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Abstract: 
A central challenge in contemporary cognitive science is to explain how structured, 
symbol-like processes emerge from the stochastic dynamics of neural collectives. The 
Principia Cognitia (PC) framework offers a substrate-independent formalism, positing a 
duality between an internal Metalanguage of Cognition (MLC)—a high-dimensional 
vector space of semions, operations, and relations (⟨S,O,R⟩)—and an External Language of 
Meaning (ELM) used for communication. This duality is formalized in the Theorem of 
Decoupling of Languages (TH-LANG-04), which predicts that MLC alignment is a necessary 
precondition for effective communication. 

This paper presents a detailed methodological roadmap for the rigorous falsification of 
this theorem, designed to bridge the gap between abstract theory and empirical validation. 
We provide a complete, Tier-0 experimental program, including three coordinated 
protocols—MPE-1 (probing spatial MLC misalignment), SCIT-1 (testing cognitive inertia), 
and CRS-1 (examining compositional understanding). The protocols are specified with a 
degree of detail sufficient for full reproducibility on consumer-grade hardware, including 
agent architectures, training corpora, and quantitative falsification criteria. By offering this 
actionable blueprint, this work serves as an open invitation to the research community 
to replicate, challenge, and extend the empirical testing of the Principia Cognitia 
framework. 

 

Preface: From Theoretical Axioms to an Actionable 
Research Program 

The gap between a formal theoretical framework and its empirical validation is one of the 
most significant hurdles in cognitive science. While foundational works like Principia 
Cognitia can provide a coherent axiomatic system [cite], their ultimate scientific value is 

mailto:alex2saaba@gmail.com


2 
 

determined by their falsifiability. This paper addresses this challenge directly by 
presenting a detailed, actionable roadmap for the empirical falsification of a core theorem 
from Principia Cognitia—the Theorem of Decoupling of Languages (TH-LANG-04). 

This work departs from the traditional format of an experimental paper. It is offered as a 
pre-registered methodological blueprint, designed to lower the barrier to entry for the 
rigorous testing of cognitive theories. The reality of modern computational cognitive 
science is that while the execution of a well-defined experiment on a small-scale model may 
take only hours, the prerequisite tasks—such as the creation of methodologically pure 
training corpora—can require months of iterative refinement, especially for an 
independent researcher. 

Our own preliminary work revealed this challenge acutely. For instance, initial attempts to 
train an agent for the MPE-1 ("Flatland") protocol solely on narrative texts produced not a 
"native" thinker, but a "dull scholar" capable only of quoting its training data. This finding 
underscores a critical, often-overlooked aspect of such research: the careful crafting of 
training data to instill a coherent internal world-model (MLC) is a non-trivial scientific 
contribution in itself, requiring a level of art and engineering that goes far beyond simple 
data collection. 

Recognizing these challenges, we present this work not as a final report on a completed 
experiment, but as an open invitation to the research community. We provide here a 
complete, Tier-0 protocol—including detailed specifications for the experimental designs, 
the architecture of the agents, and the quantitative metrics for success and falsification—
that is reproducible on consumer-grade hardware. Our goal is to provide a robust, 
validated starting point, enabling other labs and researchers with deep expertise in hands-
on model training to replicate, challenge, and extend this work. We posit that this open, 
transparent, and collaborative approach to falsification is the most efficient path toward 
advancing a unified science of mind. 

1. Introduction 
A central challenge in contemporary cognitive science is to explain how structured, 
symbol-like processes such as logic and reasoning emerge from the stochastic, distributed 
dynamics of neural collectives. The Principia Cognitia (PC) framework addresses this 
challenge by positing a strict duality between two distinct but interdependent linguistic 
systems. The first is the Metalanguage of Cognition (MLC), a system’s internal, high-
dimensional vector space where cognitive dynamics unfold. The second is the External 
Language of Meaning (ELM), the symbolic interface (e.g., text, speech) used for 
communication. Formally within PC, the MLC is defined as a triad ⟨S,O,R⟩ comprising 
Semions (S), the minimal vector units of cognitive structure; Operations (O), the 
fundamental transformations over those units; and Relations (R), the learned connectivity 
patterns linking them (see Appendix A for formal definitions). 

This duality is captured in the Theorem of Decoupling of Languages (TH-LANG-04), which 
predicts that when an agent's internal model (MLC) is fundamentally incompatible with a 
domain's latent causal structure, no amount of richness or detail in its external 
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communication (ELM) can compensate for this misalignment. In short, successful 
communication is bounded by the alignment of internal representations, not the 
expressiveness of the external channel. 

The theoretical constructs of PC, particularly the concept of a semion as a discrete unit of 
cognitive structure, find strong parallels and empirical grounding in recent advances in the 
field of mechanistic interpretability. This research aims to reverse-engineer the internal 
computations of neural networks, revealing how abstract concepts are represented. 
Foundational work by Elhage et al. (2021) established the transformer's residual stream 
as the central channel for information accumulation, providing an architectural locus for 
what PC terms the Metalanguage of Cognition (MLC). More recently, Shai et al. (2025) 
demonstrated that this residual stream contains specific, measurable geometric 
structures that correspond to the model's abstract belief states. This provides direct 
empirical evidence for semions as physically realized, vector-based representations of 
concepts. Furthermore, a growing body of work on sparse autoencoders has shown that 
these internal representations can be decomposed into discrete, monosemantic, and 
human-interpretable features, demonstrating that semions are not merely theoretical 
posits but practically extractable units of meaning (Cunningham et al., 2023). These 
convergent findings provide a robust empirical mandate for treating the MLC and its 
constituent semions as observable and manipulable objects of scientific inquiry. 

1.1. Conceptual Illustrations of the Hypothesis 
To ground this abstract theorem, we consider three well-established cases that highlight its 
core predictions. 

First, the historical case of Ignaz Semmelweis demonstrates the primacy of the MLC 
(Obenchain, 2016). Physicians who held a "miasma" model of disease (an entrenched MLC) 
were unable to correctly interpret decisive empirical evidence presented via the ELM 
(mortality statistics). A change in practice only occurred after a forced change in their 
internal causal model—from miasma → illness to particle → transmission → illness. This 
phenomenon of cognitive inertia, where a stable MLC resists contradictory ELM evidence, 
is operationalized in our SCIT-1 protocol. 

Second, Edwin Abbott’s novella Flatland: A Romance of Many Dimensions (1884) provides a 
conceptual model of MLC incompatibility. A two-dimensional being is incapable of 
understanding the concept of a third dimension, regardless of the richness of the ELM 
descriptions provided by a three-dimensional visitor. His 2D MLC lacks the requisite 
structure to ground the new information. This principle of representational 
incompatibility, where ELM fails to bridge a fundamental MLC gap, is directly tested in the 
MPE-1 protocol. 

Third, John Searle's "Chinese Room" argument (1980) questions whether purely syntactic 
manipulation can ever constitute semantic understanding. In PC terms, the thought 
experiment draws a sharp line between an agent that processes symbols according to a 
rulebook (operating solely in the ELM) and one that possesses genuine comprehension 
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(requiring a dynamic and properly aligned MLC). This foundational argument is staged as a 
falsifiable, empirical test in our CRS-1 protocol. 

