖)𝐬𝑒,𝑖 

• Scalar multiplication: 𝛼𝐬𝑣 = ∑ (𝑖 𝛼𝑤𝑖)𝐬𝑒,𝑖 

This establishes the linear spaces and operations of vectors in 𝕊. 

Lemma B.2 (Transformata) 

For dynamic analysis, vectorial semions can be subjected to analytical operations (for 
example, Fourier transforms, convolutions, and matrix decompositions): 

ℱ(𝐬𝑣)(𝜔) = ∑ 𝑤𝑖

𝑖

𝑒−𝑖𝜔𝑡𝑖  

Therefore, while the underlying basis is made of discrete physical states, the analysis itself 
is carried out in vector space. 
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Theorema B.1 (Dualitas Physica–Mathematica) 

Every 𝐬𝑣 can be reduced to an ensemble of 𝐬𝑒 , but scientific cognition and practice require 
the vectorial description in order to manage compositions, projections, and approximations 
effectively. 

Formally: 

∀𝐬𝑣 ∈ 𝕊, ∃{𝐬𝑒,𝑖}: 𝐬𝑣 = 𝑓({𝐬𝑒,𝑖}, 𝐰). 

This means: for any given vectorial semion, there exists a set of corresponding elementary 
semions and weights from which it is constructed. 

Corollarium B.1 (Analogia cum Operationibus) 

Just as every operation 𝑂 ∈ 𝒪 can be reduced to a composition of primitive operations 
(compare/add/subtract), so too every vectorial semion can be reduced to a collection of 
elementary semions. 

This analogy establishes a fundamental symmetry between 𝒪 (operations) and S 
(states) within the Principia Cognitia framework. 

 

Appendix C. The “KilburnGPT” Gedankenexperiment 

Appendix C.1 — Manchester Baby LLM: 

Objective. 

To demonstrate the substrate invariance of the cognitive operation 𝒪 underlying transformer 
inference, we consider an extreme hypothetical: running a small, fixed‑weight transformer 
of the class studied in Shai et al. (2025) on a large parallel cluster of Manchester Baby 
computers (Kilburn et al., 1948). By mapping each primitive in the model to the minimal 
instruction set of the Baby, we ask whether any step is in principle uncomputable, and we 
quantify the performance and resource costs. 

C.1.1. Historical substrate 

The Manchester Small‑Scale Experimental Machine (“Baby”) was the first stored‑program 
digital computer. Key characteristics relevant here: 

• Word size: 32 bits; 32 words of Williams tube storage (≈ 1024 bits ≈ 128 B) per 
machine. 

• Instruction set: integer add/subtract, conditional branch, bit shift, store/load. 

• Clock speed: ~1 kIPS (instructions per second). 

• Implementation: ≈ 300 vacuum tubes, Williams–Kilburn CRT memory. 

• Power draw: ≈ 3.5 kW. 
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• A functional replica is maintained at the Museum of Science and Industry, 
Manchester. 

C.1.2. Target model 

We adopt the “toy” transformer from Shai et al.: 

• Architecture: 4 layers, 1 attention head, 𝑑𝑚𝑜𝑑𝑒𝑙 = 64, 𝑑𝑘 = 8, feed‑forward 
dimension 256, context length 𝐿 = 10, vocabulary size 3. 

• Parameters: ≈ 1.41 × 105 weights, stored at 16‑bit fixed‑point precision. 

• Operations per forward pass: ≈ 1.4 × 106 multiply–accumulates (MACs), plus 
element‑wise nonlinearities (ReLU, Softmax, LayerNorm) and small control 
overhead. 

C.1.3. Mapping to Baby primitives 

All model operations reduce to the Baby’s native arithmetic and control: 

• Addition/subtraction: direct. 

• Multiplication: shift‑and‑add algorithm on fixed‑point words (≈ 80 instructions per 
16‑bit MAC). 

• Division and reciprocal square root: iterative methods (restoring division, 
Newton–Raphson). 

• Exponential: polynomial or table‑lookup approximation with linear interpolation. 

• Comparison/max: conditional branch and subtraction. 

• Vector–matrix products: distributed across rows (systolic pattern) for parallel 
execution. 

No model primitive is uncomputable on the Baby instruction set; all non‑trivial functions can 
be emulated, albeit slowly. 

C.1.4. Resource estimates 

Memory footprint 

• Weights: 0.283 MiB (≈ 2.26 Mbit) ⇒ ≈ 2210 Babies for storage alone (128 B per 
machine). 

• Activations/buffers/code: additional ≈ 50 KiB ⇒ total ≈ 2800–3200 Babies as 
“RAM nodes”. 

Compute time 

We distinguish two scenarios: 

• S0 (single Baby, purely sequential): 

• 1.4 × 106 MAC × 80 instr/MAC ≈ 1.12 × 108 instructions, plus non‑linearities ⇒ ≈
1.5 − 2.5 × 108 instructions. 
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• At 1 kIPS: ≈ 1.7 − 2.9 days per forward pass. 

• S1 (ideal parallelism across ∼900 compute‑dedicated Babies, plus memory 
nodes): 

• Row‑parallel multiply–accumulate stages dominate: the feed‑forward block’s 256 ×
64 and 64 × 256 multiplications execute in ≈ 280–300 s/layer. 

• Four layers plus overhead ⇒ ≈ 24–30 minutes per pass. 

Energy and components (S1) 

• Cluster size: 3500–4000 Babies (compute + memory). 

• Vacuum tubes: ≈ 1.1 − 1.2 × 106. 

• Power draw: ≈ 12 − 14 MW. 

• Energy per pass: ≈ 4 − 7 MWh. 

C.1.5. Interpretation 

From a computability standpoint, the operation is invariant: every step in the transformer’s 
forward pass can be expressed in the Baby’s primitive instruction set. There are no cognitive 
primitives that “break” on this substrate. The differences are purely in quantitative 
resources: 

• Latency gap: tens of minutes (S1) or days (S0) versus milliseconds on modern GPUs. 

