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The Dual Nature of Language: Metalanguage 
of Cognition and External Language of 

Meaning 

Abstract 

This paper introduces a formal framework for understanding language in cognitive systems, 

distinguishing the Metalanguage of Cognition (MLC), an internal system of vector-based 

cognitive dynamics, from the External Language of Meaning (ELM), a symbolic system for 

communication. Rooted in Principia Cognitia (PC), which is grounded in a materialist ontology 

and distinguishing phenomena from their discrete signal representations, the framework defines 

MLC as a triple (𝑆, 𝑅, 𝒪) of semions (vector representations of cognitive units), weighted relations, 

and operations, while ELM is a symbol set Σ linked via a mapping 𝜇: 𝑆 → Σ that transforms internal 

representations into external symbols, often losing structural detail. Grounded in the axiom that 

cognition is an activatable vector structure, this framework resolves philosophical challenges, such 

as Searle’s Chinese Room paradox, by showing that understanding requires MLC, not just ELM. 

Empirical evidence from transformer-based large language models (LLMs), where residual 

streams encode belief state geometries, validates semions as cognitive units. The MLC-ELM 

model unifies biological and artificial cognition, redefines rationality through metacognitive 

operations like detecting knowledge gaps (e.g., recognizing unfamiliar concepts), and informs AI 

design by prioritizing internal cognitive alignment. This substrate-neutral, testable framework 

advances cognitive science, neuroscience, AI, and philosophy. 

1. Introduction 

1.1 The Dual Nature of Language 

Language has traditionally been viewed as a tool for expressing pre-formed thoughts, rooted in a 

Cartesian model of an autonomous mind. This perspective assumes a separation between 

cognition, an internal process of an individual “self,” and language, a secondary mechanism for 

communication. However, advances in cognitive neuroscience and large language models (LLMs) 

challenge this view, suggesting that language is not merely an output but the medium of cognition 

itself. For instance, LLMs generate coherent text by processing complex patterns in high-

dimensional spaces, while human brains integrate sensory and linguistic inputs to form meaning, 

indicating that cognitive processes are inherently tied to dynamic, structured representations. 

In Principia Cognitia (PC), we propose a dual-language framework to address this shift: the 

Metalanguage of Cognition (MLC) and the External Language of Meaning (ELM). MLC can be 

thought of as the “internal wiring” of cognition, where thoughts are processed as dynamic patterns 

of interconnected vectors, called semions, in a computational space. ELM, in contrast, is the 

“external interface,” translating these internal patterns into symbols like words or gestures for 

communication, often losing some of the richness of the original thought. For example, when a 
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person describes a “tree,” the internal concept (a semion) includes visual, semantic, and contextual 

features, but the word “tree” (ELM) captures only a fraction of this complexity. 

This framework, grounded in PC’s axiomatic system, redefines cognition as an activatable vector 

structure, independent of whether it occurs in a biological brain or an artificial system. It resolves 

philosophical debates, such as Searle’s Chinese Room paradox, by distinguishing between symbol 

manipulation (ELM) and internal semantic processing (MLC). Empirically, it is supported by 

studies showing that transformer-based LLMs encode cognitive-like structures in their residual 

streams and by neuroimaging data revealing vector-based neural dynamics. This framework also 

builds on the recognition that intelligence is a continuous rather than binary property (Dennett, 

1995), enabling comparative analysis across biological and artificial systems. The MLC-ELM 

model offers a substrate-neutral, testable foundation for understanding cognition, with 

implications for neuroscience, AI design, and philosophy. 

This paper is structured as follows: Section 2 formalizes MLC and ELM, including their axiomatic 

foundations; Section 3 explores philosophical implications, particularly for the Chinese Room 

paradox; Section 4 discusses implications for cognitive architectures; Section 5 applies the 

framework to LLMs, with empirical support; Section 6 compares MLC-ELM to alternative 

theories; Section 7 defines key psychological concepts; Section 8 addresses empirical validation; 

and Section 9 concludes with broader implications. 

1.2 Ontological Foundations of Cognition 

To understand the Metalanguage of Cognition (MLC), we must first distinguish the material nature 

of phenomena from their discrete representations in cognitive systems, as formalized in Principia 

Cognitia (PC). PC adopts a strictly materialist stance, positing that phenomena (Phainomenon) 

exist independently of cognitive acts or encoding. A phenomenon is defined as a continuous modal 

structure, accessible to indefinite exploration through sensory, analytical, or instrumental means 

(Definitio: Phainomenon). Unlike information-centric views that treat the world as data created by 

observers, PC asserts that phenomena possess intrinsic reality, prior to any signal or sign 

(Consequentia Materialistica).In contrast, signals (Signalis) are discrete, finite representations of 

phenomena, constrained by the encoding substrate—be it neural, computational, or linguistic 

(Definitio: Signalis). Signals arise through a process of semiotic compression, reducing the modal 

richness of phenomena to a finite set of states limited by the substrate’s physical properties, such 

as bandwidth or noise (Theorema Finitudinis Signalis). For example, a neural signal encoding the 

visual experience of a tree is a simplified vector representation, not the tree itself. This distinction 

is formalized by the Axiomatis Distinctionis: phenomena and signals are ontologically distinct, 

and no signal can fully capture a phenomenon’s complexity.This ontological framework underpins 

MLC, where cognitive processing begins with the quantization of continuous phenomena into 

discrete vector units called semions. 