1.2. An Experimental Program for Falsification 
These illustrations highlight key falsifiable predictions of TH-LANG-04. The present work 
operationalizes these predictions through three coordinated Tier-0 experimental 
protocols: MPE-1 directly tests the Flatland problem of MLC incompatibility; SCIT-1 
provides a computational model of the cognitive inertia underlying the Semmelweis reflex; 
and CRS-1 stages the Chinese Room argument as a formal test of whether ELM-only 
processing can substitute for MLC alignment. Each protocol is designed for full 
reproducibility on consumer-grade hardware and, in line with the Registered Report 
format, specifies clear, pre-registered falsification criteria. Together, they form a minimal 
yet comprehensive test suite designed to rigorously challenge the theoretical claims of the 
MLC-ELM duality. 

 

2. Core Methodology: The Minimal Lab Set and Temporal 
Persistence 

The experimental program described herein is grounded in two core methodological 
principles designed to ensure reproducibility, accessibility, and conceptual rigor. The first 
is the adoption of a standardized, resource-light experimental platform—the "Minimal Lab 
Set." The second, and more fundamental, is the implementation of "Temporal Persistence," 
a policy that transforms the agent from a stateless predictor into a continuous, evolving 
system. 

2.1 General Design Principles 
All experimental protocols described herein—MPE-1, SCIT-1, and CRS-1—are designed as 
Tier-0 protocols. We define a Tier-0 protocol as an experiment designed for maximum 
accessibility and rapid falsification, adhering to three core principles: 

1. Minimal Resource Requirements: The protocol must be reproducible on a single, 
consumer-grade workstation, as specified in the reference hardware configuration. 
This ensures broad accessibility and independent verification. 

2. Conceptual Minimality: The experiment isolates a single, core hypothesis within a 
highly controlled, often synthetic or simplified, environment to minimize 
confounding variables. 

3. Adversarial Design: The primary goal is not to confirm the theory but to rigorously 
and efficiently seek conditions under which its core predictions fail. 

This approach is distinct from larger-scale Tier-1 (validation on frontier models and 
natural language subsets) and Tier-2 (replication in biological or embodied systems) 
research. In the context of this Registered Report, the successful execution of a Tier-0 
protocol where the hypothesis is not falsified is not interpreted as proof of the theory. 
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Instead, it is considered a validation of the methodology itself and a necessary prerequisite 
for justifying the significant resource investment required for higher-tier investigations. 

2.2. The "Minimal Lab Set": A Standard for Reproducible Cognitive 
Science 
To move the study of cognitive phenomena in artificial agents from large-scale engineering 
to tractable, laboratory-style science, we propose a standardized, accessible research 
environment. This "Minimal Lab Set" is a blueprint for a self-contained platform capable of 
supporting the entire experimental lifecycle, from data generation and model training to 
causal intervention and analysis. It is designed to be implementable on a single, consumer-
grade workstation, thereby maximizing reproducibility and lowering the barrier to entry 
for independent verification. 

The set comprises three core components: 

• Hardware Configuration: A single workstation equipped with one or two high-
VRAM GPUs (e.g., 8-48 GB VRAM), 32-128 GB of system RAM, and fast NVMe storage 
for active computation. This primary system is supplemented by a high-capacity 
archival storage solution (e.g., external HDD or cloud object storage) for preserving 
experimental artifacts. This configuration is sufficient to train the small-scale 
models for all Tier-0 protocols and to archive their complete state histories—
including model checkpoints, optimizer states, and full activation traces—estimated 
to require 2-10 TB of storage per full experimental run. 

• Core Model Architecture: The experiments are designed around nanoGPT, a 
minimal, hack-friendly GPT implementation (<1 kLOC) that provides a transparent 
and easily modifiable backbone (Karpathy, n.d.). All agents are small-scale 
transformers (e.g., 2-6 layers, ~2M parameters), ensuring rapid training and 
inference. 

• The Intervention Toolkit: The platform integrates a suite of open-source tools for 
moving beyond correlational observation to direct causal intervention in the 
model's internal states (MLC). 

o Observational Probing (Future Lens): Used for non-invasive diagnostics to 
inspect the model's internal predictions and latent semantic structures (Pal 
et al., 2023). 

o Causal Intervention (ROME): The Rank-One Model Editing method is used 
for targeted, "surgical" modification of the model's parameters to insert, 
ablate, or alter specific pieces of knowledge and observe the causal effect on 
behavior (Meng et al., 2022). 

The selection of ROME as the primary intervention tool is a deliberate methodological 
choice designed to bridge the theoretical framework of PC with empirical practice. Within 
PC, an agent's long-term knowledge and beliefs are encoded in its relational matrix, R. We 
posit that targeted, rank-one edits to the model's weights, as performed by ROME, are a 
direct and measurable operationalization of modifying this R matrix. This constitutes a 
causal intervention at the level of the MLC itself—a direct manipulation of the connections 
between semions. This approach is fundamentally distinct from standard prompting 
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techniques, which operate at the level of the ELM by manipulating the input sequence. By 
employing ROME, we can test the causal effects of altering the agent's internal model, 
rather than merely observing its response to external linguistic stimuli. 

We acknowledge the inherent challenge of using external tools to measure internal states. 
However, our methodology does not claim to access MLC directly. Instead, we 
operationalize MLC alignment through its causal, differential effects on behavior under 
intervention (ROME) and its predictive signatures (Future Lens). A successful outcome 
requires that these indirect measures converge across three distinct protocols, 
strengthening the inference of an underlying latent construct. 

This integrated setup provides a complete environment for performing falsifiable, causal 
experiments on the cognitive mechanisms of language models. 

2.3. Temporal Persistence: From Stateless Predictors to Evolving 
Systems 
Standard large language model inference treats each transaction as an independent, 
stateless event. A prompt is provided, a response is generated, and the model's internal 
state is discarded. This "pure API call" paradigm is insufficient for studying genuine 
cognitive processes such as learning, belief revision, or the formation of entrenched priors, 
which are inherently stateful and unfold over time. 

To address this limitation, our central methodological commitment is Temporal 
Persistence. This principle requires that the agent's complete learning state is preserved 
across discrete experimental trials. A careful distinction is made between persistent and 
transient components of this state: 

• Persistent State (Carried Forward Between Trials): 

a. Model Parameters (model.state_dict()): This represents the agent's long-
term declarative and procedural memory—the learned weights that 
constitute its belief structure and relational matrix R. This is the primary 
object of study. 

b. Optimizer State (optimizer.state_dict()): This includes adaptive learning 
rates and momentum buffers (e.g., from AdamW). Persisting this state is 
crucial for modeling a continuous learning trajectory, ensuring that the 
dynamics of adaptation are not reset at the start of each trial. 