• Energy gap: megawatt‑hours versus joules per inference. 

• Space gap: thousands of rack‑sized units versus a single chip. 

This yields a concrete, falsifiable statement: altering only the substrate from modern silicon 
to 1948 CRT‑and‑valve logic changes efficiency by many orders of magnitude, without 
altering the formal structure of the cognitive operation. 

Note. In principle, S0 could be physically enacted on the operational Baby replica in 
Manchester; the runtime in days per pass is prohibitive, but the execution is well within the 
machine’s instruction set and storage constraints when using external media for weight 
paging. 

C.1.6. References 
1. Kilburn, T., Williams, F. C., & Tootill, G. C. (1948). Report on the Manchester Small 

Scale Experimental Machine. 

2. Shai, A. S., Marzen, S. E., Teixeira, L., Oldenziel, A. G., & Riechers, P. M. (2025). 
Transformers represent belief state geometry in their residual stream. 
arXiv:2405.15943. 



25 
 

Appendix C.2 — Reliability-aware cluster operation: “KilburnGPT” under 
component failures 

Objective. 

We extend the substrate-invariance argument by modeling an operational transformer 
inference cluster built from Manchester Baby–class machines when components fail in 
realistic ways (vacuum tube burn-out, Williams tube drift and phosphor wear). We size hot 
spares, maintenance capacity, and scheduling policies to sustain target throughput with 
probabilistic guarantees, and quantify the resulting time/energy overheads. This 
complements Appendix C.1 (ideal reliability) with an availability-constrained regime. 

C.2.1. Failure modes and simplifying assumptions 

We model failures at the machine level as the superposition of independent component 
hazards in the “useful-life” phase (constant hazard per component). The following 
abstraction captures the dominant mechanisms without overfitting scarce archival data. 

• Baby bill of materials per machine: 

o Vacuum tubes: ≈300 small-signal/power valves. 

o Williams tube memory: 1 storage CRT (operationally fragile; subject to drift, 
re-biasing, and eventual wear). 

• Failure processes: 

o Vacuum tubes: random failure of heater/cathode/grid/plate; treat with 
constant hazard 𝜆𝑣𝑎𝑙𝑣𝑒 = 1/𝑀𝑇𝑇𝐹𝑣𝑎𝑙𝑣𝑒. 

o Williams tube: treat as a random “functional outage” that requires swap-and-
retune; hazard 𝜆𝑊𝑇 = 1/𝑀𝑇𝑇𝐹𝑊𝑇. 

• Machine failure rate: assuming component independence, 

𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 300 ⋅ 𝜆𝑣𝑎𝑙𝑣𝑒 + 𝜆𝑊𝑇 

• Repair times: two repair classes with mean times 

o Valve replacement + checkout: 𝑀𝑇𝑇𝑅𝑣𝑎𝑙𝑣𝑒 ∈ [0.25,  1] ℎ (swap, rebias, 
smoke test). 

o Williams tube swap + retune: 𝑀𝑇𝑇𝑅𝑊𝑇 ∈ [2,  6] ℎ (mechanical replacement, 
bias/geometry tuning, regeneration checks). 

o Average MTTR (per-machine): 

𝑀𝑇𝑇𝑅 = 𝑝𝑣𝑎𝑙𝑣𝑒 ⋅ 𝑀𝑇𝑇𝑅𝑣𝑎𝑙𝑣𝑒 + 𝑝𝑊𝑇 ⋅ 𝑀𝑇𝑇𝑅𝑊𝑇 

• where 𝑝𝑣𝑎𝑙𝑣𝑒 =
300𝜆𝑣𝑎𝑙𝑣𝑒

𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒
, 𝑝𝑊𝑇 = 1 − 𝑝𝑣𝑎𝑙𝑣𝑒. 

• Availability envelope (scenarios): 

o Optimistic: 𝑀𝑇𝑇𝐹𝑣𝑎𝑙𝑣𝑒 = 10,000 ℎ, 𝑀𝑇𝑇𝐹𝑊𝑇 = 2,000 ℎ, 𝑀𝑇𝑇𝑅𝑣𝑎𝑙𝑣𝑒 = 0.5 ℎ, 
𝑀𝑇𝑇𝑅𝑊𝑇 = 4 ℎ. 



26 
 

o Nominal: 𝑀𝑇𝑇𝐹𝑣𝑎𝑙𝑣𝑒 = 5,000 ℎ, 𝑀𝑇𝑇𝐹𝑊𝑇 = 1,000 ℎ, 𝑀𝑇𝑇𝑅𝑣𝑎𝑙𝑣𝑒 = 0.5 ℎ, 
𝑀𝑇𝑇𝑅𝑊𝑇 = 4 ℎ. 

o Pessimistic: 𝑀𝑇𝑇𝐹𝑣𝑎𝑙𝑣𝑒 = 2,000 ℎ, 𝑀𝑇𝑇𝐹𝑊𝑇 = 500 ℎ, 𝑀𝑇𝑇𝑅𝑣𝑎𝑙𝑣𝑒 = 1 ℎ, 
𝑀𝑇𝑇𝑅𝑊𝑇 = 6 ℎ. 

These ranges reflect the known fragility of Williams tubes and substantial spread in vacuum-
tube life depending on de‑rating, thermal management, and usage cycles. 