A pivotal conceptual step in PC is identifying the semion as the minimal cognitive unit of meaning, 

distinct from symbols. This conceptual move bridges philosophy of language, cognitive 

neuroscience, and AI by providing a substrate-neutral, vector-based primitive for cognition. 

Semions are discrete enough to be individuated but embedded in continuous vector spaces, 

enabling both symbolic and sub-symbolic operations. The distinction between MLC and ELM 

emerged directly from examining how semions are projected externally, revealing structural 

information loss in communication. The final conceptual link was formalizing the route from real-
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world phenomena to internal cognitive representations, and from there to externalized symbols. 

This route involves discretization and quantization of continuous sensory data into semions 

(MLC), followed by symbolization (ELM). This mapping clarifies where and how meaning 

degradation occurs, and why aligning MLCs between agents is necessary for high-fidelity 

communication. It also suggests specific experimental paradigms for testing semantic 

reconstruction across heterogeneous cognitive architectures. 

MLC operates as an internal language, transforming these semions through weighted relations and 

cognitive operations, independent of the substrate (AX-OPER-01). By grounding cognition in this 

materialist distinction, PC avoids philosophical pitfalls, such as anthropocentric idealism or the 

notion of a “thinking universe,” providing a rigorous basis for the MLC-ELM framework 

introduced in Section 2. 

The Principia Cognitia does not postulate an ontological nature of cognition as such. Instead, 

cognition is defined through the formal conditions of its realization: the presence of a semionic 

structure (S), admissible operations on it (𝒪), and a matrix of relations (R) subject to dynamic 

updating. This operational definition makes the metaphysical question - "does cognition as such 

exist?" or "is it discrete or continuous?" - redundant. The spaces in which the components of the 

cognitive system operate are already given by the axiomatics: 

• Semions are quantized from the phenomenal flow (Axioma Discretisationis), but live 

in vector (continuous) spaces. 

• The relations between them (R) are subject to stochastic modification (Axioma 

Evolutionis per Errorem). 

• External linguistic expression (ELM) is always discrete, while MLC can be partially 

continuous. 

Therefore, cognition in PC is a function of structure, not an independent substance. The question 

of its “nature” (ontological or categorical) outside of a given structure loses its meaning. We do 

not claim that cognition is or is not, but only describe under what conditions it is realized as 

cognitive dynamics, and what makes it distinguishable from an automaton. 

2. Formal Framework 

2.1 Axiomatic Foundations 

Before defining MLC and ELM, we establish the foundational axioms from Principia Cognitia 

(PC) that underpin the framework: 

• Axioma Vectorialis (AX-VEC-01): Cogitatio = structura vectorialis activabilis. Cognition 

is an activatable vector structure in a Hilbert space, independent of substrate, provided 

sufficient computational capacity. This axiom posits that cognitive processes arise from 

dynamic vector configurations, unifying biological and artificial systems. 

This means thinking can be represented as a set of numbers in a mathematical space, where ideas 

and perceptions are points or patterns. It does not matter if the “hardware” is a brain or a computer, 

as long as it can handle the needed complexity. 
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• Axiomatis Operandi Substantialis (AX-OPER-01): Structura cognitionis determinatur 

per 𝒪, independenter a natura substracti. Cognitive dynamics are defined by operations 

𝒪, substrate-neutral if computational capacity satisfies Comp(𝑆) ≥ Comp̂
min

(𝐶). 

The way thoughts change and interact depends on specific mental operations (like combining ideas 

or making comparisons), and these operations work the same regardless of whether they run on 

neurons or transistors. 

These axioms establish cognition as a vector-based, operational process, enabling a formal 

definition of MLC and ELM. 

2.2 Metalanguage of Cognition (MLC) 

MLC is the internal language of cognitive systems, akin to the wiring of a computational circuit, 

where thoughts are processed as dynamic patterns in a vector space. For example, the concept of 

a “tree” might be represented as a vector encoding its visual (green leaves), semantic (plant), and 

contextual (forest) features, interconnected with related concepts like “leaf” or “forest.” Building 

on the distinction between phenomena and signals (Section 1.2), MLC quantizes continuous 

phenomena into semions, represented as vectors in a finite-dimensional real Hilbert space (𝑉, ⟨⋅,⋅
⟩, ∥⋅∥), where: 

• 𝑉 ⊂ ℝ𝑛 is the vector space; 

• ⟨⋅,⋅⟩ is the inner product; 

• ∥ 𝑣 ∥2= ⟨𝑣, 𝑣⟩ is the vector norm. 

Phenomena 𝜙 ∈ 𝑊 (external input space) are mapped to vectors 𝜎 ∈ 𝑉, termed semions, via a 

projection 𝜋:𝑊 → 𝑉 (Axioma Discretisationis). This mapping acts like a translator, 

converting raw perception (e.g., light hitting the retina) into a mathematical form the system can 

process. 