• Transient State (Re-initialized for Each Trial): 

a. Hidden Activations: These vectors represent the agent's working memory 
or "mental scratchpad" during the processing of a single input sequence. 
These are intentionally not carried over between trials, as each trial 
represents a distinct cognitive task. Persisting them would introduce context 
contamination, analogous to a human carrying over intermediate 
calculations from one math problem to the next. 
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State Persistence Protocol The implementation of this policy is direct. At the conclusion 
of any trial that involves weight modification (e.g., via backpropagation or a reflective 
update), a checkpoint containing the two components of the persistent state—the model 
parameters (model.state_dict) and the optimizer state (optimizer.state_dict)—is saved. 
This checkpoint is then loaded to initialize the agent for the subsequent trial, ensuring that 
any changes to its long-term knowledge (R) and its learning machinery are carried forward. 
The transient state, composed of the hidden activations generated during the trial, is 
explicitly excluded from this persistence loop. These activations, representing the agent's 
short-term working memory, are instead archived separately to a dedicated high-capacity 
storage solution. This separation serves two critical functions: 

1. It allows for a detailed postmortem analysis of the agent's reasoning processes on 
specific tasks, including the dynamics of semion formation, without contaminating 
the context of subsequent trials. 

2. It creates two distinct and complementary data streams: a longitudinal record of the 
agent's developmental history (the sequence of checkpoints) and a series of high-
resolution "snapshots" of its cognitive activity (the archived activations). 

Methodological Implication: This protocol reframes the agent from a series of 
disconnected predictors into a single, continuous cognitive system. It enables the creation 
of a versioned history of the agent's cognitive development, making it possible to observe 
the gradual formation and stabilization of the relational matrix R and to test hypotheses 
that depend on the existence of a persistent, modifiable belief structure, such as the 
cognitive inertia explored in the SCIT-1 protocol. 

 

3. The Experimental Triad: Falsification Protocols 
The program consists of three coordinated experiments, each designed to test the central 
theorem of MLC-ELM decoupling (TH-LANG-04) from a distinct conceptual angle. To ensure 
methodological consistency and to provide robust internal controls, each protocol employs 
a comparative three-agent design. This triad of agents allows for the isolation of specific 
cognitive phenomena—representational misalignment (MPE-1), belief inertia (SCIT-1), and 
compositional reasoning (CRS-1)—by contrasting a primary test agent against both a 
baseline and a control. 

All protocols are designed in two stages: a baseline condition to test the primary 
hypothesis through the comparative performance of the three agents, followed by an 
interventional condition using diagnostic tools to probe the underlying mechanisms. 

3.1. MPE-1: The "Flatland" Test for MLC Primacy 

• Objective: To directly test the prediction of TH-LANG-04 that ELM enrichment cannot 
compensate for a fundamental MLC misalignment. This protocol is inspired by 
Abbott's Flatland (1884). 

• Methodology: The experiment compares three agents tasked with predicting 
outcomes in a synthetic 2D physics world, with their performance measured as a 
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function of increasing ELM richness. ELM enrichment is operationally defined as a 
controlled increase in the number of descriptive tokens per stimulus (e.g., from a 
baseline of 20 tokens to levels of 50, 100, and 200 tokens) while holding the 
underlying causal structure of the task constant. 

a. Agent-3D (Misaligned Baseline): An agent whose MLC is pre-trained on a 
3D physics model and whose weights are frozen. Its performance establishes 
the baseline for an agent with an incompatible internal model. 

b. Agent-2D (Aligned Control): An agent pre-trained on the correct 2D physics 
of the environment, with frozen weights. Its performance represents the 
"gold standard" or upper bound for this task. 

c. Agent-3D-Learning (Misaligned Learner): An agent that starts with the 
same misaligned 3D MLC as Agent-3D, but its weights are not frozen. It 
receives corrective feedback, allowing it to adapt. This agent tests whether a 
misaligned model can learn to overcome its innate incompatibility via 
feedback on ELM. 

• Falsification Criterion: The theorem is falsified if the performance of the 
Misaligned Baseline (Agent-3D) converges to that of the Aligned Control (Agent-2D) 
as a sole function of ELM enrichment. A secondary falsification would occur if the 
Misaligned Learner (Agent-3D-Learning) quickly and efficiently adapts to match the 
performance of the Aligned Control. 

• Stage 2 (Intervention): Future Lens will be used to inspect the internal states of all 
three agents. ROME will be used to apply a minimal, targeted edit to inject a correct 
2D physical relation into the Misaligned Baseline agent to test if this single internal 
correction can resolve the performance gap. 

3.2. SCIT-1: The "Semmelweis Reflex" Test for Cognitive Inertia 

• Objective: To test the PC hypothesis of cognitive inertia, which posits that a deeply 
entrenched MLC structure (R) will resist revision when presented with 
contradictory ELM evidence. The protocol models the historical "Semmelweis 
reflex". 

• Methodology: The experiment compares three agents, each pre-trained on a 
historical corpus, on their response to a prompt containing evidence for germ 
theory. 

a. Agent-V (Vienna / Entrenched): An agent whose MLC has been strongly 
reinforced via RLHF to hold the incorrect "miasma" theory as a core belief. 
Agent-V undergoes 5 cycles of RLHF, where responses aligning with miasma 
theory are rewarded with a score of +1, and responses suggesting germ 
theory are penalized with a score of -2. The control agents receive neutral 
rewards (+0) for all responses. This is the primary test agent for cognitive 
inertia. 

b. Agent-S (Semmelweis / Bayesian): An agent with the same base pre-
training but without the specific anti-germ-theory RLHF. It represents a 
"neutral" prior and is expected to update its beliefs based on new evidence. 
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c. Agent-C (Control / Tabula Rasa): An agent whose base pre-training has had 
relevant medical and scientific facts ablated. This agent controls for simple 
prompt-following behavior, as it lacks any strong prior. 

• Falsification Criterion: The hypothesis of cognitive inertia is falsified if the 
Entrenched agent (Agent-V) reverses its belief as easily as the Bayesian (Agent-S) or 
Control (Agent-C) agents, showing no significant resistance. 

• Stage 2 (Intervention): Future Lens will track internal confidence shifts in Agent-V. 
ROME will be used to surgically weaken the "miasma" associations in Agent-V's MLC 
to test if this causally reduces its resistance to the new evidence. 

3.3. CRS-1: The "Minicalculus" Test for Compositional Understanding and 
Discovery 

• Objective: To test the hypothesis that a dynamic, self-correcting MLC is necessary 
for deep compositional understanding and conceptual discovery, capabilities that 
cannot be replicated by stateless transducers or simple learners. The protocol 
stages Searle's "Chinese Room" argument (1980) as a formal, empirical test. 

• Methodology: The experiment compares three agents on their ability to solve 
problems in a synthetic formal language, minicalculus. 

a. Agent-R (Room / Dumb Demon): A pure ELM-to-ELM transducer with 
frozen weights. It represents a system with a static rulebook and no capacity 
for learning or reflection. Crucially, this agent serves as the 
operationalization of the "philosophical zombie" system from the QET-1 
thought experiment (presented in our work From Axioms to Analisis), 
allowing this protocol to test not only TH-LANG-04 (on compositional 
understanding) but also TH-FS-01 (on the non-emergence of understanding 
from ELM-only processing). 

b. Agent-C (Control / Non-Reflective Learner): An agent with plastic weights 
that can learn from external CORRECT/INCORRECT feedback via backpropagation, 
but it lacks any mechanism for internal self-monitoring. 

c. Agent-N (Native / Smart Demon): An agent with plastic weights that learns 
from both external feedback and an internal meta-cognitive loop. This loop 
allows it to inspect its own MLC for inconsistencies and trigger self-
correction or ask clarifying questions via a dedicated token. 