C.2.2. Queueing model for spares, staffing, and uptime 

We seek to keep a target number 𝑀 of machines “online” (operational set) while failures and 
repairs occur. Let 𝑁 be the total installed machines (operational + in repair), and let Λ = 𝑁 ⋅
𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 be the aggregate failure arrival rate. Under a standard infinite-server repair 
approximation (failures independent; repairs begin immediately and proceed in parallel), 
the number of machines in repair 𝑁rep is Poisson with mean 

𝔼[𝑁rep] = Λ ⋅ 𝑀𝑇𝑇𝑅 = 𝑁 ⋅ 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ⋅ 𝑀𝑇𝑇𝑅 

and variance 𝑉𝑎𝑟[𝑁rep] ≈ 𝔼[𝑁rep]. To achieve an operational set 𝑀 with high probability 1 −

𝛼, dimension spares via a normal tail bound: 

𝑁 = 𝑀 + 𝔼[𝑁rep] + 𝑧1−𝛼  √𝔼[𝑁rep] 

where 𝑧1−𝛼 is the standard normal quantile (e.g., 𝑧0.999 ≈ 3.09, 𝑧0.99999 ≈ 4.27). 

• Technician-hours per hour: expected labor intensity 𝐿 = Λ ⋅ 𝑀𝑇𝑇𝑅 (machine-hours 
of repair per hour). With each technician contributing 1 hour of repair per wall-hour, 
the steady-state staff demand is ⌈𝐿⌉ per shift. 

• Spare parts consumption: expected component replacements per hour: 300𝑁𝜆𝑣𝑎𝑙𝑣𝑒  
valves/hour and 𝑁𝜆𝑊𝑇 Williams tubes/hour. 

This “birth–death with instantaneous routing” model slightly understates congestion when 
repair capacity is finite; we therefore report both the mean and a conservative +𝑧-sigma 
reserve. 

C.2.3. Two cluster sizes under failures 

We reuse the two inference targets from Appendix C.1: the toy cluster sized to run the 
Shai‑class model in ≈30 minutes per pass, and a larger cluster for a mid‑sized 4‑layer 
transformer. 

A) Toy “Shai‑class” KilburnGPT (target online M ≈ 4 000 machines) 

• From Appendix C.1, ≈3.5–4.0 k machines are needed for compute + RAM nodes at 
ideal reliability. We set 𝑀 = 4,000. 

Compute the hazard, case by case. 
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• Optimistic: 

o 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 300/10,000 + 1/2,000 = 0.03 + 0.0005 = 0.0305 ℎ−1. 

o Composition: 𝑝𝑣𝑎𝑙𝑣𝑒 ≈ 0.9836, 𝑝𝑊𝑇 ≈ 0.0164. 

o 𝑀𝑇𝑇𝑅 ≈ 0.9836 ⋅ 0.5 + 0.0164 ⋅ 4 ≈ 0.566 ℎ. 

o With 𝑁 ≈ 𝑀 at first pass: 𝔼[𝑁rep] ≈ 4,000 × 0.0305 × 0.566 ≈ 69 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠. 

o Dimensioning at 𝑧 = 3.1: 𝑧√𝔼[𝑁rep] ≈ 3.1 × 8.3 ≈ 26. 

o Installed 𝑁 ≈ 4,000 + 69 + 26 = 4,095 (≈2.4% overhead). 

o Throughput of failures: Λ ≈ 𝑁𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ≈ 125 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠/ℎ. 

o Staffing: 𝐿 = Λ ⋅ 𝑀𝑇𝑇𝑅 ≈ 71 𝑡𝑒𝑐ℎ‑ℎ𝑜𝑢𝑟𝑠/ℎ (≈71 technicians per shift). 

o Spares burn rate: valves ≈ 300𝑁/10,000 ≈ 123 𝑣𝑎𝑙𝑣𝑒𝑠/ℎ; Williams tubes ≈ 
𝑁/2,000 ≈ 2 𝑡𝑢𝑏𝑒𝑠/ℎ. 

• Nominal: 

o 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 300/5,000 + 1/1,000 = 0.06 + 0.001 = 0.061 ℎ−1. 

o 𝑝𝑣𝑎𝑙𝑣𝑒 ≈ 0.9836, 𝑝𝑊𝑇 ≈ 0.0164 (same ratio). 

o 𝑀𝑇𝑇𝑅 ≈ 0.566 ℎ (same times). 

o 𝔼[𝑁rep] ≈ 4,000 × 0.061 × 0.566 ≈ 138. Margin 𝑧√138 ≈ 36. 

o Installed 𝑁 ≈ 4,174 (≈4.3% overhead). 

o Failures: Λ ≈ 255 /ℎ. 

o Staffing: 𝐿 ≈ 144 𝑡𝑒𝑐ℎ‑ℎ𝑜𝑢𝑟𝑠/ℎ. 

o Spares: ≈ 300𝑁/5,000 ≈ 251 𝑣𝑎𝑙𝑣𝑒𝑠/ℎ; 𝑁/1,000 ≈ 4.2 𝑡𝑢𝑏𝑒𝑠/ℎ. 

• Pessimistic: 

o 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 300/2,000 + 1/500 = 0.15 + 0.002 = 0.152 ℎ−1. 

o 𝑝𝑣𝑎𝑙𝑣𝑒 ≈ 0.9870, 𝑝𝑊𝑇 ≈ 0.0130. 

o 𝑀𝑇𝑇𝑅 ≈ 0.9870 ⋅ 1 + 0.0130 ⋅ 6 ≈ 1.065 ℎ. 

o 𝔼[𝑁rep] ≈ 4,000 × 0.152 × 1.065 ≈ 647. Margin 𝑧√647 ≈ 79. 

o Installed 𝑁 ≈ 4,726 (≈18% overhead). 

o Failures: Λ ≈ 718 /ℎ. 

o Staffing: 𝐿 ≈ 765 𝑡𝑒𝑐ℎ‑ℎ𝑜𝑢𝑟𝑠/ℎ. 

o Spares: ≈ 300𝑁/2,000 ≈ 709 𝑣𝑎𝑙𝑣𝑒𝑠/ℎ; 𝑁/500 ≈ 9.5 𝑡𝑢𝑏𝑒𝑠/ℎ. 