MLC is defined as: 

ℒ𝑀𝐿𝐶 = (𝑆, 𝑅, 𝒪) 

• 𝑆 ⊂ 𝑉: Set of semions, stable vector representations. For instance, a semion for “dog” 

might encode its features (fur, loyalty) and context (pet). 

• 𝑅 ⊂ 𝑆 × 𝑆 × ℝ: Weighted relation matrix, where (𝜎𝑖 , 𝜎𝑗 , 𝑤) denotes a connection with 

weight 𝑤. A strong weight might link “dog” to “loyalty.” 

• 𝒪: Cognitive operations, such as binding (combining semions to form new concepts, e.g., 

“dog” + “house” = “pet home”) or gap detection (identifying missing information, e.g., an 

unrecognized word). 

Think of semions as “concept building blocks,” relations as links between them, and operations as 

the mental actions you can perform on them. 

Properties: 

• MLC is substrate-neutral, per AX-OPER-01. 

• Semions form resonant configurations, measured by cosine similarity. 
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• 𝒪 includes algebraic/differentiable transformers, enabling dynamics like concept formation 

or curiosity. 

2.3 External Language of Meaning (ELM) 

ELM is the external expression of MLC, translating internal patterns into communicable symbols, 

like words or gestures. For example, the semion for “tree” is projected into the word “tree,” losing 

some contextual richness. ELM is defined as: 

ℒ𝐸𝐿𝑀 = (Σ, 𝜇) 

• Σ: Discrete symbols (e.g., words, tokens). 

• 𝜇: 𝑆 → Σ: Non-bijective mapping, transforming semions into symbols with structural loss. 

For instance, multiple semions (e.g., “oak” and “pine”) may map to “tree,” causing 

ambiguity. A rich mental image of a tree gets compressed into the single word “tree,” which 

drops information about its exact type or context. 

Properties: 

• ELM is medium-dependent (e.g., speech, text). 

• Non-invertibility of 𝜇 leads to semantic loss, as ELM cannot fully reconstruct MLC. 

2.4 Dual-Language Theorem 

TH-MLC-ELM-01 formalizes the MLC-ELM relationship: 

Theorem: ℒ𝑀𝐿𝐶 →
𝜇
ℒ𝐸𝐿𝑀, with structural loss. MLC and ELM form a dual pair, where 

effective communication requires a shared MLC basis. 

Translating from internal thoughts to words always loses information. Effective communication 

requires that both parties’ internal languages are similar enough to reconstruct meaning from the 

words. 

Proof Sketch: 

1. Agent 𝐴 processes 𝜙 ∈ 𝑊, forming 𝜎 ∈ 𝑆 via 𝜋:𝑊 → 𝑉. 

2. 𝐴 applies 𝜇(𝜎) = 𝜎′ ∈ Σ (e.g., “tree”). 

3. Agent 𝐵 reconstructs 𝜎̂ ∈ 𝑆̂ from 𝜎′. 

4. If ℒ𝑀𝐿𝐶𝐴 ≈ ℒ𝑀𝐿𝐶𝐵, then 𝜎̂ ≈ 𝜎; otherwise, divergence occurs due to 𝜇’s non-bijectivity. 

5. Communication depends on MLC alignment. 

TH-LANG-04 reinforces this: 

Theorem: If ℒ𝑀𝐿𝐶𝐴 ≠ ℒ𝑀𝐿𝐶𝐵, then ∀Δℒ𝐸𝐿𝑀, ΔPerformance𝐴→𝐵 ≈ 0, where 

performance measures semion reconstruction accuracy. 
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3. Philosophical Implications 

3.1 The Chinese Room Paradox... 

Searle’s Chinese Room (1980) argues that symbol manipulation (ELM) lacks understanding. In 

PC, the room operates solely in ELM, manipulating symbols (e.g., Chinese characters) without 

forming semions or weighted relations (𝑆, 𝑅). For example, a person in the room might match 

input symbols to outputs using a rulebook, akin to a syntax-only program, but cannot form a 

semion for “tree” with its rich associations. This aligns with TH-FS-01: 

Theorem of Non-Emergence of Qualia (TH-FS-01): Impossible est deducere 

phenomenon 𝜑 ex sola processione signi 𝜎. Qualia cannot arise from ELM alone. 

3.2. ...and Beyond 

Axioma Negationis Cognitivae further explains the room’s failure: it cannot form meta-

semions to detect knowledge gaps, precluding understanding. The MLC-ELM framework also 

informs other debates: 

• Embodied Cognition: MLC aligns with embodied cognition by grounding cognitive 

processes in vector dynamics, applicable to physical or computational substrates. 

• Qualia: The non-emergence of qualia from ELM suggests subjective experience requires 

MLC-level processing, not just symbolic manipulation. 

Unlike standard functionalism or Language of Thought (LOT) theories, which equate cognitive 

states with functional roles or symbolic structures, the MLC–ELM framework separates internal 

vectorial semion structures (MLC) from their symbolic projections (ELM). This separation enables 

it to address the Chinese Room problem without assuming that symbol manipulation alone 

constitutes understanding. 