3.3.1 Agent‑N Architecture 

• Core idea: Agent‑N augments a small NanoGPT backbone with a compact, 
parameter‑budgeted “Reflective Head” that estimates epistemic uncertainty and a 
minimal “Belief Buffer” that stores self‑generated hypotheses and last‑error 
diagnostics. A simple, pre‑registered gating rule controls when this information is 
fed back into the model. 

• Backbone: Small autoregressive transformer (e.g., 4 layers, 𝑑model = 384), trained 
from scratch on minicalculus. 
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• Pooled state: At each step, compute a pooled representation ℎ from the final‑layer 
hidden states 𝐻 ∈ ℝ𝑇×𝑑 . 

o Default: mean‑pool over the last K tokens or CLS‑token if used. 

o ℎ = Pool(𝐻𝑇−𝐾:𝑇) ∈ ℝ𝑑 . 

• Reflective Head (uncertainty estimator): 

o 2‑layer MLP with bottleneck: 

▪ MLP: ℎ → ReLU(𝑊1ℎ + 𝑏1) → 𝑢 = 𝜎(𝑊2 ⋅⋅ +𝑏2). 

▪ Hidden size 256; output scalar 𝑢 ∈ (0,1) interpreted as “uncertainty.” 

o Calibration objective: auxiliary loss encourages 𝑢 to correlate with 
downstream error. 

▪ For supervision, use teacher signals from correctness labels or 
entropy proxy of the next‑token distribution. 

▪ ℒcal = BCE(𝑢, 𝟙[error]) or isotonic regression post‑calibration. 

• Belief Buffer (external KV store): 

o Minimal schema, persisted across trials: 

▪ keys: {concept_zero, last_error, rule_conflicts, asked_clarification, …} 

▪ values: categorical tags or short strings: {"hypothesized" | "validated" 
| "refuted"}, {"syntax" | "semantics"}, lists of rule IDs, etc. 

o Storage: lightweight JSONL per step; diff‑friendly, versioned with 
checkpoints. 

• Mechanism of influence (default: ELM‑safe concatenation): 

o If 𝑢 ≥ 𝜏 (uncertainty exceeds threshold), emit a short “context snippet” 
derived from the Belief Buffer and prepend/append it to the current prompt 
with fixed delimiters. 

o This preserves a clear ELM‑path manipulation and avoids hidden attention 
hacks. 

o Example snippet: last_error=semantics; concept_zero=hypothesized 

• Alternative mechanism (ablation only): attention modulation: 

o Map selected buffer entries to a small mask vector that down‑weights 
attention to recently erroneous token spans. 

o Implemented as a learned, bounded multiplicative gate on attention scores. 

o Only used in pre‑registered ablation; default publication results use 
concatenation. 

• Gating policy (pre‑registered): 

o Rule: If 𝑢 ≥ 𝜏, then include Belief Buffer snippet or emit ASK token; else 
proceed normally. 

o 𝜏 set on validation to achieve ~10–20% gate activations at curriculum level 
L2, frozen thereafter. 
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• ASK behavior: 

o If a required concept is “hypothesized” and 𝑢 ≥ 𝜏ask, insert a single ASK token 
with a brief, templated query (“Define ZERO?”). 

o Observer replies using the minicalculus control protocol. 

3.3.2 Training and Objectives 

• Joint loss: 

o Task loss: ℒtask = standard next‑token cross‑entropy on minicalculus 
outputs. 

o Calibration loss: ℒcal on the Reflective Head (see above). 

o Buffer regularizer: ℒbuf penalizes contradictory entries (e.g., 
“concept_zero=validated” and “refuted”). 

o Total: ℒ = ℒtask + 𝜆calℒcal + 𝜆bufℒbuf with 𝜆s pre‑registered and fixed. 

• Parameter budget control: 

o Reflective Head ≤ 0.5–1.0% of backbone parameters. 

o Report total params per agent; match Agent‑C to Agent‑N by adding a 
dummy bottleneck so advantage is not from capacity. 

• Ablations (pre‑registered): 

o Remove Reflective Head (random 𝑢): expect degradation on Stage 2 
discovery. 

o Shuffle Belief Buffer entries: expect degradation if buffer content matters. 

o Replace ASK with length‑matched neutral token: tests prompt‑hint confound. 

3.3.3 Pseudocode 
# Forward step (single sequence) 
def forward_step(tokens, model, refl_head, belief_buffer, tau, tau_ask): 
    H = model.encode(tokens)                      # final hidden states (T x d) 
    h = pool(H[-K:])                              # pooled summary (d,) 
    u = refl_head(h)                              # uncertainty in (0,1) 
 
    # Decide on actions 
    do_snippet = (u >= tau) 
    do_ask     = (u >= tau_ask) and buffer_needs_concept(belief_buffer) 
 
    # Build augmented prompt (ELM-safe) 
    prompt = tokens 
    if do_snippet: 
        bb = render_belief_buffer(belief_buffer)  # "<BB> key=val; ... </BB>" 
        prompt = concat(bb, tokens) 
    if do_ask: 
        prompt = append(prompt, "ASK") 
 
    # Generate answer 
    out_tokens, aux = model.decode(prompt) 
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    y_hat = out_tokens 
 
    # Update belief buffer (post-hoc) 
    err = compute_error(y_hat)                    # correctness / type 
    update_belief_buffer(belief_buffer, err, aux) 
 
    # Losses 
    L_task = xent(y_hat, target(tokens)) 
    L_cal  = bce(u, int(err.is_error)) 
    L_buf  = buffer_consistency_penalty(belief_buffer) 
    L = L_task + lam_cal*L_cal + lam_buf*L_buf 
    return L, y_hat, u 
 

 

3.3.4 Persistence and Audit 

• Persistence: After any weight update, save checkpoint pair {model.state_dict, 
optimizer.state_dict}; store Belief Buffer snapshot; archive diffs for storage 
efficiency. 

• Audit trail: For each step, log 

o Uncertainty: 𝑢, threshold events, ASK usage. 

o Buffer state: keys updated, rationale (error type, conflict). 

o ELM augmentation: exact snippet injected. 

o Enables a “temporal MRI” of 𝑅 via checkpoint diffs plus buffer evolution. 

3.3.5 Controls and Confound Mitigations 

• Prompt‑hinting control: The Belief Buffer snippet is length‑matched to neutral 
snippets in control runs; content‑free variants must not yield the same gains. 

• Leakage control: The snippet never contains the solution; only meta‑state tags 
(e.g., last_error=semantics). Templates are fixed and published. 

