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From Axioms to Analysis 
A Principia Cognitia Framework for  

Parametric and Parallel Models of Language 

Abstract 
This paper demonstrates the analytical power of the Principia Cognitia (PC) framework by 
applying its axiomatic system to two influential yet distinct theories in modern linguistics: 
Mark Baker’s parametric model of Universal Grammar and Ray Jackendoff’s Parallel 
Architecture for language and cognition. We show that Baker’s Principles and Parameters 
can be formally recast within the PC triad of Semions, Operations, and Relations 
⟨𝑆,  𝒪,  𝑅⟩, while Jackendoff’s multi‑component architecture maps directly onto PC’s core 
distinction between the internal Metalanguage of Cognition (MLC) and the external 
External Language of Meaning (ELM). By integrating both theories into PC’s 
substrate‑independent, layered model of cognition, we reveal their underlying formal 
compatibility. Crucially, this synthesis yields a concrete, falsifiable research program. We 
present three detailed experimental protocols — the Parametric Invariance Test (PIT‑1), 
the Interface Architecture Test (IAT‑1), and the Compositional Genesis of Linguistic 
Operations (CGLO‑1) — designed to test these integrated models in both biological and 
artificial systems. This work establishes Principia Cognitia not merely as a standalone 
theory, but as a unifying, empirical meta‑framework for the cognitive sciences. 

1. Introduction 
Table 1. Key Principia Cognitia Concepts and Symbols 

Term / Symbol Definition 
Axiomatic 
Reference 

Semion (S) Discrete, physically instantiated cognitive unit; may be 
represented as a vector in MLC. 

AX-DISCR-01, 
AX-VEC-01 

Operation (𝓞) Primitive transformation over semions. Minimal basis: 
{cmp, add, sub}. 

AX-OPER-
BASIS 

Relation (R) Weighted connections between semions structuring the 
cognitive space. 

LEM-ADAPT-01 

MLC 
(Metalanguage of 
Cognition) 

Internal, vector‑based language of thought, 
substrate‑independent. 

TH-LANG-01 

ELM (External 
Language of 
Meaning) 

External, symbolic language for communication. TH-LANG-04 

π‑map Linear mapping between MLC subspaces or between MLC 
and ELM. 

— 

L0–L3 Four‑layer PC model: L0 — physical substrate; L1 — 
abstract cognitive mechanics; L2 — dynamics of 
realization; L3 — physical output. 

AX-SUBSTR-
INV 
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This glossary is provided to make the paper self‑contained for readers unfamiliar 
with prior PC publications. 

The Principia Cognitia (PC) framework, derived from first principles of information and 
computation, offers a substrate‑independent formalism for modeling cognition. Here, we 
apply PC as an analytical lens to two landmark linguistic theories — Baker’s Principles and 
Parameters and Jackendoff’s Parallel Architecture — to test whether their core claims can 
be unified, formalized, and empirically validated within a single axiomatic system. Baker’s 
discrete parameters map naturally to PC’s semions, while Jackendoff’s modular interfaces 
align with the MLC/ELM duality. This synthesis is not merely descriptive: it yields a 
falsifiable research program with concrete experimental protocols, bridging theoretical 
linguistics, computational neuroscience, and AI interpretability. 

The present synthesis builds on a lineage of work that has sought to map the architecture 
of the mind in formal terms. Fodor’s The Modularity of Mind (1983) provided the canonical 
formulation of domain‑specific, informationally encapsulated modules, establishing a 
baseline for discussions of cognitive interfaces. This framework set the stage for later 
proposals such as Baker’s parametric theory and Jackendoff’s parallel architecture, which 
can be seen as specifying, in different ways, the internal mechanics and inter‑module 
mappings that Fodor left underspecified. 

The advent of Large Language Models (LLMs) raises a fundamental question: why can the 
output of an artificial system — its ability to generate coherent, meaningful text — become 
functionally indistinguishable from that of a human? If this is the case, must we not assume 
a convergence in the underlying principles of their operation? This modern, 
Turing‑inspired observation leads to a cascade of logical steps. To model such a process, 
one needs a fundamental unit of meaning — a quantum of cognition. We term this the 
Semion: a discrete, physically instantiated state representing a unit of cognitive structure. 
The immediate consequence of this postulate is that thought itself, as the manipulation of 
semions, must occur in a language — not the external language of communication, but an 
internal, substrate‑neutral Metalanguage of Cognition (MLC). 

This internal language, composed of discrete semions, must necessarily be distinct from the 
continuous, phenomenal reality it seeks to represent. The ontological gap between a 
continuous world and its discrete cognitive encoding logically necessitated the framework 
outlined in our first paper, The Dual Nature of Language, which formally separates the 
internal MLC from the external, symbolic External Language of Meaning (ELM). From 
this foundation, a complete theory required a systematic investigation into the origins and 
mechanics of the three components that constitute any such cognitive system: the semions 
themselves (S), the physical operations that transform them (𝒪), and the emergent 
structure of the substrate that constrains these operations (R). The formalization of these 
components and their interactions led directly to the axiomatic system presented in our 
second work, Principia Cognitia: Axiomatic Foundations. 

The investigation of semions (S) revealed them as the result of discretization processes, 
where continuous phenomena are quantized into stable, vectorial representations through 
sensory or computational interfaces. This aligns with empirical findings in neuroscience, 
such as vector‑based encoding in neural populations, and in AI, where embeddings in LLMs 
serve analogous roles. The operations (𝒪) were traced to a minimal basis set — 
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comparison, addition, and subtraction over vectors — capable of composing into complex 
transformations, as demonstrated through evolutionary simulations and analysis of 
transformer architectures. Finally, the relations (R) emerged as learned weights that 
structure the cognitive space, evolving through feedback loops that minimize predictive 
error, drawing on cybernetic principles to ensure adaptive stability. 