Interpretation: even under optimistic life and fast swaps, a 4 k‑node Baby cluster requires 
continuous high‑intensity maintenance and a modest (2–18%) hot‑spare pool to keep 𝑀 =
4,000 online. The dominant operational burden is technician labor and spares logistics, not 
just energy. 

B) Mid‑sized “4‑layer, d=256” KilburnGPT (target online M ≈ 45 000 
machines) 

Using the larger model of Appendix C.1, assume 𝑀 = 45,000. 

• Optimistic: 
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o 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 0.0305 ℎ−1, 𝑀𝑇𝑇𝑅 = 0.566 ℎ. 

o 𝔼[𝑁rep] ≈ 45,000 × 0.0305 × 0.566 ≈ 777. Margin 𝑧√777 ≈ 86. 

o Installed 𝑁 ≈ 45,863 (≈1.9% overhead). 

o Failures: Λ ≈ 1,399 /ℎ. 

o Staffing: 𝐿 ≈ 792 𝑡𝑒𝑐ℎ‑ℎ𝑜𝑢𝑟𝑠/ℎ. 

o Spares: ≈ 1,377 𝑣𝑎𝑙𝑣𝑒𝑠/ℎ and 23 𝑊𝑇/ℎ. 

• Nominal: 

o 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 0.061 ℎ−1, 𝑀𝑇𝑇𝑅 = 0.566 ℎ. 

o 𝔼[𝑁rep] ≈ 1,553. Margin ≈ 122. 

o Installed 𝑁 ≈ 46,675 (≈3.7% overhead). 

o Failures: Λ ≈ 2,847 /ℎ. 

o Staffing: 𝐿 ≈ 1,612 𝑡𝑒𝑐ℎ‑ℎ𝑜𝑢𝑟𝑠/ℎ. 

o Spares: ≈ 2,801 𝑣𝑎𝑙𝑣𝑒𝑠/ℎ and 46 𝑊𝑇/ℎ. 

• Pessimistic: 

o 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 0.152 ℎ−1, 𝑀𝑇𝑇𝑅 = 1.065 ℎ. 

o 𝔼[𝑁rep] ≈ 7,309. Margin ≈ 265. 

o Installed 𝑁 ≈ 52,574 (≈17% overhead). 

o Failures: Λ ≈ 7,990 /ℎ. 

o Staffing: 𝐿 ≈ 8,509 𝑡𝑒𝑐ℎ‑ℎ𝑜𝑢𝑟𝑠/ℎ. 

o Spares: ≈ 7,886 𝑣𝑎𝑙𝑣𝑒𝑠/ℎ and 105 𝑊𝑇/ℎ. 

Interpretation: the hot‑spare percentage remains modest, but absolute maintenance 
demand scales linearly with cluster size and rapidly dominates any throughput gains. In the 
pessimistic regime, continuous operation becomes logistically implausible. 

C.2.4. Scheduling and fault tolerance for inference 

Even with hot spares, mid‑computation dropouts are inevitable. We therefore adopt three 
policies that preserve correctness while bounding recomputation: 

• Task tiling with retry: partition each matrix–vector into tiles that complete in 𝜏 
seconds. On node loss, only the in‑flight tile recomputes elsewhere. Choose 𝜏 so that 
the probability of any node in the tile cohort failing within 𝜏 is < 𝜖, i.e., 

ℙ[tile failure] ≈ 1 − 𝑒𝑥𝑝(−𝑛𝑡𝑖𝑙𝑒𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝜏) ≤ 𝜖 

• yielding 𝜏 ≤
−𝑙𝑛(1−𝜖)

𝑛𝑡𝑖𝑙𝑒𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒
. 

• Erasure-coded partial sums: within each reduce tree, compute per‑row partials 
with a (𝑘 + 𝑟,  𝑘) code; tolerate up to 𝑟 simultaneous row‑worker failures without 
recomputation. 



29 
 

• Graceful degradation: if the hot‑spare pool drops below a threshold, reduce model 
width (disable a fraction of rows in 𝑊1, 𝑊2) and rescale activations to maintain output 
norms. This preserves 𝒪’s structure while trading accuracy for availability. 

These policies keep logical 𝒪 invariant; only latency and energy per inference change. 

C.2.5. Practical notes 

• Calibration downtime (Williams tubes): beyond random failures, expect 
scheduled retuning windows (hours to days cadence). Model as planned downtime; 
it increases 𝔼[𝑁rep] linearly with calibration duty cycle. 

• Spares logistics: daily spares demand in the nominal toy case is thousands of valves 
and a few dozen Williams tubes. Inventory, acceptance testing, and pre‑biased 
subassemblies are essential to keep 𝑀𝑇𝑇𝑅 low. 

• Staffing model: the “infinite‑server repair” approximation provides a lower bound 
on technicians. Finite repair bays increase queueing, effectively inflating 𝑀𝑇𝑇𝑅 and 
thus the spare pool. 

• Energy footprint: adding hot spares increases installed base and hence idle draw; 
for Babies, idle power is close to peak. Expect ≈(2–18)% energy overhead from spares 
alone, plus pragmatic increases from retries. 

C.2.6. Conclusion 

• Under realistic component failure rates, a Baby‑based inference cluster can, in 
principle, maintain a fixed online set 𝑀 with a modest hot‑spare fraction and 
appropriate scheduling. However, the operational burden (spares consumption, 
technician labor, retries) is enormous and scales linearly with 𝑀. The core conclusion 
survives the harsher conditions: the cognitive operation 𝒪 remains 
substrate‑invariant; only efficiency and availability engineering become the story. 

 

Appendix C.3 — Costing “KilburnGPT” in 1948 GBP under component 
failures 

Objective. 