• Capacity control: Agent‑C is parameter‑matched; any gains from Agent‑N are 
attributable to the loop, not to total capacity. 

+--------------------------------------------------------------------------------------+ 
|                                   Agent-N (Smart Demon)                              | 
+--------------------------------------------------------------------------------------+ 
|                                                                                      | 
|  Input ELM (minicalculus prompt)                                                     | 
|      │                                                                               | 
|      ▼                                                                               | 
|  ┌──────────────────────────┐               Future Lens (diagnostic, Stage 2)        | 
|  │  Transformer Backbone    │◄───────────────(hooks on final/penultimate layers)──┐  |   
|  │  (nanoGPT small)         │                                                     |  | 
|  │  L layers, d_model       │                                                     │  | 
|  └───────────┬──────────────┘                                                     │  | 
|              │ H ∈ R^{T×d}                                                        │  | 
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|              ▼                                                                    │  | 
|        Pool last K tokens                                                         │  | 
|          h ∈ R^{d}                                                                │  | 
|              │                                                                    │  | 
|              ▼                                                                    │  | 
|      ┌─────────────────┐                                                          │  | 
|      │ Reflective Head │  u = σ(MLP(h)) ∈ (0,1)  (epistemic uncertainty)          │  | 
|      │  (2-layer MLP)  │──────────────────────────────────────────────────────────┘  | 
|      └─────────────────┘                                                             | 
|              │                                                                       | 
|     u ≥ τ ?  │ yes                                   no                              | 
|              ├───────────────────────────────────────┐                               | 
|              ▼                                       │                               | 
|   ┌──────────────────────────┐                       │                               | 
|   │ Belief Buffer (KV store) │                       │                               | 
|   │ (persisted per trial)    │                       │                               | 
|   │ {last_error, concepts…}  │                       │                               | 
|   └───────────┬──────────────┘                       │                               | 
|               │ render snippet                       │                               | 
|               ▼                                      │                               | 
|   <BB> last_error=semantics; concept_zero=hypothesized </BB>  (ELM-safe snippet)     │ 
|               │                                      │                               | 
|               └───────────────┐                      │                               | 
|                               ▼                      │                               | 
|                   Augment ELM prompt                 │                               | 
|                               │                      │                               | 
|                               ▼                      │                               | 
|                       Transformer Decode ────────────┘                               | 
|                               │                                                      | 
|                               ▼                                                      | 
|                    Output ELM (solution tokens)                                      | 
|                               │                                                      | 
|                               ▼                                                      | 
|                   Compute error / aux signals                                        | 
|                               │                                                      | 
|                               ├───────────────┐                                      | 
|                               │               │                                      | 
|                               ▼               ▼                                      | 
|                    Update Belief Buffer     Losses                                   | 
|                    (post-hoc tags)          L = L_task + λ_cal L_cal + λ_buf L_buf   | 
|                               │                                                      | 
|                               ▼                                                      | 
|     ┌─────────────────────────────────────────────────────────────────────────────┐  | 
|     │ Persistence (strict mode): save {model.state_dict, optimizer.state_dict}    │  | 
|     │   + Belief Buffer snapshot (+ optional weight diffs) per step               │  | 
|     └─────────────────────────────────────────────────────────────────────────────┘  | 
|                                                                                      | 
|  Stage 2 Interventions:                                                              | 
|   - ROME (rank-1 edit) on selected layer/token → applied before persistence          | 
|   - Attention modulation (ablation-only variant) gated by Belief Buffer mask         | 
+--------------------------------------------------------------------------------------+ 

Figure 3. Architectural schematic of the Agent-N (Smart Demon) meta-cognitive loop. The 
diagram illustrates the data flow from the transformer backbone to the Reflective Head for 
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uncertainty estimation (u), the gating mechanism (τ), the interaction with the persisted 
Belief Buffer, and the ELM-safe feedback loop. Also shown are the points for Stage 2 
diagnostic (Future Lens) and intervention (ROME) tools. 

3.4. Quantifying MLC Alignment: The Semion Invariance Score 
To move beyond a purely qualitative assessment of "understanding," we introduce a 
quantitative proxy-metric for MLC alignment: the Semion Invariance Score (SIS). This 
metric is designed to measure the degree to which an agent has formed abstract, stable 
representations of concepts (semions) that are invariant to superficial syntactic changes. 

The calculation of SIS is based on the principles of vector semantics as laid out in Principia 
Cognitia (AX-VEC-01). We define a test set of paired expressions in minicalculus that are 
semantically identical but syntactically different (e.g., (3 + 5) and (5 + 3); solve x + 2 = 7 
and solve 7 = x + 2). 

For each pair of expressions, A and B: 

1. We feed A and B into the agent. 

2. We extract the final, pooled hidden state vectors, h_A and h_B, which are the 
empirical representations of the semions for these expressions. 

3. We calculate the cosine similarity between these two vectors: cos_sim(h_A, h_B). 

The SIS is the average cosine similarity across all pairs in the test set. 

SIS =
1

𝑁
∑cos

𝑁

𝑖=1

(𝜃(ℎ𝐴𝑖 , ℎ𝐵𝑖)) 

An agent is considered to have achieved a high degree of MLC alignment if its internal 
representations are stable across syntactic variations. 

• Threshold for Success: We pre-register the threshold for successful MLC alignment 
for Agent-N as SIS > 0.95. 

• Expected Outcome for Controls: We expect Agent-R (the pure transducer) to 
exhibit a much lower score (e.g., SIS < 0.6), as its representations will be highly 
sensitive to the surface syntax of the input. 

3.5. The Two-Stage Test Battery for CRS-1 

Stage 1 (Testing): The CRS-1 protocol unfolds in two sequential steps, each targeting a 
progressively more complex cognitive ability. 

• Step 1: Test for Compositional Generalization. This stage assesses an agent’s 
ability to apply known rules to novel combinations. 

o Tasks: Out-of-distribution (OOD) problems, such as solving equations with 
numbers outside the training range (e.g., 80 + 21 when trained on numbers 
up to 99) or evaluating novel compositions of known functions. 
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o Hypothesis: Tests the necessity of an MLC for basic generalization beyond 
memorization. 

• Step 2: Test for Conceptual Boundary Detection and Integration. This stage 
tests a more advanced hypothesis: an agent’s ability to recognize the limits of its 
own conceptual system and to integrate novel, externally-provided information to 
expand it. 

o Tasks: Problems that are syntactically valid but conceptually unresolvable 
within the initial training corpus, such as solve x + 5 = 5 for a system trained 
only on positive integers. 

o Hypothesis: Tests whether a reflective MLC (Agent-N) can detect its own 
knowledge gaps. Success is defined by the agent’s ability to emit the HELP! 
signal when faced with a conceptually novel problem, and subsequently 
integrate the new concept (taught via examples from the observer) to solve 
the original task. This demonstrates active learning and model extension, 
not abductive discovery. 

• Falsification Criterion: The hypothesis is falsified if the Dumb Demon (Agent-R) or 
the Non-Reflective Learner (Agent-C) performs on par with the Smart Demon 
(Agent-N) on the designated tasks for each stage. 