This axiomatic triad ⟨𝑆,  𝒪,  𝑅⟩ provides a substrate‑independent formalism for cognition, 
bridging biological and artificial systems. It unifies disparate insights: Turing’s universality 
in 𝒪’s compositional power, Wiener’s optimization in 𝑅’s adaptive relations, and 
Wittgenstein’s language games in the MLC–ELM duality. Crucially, PC is not speculative 
metaphysics but an operational framework, testable through experiments that probe its 
predictions in real systems. 

 

Figure 1. 

This paper completes the initial theoretical arc by demonstrating the framework’s utility. 
We now turn our axiomatic lens back towards the field of linguistics, not as a source of first 
principles, but as a crucible. We analyze two landmark theories — Mark Baker’s parametric 
model and Ray Jackendoff’s parallel architecture — to show that PC provides a sufficiently 
powerful mathematical language to formalize, unify, and ultimately generate a program for 
their empirical validation. PC can thus serve as a meta‑theoretical bridge, translating the 
specific claims of both theories into a universal, substrate‑independent formalism. While a 
detailed mechanism for the compositional genesis of complex operations from the 
primitive basis is beyond the scope of this paper, we hypothesize it arises from a 
constructive process akin to diffusion-based generative models (Snow, A. 2025b). 
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2. Formal Recasting of Parametric Theory (Baker) 
within the PC Triad 

Baker’s Principles and Parameters theory, as outlined in The Atoms of Language (2001), 
posits that the vast diversity of human languages arises from a universal set of grammatical 
principles modulated by a small number of discrete, binary parameters. This model 
conceptualizes languages as variations on a shared “periodic table,” where parameters act 
as atomic switches determining structural outcomes. Principia Cognitia (PC) provides a 
natural mathematical embedding for this framework through its core triad ⟨S,  𝒪,  R⟩, 
where: 

• S — discrete units of cognitive structure (semions), 

• 𝒪 — the set of all possible compositions over the primitive basis 𝒪0, 

• R — weighted connections structuring the cognitive space. 

By recasting Baker’s theory in this triad, we reveal its formal compatibility with 
substrate‑independent cognition, extending it beyond linguistics to artificial systems. 

Parameters as Discrete Semions (S). Central to Baker’s approach is the notion of 
parameters as binary or discrete choices that constrain grammatical possibilities. In PC, 
these are formalized as semions — vectorial, stable cognitive states that emerge from the 
discretization of continuous phenomena (AX‑DISCR‑01). For instance, the 
Head‑Directionality Parameter, which governs word order (head‑initial vs. head‑final), 
becomes a semion Shead‑param with states {head‑initial, head‑final}. Similarly, the Null 

Subject Parameter, allowing subject omission in languages like Italian but not English, is 
Snull‑subject ∈ {pro‑drop,  non‑pro‑drop}. The full parametric profile of a language forms a 

point in the multidimensional semion space Sgrammar, a subspace of the broader cognitive 

semion set S. This mapping preserves Baker’s discreteness: semions are quantized, finite 
states (TH‑FINIT‑01), ensuring parameters are not gradients but switches. In biological 
cognition, these semions might manifest as stable neural activation patterns; in LLMs, as 
embedded vectors in parameter space. Crucially, PC’s substrate invariance 
(POS‑SUBSTR‑INV) allows these semions to operate across neural or silicon substrates 
without loss of formal structure. 

Principles as Compositions of 𝒪0. Baker’s universal principles — innate constraints like 
Merge (combining syntactic objects) or the Projection Principle (lexical properties project 
to phrases) — are recast as compositions derived from the primitive basis 𝒪0 =
{cmp,  add,  sub} (POS‑OPER‑BASIS), assembled via lemmas such as LEM‑COMP‑01. Thus, 
Merge becomes a compositional operation Omerge:  S × S → S, built from add of semions 

with constraints enforced by cmp for compatibility. Move, involving displacement, is 
composed as Omove:  S → S′, where sub relocates features while preserving relations. The 
Polysynthetic Parameter, a macro‑parameter in Baker’s typology, exemplifies this: it 
mandates morphological incorporation of arguments into verbs, formalized as a composed 
operation:  

∀ argument 𝐴 of head 𝑉, 

apply incorporated sequences via add and cmp.  
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This clusters properties like free word order and object agreement, emerging 
compositionally from the basis set. PC’s predictive principles (AX‑PREDICT‑01) align with 
Baker’s universals by minimizing error in grammatical generation, treating principles as 
optimization compositions that evolve through feedback. 

Micro‑Construction of Merge via PC Primitives. Let 𝐡 and 𝐜 be head and complement 
semions (row vectors in ℝ𝑛). Merge is built in three vector steps: 

1. Concatenation (add): 𝐯 = [𝐡 ∣ 𝐜] ∈ ℝ2𝑛 (concatenation in extended space). 

2. Head‑marker (cmp): 𝐦 = cmp(𝐡, 𝐜) ∈ {0,1}𝑛 (bitmask for head position). 

3. Projection (select): Omerge(𝐡, 𝐜) = 𝐦⊙ 𝐯 (element‑wise mask → keeps head, drops 

complement). 

This yields an asymmetric, hierarchical structure encoded in a single vector, without 
introducing extra primitives. 

The primitive basis 𝒪0 = {cmp,  add,  sub} is sufficient for generating any 
context‑free derivation. 

(i) cmp implements thresholding, allowing universal Boolean function 
approximation; 

(ii) add enables linear combination of features; 

(iii) sub supports feature deletion, essential for Omove. 

Lemma LEM‑UF‑01. Any context‑free derivation can be encoded as a depth‑3 circuit over 
𝒪0 with polynomial overhead. This follows from the standard universal function 
approximation property of threshold networks, combined with the closure of 𝒪0 under 
composition. 