We translate the reliability‑aware cluster from Appendix C.2 into 1948‑denominated 
operating costs per generated token. We combine (i) energy, (ii) spares consumption (valves 
and Williams tubes), and (iii) technician labour during runtime, under the same 
optimistic/nominal/pessimistic failure envelopes used earlier. All prices are stated explicitly 
as 1948 assumptions; results are provided as formulas and as worked examples for the toy 
and mid‑sized clusters. 

Disclaimer.  All historical energy‑cost estimates presented here are approximate. 
They use contemporary prices and performance data for components such as 
vacuum tubes, which vary significantly across manufacturers and epochs. Ancillary 
costs — including the reliability of other components, facility rental, cooling 
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requirements, and non‑operational overhead — are omitted for clarity, and actual 
operational costs may have differed substantially. 

C.3.1. 1948 price assumptions and symbols 

These span credible ranges for U.K. industrial procurement in 1948; users can substitute 
archival figures without changing the model. 

• Energy price per kWh: cₑ in £/kWh 

• — Working range: 0.003–0.006 (£/kWh) ≈ 0.7–1.5 d per kWh. 

• Valve unit price: cᵥ in £/valve 

• — Working range: 0.2–0.5 £ (bulk purchase, common small‑signal valves). 

• Williams tube unit price: c_WT in £/tube 

• — Working range: 200–600 £ (special CRT with pickup plate and drive; 
Whirlwind‑class devices were very costly). 

• Technician labour (skilled maintenance): c_L in £/hour 

• — Working range: 0.2–0.5 £/h (44‑hour week pay bands for skilled technical staff); 
senior engineer hours, when needed, can be priced separately (e.g., 0.6–1.0 £/h), but 
maintenance headcount dominates. 

• Exchange and accounting: all inputs and outputs in 1948 GBP; no inflation or PPP 
adjustments. 

• Notation carried from C.1–C.2: 

• — Power P (MW), runtime T (h), energy E = P·T (MWh). 

• — Installed machines N, target online machines M. 

• — Failure intensities per hour for valves and Williams tubes: N·(300/MTTFᵥ) and 
N·(1/MTTF_WT). 

• — Expected spares per hour (nominal): Sᵥ = 300N/MTTFᵥ, S_WT = N/MTTF_WT. 

• — Technician load per hour L (tech‑hours/h) from C.2. 

Cost per pass (L‑token forward) is: 

• Energy: Cₑ = E·(1000·cₑ) 

• Spares: C_sp = T·(Sᵥ·cᵥ + S_WT·c_WT) 

• Labour: C_L = T·(L·c_L) 

• Total per pass: C_pass = Cₑ + C_sp + C_L 

• Cost per token (amortized over L tokens): C_tok = C_pass / L 

(When using incremental decoding with KV‑caching, per‑token cost decreases sublinearly 
with L; our totals are conservative, dividing pass‑level cost by L.) 

C.3.2. Reliability envelopes (reused from C.2) 

• Optimistic: MTTFᵥ=10,000 h; MTTF_WT=2,000 h; MTTRᵥ=0.5 h; MTTR_WT=4 h. 

• Nominal: MTTFᵥ=5,000 h; MTTF_WT=1,000 h; MTTRᵥ=0.5 h; MTTR_WT=4 h. 
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• Pessimistic: MTTFᵥ=2,000 h; MTTF_WT=500 h; MTTRᵥ=1 h; MTTR_WT=6 h. 

Hot‑spare sizing modestly increases N above M; we reuse the N values computed in C.2 for 
each case. 

C.3.3. Toy “Shai‑class” KilburnGPT (M≈4,000 online; N from C.2) 

Configuration recap (Appendix C.1): 4 layers, d_model=64, head_dim=8, MLP=256, L=10. 

Runtime and energy (ideal orchestration): P≈12–14 MW, T≈0.4–0.5 h ⇒ E≈4–7 MWh per 
pass. 

For nominal reliability (C.2): N≈4,174; spares per hour Sᵥ≈251 valves/h, S_WT≈4.2 tubes/h; 
technician load L≈144 tech‑hours/h. 

Worked costs (use mid‑range prices unless noted): cₑ=£0.0045/kWh, cᵥ=£0.30, c_WT=£500, 
c_L=£0.30. 

• Energy: E≈5.5 MWh ⇒ Cₑ ≈ 5,500 kWh × £0.0045 ≈ £24.8 

• Spares per hour: Sᵥ·cᵥ ≈ 251×0.30 = £75.3; S_WT·c_WT ≈ 4.2×500 = £2,100 

• — Runtime T≈0.5 h ⇒ C_sp ≈ 0.5×(£75.3+£2,100) ≈ £1,087.7 

• Labour: L·c_L ≈ 144×0.30 = £43.2/h ⇒ C_L ≈ 0.5×£43.2 = £21.6 

• Total per pass (L=10): C_pass ≈ £24.8 + £1,087.7 + £21.6 ≈ £1,134.1 

• Cost per token: C_tok ≈ £113.4 (1948 GBP) 

Sensitivity bands: 

• Using optimistic reliability (N≈4,095; Sᵥ≈123/h; S_WT≈2.0/h; L≈71): C_tok ≈ £54–
£70 (energy/labour minor; WT failures dominate). 

• Using pessimistic reliability (N≈4,726; Sᵥ≈709/h; S_WT≈9.5/h; L≈765; T≈0.5 h): 

• — Spares cost ≈ 0.5×(709×0.30 + 9.5×500) ≈ 0.5×(£212.7 + £4,750) ≈ £2,481 

• — Labour ≈ 0.5×(765×0.30)=£114.8; energy ≈ £25–£35 

• — C_tok ≈ (£2,620–£2,650)/10 ≈ £262–£265 per token. 

Interpretation: in 1948 pounds, even the toy model yields tens to low hundreds of pounds 
per token, overwhelmingly driven by Williams tube attrition in the nominal/pessimistic 
regimes. 

C.3.4. Mid‑sized 4‑layer model (M≈45,000 online; N from C.2) 

Configuration recap (Appendix C.1): d_model=256, head_dim=64, MLP=1024, L=128. 