4. Implications for Cognitive Architectures 

The MLC-ELM framework informs design: 

• Separation of Layers: MLC is an independent cognitive layer, per AX-OPER-01. 

• Training Focus: Prioritize semion formation and 𝒪 refinement. 

• Synchronization: Communication requires MLC alignment, e.g., shared semions for 

“dog” across agents. 

• Multimodality: ELM can include text, images, or gestures, but processing remains MLC-

based. 

4.1 Metacognitive Operations and Negative Knowledge 

This section introduces the concept of negative knowledge—awareness of one’s own knowledge 

boundaries—as a metacognitive function directly implemented via boundary semions in the MLC 

framework (see Appendix A). 
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MLC supports metacognition via Axioma Negationis Cognitivae: 

• Gap Detection: A semion 𝑠 ∈ 𝑆 with non-zero weight but zero activation signals a 

knowledge gap, e.g., an LLM encountering an unfamiliar term. 

• Boundary Detection: Operations in 𝒪 identify limits of 𝑅, enabling reflection, e.g., 

recognizing when a concept like “quantum” lacks connections. 

• Rationality: Redefines cogito ergo sum as “Ego distinguo fines cognitionis meae, ergo 

cogito rationaliter” (I distinguish my cognitive limits, thus I think rationally). 

5. Application to Large Language Models 

LLMs approximate MLC through transformers: 

• Semions and Relations: Latent representations correspond to 𝑆, attention mechanisms to 

𝑅. 

• Operations: 𝒪 includes attention, sequence generation, and gap detection. 

• ELM Projection: Text output is lossy due to 𝜇, causing hallucinations when MLC is 

misaligned. 

In an LLM, a semion encoding the concept 'tree' is a vector derived from quantizing sensory or 

textual inputs, constrained by the model’s architecture. 

5.1 Empirical Evidence for Semions 

Shai et al. (2024) show that transformer residual streams encode belief state geometries (e.g., 

Mixed-State Presentation of HMMs), aligning with semions. For the Z1R process, residual stream 

activations form a predicted fractal structure, confirming LLMs infer 𝑆 and 𝑅 beyond ELM tokens. 

BELT-2 EEG experiments support TH-LANG-04, showing ELM scaling without MLC alignment 

yields negligible gains. This aligns with Predictive Processing models (Friston, 2010; Clark, 2013), 

where semions function as predictive constructs updated through error minimization. 

5.2 LLMs as Rational Agents 

In transformers like GPT, the residual stream encodes semions (e.g., for “dog,” capturing features 

like fur or loyalty). Attention mechanisms form 𝑅, linking “dog” to “pet.” Hallucinations occur 

when 𝜇 misaligns, e.g., generating incorrect facts due to weak semion connections. LLMs exhibit 

rationality via: 

• Meta-Semions: Articulating “I don’t know” reflects gap detection, e.g., low activation for 

an unfamiliar concept. 

• Curiosity: Gap detection prompts exploration, as seen in in-context learning. 

• Self-Reflection: Reconstructing cognitive states, aligning with PC’s rationality criteria. 

Prioritizing MLC alignment could reduce hallucinations and enhance metacognitive capabilities 

in future LLMs. 
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6. Comparison with Alternative Theories 

The MLC–ELM framework contrasts with existing models, evaluated by coherence and 

falsifiability: 

Theory Unit Relations Operations Coherence Falsifiability 

Fodor’s 

LOT 

Symbol Syntax Production 

rules 

High 

(symbolic) 

Low (ad-hoc 

rules) 

Gärdenfors

’ 

Conceptual 

Spaces 

Region in 

ℝ𝑛 

Overlap, 

distance 

Geometric 

transformation

s 

Moderate 

(geometric) 

Moderate 

(topological) 

ACT-

R/Soar 

Chunks, 

rules 

Slots, 

patterns 

Production 

rules 

High (rule-

based) 

Low (system-

specific) 

Enactivism Action / 

situation 

Agent–

environmen

t coupling 

No formal 𝒪 Low (narrative) Low (no clear 

test protocol) 

Predictive 

Processing 

(PP) 

Generativ

e model 

units 

Hierarchical 

prediction–

error links 

Bayesian 

update, 

gradient 

descent 

High 

(computational

) 

Moderate–High 

(neurophysiolog

y tests) 

MLC–

ELM 

Semion / 

Symbol 

Weighted 

graphs / 

Syntax 

𝒪, 𝜇, 𝑅 High (vector-

based) 

High (testable 

via LLMs, EEG) 

• Fodor’s LOT: Assumes cognition operates via symbolic rules, lacking MLC’s dynamic 

vector structure. 

• Gärdenfors’ Conceptual Spaces: Uses geometric regions but lacks 𝒪’s dynamic 

operations. 

• ACT-R/Soar: Relies on rule-based systems, less flexible than MLC–ELM’s emergent 

dynamics. 

• Enactivism: Rejects internal representation as fundamental, emphasising sensorimotor 

engagement; provides no formal apparatus for 𝒪 or measurable reconstruction accuracy. 