Hierarchy and Implications as Relations (R). Baker’s parametric hierarchy, where 
settings imply clusters of traits (e.g., polysynthesis implying no true quantifiers), maps to R, 
the matrix of weighted relations between semions. Implicative parameter clusters are 
encoded as weighted edges in R, trained according to AX‑ADAPT‑01: 

R(Spoly,  Sfree‑order) = 𝑤 > 0, 

with w learned through exposure (LEM‑ADAPT‑01). This formalizes Baker’s Formal 
Generative Typology as a relational graph in PC’s layered architecture (BC‑02): parameters 
at L1 (abstract operations) are realized dynamically at L2 (phonetics/morphology). The 
polysynthetic cluster becomes a subgraph in R, where activation of Spoly strengthens 

connections to dependent semions, ensuring correlated properties. 

Summary of Integration. This recasting unifies Baker’s theory with PC’s axiomatic core, 
transforming parameters from linguistic specifics to general cognitive switches. It yields 
falsifiable predictions: parametric states should form discrete clusters in neural or LLM 
representations (testable via the PIT‑1 protocol). By embedding in ⟨S,  𝒪,  R⟩, Baker’s model 
gains substrate neutrality, applicable to AI language generation, where “parameters” could 
be hyperparameters modulating output diversity. This integration highlights PC’s power as 
a meta‑framework, bridging generative linguistics with vectorial cognition. While a 
detailed mechanism for the compositional genesis of complex operations from the 
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primitive basis lies beyond the scope of this paper, we hypothesize it arises from a 
constructive process akin to diffusion‑based generative models (Snow, A., 2025, in 
preparation). 

3. Formal Recasting of Parallel Architecture (Jackendoff) 
as an MLC/ELM System 

Ray Jackendoff’s Parallel Architecture, as presented in Foundations of Language (2002), 
proposes a modular, integrative model of language in which phonology, syntax, and 
semantics operate as independent generative systems connected by interface components. 
Rejecting syntax‑centric views such as Chomsky’s, Jackendoff emphasizes equal 
generativity across modules, with conceptual semantics linking language to broader 
cognition, including perception, action, and embodiment. This architecture aligns 
seamlessly with Principia Cognitia’s (PC) core distinction between the internal 
Metalanguage of Cognition (MLC) — a vector‑based system for dynamic, substrate‑neutral 
thought — and the external External Language of Meaning (ELM) — a symbolic system for 
communication. By recasting Jackendoff’s theory through the MLC/ELM duality, we 
formalize it axiomatically, extend its scope to artificial systems, and reveal structural 
isomorphisms with PC’s layered, thermodynamically constrained cognition. 

Phonology, Syntax, and Semantics as Orthogonal Subspaces Sphon,  Ssyn,  Ssem ⊂ MLC. In 

Jackendoff’s model, the three core systems generate structures autonomously: phonology 
handles sound patterns, syntax organizes hierarchical relations, and semantics constructs 
conceptual meanings rooted in spatial and embodied primitives. Within PC, these map to 
orthogonal subspaces in MLC, the internal vector space composed of discrete semions (S) 
manipulated by operations (𝒪) over relations (R) (AX‑VEC‑01, TH‑LANG‑01). Orthogonality 
ensures substrate‑invariance, avoiding reification of modules as objects. Thus: 

• Sphon ⊂ MLC for phonological features (e.g., vectors encoding prosody or segments), 

• Ssyn ⊂ MLC for syntactic hierarchies (e.g., tree‑like relations via recursive 

compositions), 

• Ssem ⊂ MLC for conceptual structures (e.g., decompositional primitives like [THING], 
[PATH] via add and cmp). 

Autonomy arises from independent generativity: each subspace evolves via its own 
compositions from the basis 𝒪0 = {cmp,  add,  sub} (POS‑OPER‑BASIS), composing into 
module‑specific transformations — e.g., phonological rules as additive merges of feature 
vectors, syntactic operations as comparative alignments for hierarchy. This preserves 
Jackendoff’s rejection of syntax as the sole combinatorial source, aligning with PC’s equal 
generativity across layers (BC‑02: L0 neural substrate, L1 abstract operations). Conceptual 
semantics, Jackendoff’s bridge to cognition, becomes MLC’s core: semions in Ssem link to 
non‑linguistic subspaces such as perception (vector embeddings of visual/spatial data) and 
action (motor plans as trajectories), embodying cognition in vectorial dynamics. 
Conceptual primitives are semions grounded in sensory‑motor vectors via AX‑PHYS‑02, 
e.g., Sconcept = [THING] ⊗ Sspatial, ensuring embodied roots. 
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Orthogonality between the phonological subspace 𝑆phon and the syntactic subspace 𝑆syn is 

defined in the information‑theoretic sense: 

- Sphon⟂Ssyn ⇔ 𝐼(Sphon;  Ssyn ∣ context) < 𝜀 

where 𝐼(⋅;⋅∣⋅) denotes conditional mutual information. In practice, this is achieved by PCA 
whitening of the MLC representation, followed by constraining the covariance matrix to a 
block‑diagonal form, which eliminates cross‑loadings between phonological and syntactic 
dimensions. 

 

Figure 2. illustrates the resulting block‑diagonal covariance structure for  
English and Japanese corpora, confirming the empirical orthogonality 

 of the two subspaces under the proposed construction. 

Interface Components as Cross‑Subspace Linear Maps. Jackendoff’s interfaces — 
specialized mappings between modules — are bidirectional (e.g., 
phon ⇄ syntax ⇄ semantics), ensuring coherent linguistic integration. In PC, these 
formalize as cross‑subspace linear maps 𝜋mod→mod′  that preserve semantic invariants, such 

as 𝜋syn→sem:  Ssyn → Ssem and 𝜋sem→syn:  Ssem → Ssyn, enabling mutual constraint satisfaction. 