Runtime and energy (ideal orchestration): P≈130–150 MW, T≈16–20 h ⇒ E≈2.2–2.8 GWh 
per pass. 

For nominal reliability (C.2): N≈46,675; Sᵥ≈2,801 valves/h; S_WT≈46 tubes/h; L≈1,612 
tech‑hours/h. 
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Worked costs (same prices as above): 

• Energy: E≈2.5 GWh ⇒ Cₑ ≈ 2,500,000 kWh × £0.0045 ≈ £11,250 

• Spares per hour: Sᵥ·cᵥ ≈ 2,801×0.30 = £840.3; S_WT·c_WT ≈ 46×500 = £23,000 

• — Runtime T≈18 h ⇒ C_sp ≈ 18×(£840.3+£23,000) ≈ 18×£23,840.3 ≈ £429,125 

• Labour: L·c_L ≈ 1,612×0.30 = £483.6/h ⇒ C_L ≈ 18×£483.6 ≈ £8,705 

• Total per pass (L=128): C_pass ≈ £11,250 + £429,125 + £8,705 ≈ £449,080 

• Cost per token: C_tok ≈ £3,508 (1948 GBP) 

Sensitivity bands: 

• Optimistic reliability (fewer failures; similar energy): C_tok ≈ £1,800–£2,200. 

• Pessimistic reliability (N≈52,574; Sᵥ≈7,886/h; S_WT≈105/h; L≈8,509/h; T≈18 h): 

• — Spares ≈ 18×(7,886×0.30 + 105×500) ≈ 18×(£2,365.8 + £52,500) ≈ £988,146 

• — Labour ≈ 18×(8,509×0.30)=£45,950; energy ≈ £11–£18k 

• — C_pass ≈ ~£1.05M ⇒ C_tok ≈ ~£8,200. 

Interpretation: at scale, Williams tube replacements dominate total cost by one to two orders 
of magnitude over electricity and labour, even with generous energy pricing and low 
technician wages. 

C.3.5. What drives the cost (and how to reduce it) 

• Dominant term: C_sp from Williams tubes. Improving MTTF_WT (better derating, 
improved biasing, scheduled retuning that truly lifts effective life) or lowering c_WT 
(in‑house tube shop, reuse/repair) is the only credible route to sub‑£100/token costs, 
even in small clusters. 

• Secondary levers: energy price and labour rates are small contributors at these scales; 
even halving cₑ or c_L shifts totals by only a few percent. 

• Architectural lever: reduce Williams tubes per online machine (e.g., offload storage to 
mercury delay lines or drum memory). This preserves computability but changes the 
physical memory technology underlying the Baby—useful as an ablation 
demonstrating that the cognitive operation’s form is substrate‑invariant while the 
economics are not. 

C.3.6. Summary statement (1948 GBP) 

• Toy cluster (L=10): ~£50–£260 per token across optimistic→pessimistic reliability; 
nominal ≈ £110/token. 

• Mid‑sized cluster (L=128): ~£1.8k–£8.2k per token; nominal ≈ £3.5k/token. 

• Cost composition at nominal: 90–97% spares (chiefly Williams tubes), 2–8% energy, 
1–3% labour. 

These magnitudes complete the substrate‑invariance argument with a blunt economic coda: 
in 1948, the cognitive operation is the same, but its price is almost entirely the price of 
keeping a pre‑core‑memory substrate alive long enough to finish the thought. 



33 
 

 

Appendix D: Experimental Protocols for the Validation 
of Principia Cognitia 

This appendix outlines three falsifiable experimental protocols designed to test the core 
axioms and theorems of Principia Cognitia (PC). These protocols move the theory from a 
formal framework to an empirical research program, providing concrete methods for 
validating its claims in computational environments. 

D.1. The MLC Primacy Experiment (MPE-1) 

Objective: To empirically validate the Theorem of Decoupling of Languages (TH-LANG-
04), which posits that the performance of inter-agent communication is fundamentally 
bounded by the alignment of their internal Metalanguage of Cognition (MLC), not by the 
richness of their External Language of Meaning (ELM). This experiment is designed to 
demonstrate that increasing the descriptive power of ELM yields diminishing returns 
without a corresponding alignment in the agents’ internal world models (MLC). 

Methodology: 

1. Environment - The “Asymmetric World”: 

o A 2D physics simulation (e.g., using PyMunk/Box2D) is created. The world 
contains objects with non-trivial properties (mass, friction, elasticity) and is 
governed by consistent physical laws (gravity, collisions). The state of the 
world is defined by the coordinates, velocities, and properties of its objects. 

2. System Architecture: 

o Agent A (“Oracle”): A multimodal neural network (e.g., CNN encoder for 
visual input + LSTM for dynamics) with complete, real-time visual access to 
the simulation. Its MLC is a high-fidelity internal model of the world’s physics, 
learned through direct observation. Its task is to observe the simulation and 
generate textual descriptions (ELM) of events. 

o Agent B (“Reconstructor”): A transformer-based language model that has no 
visual access to the simulation. Its only input is the ELM stream from Agent A. 
Its task is to parse these descriptions and predict a future state of the world 
(e.g., the coordinates of a specific object after T timesteps). This prediction 
serves as a proxy for successful semion reconstruction. 

3. Experimental Procedure: The experiment is conducted in two parallel branches, 
using the same set of simulation scenarios. 

o Branch 1 - ELM Scaling: The MLC of Agent B is kept naive (e.g., pre-trained 
on generic text corpora, but not on the specific physics of the Asymmetric 
World). The complexity of the ELM generated by Agent A is systematically 
increased across trials: 

▪ Level 1 (Basic ELM): “Red circle moved right.” 



34 
 

▪ Level 2 (Detailed ELM): “The heavy red circle moved right at high speed 
and approached the blue square.” 