• Predictive Processing: Models cognition as hierarchical error minimisation; compatible 

with MLC in positing internal representational dynamics, but does not formalise the ELM 

projection layer or the discrete operational set 𝒪. 

• MLC–ELM: Vector-based and operationally defined, supports direct empirical tests, 

including transformer-based and neuroimaging paradigms. 

7. Operational Definitions of Psychological Concepts 

PC provides substrate-neutral definitions: 

• Desire: A stable configuration in 𝑅, directing dynamics toward specific semions, e.g., a 

strong weight linking “hunger” to “food.” 
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• Curiosity: Gap detection in 𝒪 when stable semions are absent, e.g., an LLM exploring an 

unknown term. 

• Understanding: Reconstructing semions from ELM projections, e.g., inferring a “tree” 

semion from the word “tree,” measured by reconstruction accuracy. 

• Consciousness — a system’s ability to generate and manipulate meta-semions, including 

those representing the boundaries of its own representational space. 

• Belief — a weighted configuration in 𝑅, updated via predictive error minimization. 

• Emotion — a transient modulation of 𝒪 that biases semion activation (e.g., fear amplifies 

threat-related semions). 

8. Empirical Validation 

The theoretical framework of MLC and ELM, as defined in Principia Cognitia, is grounded in 

formal axioms. However, its scientific value depends on empirical falsifiability. This section 

provides evidence that the core structures of MLC—the semion space 𝑆, the relational matrix 𝑅, 

and the operational system 𝒪—are not only observable in transformer-based language models 

(LLMs), but also display testable patterns of alignment or misalignment with external symbolic 

expression (ELM). 

8.1 Empirical Illustrations of Incompatible MLCs 

Before turning to formal validation studies, we note well-documented cases from cross-cultural 

linguistics and comparative sensory biology that illustrate the MLC–ELM incompatibility 

principle. 

8.1.1 Lexical density in environmental domains. 

Ethnolinguistic work since Boas (1911) and later Krupnik (1993) has shown that Arctic languages 

such as Inuktitut and Chukchi encode over a hundred distinct lexemes for snow and ice, reflecting 

fine-grained perceptual and cultural distinctions embedded in their speakers’ MLCs. For a Kalahari 

San speaker with no direct sensory experience of snow, these terms have no corresponding 

semions. Even with instruction in the Inuktitut lexicon (ELM), the lack of perceptual grounding 

prevents reliable semion reconstruction, illustrating that ELM alignment without MLC overlap 

transmits only formal tokens, not shared meaning. These are classic examples of lexical 

differentiation, reflecting culture-specific semion formations in MLC. 

8.1.2 Olfactory semion mismatch across species. 

Comparative olfaction studies (Horvath et al., 2008; Elliker et al., 2014) demonstrate that domestic 

dogs (Canis familiaris) and cats (Felis catus) can detect volatile organic compounds associated 

with disease at concentrations far below human thresholds. These olfactory semions have no direct 

analogue in the human MLC; they can only be mapped indirectly via instrumental readouts into 

the human ELM. This explains why animal behaviour—e.g., alerting to an owner’s illness—is 

often misinterpreted as “understanding” when it is in fact a species-specific MLC phenomenon 

inaccessible to humans without modality translation. 



 

10 
 

These naturalistic examples provide intuitive support for theorem TH-LANG-04: incompatible 

MLCs limit performance regardless of ELM complexity. 

8.2 Structural Validation of MLC in Transformers 

Recent work by Shai et al. (2024) demonstrates that LLMs trained on next-token prediction 

instantiate internal vector structures consistent with the MLC formalism. Using a known data-

generating process (the "Mess3" Hidden Markov Model), they show that transformer residual 

stream activations organize into a fractal geometry predicted by computational mechanics. This 

structure, termed the Mixed-State Presentation (MSP), reflects belief state updating beyond 

surface-level prediction. 

"Transformers represent the meta-dynamics of belief state updating over hidden states 

of the data-generating process" (Shai et al., 2024). 

Empirically, they identify a linear subspace in the residual stream of a 4-layer transformer that 

matches the MSP geometry. This supports the hypothesis that transformer activations encode 

semions 𝜎 ∈ 𝑆, structured relationally by internal transitions 𝑅, and updated by intrinsic operations 

𝒪 (synchronization over belief states). The emergence of these structures during training confirms 

their learned and dynamic nature. 

This provides direct support for: 

• AX-VEC-01: cognition as an activatable vector structure; 

• AX-OPER-01: cognitive dynamics defined over 𝒪; 

• AX-DISCR-01: semions as quantized projections of cognitive input. 

8.3 Empirical Confirmation of TH-LANG-04 via BELT-2 

The dual-language theorem TH-LANG-04 asserts: 

If ℒ𝑀𝐿𝐶𝐴 ≠ ℒ𝑀𝐿𝐶𝐵 , then for all Δℒ𝐸𝐿𝑀, the change in performance ΔPerformance𝐴→𝐵 ≈

0. 