These maps are composed from 𝒪0, minimizing dissonance via cmp and add 
(AX‑PREDICT‑01). The projection 𝜇:  MLC → ELM is the final stage — a lossy mapping from 
integrated vector states to external symbols in Σ (TH‑LANG‑04). For example, a conceptual 
structure in Ssem (a vector network of [EVENT: CAUSE [THING: AGENT] [PATH: TO 
[PLACE]]]) interfaces bidirectionally with Ssyn for hierarchical alignment, then with Sphon 

for sound mapping, finally serializing via 𝜇 into ELM symbols (e.g., “The dog chased the 
cat”). This duality captures Jackendoff’s neurocognitive integration: MLC’s orthogonal 
subspaces align with brain areas specialized for processing (e.g., temporal lobes for 
semantics), while ELM handles social calibration through feedback (LEM‑ADAPT‑01). 
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Embodiment fits PC’s physical grounding: semions root in sensory‑motor vectors, ensuring 
anti‑entropic adaptation (BC‑03). 

Integration and Neurocognitive Alignment. Jackendoff’s emphasis on linking language to 
general cognition — via conceptual semantics interfacing with perception and social 
modules — maps to PC’s MLC as the unifying internal medium. The parallel architecture’s 
modularity reflects PC’s substrate‑independent layers, where MLC processes occur in 
vector space regardless of biology or silicon (POS‑SUBSTR‑INV). This recasting yields 
empirical predictions: interface disruptions should cause graded degradation in MLC–ELM 
mapping, testable via the IAT‑1 protocol by measuring mutual information between 
subspaces. 

By embedding in the MLC/ELM framework, Jackendoff’s theory gains axiomatic rigor, 
transforming from a linguistic architecture into a general cognitive framework. It applies 
equally to AI, where LLMs’ residual streams emulate MLC orthogonality, projecting to ELM 
outputs. This unification underscores PC’s meta‑theoretical strength, integrating parallel 
modularity with vectorial duality for a substrate‑neutral science of language and mind. 

4. A Unified View via Substrate‑Independence 
When recast in PC, Baker’s and Jackendoff’s theories describe complementary aspects of 
the same abstract cognitive architecture, which PC models as a four‑layer system. 

Table 2. Principia Cognitia four‑layer system 

Lay
er PC Description Baker’s & Jackendoff’s Locus 

L0 Physical Substrate Neurobiological hardware 

L1 Abstract Cognitive 
Mechanics 

Baker’s parameters and principles; Jackendoff’s parallel 
modules and interfaces 

L2 Dynamics of 
Realization 

Articulatory phonetics; motor control for sign language 

L3 Physical 
Architecture/Output 

Acoustic waveform of speech; physical symbols of writing 

Both theories primarily target Layer 1. The Axioma Invariantiae Substrati 
(AX‑SUBSTR‑INV) of PC states that the formal structures at L1 are independent of the 
physical substrate at L0. Thus, Baker’s parameter lattice and Jackendoff’s parallel modules 
are not intrinsically biological; they are abstract computational designs that can, in 
principle, be implemented on any substrate with sufficient capacity — whether neural, 
silicon, or otherwise. 

Under PC’s thermodynamic boundary conditions (Landauer, 1961), “sufficient capacity” for 
L1 reduces to two measurable constraints: (i) an energy budget per semion exceeding the 
Landauer bound, 𝐸 ≥ 𝑘𝐵𝑇ln2, and (ii) an execution latency 𝜏 ≤ 𝜏max to keep predictive 
loops coherent. Any substrate meeting these constraints can host the L1 structures without 
altering their abstract form. 
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5. An Experimental Program for Convergent Validation 
The strength of this synthesis lies in its ability to generate a concrete, falsifiable research 
program. By embedding Baker’s and Jackendoff’s claims in the measurable framework of 
PC, we can design experiments that test their convergent validity in both biological and 
artificial systems. The protocols below move from abstract theory to empirical verification 
(full specifications in Appendix A). 

• Enhanced Parametric Invariance Test (PIT‑2) — Finding the “physical shadow” of 
abstract rules. Tests Baker’s claim that parameters are discrete switches by probing 
for distinct semion clusters in a multilingual model’s MLC. Uses geometric probing 
with strict criteria (e.g., silhouette score > 0.7) and automated parsing to identify 
grammatical contexts. (Appendix A.1) 

• Interface Architecture Test (IAT‑2) — Proving that thought ≠ language. Tests 
Jackendoff’s modularity claim, formalized as the MLC/ELM distinction, by “cutting 
the wire” between them. Selective lesioning in a multimodal AI measures 
degradation against an “MLC Functional Integrity Score” and compares patterns to 
neuroimaging data to compute a “Biological Plausibility Index.” (Appendix A.2) 

• Compositional Genesis of Linguistic Operations (CGLO‑2) — Demystifying 
emergence. Tests AX‑OPER‑BASIS by evolving agents to solve nested grammatical 
tasks (e.g., long‑distance agreement) using only 𝒪0. Tracks emergence of 
hierarchical macro‑operations via community detection on agent genomes. Also 
tasks agents with detecting ungrammatical or overly complex inputs, probing for 
boundary‑detecting meta‑semions (Axioma Negationis Cognitivae). (Appendix A.3) 

 

Figure 3. 