▪ Level 3 (Hyper-Detailed ELM): Real-time stream of object properties, 
coordinates, and vectors. 

o Branch 2 - MLC Alignment: The ELM is fixed at a medium level of detail (Level 
2). The MLC of Agent B is progressively aligned with Agent A’s by pre-training 
it on the physics of the Asymmetric World. This can be achieved by allowing 
Agent B to observe and learn from the simulation directly, building its own 
internal model before the communication task begins. Alignment is varied 
from 0% (naive) to 100% (trained on the same data distribution as Agent A). 

Prediction from Principia Cognitia: * In Branch 1, the prediction accuracy of Agent B will 
rapidly plateau. Beyond a certain point, additional ELM complexity will provide negligible 
performance gains because Agent B lacks the internal model (MLC) to ground the meaning 
of the symbols. * In Branch 2, the prediction accuracy of Agent B will show a strong, near-
linear positive correlation with the degree of MLC alignment. 

Metrics and Success Criteria: * Primary Metric: Mean Squared Error (MSE) between the 
predicted future coordinates and the ground-truth coordinates from the simulation. * 
Success Criterion: A successful validation requires demonstrating that the performance 
improvement (reduction in MSE) per unit of “information gain” is significantly higher in 
Branch 2 (MLC alignment) than in Branch 1 (ELM scaling) after an initial saturation point. 

Falsification Condition: The theorem TH-LANG-04 would be falsified if the performance of 
Agent B in Branch 1 continues to improve significantly with increasing ELM complexity, 
approaching the performance levels achieved through direct MLC alignment in Branch 2. 

Required Resources: A multi-GPU compute environment. Python, PyTorch/TensorFlow, 
and a 2D physics library (PyMunk). 

 

D.2. The Substrate Invariance Test (SIT-1) 

Objective: To provide a direct, physical demonstration of the Axioma Invariantiae 
Substracti (AX-SUBSTR-INV). This axiom states that a cognitive operation (()) is an abstract, 
formal structure (Layer I) whose logical outcomes are independent of the physical substrate 
(Layer 0/III) on which it is executed. The experiment will show that while the physical costs 
(time, energy) of an operation vary by orders of magnitude across different substrates, the 
logical result remains identical. 

Methodology: 

1. The Cognitive Operation (()): 

o A small but non-trivial, pre-trained neural network is chosen as the canonical 
(). For example, a 2-layer transformer with d_model=64 and fixed weights, 
trained on a simple task like character-level text generation. The key is that 
the weights are frozen; we are testing inference, not learning. 
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2. Substrate Implementations: The exact same logical operation (i.e., the forward pass 
of the transformer) is implemented on four radically different computational 
substrates: 

o Substrate 1 (GPU - Baseline): A standard, highly optimized implementation 
using PyTorch/TensorFlow on a modern GPU. 

o Substrate 2 (CPU - Actor Model): An implementation on a multi-core CPU 
cluster using a fundamentally different execution paradigm, such as an actor-
based model (e.g., using Ray or Akka), where matrix multiplications are 
decomposed into message-passing tasks between parallel processes. 

o Substrate 3 (FPGA - Hardware Synthesis): The neural network’s 
architecture is synthesized into a hardware description language 
(Verilog/VHDL) and “burned” directly into the logic gates of a Field-
Programmable Gate Array. This represents a complete translation from 
software logic to physical circuit configuration. 

o Substrate 4 (Neuromorphic - Spiking Model): The network is converted 
into a Spiking Neural Network (SNN) equivalent and executed on a 
neuromorphic chip (e.g., Intel Loihi 2). This requires translating continuous 
activation values into discrete spike trains, representing a different 
computational model. 

3. Experimental Procedure: 

o A fixed, canonical validation dataset is created. 

o This dataset is run through the forward pass of the model on each of the four 
substrates. 

o The logical outputs and physical performance metrics are meticulously 
recorded for each run. 

Prediction from Principia Cognitia: The logical output vectors produced by all four 
substrates will be equivalent within the bounds of their respective numerical precisions. The 
physical costs will differ by orders of magnitude, with the GPU being the most efficient and 
the CPU Actor Model or Neuromorphic chip showing vastly different performance profiles. 

Metrics and Success Criteria: * Logical Equivalence: The output vectors from all 
substrates must be verified as identical using a high-precision comparison (e.g., 
torch.allclose with a tight tolerance). * Physical Cost: Latency (wall-clock time per 
inference) and Energy Consumption (Joules per inference, measured using appropriate 
hardware/software tools like pyJoules). * Success Criterion: The experiment is successful 
if logical equivalence is confirmed while physical costs diverge by at least one order of 
magnitude between any two substrates. 

Falsification Condition: The axiom AX-SUBSTR-INV would be falsified if (a) the logical 
outputs are not equivalent between substrates (beyond explainable precision differences), 
or (b) any computational primitive of the operation proves to be fundamentally 
incomputable on one of the chosen substrates. 
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Required Resources: Access to a GPU, a multi-core CPU cluster, an FPGA development 
board and toolchain (e.g., Xilinx Vivado), and potentially access to a neuromorphic 
computing platform. 

 

D.3. The Vectorial Genesis Experiment (VGE-1) 

Objective: To test the Axiomatis Primitivorum Operandi (AX-OPER-BASIS) and the 
Lemma de Continuitate Compositionis. This experiment aims to demonstrate that a 
complex hierarchy of vectorial cognitive operations, analogous to those in modern neural 
networks, can emerge spontaneously from a minimal basis of primitive vector operations 
({cmp, add, sub}) through a process of selection and composition. This directly contrasts 
with symbolic A-Life experiments (e.g., using Brainfuck) by focusing on the genesis of vector-
based cognition, the foundation of PC. 