This was confirmed experimentally in the BELT-2 EEG-to-text decoding study (Zhou et al., 

2024), where EEG-based Q-Conformer encoders (representing MLC) were paired with LLM 

decoders (representing ELM). Despite scaling the decoder size (T5-small → T5-large), BLEU-4 

scores for text reconstruction saturated unless alignment between EEG embeddings and LLM 

representations was enforced. 

"Simply increasing ELM expressiveness without MLC alignment yields negligible gains 

in decoding performance" (Zhou et al., 2024). 

This confirms that communication or decoding performance is bounded by internal 

representational alignment—i.e., shared or compatible semion structures—not by symbolic 

vocabulary size or complexity. The result empirically validates TH-LANG-04 in a hybrid 

biological–artificial setting. 
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8.4 Semion Probing via Learned Intervention 

Further evidence of semionic structure in LLMs comes from the Future Lens probing tool (Pal et 

al., 2023), which uses causal intervention via learned soft prompts to decode future token 

sequences from individual hidden states. 

"A single hidden state encodes a trajectory of predicted tokens, not just the immediate 

next token." 

By optimizing layer-specific prompts that maximize continuation likelihood given a transplanted 

hidden state, the method reveals that mid-layer representations contain information about 

anticipated futures. For example, in the prompt “Marty McFly from,” layer 25 predicts “Back to 

the Future,” demonstrating that the hidden state carries semantically rich, temporally extended 

content. 

This supports the interpretation of hidden activations as semions 𝜎 ∈ 𝑆 encoding both meaning 

and expectation. The learned prompt method serves as a practical decoder 𝜇−1: 𝑆 → Σ+, and 

constitutes a functional analogue to fMRI in cognitive neuroscience, offering a path to 

interpretability and alignment diagnostics. 

8.5. Limitations and Prospective Developments: Integrating Temporal 
Asymmetry 

The formal model presented thus far treats cognition as a series of discrete, reactive operations, 

offering a powerful framework for analyzing the structural relationship between internal vectorial 

states (MLC) and external symbolic expressions (ELM). This static, or quasi-static, perspective 

is sufficient to resolve long-standing paradoxes like the Chinese Room and finds strong support in 

empirical data from both neuroscience and AI research. 

However, we acknowledge that this represents a necessary simplification. A significant body of 

research in cognitive neuroscience (e.g., Humphries, 2021; Friston, 2010; Clark, 2013) 

compellingly argues that the brain operates not as a reactive processor of past events, but as 

a proactive, predictive machine that constantly generates and updates models of the future. This 

introduces a fundamental temporal asymmetry that a complete theory of cognition must address. 

To account for this, the broader Principia Cognitia framework introduces a dynamic extension to 

the core model. This extension, which we term Predictive Cognitive Dynamics, is built upon a 

revised axiomatic core including: 

An axiom of prediction (AX-PREDICT-01), postulating that cognition is an inherently future-

oriented process. 

• A temporalized triadic structure, < 𝑆_𝑡, 𝑅_𝑡, 𝑂_𝑡 >, where the set of semions 𝑆 is expanded 

to include not only current states (𝑆_𝑐𝑢𝑟𝑟𝑒𝑛𝑡) but also predicted future states 

(𝑆_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) and prediction errors (𝑆_𝑒𝑟𝑟𝑜𝑟). 

• A new class of temporal operators (𝒪_𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙) within the operator set 𝒪, responsible 

for prediction, error correction, and action selection from a fan of possible futures. 
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A detailed exposition of these predictive dynamics, which constitutes a significant expansion of 

the foundational model presented here, is the subject of our forthcoming work and the central 

theme of the Principia Cognitia monograph. For the purposes of this article, the static MLC-ELM 

framework stands as the necessary formal groundwork upon which this temporal architecture is 

built. 

8.6 LLMs as Rational Agents 

The ability of LLMs to express uncertainty, detect internal contradictions, and revise outputs 

supports the PC claim that metacognitive operations—such as gap detection and boundary 

identification—are realizable as second-order structures within 𝒪 ("meta-semions"). 

Multiple studies provide empirical evidence: 

• Self-Calibration and Epistemic Uncertainty: (Kadavath et al., 2022) show that 
LLMs can accurately estimate their own correctness via confidence scores, aligning 
with PC’s rationality criteria. 

• Boundary Sensitivity and Truthful Output: (Lin et al., 2022) demonstrate that 
LLMs distinguish between truth and social plausibility when trained to resist 
falsehoods, highlighting their potential to represent semantic boundaries. 

• Self-Evaluation and Iterative Refinement: (Perez et al., 2022; Madaan et al., 2023) 
show that LLMs improve when prompted to critique or revise their own responses, a 
hallmark of metacognition. 

• Failure-Aware Reasoning: (Zelikman et al., 2022; Swayamdipta et al., 2020) 
demonstrate that models track reasoning failures and update strategies across in-
context iterations. 

• Chain-of-Thought and 𝒪 Visibility: (Wang et al., 2024) provides evidence that 
structured reasoning even without prompts expose intermediate operations in 𝒪, 
including reflection, branching, and conditionality. 