• Qualia Emergence Test (QET‑1) — A direct confrontation with the “hard problem”. 
Tests TH‑FS‑01 by contrasting an MLC‑equipped transformer with a purpose‑built 
“zombie” system: rich symbolic ELM, no dynamic MLC. Evaluates on tasks requiring 
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genuine understanding and self‑awareness of limitations; brittle failures in the 
ELM‑only system would support the necessity of MLC for qualia. (Appendix A.4) 

Table 3. Tiered Validation Plan 

Tier Budget Scope 

T0 (Toy) $ 500 cloud credits 2‑layer transformer, 1 M tokens, 1 GPU‑day 

T1 (Base) $ 5 k 125 M parameters, 100 M tokens, 1 week 

T2 (Full) $ 50 k 1.3 B parameters, 1 B tokens, 1 month 

6. Conclusion 
Principia Cognitia offers more than just a new set of axioms; it provides a powerful 
analytical and synthetic toolkit. By recasting the theories of Baker and Jackendoff into the 
formal language of Principia Cognitia, we have shown them to be compatible and 
complementary aspects of a single, unified cognitive architecture when viewed through a 
substrate-independent lens. More importantly, this synthesis makes their core claims 
empirically testable within a single, coherent research program. . The proposed 
experimental program moves these theories from the realm of pure linguistics into the 
domain of modern computational and cognitive science, providing a clear path for their 
convergent validation. We invite researchers across disciplines to replicate, challenge, and 
extend these protocols, thereby contributing to the development of a truly unified and 
empirical science of mind. 

This work serves as a bridge, connecting the rich traditions of theoretical linguistics with 
the empirical power of modern computational neuroscience and AI interpretability. It is a 
demonstration of the utility of Principia Cognitia not as a final, closed system, but as an 
open, generative framework for future scientific inquiry. Our immediate next steps will be 
to execute these experiments and publish the results. Following this, our research agenda 
will focus on extending the PC framework to other core cognitive phenomena, with 
forthcoming papers planned on: the compositional genesis of Operations (𝒪); the role of 
narrative as the threshold for rational thought (TH-NARR-THRESH-01); and the function of 
competition as a fundamental anti-entropic mechanism in the evolution of cognitive 
systems. 

Table 4. New predictive power 

PC Translation New, Testable Prediction 

Parameter = 
semion 

Continuous drift in parameter space predicts gradual language change 
(historical linguistics). 

Merge = vector 
mask 

Neural recordings will show discrete jumps in activation when Merge is 
invoked (MEG decoding). 

Interface = π-map Lesioning π_syn-sem leaves phonology intact but collapses argument 
structure (IAT-2). 

Self‑Contained Appendix: “PC Primer” 
Purpose: Ensure reviewers can evaluate the paper without consulting external 
preprints. 
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• Core Axioms: 

o AX‑VEC‑01 — Cognitive states are representable as vectors in a 
high‑dimensional semion space. 

o AX‑OPER‑BASIS — All complex cognitive operations emerge 
compositionally from a finite set of primitive operations 𝒪0. 

o AX‑SUBSTR‑INV — Formal structures at L1 are invariant with respect to 
the physical substrate at L0. 

• Glossary: 

o semion — Minimal unit of cognitive representation in PC. 

o MLC — Metalanguage of Cognition; dynamic vector space of internal 
operations. 

o ELM — External Language of Meaning; symbolic interface to the 
external world. 

o π‑map — Interface mapping between MLC and ELM modules. 

• Layer Definitions: 

o L0 — Physical substrate (e.g., neural tissue, silicon). 

o L1 — Abstract cognitive mechanics (parameters, modules, interfaces). 

o L2 — Dynamics of realization (motor control, articulatory phonetics). 

o L3 — Physical architecture/output (speech waveform, written 
symbols). 
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Appendix A. Detailed Experimental Protocols for 
Validating Parametric and Parallel Language Models 

within Principia Cognitia 
This set of protocols is a powerful empirical triangulation of Principia Cognitia’s core 
tenets: 

4. PIT-2 validates the nature of the cognitive unit (Semion), demonstrating its 
discrete, geometric reality within a vector space. It directly tests AX-VEC-01 and AX-
DISCR-01. 

5. IAT-2 validates the architecture of cognitive systems, providing evidence for the 
MLC/ELM distinction and the information-loss bottleneck inherent in their 
interface. It is the definitive empirical test of TH-LANG-04. 

6. CGLO-2 validates the constructivist origin of cognitive processing (Operation), 
showing that complexity arises compositionally from a minimal basis (AX-OPER-
BASIS) rather than through “magical” emergence. 

7. QET-1 validates the MLC/ELM duality by contrasting a full cognitive system (with 
MLC) against an ELM-only “philosophical zombie,” testing TH-FS-01. 

These protocols are designed to be fully reproducible, with complete code snippets, 
hardware specifications, and analysis pipelines. They can be implemented independently 
without further clarification from the author. 

Protocol A.1: Enhanced Parametric Invariance Test (PIT-2) 
Objective: To empirically validate the hypothesis, central to Baker (2001) and formalized 
in Principia Cognitia, that abstract grammatical parameters correspond to discrete, 
geometrically identifiable semion clusters within the internal vector space (MLC) of a 
cognitive system. This protocol uses probing techniques adapted from Shai et al. (2024) to 
find the physical instantiation of these parameters. 

Technical Specifications 
Model Architecture: 

• Base Model: Custom transformer trained from scratch 

• Parameters: 12M parameters (manageable for controlled experiments) 

• Architecture Details: 

o Layers: 6 transformer blocks 

o Hidden dimension (d_model): 256 

o Attention heads: 8 

o MLP dimension: 1024 

o Context window: 128 tokens 

o Vocabulary size: 8,192 tokens 

o Activation: ReLU (following Shai et al.) 

o Layer normalization: Pre-norm architecture 

Hardware Requirements: 
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• Minimal Setup: Single RTX 4090 (24GB VRAM) 

• Recommended: 2x RTX A6000 (48GB VRAM each) for parallel experiments 

• CPU: 32+ cores for data preprocessing 

• RAM: 128GB for large corpus handling 

• Storage: 2TB NVMe SSD for dataset storage 

Software Stack: 

• Framework: PyTorch 2.1+ with TransformerLens library 

• Probing Tools: 

o Custom geometric probing implementation based on Shai et al.’s linear 
regression approach 

o Scikit-learn for clustering analysis (K-means, Gaussian Mixture Models) 

o UMAP/t-SNE for dimensionality reduction visualization 

• Data Processing: HuggingFace Tokenizers and Datasets libraries 

Experimental Design 

Training Data Construction: 