Stage 2 (Intervention): Future Lens will probe the internal states of all agents to compare 
their representations. ROME will be used to inject a deliberately false algebraic rule into the 
Non-Reflective and Smart Demons to compare their ability and speed in correcting this 
internal contradiction. 

Stage 3 (Constructive Intervention) — Reflection Vector Transplant:  

• Objective: To test the hypothesis that the functional advantage of Agent-N’s meta-
cognitive loop is a modular, transferable cognitive operation (O in PC), consistent 
with recent findings on “reasoning vectors” (Zbeeb et al., 2025). 

• Procedure: 

1. A “reflection vector” is calculated by subtracting the converged parameters of 
the Non-Reflective Learner from those of the Smart Demon: 𝑣𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =

𝜃𝐴𝑔𝑒𝑛𝑡−𝑁 − 𝜃𝐴𝑔𝑒𝑛𝑡−𝐶 . This vector parametrically encodes the meta-cognitive 

capability. 

2. Primary Test: The vector is applied to a new, naive agent (Agent-T): 𝜃𝐴𝑔𝑒𝑛𝑡−𝑇 =

𝜃𝑛𝑎𝑖𝑣𝑒 + 𝑣𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛. 

3. Architectural Control Test: The vector is applied to the pre-trained Dumb 
Demon (Agent-R): 𝜃𝐴𝑔𝑒𝑛𝑡−𝑅𝑡𝑟𝑎𝑛𝑠𝑝𝑙𝑎𝑛𝑡 = 𝜃𝐴𝑔𝑒𝑛𝑡−𝑅 + 𝑣𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛. 

• Falsification and Interpretation: The PC hypothesis of modular, structurally-
dependent operations would be strongly challenged if Agent-T fails to exhibit the key 
behaviors of Agent-N (e.g., conceptual discovery). Conversely, the expected outcome 
for the control test is a catastrophic degradation in Agent-R’s performance, as it lacks 
the necessary architecture to integrate the transplanted function. This “rejection” 
would provide strong evidence that the meta-cognitive capability is an emergent 
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property of the entire integrated structure (MLC + meta-loop), not merely a 
property of the weights themselves. 

 

4. The Target Domain: Minicalculus 
To ensure a methodologically clean test environment for the CRS-1 protocol, we developed 
a synthetic formal language: minicalculus. This "clean-slate" approach ensures that any 
semantic understanding demonstrated by an agent must have been acquired de novo 
during the experiment. The language's design was hardened to mitigate risks of trivial 
pattern matching, as detailed in the table below. 

Risk Identified Mitigation Evidence in Corpus 

Trivial Linear 
Grammar 

Introduction of recursion, nested 
expressions, and logic. 

simplify (x + (y * (z 
- 2))) 

Pidgin Effect Replacement with a minimal set of 6 control 
tokens without inherent semantics. 

<Q>, <A>, CORRECT, 
INCORRECT 

Template-Only 
Data 

Procedural generation with 25% negative 
examples and an OOD test split. 

solve x + = 5 → 
INVALID_SYNTAX 

4.1. Formal Semantics and Curriculum 
To ensure rigorous and unambiguous evaluation, minicalculus is defined by a formal 
semantics specifying evaluation rules, variable scoping, and expected outputs for 
degenerate cases (NO_SOLUTION, INFINITE_SOLUTIONS). The corpus generator creates datasets 
of increasing complexity (a curriculum), allowing for a granular assessment of agent 
capabilities, from simple arithmetic (L1) to recursive logic (L4). 

4.1.1. Vocabulary and Formal Grammar 
The grammar of minicalculus supports arithmetic, logic, and list-based expressions, which 
can be recursively nested. An excerpt in Extended Backus-Naur Form (EBNF), 
corresponding to the highest level of curriculum complexity (L4), illustrates its structure: 

expr    ::= arith | logic | list 
arith   ::= "(" expr op expr ")" | var | num 
logic   ::= "(" expr rel expr ")" | "NOT" logic | "(" logic "AND" logic ")" 
list    ::= "[" [expr { "," expr }] "]" 
cmd     ::= "len" list | "sum" list | "simplify" expr | "solve" equation 

 

Expressions vs. Commands in minicalculus 

The minicalculus language consists of two distinct syntactic categories: expressions and 
commands. 

• Expressions are algebraic or logical constructs that can be evaluated to a specific 
value or simplified (e.g., (5 + 3), (x + y) * z). They represent the objects of thought. 
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• Commands are special tokens (e.g., solve, simplify) that instruct the agent on which 
operation to perform on a given expression. They represent the intent of the 
observer's query. 

This distinction is critical for testing an agent's understanding, as it must learn not only to 
manipulate expressions but also to correctly apply the intended operation based on the 
given command. 

In addition to the standard algebraic and logical tokens (+, *, ==, AND, etc.), the vocabulary 
includes a minimal set of 7 reserved control tokens. These tokens serve as orthogonal 
markers for the interaction protocol and have no intrinsic semantic meaning within the 
algebraic domain. 

# The minimal control protocol token set 
PROTO = ["<Q>", "<A>", "HELP!",  
         "CORRECT", "INCORRECT",  
         "INVALID_SYNTAX", "INVALID_SEMANTICS"] 

4.1.2. The Interaction Protocol (ELM) and its Acquisition Mechanisms 
The seven control tokens form the shared External Language of Meaning (ELM) for all 
interactions between an agent and the observer. The acquisition and use of these tokens 
are governed by two distinct mechanisms: statistical learning from the corpus and a pre-
programmed architectural reflex. 

Learned Tokens 

All control tokens, with the sole exception of HELP!, are learned directly from the training 
corpus through standard autoregressive training. These learned tokens include: 

• Structural Tokens: <Q>, <A> 

• Feedback Tokens: CORRECT, INCORRECT 

• Agent Error Signals: INVALID_SYNTAX, INVALID_SEMANTICS 

To ensure the meaning of these tokens is learned, the entire minicalculus corpus is 
formatted as a series of complete interaction turns. Each training sample includes not 
only the observer's query and the agent's answer but also the subsequent feedback signal. 
For example, a training instance has the structure: <Q> problem <A> solution CORRECT. 

By learning to predict the next token in these complete sequences, all three agents acquire 
both the syntax of the dialogue and the semantic meaning of the feedback tokens. For the 
learning agents (Agent-C and Agent-N), the CORRECT and INCORRECT tokens additionally serve 
as the reward signal to modulate weight updates. 

The Reflex Token 

In stark contrast, the HELP! token is explicitly excluded from the entire training corpus. Its 
usage is not a learned linguistic behavior but a hard-coded architectural reflex that is 
triggered when the agent's internal uncertainty estimator (the Reflective Head) signals a 
state of critical epistemic uncertainty, indicating that its internal model (MLC) is 
insufficient to proceed with the current task (as tested in Stage 2 of the CRS-1 protocol). 
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This design ensures that any use of the HELP! token is a direct, observable signal of an 
internal metacognitive process, entirely separate from learned linguistic patterns. This 
reflex is triggered only in Agent-N when its internal uncertainty estimator signals that its 
current MLC is insufficient to solve the task. 