Methodology: 

1. Environment - The “Vectorial Soup”: 

o A 2D grid environment is created. Each cell in the grid contains a d-
dimensional real-valued vector (a primitive semion), e.g., d=16. The grid is 
initialized with regions of vectors with different statistical properties. 

2. System Architecture: 

o A population of simple “agents” (programs) is initialized. The instruction set 
available to these agents is strictly limited to three primitive, element-wise 
vector operations: 

▪ add(vec_a, vec_b) -> vec_c 

▪ sub(vec_a, vec_b) -> vec_c 

▪ cmp(vec_a, vec_b) -> mask (a vector of 0s and 1s based on which 
elements in vec_a are greater than in vec_b). This provides non-
linearity. 

o The agents can read vectors from their local neighborhood in the grid and 
write results back. 

3. Experimental Procedure: 

o Tasks: The environment presents a series of tasks that require progressively 
more complex vector processing, e.g.: 

▪ Level 1 (Aggregation): Calculate the average vector in a 3x3 
neighborhood. 

▪ Level 2 (Boundary Detection): Move along the border between two 
regions of vectors. 

▪ Level 3 (Feature Extraction): Identify the presence of a specific vector 
pattern (a “corner” or “edge”) in a local patch. 

o Evolutionary Mechanism: A genetic algorithm is used. Programs are 
represented as sequences of primitive instructions. Their fitness is 
determined by their performance on the current task. High-fitness programs 
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are selected for crossover and mutation, creating the next generation of 
programs. 

4. Analysis: The primary analysis is not on task performance itself, but on the structure 
of the evolved programs. We will analyze the surviving high-fitness programs to 
identify the emergence of: 

o Stable Subroutines: Recurring sequences of primitives that are reused across 
different programs. 

o Functional Analogs: Subroutines that are functionally equivalent to higher-
level cognitive operations. For example: 

▪ Convolution: A sequence that performs a series of weighted additions 
across a neighborhood. 

▪ Attention: A sequence that uses cmp to create a mask (attention 
weights) and then performs a weighted sum. 

o Hierarchical Composition: The reuse of simpler, evolved subroutines to 
build more complex ones. 

Prediction from Principia Cognitia: Starting from only {cmp, add, sub} and a selection 
pressure, the system will spontaneously evolve a hierarchy of complex, reusable vector 
operations. The complexity of these operations will grow continuously and compositionally, 
demonstrating that the minimal basis is sufficient for the genesis of advanced vector-based 
cognition. 

Falsification Condition: The axioms would be challenged if, despite prolonged evolution, 
the system fails to produce hierarchical and compositional programs, getting stuck at the 
level of simple, non-reusable sequences of primitives and failing to solve more complex 
tasks. 

Required Resources: A high-performance computing cluster is recommended, as genetic 
algorithms are computationally intensive. Python with libraries for parallel execution (e.g., 
multiprocessing, Ray). 

D.4. Integrated Validation Strategy 

The preceding protocols are not isolated tests but constitute an integrated, multi-pronged 
validation strategy designed to empirically ground the core tenets of Principia Cognitia. Each 
experiment targets a distinct, foundational pillar of the theory, moving from communication 
to architecture to genesis. 

• The MLC Primacy Experiment (MPE-1) is designed to validate the theory’s model 
of meaning and communication by directly testing the formal predictions of the 
MLC/ELM duality (TH-LANG-04). 

• The Substrate Invariance Test (SIT-1) addresses the framework’s physical and 
architectural principles, providing a direct, falsifiable test of the Substrate Invariance 
postulate (POS-SUBSTR-INV) by decoupling the logical form of a cognitive operation 
from its material implementation. 
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• Finally, the Vectorial Genesis Experiment (VGE-1) provides a constructive proof 
for the theory’s developmental core, testing the claim that the entire hierarchy of 
complex vectorial cognition can emerge compositionally from the minimal primitive 
basis (POS-OPER-BASIS). 

Together, these three experimental avenues systematically target the theory’s most unique 
and powerful claims—its model of meaning, its architectural principles, and its constructive 
genesis—thereby establishing Principia Cognitia as a complete and empirically falsifiable 
scientific program. 

D.5. Experimental outlook 

These proposals operationalize Principia Cognitia’s core claims with crisp, falsifiable targets 
and light, modular implementations. They were distilled from prior lightweight script 
prototypes and are designed for independent replication; complete protocols are available 
from the author on request. 

• Falsifiability: Each experiment has a direct pass/fail criterion tied to a pillar of PC—
MLC primacy (MPE‑1), substrate invariance (SIT‑1), and vectorial genesis (VGE‑1)—
so negative results meaningfully update the theory rather than being shrugged off. 

• Modularity and reproducibility: Synthetic data generators, deterministic seeds, 
and small models keep runs cheap and portable. The same workloads can be replayed 
across substrates (SIT‑1) and scaled from desktop to lab clusters without altering the 
logic. 

• Distinctiveness: Unlike A‑Life demonstrations of symbolic emergence, these tests 
target PC’s unique commitments: vector cognition, thermodynamic constraints, and 
the MLC↔ELM duality as an operational, measurable interface. 

• Interpretability and diagnostics: Planned readouts (geometry/probing metrics, 
bitwise agreement, energy/latency profiles, macro‑op lineage) make failure modes 
informative—guiding revisions to the primitive basis, alignment procedures, or 
invariance claims. 

• Collaboration pathway: The author provides specifications, reference scripts, and 
analysis templates; experimental partners contribute execution environments 
(GPUs/CPUs; optional FPGA/neuromorphic) and measurement instrumentation, 
enabling rapid, transparent replication. 

 

Note from the Author — The author is a theoretical researcher; tools are limited to personal 
computing (i5 CPU, 64 GB RAM, RTX 4060 8 GB, SSD 3 TB), LLM dialogues, pen and paper, 
and minimal local ML prototyping (e.g., LM Studio). Full implementation of these protocols 
is left to experimental collaborators with suitable facilities. 
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