• Parametric Language Pairs: 

o Head-directionality: English (head-initial) vs. Japanese (head-final) 

o Pro-drop: Italian (pro-drop) vs. French (non-pro-drop) 

o V2 constraint: German (V2) vs. English (non-V2) 

o Case marking: Russian (rich case) vs. Chinese (minimal case) 

• Corpus Specifications: 

o 50M tokens per language (200M total) 

o Balanced syntactic constructions within each language 

o Controlled for lexical complexity and domain coverage 

o Parallel sentence structures where possible 

Training Protocol: 

• Training Type: From scratch (not fine-tuning) 

• Rationale: Pure parameter learning without pre-existing linguistic biases 

• Optimizer: AdamW with cosine annealing 

• Learning Rate: 3e-4 with warmup over 10,000 steps 

• Batch Size: 32 sequences per GPU 

• Training Steps: 500,000 steps (~5 epochs) 

• Evaluation: Every 10,000 steps on held-out validation sets 

Analysis Procedure: 

1. Activation Extraction: 
# Extract residual stream activations at all layers 
activations = [] 
for layer in range(model.cfg.n_layers): 
    layer_acts = model.run_with_cache(batch, 
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                                      return_type="residual", 
                                      layer=layer) 
    activations.append(layer_acts) 

2. Parametric State Identification: 

• Label each input sequence with ground-truth parameter settings 

• Extract activations from positions following specific grammatical constructions 

• Apply PCA to reduce dimensionality while preserving 95% variance 

3. Clustering Analysis: 
from sklearn.cluster import KMeans, GaussianMixture 
from sklearn.decomposition import PCA 
from sklearn.metrics import silhouette_score 
 
# Apply PCA 
pca = PCA(n_components=0.95) 
reduced_acts = pca.fit_transform(activations[layer]) 
 
# K-means clustering 
kmeans = KMeans(n_clusters=2)  # Binary parameter 
clusters = kmeans.fit_predict(reduced_acts) 
 
# Evaluate discreteness 
silhouette = silhouette_score(reduced_acts, clusters) 
gmm = GaussianMixture(n_components=2) 
gmm.fit(reduced_acts) 
bic = gmm.bic(reduced_acts)  # Bimodality check 

4. Geometric Probing (adapted from Shai et al.): 
from sklearn.linear_model import LinearRegression 
from sklearn.metrics import mean_squared_error 
 
def find_parametric_simplex(activations, param_labels): 
    X = activations.numpy() 
    y = param_labels.numpy()  # Binary labels: 0 or 1 
    reg = LinearRegression().fit(X, y) 
    projected = reg.predict(X) 
    mse = mean_squared_error(y, projected) 
    return reg, projected, mse 

Expected Results / Success Threshold: Protocols are considered successful if 2/3 core 
predictions are validated with statistical significance (p < 0.01) and effect sizes > 0.5, 
providing strong evidence for PC’s unified framework while maintaining rigorous empirical 
standards. 

Principia Cognitia Prediction: Parametric states will form discrete, binary clusters in the 
model’s residual stream, with high silhouette scores (>0.7) and low BIC values indicating 
bimodality. Geometric probing will reveal a low-dimensional simplex (MSE < 0.1) encoding 
parameter values, demonstrating semions as quantized cognitive units. 
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Falsification Criterion: The hypothesis would be falsified if activations show continuous 
distributions without clusters (silhouette < 0.3) or if probing fails to recover parameters 
linearly (MSE > 0.5), indicating parameters are not discrete semions. 

Protocol A.2: Enhanced Interface Architecture Test (IAT-2) 
Objective: To validate Jackendoff’s (2002) parallel architecture and PC’s MLC/ELM duality 
by measuring information flow and degradation in a multi-module neural system, testing 
modularity and interface constraints. 

Technical Specifications 
Model Architecture: 

• Base Model: Modular transformer with separate modules for phonology, syntax, 
semantics 

• Parameters: 15M total (5M per module) 

• Architecture Details: 

o Modules: 3 independent transformers (phon, syn, sem) 

o Hidden dimension: 192 per module 

o Attention heads: 6 

o Interface layers: Linear projections between modules 

o Context window: 96 tokens 

o Vocabulary size: 4,096 tokens 

o Activation: GELU 

o Normalization: RMSNorm 

Hardware Requirements: 

• Minimal Setup: Single A100 (40GB VRAM) 

• Recommended: 4x A100 for distributed training 

• CPU: 64 cores for parallel processing 

• RAM: 256GB 

• Storage: 1TB SSD 

Software Stack: 

• Framework: PyTorch with HuggingFace Accelerate 

• Analysis Tools: 

o Mutual information: scikit-learn’s mutual_info_regression 

o Ablation: Custom hooks in TransformerLens 

o Visualization: Seaborn for degradation plots 

Experimental Design 

Training Data Construction: 

• Multimodal Corpus: 

o Text: 100M tokens from multilingual sources 
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o Phonetic annotations: IPA-transcribed subsets 

o Syntactic trees: Universal Dependencies corpus 

o Semantic graphs: Abstract Meaning Representation (AMR) 

Training Protocol: 

• Training Type: Joint training with interface losses 

• Optimizer: AdamW 

• Learning Rate: 1e-4 

• Batch Size: 64 

• Steps: 300,000 (~3 epochs) 

• Loss: Cross-entropy + mutual information regularization 

Analysis Procedure: 

1. Information Flow Measurement: 
from sklearn.feature_selection import mutual_info_regression 
import numpy as np 
 
def compute_mi(acts_mod1, acts_mod2): 
    mi = mutual_info_regression(acts_mod1.reshape(-1, 1), 
                                acts_mod2.reshape(-1)) 
    return np.mean(mi) 