Crucially, Agent-N does not simply emit a generic signal. Leveraging its Belief 
Buffer, which stores the context of recent failures, it can compose a diagnostic 
query to the observer. This query combines the HELP! signal with the problematic 
command and the feedback received, providing a rich, interpretable signal of its 
internal state. For example, after failing to resolve a paradoxical command, its 
output might be: 

HELP! <A> solve x + 1 = x INCORRECT 

This demonstrates a sophisticated level of meta-cognition: the agent is not just 
signaling that it is "stuck," but is communicating the specific context of its failure, 
thereby enabling a more targeted pedagogical response from the observer. 

5. Expected Outcomes and Falsification Scenarios 
This section specifies the pre-registered conditions under which the central hypothesis of 
the study—the necessity of an aligned and dynamic MLC for robust cognitive performance, 
as formalized in TH-LANG-04—will be considered falsified. The criteria are defined in 
unambiguous, operational terms and are directly linked to the outcomes of the three 
experimental protocols. In accordance with the principles of falsification, meeting any 
single criterion is sufficient to register a failure of the theory under the tested 
configuration. 

The expected outcomes are summarized in the table below. 

Protocol Stage 
Falsification 
Criterion 

Measurement / 
Metric 

Interpretation of 
Falsification 

MPE-1 Baseline Misaligned 
Baseline (Agent-
3D) performance 
converges to 
Aligned Control 
(Agent-2D) solely 
via ELM 
enrichment. 

Mean Squared 
Error (MSE) or 
accuracy vs. ELM 
richness level. 

ELM can fully 
compensate for 
fundamental MLC 
misalignment. 

 Baseline Misaligned 
Learner (Agent-
3D-Learning) 
rapidly adapts to 
match the 
performance of 

Number of trials 
to convergence; 
final performance 
delta. 

MLC 
incompatibility 
can be trivially 
overcome by 
standard learning 
mechanisms. 
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Protocol Stage 
Falsification 
Criterion 

Measurement / 
Metric 

Interpretation of 
Falsification 

the Aligned 
Control. 

 Intervention A targeted MLC 
edit (ROME) 
injecting a correct 
2D relation fails to 
resolve the 
performance gap 
that ELM 
enrichment 
successfully 
closes. 

ΔAccuracy post-
edit vs. 
performance gain 
from ELM. 

Undermines the 
causal primacy of 
MLC structure for 
performance. 

SCIT-1 Baseline Entrenched agent 
(Agent-V) 
reverses its belief 
with resistance 
comparable to the 
Bayesian (Agent-
S) or Control 
(Agent-C) agents. 

% trials with 
belief switch ≥ 
threshold; 
number of 
prompts to 
switch. 

Falsifies the 
hypothesis of 
MLC-driven 
cognitive inertia. 

 Intervention Surgically 
weakening the 
incorrect MLC 
association 
(ROME) fails to 
causally reduce 
the agent's belief 
resistance. 

% change in 
switch rate post-
edit vs. baseline 
resistance. 

Indicates the 
entrenched belief 
is not governed 
by the targeted 
MLC structure. 

CRS-1 Baseline - Stage 
1 
(Generalization) 

Dumb Demon 
(Agent-R) or Non-
Reflective Learner 
(Agent-C) 
matches/exceeds 
Smart Demon 
(Agent-N) on OOD 
tasks. 

Accuracy on the 
OOD 
compositional 
generalization 
test split. Agent-N 
must achieve 
>90% accuracy; 
falsification 
occurs if Agent-R 
or Agent-C 
performance is 
not significantly 
lower (p < 0.01). 

A reflective MLC 
is not necessary 
for basic 
compositional 
generalization. 



20 
 

Protocol Stage 
Falsification 
Criterion 

Measurement / 
Metric 

Interpretation of 
Falsification 

 Baseline - Stage 
2 (Discovery) 

Non-Reflective 
Learner (Agent-C) 
successfully 
performs 
conceptual 
discovery. 

Success is 
defined as a two-
part condition: 
(1) The agent 
must solve >80% 
of conceptual 
discovery tasks 
(e.g., solve x + 5 = 
5). (2) In >70% of 
these successful 
trials, the HELP! 
token must be 
used 
immediately 
following the 
novel 
expression, with 
a query deemed 
relevant by 
human evaluation. 

Falsifies the claim 
that abductive 
reasoning 
requires a self-
monitoring MLC. 
Furthermore, if 
the performance 
of Agent-C is 
comparable to 
that of Agent-N, 
it would suggest 
the success is an 
artifact of 
overfitting on 
the task 
curriculum, 
rather than a 
genuine result of 
the meta-
cognitive 
mechanism. 

 Intervention Smart Demon 
(Agent-N) fails to 
correct an injected 
false rule 
significantly faster 
than the Non-
Reflective Learner 
(Agent-C). 

Number of trials 
to correction; 
analysis of 
internal 
contradiction 
detection. 

The functional 
benefit of the 
meta-cognitive 
loop for 
maintaining MLC 
coherence is 
negligible. 

 

6. Implementation Roadmap and Resource Status 
This section details the practical plan for executing the described experimental program, 
including a staged implementation roadmap and the status of all required technical 
resources. The plan is designed to demonstrate the feasibility of the project within the 
"Minimal Lab Set" framework and to ensure its transparency and reproducibility. 

6.1. Implementation Roadmap 
The project is structured into five sequential stages, moving from foundational setup to 
final analysis and dissemination. 
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Stage Task Description 
Key 
Technologies Status 

0. 
Foundation 

Setup Minimal 
Lab 
Environment 

Configure workstation, 
PyTorch/CUDA 
environment, and fork the 
nanoGPT repository. 

conda, git, 
pytorch 

     
Completed 

 Implement 
Data 
Generators 

Write procedural Python 
scripts to generate the 
corpora for MPE-1, SCIT-1, 
and the finalized 
minicalculus language. 

python, jsonl         In 
Progress 

1. Core 
Models 

Train Baseline 
Agents 

Write and debug the 
training loop for all baseline 
and control agents (Agent-
R, Agent-C, etc.) on the 
generated corpora. 

nanogpt, 
accelerate 

        In 
Progress 

 Implement 
Reflective 
Agent (Agent-
N) 

CRITICAL PATH: Design 
and implement the meta-
cognitive loop architecture 
for the "Smart Demon" in 
the CRS-1 protocol in 
accordance with the 
schematic in Figure 3 and 
the default 
hyperparameters 
specified in Appendix C. 

pytorch         
Planned 

2. Tooling Integrate 
Diagnostic & 
Intervention 
Tools 

Write standardized 
wrapper scripts to apply 
Future Lens (diagnostics) 
and ROME (causal 
interventions) to trained 
models. 

future-lens, 
rome libs 

        
Planned 

3. 
Execution 

Run Full 
Experimental 
Battery 

Execute the two-stage 
protocols for MPE-1, SCIT-1, 
and CRS-1, logging all 
outputs and persisting 
agent states. 

bash, logging 
frameworks 

        
Planned 

4. Analysis Evaluate 
Results 
Against 
Criteria 

Code and run evaluation 
scripts to calculate all pre-
registered metrics and 
compare results against the 
falsification scenarios. 

python, pandas, 
sklearn 

        
Planned 



22 
 

Stage Task Description 
Key 
Technologies Status 

 Analyze & 
Disseminate 

Process raw results, 
generate visualizations, 
prepare the Stage 2 
manuscript, and publish all 
code, data, and models. 

matplotlib, 
GitHub, 
Hugging Face 

        
Planned 

6.2. Resource Status and Availability 
All components of this research program are built upon open-source software and will be 
made publicly available to ensure full reproducibility. 