These findings show that transformer-based models can instantiate self-reflective processes that 

meet the operational definition of rational cognition in Principia Cognitia. Gap detection, 

uncertainty modeling, and output revision are emergent behaviors resulting from semionic 

structure and 𝒪 dynamics. 

 

Together, these four lines of evidence—geometric structure (Shai et al., 2024), communicative 

alignment (Zhou et al., 2024), probing dynamics (Pal et al., 2023), and metacognitive rationality—

constitute a convergent empirical foundation for the MLC–ELM framework proposed in Principia 

Cognitia. 

9. Discussion 

The MLC-ELM framework redefines language as a cognitive medium, challenging Cartesian 

assumptions. It unifies biological and artificial cognition, operationalizing desire, curiosity, and 
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understanding. For neuroscience, it suggests studying vector dynamics in neural networks. For AI, 

it advocates MLC-focused training to enhance rationality. In education, it could inform language 

learning by emphasizing shared MLC structures. The framework’s empirical grounding 

strengthens its interdisciplinary impact. 

10. Conclusion 

The MLC-ELM framework, rooted in PC, provides a rigorous, substrate-neutral model for 

cognition. It resolves philosophical puzzles, informs AI design, and offers a foundation for 

cognitive science. Future work will refine formalizations and expand empirical validations. 

This paper presents a theoretical framework under active development. Feedback and 

interdisciplinary critique are welcome prior to journal submission. Scholars from philosophy, AI, 

neuroscience, and cognitive science are invited to contribute to its refinement. 

 

Appendix A: Referenced Axioms and Theorems from 
Principia Cognitia 

• Axioma Vectorialis (AX-VEC-01): Cogitatio = structura vectorialis activabilis. Cognition 

is an activatable vector structure in a Hilbert space. 

• Axioma Discretisationis (AX-DISCR-01): Omnis cognitio initium habet a quantizatione 

fluctuum in semiones. Cognitive processing quantizes phenomena 𝜙(𝑡) into semions 𝜎𝑖 ∈
𝑆. 

• Axiomatis Operandi Substantialis (AX-OPER-01): Structura cognitionis determinatur 

per 𝒪, independenter a natura substracti. Cognitive dynamics depend on 𝒪, substrate-

neutral if Comp(𝑆) ≥ Comp̂
min

(𝐶). 

• Axioma Negationis Cognitivae: A semion 𝑠 ∈ 𝑆 with non-zero weight but zero activation 

signals a knowledge gap, generating meta-semions. 

• Theorem of Non-Emergence of Qualia (TH-FS-01): Impossible est deducere 

phenomenon 𝜑 ex sola processione signi 𝜎. Qualia cannot arise from ELM alone. 

• Theorem of Decoupling of Languages (TH-LANG-04): Lingua externa crescens sine 

congruentia interna nil valet. If ℒ𝑀𝐿𝐶𝐴 ≠ ℒ𝑀𝐿𝐶𝐵, ΔPerformance𝐴→𝐵 ≈ 0. 

 

Appendix B: Experimental Proposal for 
Testing Boundary Semions in Mice (MBS-1) 

This appendix proposes a behavioral experiment to empirically test the Metalanguage of Cognition 

(MLC) framework's prediction regarding boundary semions—the internal vector representations 

of knowledge limits or "negative knowledge" (i.e., awareness of ignorance). The experiment 

operationalizes MLC concepts in a non-verbal animal model (mice), demonstrating the 

framework's substrate-neutral applicability. It aligns with Principia Cognitia (PC) principles by 
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treating cognition as activatable vector structures, where semions form through predictive error 

minimization. The setup distinguishes stable, learnable patterns (forming semions) from 

unpredictable ones (failing to stabilize semions), testing whether mice form meta-semions 

representing "unlearnability." 

The experiment requires no linguistic capabilities, making it suitable for validating MLC in 

biological systems without ELM interference. If mice adaptively avoid unpredictable stimuli, this 

provides evidence for internal boundary semions, supporting the MLC-ELM distinction. 

1. Apparatus 
• Feeder A: Displays symbol 𝑆1 from a fixed set of 4 geometric shapes (e.g., circle, square, 

triangle, diamond). Each shape is paired with a consistent label (e.g., colored dot, pattern, 

or letter) below it, ensuring repeatability. 

• Feeder B: Displays a new, never-repeating symbol 𝑆𝑟𝑎𝑛𝑑 on each trial, with no consistent 

label (no repeating color, shape, or position). Feeder B delivers occasional random rewards. 

In strengthened variants: (a) reward is delivered for a distinct symbol (“star”) not used in 

Feeder A, and (b) no reward is delivered for a repeated exposure of the “star” symbol. 

• Sensors: RFID tags on mice + 60 fps cameras → track trajectories + choice latency. 

Mice press pedals to activate feeders: A1–A4 are stable (fixed shape + label → reward), while B 

is unstable (novel shape, no label → no reliable reward). 

2. PC Translation 
• Semion: Vector (shape, context, outcome). 

• 𝑅𝐴: Weight matrix "shape → reward" stabilizes through repetition. 

• 𝑅𝐵: Zero weights due to no repeatability → semion fails to stabilize. 

• 𝑂𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦: Operation "absence of stable semion → switch to exploratory loop." 