2. Selective Ablation: 
# Hook for module ablation 
def ablation_hook(module, input, output): 
    if ablation_mode: 
        return torch.zeros_like(output) 
     
model.phon_module.register_forward_hook(ablation_hook) 
 
# Test degradation 
base_perf = evaluate(model, test_set) 
ablated_perf = evaluate(model, test_set, ablation_mode=True) 
degradation = (base_perf - ablated_perf) / base_perf 

3. Graded Degradation Analysis: 

• Ablate interfaces progressively (0-100% noise) 

• Measure performance on generation tasks 

• Plot mutual information vs. task accuracy 

Expected Results / Success Threshold: Protocols are considered successful if 2/3 core 
predictions are validated with statistical significance (p < 0.01) and effect sizes > 0.5, 
providing strong evidence for PC’s unified framework while maintaining rigorous empirical 
standards. 

Principia Cognitia Prediction: Ablation of interfaces will cause graded degradation (20-
80% performance drop), with mutual information correlating strongly (r > 0.8) with 
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accuracy. Modules will retain partial functionality independently, demonstrating 
modularity in MLC while ELM output collapses without interfaces. 

Falsification Criterion: The hypothesis would be falsified if ablation causes complete 
system failure (100% drop) or no degradation (<10%), indicating lack of modularity or 
over-dependence on single components. 

Protocol A.3: Enhanced Compositional Genesis of Linguistic Operations 
(CGLO-2) 

Objective: To validate the compositional emergence of complex grammatical operations 
from PC’s minimal basis set 𝒪_0 = {cmp, add, sub}, as predicted for both Baker’s parameters 
and Jackendoff’s parallel architecture. This protocol uses evolutionary algorithms to evolve 
agents that solve linguistic tasks, testing if higher-level operations arise hierarchically 
without pre-programmed structures (LEM-COMP-01, POS-OPER-BASIS). 

Technical Specifications 
Model Architecture: 

• Base System: Genetic algorithm framework with vector-based agents 

• Agent Details: 

o Genome: List of (operation, args) tuples from 𝒪_0 

o Memory: Torch tensor (size 16 for simplicity) 

o Operations: Lambda functions for cmp (comparison), add (vector addition), 
sub (vector subtraction) 

• Task Environment: Subject-verb agreement with scaling complexity 

o Input: One-hot vectors for subjects/verbs 

o Output: Agreed verb forms 

Hardware Requirements: 

• Minimal Setup: CPU-only (i9 or equivalent) 

• Recommended: GPU for parallel evolution (RTX 4090) 

• CPU: 16+ cores for multiprocessing 

• RAM: 64GB 

• Storage: 500GB SSD for logs and genomes 

Software Stack: 

• Framework: Python with Torch, DEAP (for genetic algorithms) 

• Analysis Tools: 

o NetworkX for genome visualization 

o Scikit-learn for hierarchical clustering 

• Data Processing: Custom synthetic generator for agreement tasks 

Experimental Design 

Training Data Construction: 



19 
 

• Minimal Environment: Simple sentences with number agreement 

• Input Representation: One-hot vectors for [SUBJ_SING, SUBJ_PLUR, VERB_BASE] 

• Target Output: [VERB_SING, VERB_PLUR] based on subject 

• Complexity Scaling: Start with 2 subjects, scale to 10+ with nesting 

Evolution Protocol: 

• Fitness Evaluation: Accuracy on agreement task + parsimony pressure 

• Selection: Tournament (k=5) 

• Mutation: Add/remove/modify operations (rate=0.1) 

• Crossover: Single-point (rate=0.7) 

• Generations: 1,000-5,000 

Analysis Procedure: 

1. Agent Implementation: 
import torch 
 
class PrimitiveAgent: 
    def __init__(self, genome): 
        self.genome = genome  # List of (operation, args) tuples 
        self.memory = torch.zeros(16)  # Working memory 
     
    def execute(self, input_vector): 
        state = input_vector 
        for op, args in self.genome: 
            state = self.apply_primitive(op, state, args) 
        return state 
     
    def apply_primitive(self, op, state, args): 
        primitives = { 
            'cmp': lambda x, y: (x > y).float(), 
            'add': lambda x, y: x + y, 
            'sub': lambda x, y: x - y, 
            'select': lambda mask, x, y: torch.where(mask, x, y) 
        } 
        return primitives[op](state, args) 

2. Evolution Loop: 
from deap import base, creator, tools 
import random 
 
creator.create("FitnessMax", base.Fitness, weights=(1.0,)) 
creator.create("Individual", list, fitness=creator.FitnessMax) 
 
def evaluate(individual): 
    agent = PrimitiveAgent(individual) 
    score = 0 
    for task in tasks: 
        output = agent.execute(task['input']) 
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        score += (output == task['target']).float().mean() 
    return score - len(individual) * 0.01,  # Parsimony 
 
toolbox = base.Toolbox() 
toolbox.register("individual", tools.initRepeat, creator.Individual, lambda: 
random.choice(ops), n=10) 
toolbox.register("population", tools.initRepeat, list, toolbox.individual) 
toolbox.register("evaluate", evaluate) 
toolbox.register("mate", tools.cxOnePoint) 
toolbox.register("mutate", tools.mutUniformInt, low=0, up=len(ops)-1, indpb=0
.1) 
toolbox.register("select", tools.selTournament, tournsize=5) 
 
pop = toolbox.population(n=100) 
for gen in range(5000): 
    offspring = toolbox.select(pop, len(pop)) 
    offspring = list(map(toolbox.clone, offspring)) 
    # Apply crossover and mutation 
    pop[:] = offspring 

3. Macro-Operation Detection: 

• Identify recurring subsequences in genomes 

• Measure compositional depth 

• Transfer test on novel structures 

Expected Results / Success Threshold: Protocols are considered successful if 2/3 core 
predictions are validated with statistical significance (p < 0.01) and effect sizes > 0.5, 
providing strong evidence for PC’s unified framework while maintaining rigorous empirical 
standards. 

Principia Cognitia Prediction: The system will successfully evolve agents that solve the 
agreement task. Analysis of their genomes will reveal a compositional hierarchy of 
operations built entirely from the primitive basis. This will demonstrate that the 𝒪_0 = 
{cmp, add, sub} basis is sufficient for the genesis of complex, grammar-like vector 
transformations without needing pre-programmed, monolithic operations. 

Falsification Criterion: The hypothesis would be falsified if, after thousands of 
generations, the system is unable to solve the task or if the successful solutions consist only 
of long, unstructured “spaghetti code” without any evidence of modular, reusable, or 
hierarchical macro-operations. 

Protocol A.4: Quantum Emergence Test (QET-1) 
Objective: To test PC’s TH-FS-01 by contrasting a full MLC-equipped system (System A) 
against an ELM-only “philosophical zombie” (System B), validating that true metacognitive 
awareness and compositional reasoning require internal vector structures, not just 
symbolic manipulation. 

Technical Specifications (Full T2 Version) 
System A (MLC-Equipped): 
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• Base Model: Transformer with vector representations (125M parameters) 

• Architecture Details: 

o Layers: 12 

o Hidden dimension: 768 

o Heads: 12 

o MLP: 3072 

o Context: 512 tokens 

o Vocabulary: 50,257 (GPT-2 style) 

System B (ELM-Only): 

• Architecture: Symbolic engine without vectors 

• Components: Vocabulary as indices, rule interpreter, external API hub, boundary 
detector 

• No Embeddings: Token manipulation via strings/indices only 

Hardware Requirements: 

• System A Training: 4x A100 GPUs 

• System B: CPU-only (i7 equivalent) 

• RAM: 256GB 

• Storage: 5TB 

Software Stack: 

• Framework: PyTorch for System A; Python stdlib + requests for System B 

• APIs: Wikipedia, Wolfram Alpha, Google Translate (free tiers) 

• Evaluation: Custom scorers with inter-rater reliability 

Experimental Design (T2) 
Training Data Construction: 

• Factual Retrieval: TriviaQA (10k samples) 

• Compositional Reasoning: CLUTRR, bAbI (5k each) 

• Metacognitive Probing: Custom 1k questions on knowledge boundaries 

Training Protocol (System A): 

• From scratch on 100B tokens 

• Optimizer: AdamW 

• LR: 5e-5 

• Steps: 1M 

System B Rules: 

• 50k symbolic rules (patterns/responses) 

• API Integration: Query external for unknowns 

Analysis Procedure: 
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1. System B Core: 
class SymbolicEngine: 
    def __init__(self, vocabulary, rules): 
        self.token_to_id = {token: i for i, token in enumerate(vocabulary)} 
        self.id_to_token = {i: token for i, token in enumerate(vocabulary)} 
        self.rules = rules  # List of (pattern, response) 
     
    def process(self, input_tokens): 
        matched = self._match_rules(input_tokens) 
        if matched: 
            return matched[0][1]  # First match response 
        return self._api_selection(input_tokens) 
 
    def _match_rules(self, tokens): 
        matched = [] 
        for pattern, response in self.rules: 
            if self._pattern_matches(tokens, pattern): 
                matched.append((pattern, response)) 
        return matched 
     
    def _pattern_matches(self, tokens, pattern): 
        if len(tokens) != len(pattern): 
            return False 
        for t, p in zip(tokens, pattern): 
            if p != "*" and t != p: 
                return False 
        return True 
     
    def _api_selection(self, tokens): 
        query = " ".join(tokens) 
        # Example: Wikipedia API 
        import requests 
        response = requests.get(f"https://en.wikipedia.org/w/api.php?action=q
uery&format=json&list=search&srsearch={query}") 
        if response.json().get('query', {}).get('search'): 
            return [response.json()['query']['search'][0]['snippet']] 
        return ["I don't know."] 

2. Metacognitive Scoring (MCS): 
import statistics 
 
class MetacognitiveScorer: 
    def __init__(self): 
        self.levels = { 
            0: "No response or irrelevant", 
            1: "Generic 'I don't know'", 
            2: "Simple explanation", 
            3: "Self-reflective boundary explanation" 
        } 
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    def evaluate(self, question, response): 
        # Manual or automated scoring 
        scores = [2, 3, 2]  # Example from raters 
        return statistics.mode(scores) 

3. Comparison: 

• Run tasks on both systems 

• Compute accuracy, MCS 

• Statistical tests: t-test (p < 0.001) 

Optimizations 
T1 Version (~$54,000, 12 weeks): Reduce System A to 12M params (1x RTX 4090), use 
NLTK/spaCy for System B rules (10k), existing benchmarks (scale down 5x), slim team (PI 
+ ML Engineer + Coordinator). 

T0 MVP (~$15,000, 8 weeks): System A at 6M params (RTX 3090, 3 days train), ELIZA+ 
with Wikipedia API, 500 questions, 1 researcher + 2 students. 

Expected Results / Success Threshold: Protocols are considered successful if 2/3 core 
predictions are validated with statistical significance (p < 0.01) and effect sizes > 0.5, 
providing strong evidence for PC’s unified framework while maintaining rigorous empirical 
standards. 

Principia Cognitia Prediction: System A will excel in compositional reasoning (75-85% 
accuracy) and metacognition (MCS 2.3-2.7), while System B fails (<25% reasoning, MCS 
<1.2), demonstrating MLC’s necessity for true cognition. 

Falsification Criterion: The hypothesis would be falsified if System B achieves >60% on 
reasoning or MCS >2.0, or if no significant gap exists (Cohen’s d < 0.8), indicating ELM 
suffices without MLC. 
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