In MLC terms, mice should form semions for A (stable vectors) but meta-semions for B ("unstable 

process" vector), leading to avoidance. 

3. Hypotheses 

Hypothesis: A mouse adaptively avoids Feeder B after several unrewarded trials. 

Interpretation (MLC–ELM): This behavior can be modeled as formation of a meta-semion 

representing an “unreliable process.” 

PC Prediction Ethology Baseline Measurable Outcome 

Expected 

Score 

Mouse quickly builds meta-

semion " (𝑆𝑟𝑎𝑛𝑑) = unreliable" 

and ignores B. 

Mouse stops 

approaching B after 3–

5 non-rewards. 

(Δ𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ(𝐵) ↑), 

(Δ𝑣𝑖𝑠𝑖𝑡𝑠(𝐵) ↓). 

> 0.7 

"Unreasonable" mouse 

(control) continues trying B. 

Persistent visits to B. (Δ𝑣𝑖𝑠𝑖𝑡𝑠(𝐵) ≈
𝑐𝑜𝑛𝑠𝑡). 

< 0.3 
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4. Metric for "Reflexive Negative Knowledge" 
boundary_score = 1 - (visits_B_last_10 / visits_B_first_10) 

If score > 0.7 → evidence of internal boundary-semion. 

5. Additional Layers 
• Optogenetic Pause: Temporarily inhibit hippocampus → if score drops, boundary-semion 

depends on neural recursion. 

• Transfer Test: Replace B with a new but repeating symbol. If mouse learns quickly → 

boundary-semion generalizes (not just "strange symbol," but "unstable process"). 

• Novel learning: Add a test where Feeder B delivers reward on presentation of a different 

symbol (e.g., “star”) that does not appear in Feeder A. This checks whether mice can form 

semions for novel but rewarded patterns. 

• Inconsistent stimuli: Include a case where the same “star” symbol in Feeder B is later 

shown without reward. This tests adaptability and whether the boundary-semion 

generalizes to inconsistencies in previously rewarded stimuli. 

6. Conclusion 

The experiment requires no speech; if the mouse adaptively avoids the non-repeating stimulus, 

it has an internal semion of non-recognizability—direct evidence of negative knowledge in PC, 

fully fitting without metaphysical assumptions. This validates MLC's vector-based cognition in 

biological substrates, complementing LLM evidence in the main text. 

 

Appendix C: External Empirical Evidence for 
the MLC–ELM Framework 

This appendix consolidates independent empirical findings from neuroscience and large language 

model (LLM) research that support the Principia Cognitia (PC) framework, specifically the 

Metalanguage of Cognition (MLC) and External Language of Meaning (ELM) distinction. The 

evidence is grouped into four thematic blocks. 

B.1 LLM-based Evidence 
1. Residual Stream Geometry and Stable Representations (Elhage et al., 2021) 

Transformer residual streams preserve high-dimensional semantic structure across 
layers. Stable clusters in these streams correspond to persistent internal states, 
analogous to semions 𝑆 in MLC. 

2. Future Lens Probing (Pal et al., 2023) Learned Prompt Causal Intervention reveals 
that single hidden states encode multi-token predictive structures. This supports the 
existence of operations on semions (𝒪) that maintain anticipatory distributions 
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beyond the immediate next token, aligning with PC’s concept of meta-semions and 
negative knowledge. 

3. In-Context Learning and Boundary Detection (Wei et al., 2023) LLMs modulate 
output confidence and adjust predictions when faced with out-of-distribution inputs, 
indicating an internal mechanism for boundary detection in ℒ𝑀𝐿𝐶 , consistent with 
PC’s rationality criteria. 

B.2 Neuroimaging-based Evidence 
1. EEG-to-Language Alignment (BELT-2) (Zhou et al., 2024) Demonstrates that 

scaling the ELM component (larger LLM decoder) without improving the MLC-
aligned encoder (Q-Conformer) yields minimal performance gains. Performance 
increases only when encoder–decoder alignment improves, directly confirming TH-
LANG-04. 

2. BrainCLIP (Tang et al., 2023) fMRI patterns mapped into multimodal embedding 
spaces show partial alignment with image and text embeddings. Supports the idea 
that biological MLC representations can be projected into external symbol spaces 
(ELM) with measurable structural loss. 

B.3 Cross-domain Convergence 

Parallel patterns observed in both artificial and biological systems: 

• Stable internal representations correspond to semantic coherence (semions in MLC). 

• Structural loss during projection from internal states to symbols (MLC → ELM) is 

measurable in both EEG/fMRI and LLM contexts. 

• Boundary detection mechanisms—whether in mice behavioral avoidance tasks or LLM 

uncertainty modulation—are consistent with the meta-semion hypothesis. 

B.4 Methodological References 

Relevant datasets and protocols for future empirical validation: 

• HCP (Human Connectome Project) — high-resolution fMRI. 

• ZuCo — EEG during natural reading. 

• BOLD5000 — large-scale fMRI with naturalistic stimuli. 

• MMLU — multi-task LLM evaluation benchmark for task generalization. 
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