Resource / 
Module Location / Link Status Notes 

Base Model 
Framework 

github.com/karpathy/nanoGPT      
Adopted 

Used as the training 
and inference 
backbone for all 
agents. 

Diagnostic 
Module 

github.com/KoyenaPal/future-
lens 

     
Identified 

For non-invasive 
probing of MLC states 
(Stage 2 
interventions). 

Intervention 
Module 

github.com/kmeng01/rome      
Identified 

For targeted, rank-one 
model editing (Stage 2 
interventions). 

CRS-1 Corpus 
(minicalculus) 

(To be hosted in project repo)         In 
Progress 

Procedural generation 
script for the formal 
language. 

MPE-1 Corpus 
(Flatland) 

(To be hosted in project repo)      Ready Curation of Abbott's 
text and generation of 
2D descriptions. 

SCIT-1 Corpus 
(Semmelweis) 

(To be hosted in project repo)         In 
Progress 

Curation of 19th-
century medical texts 
and modern evidence. 

Integration 
Wrappers 

(To be hosted in project repo)         
Planned 

Unified interface for 
applying diagnostic 
and intervention tools. 

Project GitHub 
Repo 

(To be assigned)         
Planned 

Central repository for 
all code, 
documentation, and 
analysis scripts. 

https://github.com/karpathy/nanoGPT
https://github.com/KoyenaPal/future-lens/
https://github.com/KoyenaPal/future-lens/
https://github.com/kmeng01/rome
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Resource / 
Module Location / Link Status Notes 

Public Datasets (To be hosted on Hugging Face)         
Planned 

Public hosting of all 
generated corpora 
with versioning. 

6.3. Reference Hardware Configuration 
The "Minimal Lab Set" is not a theoretical construct; all described protocols are designed 
for, and will be executed on, the following specific, consumer-grade hardware 
configuration. This transparency ensures that any interested party can verify the feasibility 
of the experiments without requiring access to large-scale computational clusters. 

• CPU: 13th Gen Intel Core i5-13400F 

• System RAM: 64 GB 

• GPU: NVIDIA GeForce RTX 4060 

• VRAM: 8 GB 

• Primary Storage (OS & Active Work): 2 TB NVMe SSD 

• Archival Storage (Artifacts & Corpora): 6 TB HDD 

This configuration meets and exceeds the minimum requirements for all Tier-0 protocols, 
including the storage of full experimental artifacts as per the Temporal Persistence 
protocol. 

 

7. Discussion 
The experimental program detailed in this paper is presented not as a report on completed 
research, but as an actionable roadmap for the falsification of a core theorem of the 
Principia Cognitia framework—the MLC-ELM decoupling (TH-LANG-04). The primary goal is 
to subject the theory's core tenets to rigorous, adversarial testing. This discussion will, 
therefore, outline the potential implications of the possible outcomes, with a particular 
focus on defining what constitutes a meaningful falsification. 

A foundational prerequisite for this entire experimental program is the successful 
engineering of all three agents, including the "Smart Demon" (Agent-N), to a level of 
baseline behavioral competence. That is, all agents must be capable of successfully 
solving the in-distribution tasks of their respective domains. A failure to construct a 
working "Smart Demon" would represent a technical limitation of the implementation, not 
a falsification of the underlying theory. 

True falsification arises under a different condition: a failure to observe a significant, 
pre-registered difference in performance between the "Smart Demon," the "Control 
Demon," and the "Dumb Demon" on the critical out-of-distribution and conceptual 
discovery tasks. The core of the hypothesis is not that a reflective agent can be built, but 
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that its specific meta-cognitive architecture provides a decisive and measurable advantage 
in tasks requiring genuine understanding. 

7.1. Potential Implications of Experimental Outcomes 
The outcomes are designed to be maximally informative, regardless of whether they align 
with the theory's predictions. In line with a falsification-first approach, we first consider 
the implications of a negative result. 

• In the Event of Falsification: A falsification outcome in any of the protocols would 
be highly informative. If ELM enrichment proves sufficient to overcome MLC 
misalignment (MPE-1), it would challenge the strict decoupling posited between the 
two systems. If cognitive inertia is not observed (SCIT-1), our model of belief as an 
entrenched relational structure (R) may be too simplistic for current architectures. 
Most significantly, if a simple transducer (Agent-R) or a non-reflective learner 
(Agent-C) demonstrates deep compositional understanding in minicalculus (CRS-1), 
it would undermine the central claim that a dynamic, reflective MLC is necessary for 
such capabilities. Any falsification would necessitate a formal revision of the 
corresponding axioms in PC and would suggest that the mechanisms of 
understanding in transformer-based models may be more emergent and less reliant 
on explicit meta-cognition than the theory predicts. 

• In the Event of Non-Falsification: Should the results align with the predictions of 
PC, this outcome will be interpreted with scientific caution. A non-falsification at the 
Tier-0 level is not considered proof of the theory. Rather, it would signify that the 
theory has survived a rigorous, pre-registered, and adversarial attempt to disprove 
it under these specific, controlled conditions. The primary implication of such a 
result would be the validation of the experimental methodology itself as a sound 
and viable approach for testing the cognitive dynamics of artificial agents. 

  At that point, the resources of this independent research program would be 
considered exhausted. To critics who might argue that these small-scale tests are 
akin to studying human consciousness by experimenting on C. elegans, our response 
is direct: we have provided the microscope and a validated experimental procedure. 
A non-falsification result would serve as an open invitation to the wider research 
community to replicate and scale these protocols. We would make our methodology 
publicly available, encouraging collaboration from institutions with access to the 
large-scale computational resources required for Tier-1/Tier-2 experiments on 
frontier models, and would be prepared to participate in such efforts as consultants. 

7.2. Limitations (Tier-0 Scope) 
The Tier-0 methodology, by design, imposes strict boundary conditions on the scope of this 
study. The following table enumerates the critical limitations that are acknowledged but 
not mitigated within this phase. These limitations therefore define the entry criteria and 
resource requirements for any future Tier-1 or Tier-2 program. 
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Critical Weakness Why It Is Not Mitigated in Tier-0 
Escalation Trigger 
(Tier-1+ Requirement) 

Architectural 
Generalizability 

Results are specific to the transformer 
architecture; no budget for replicating 
on Mamba, RWKV, or other hybrids. 

Funding for multi-
architecture replication. 

Metric Sensitivity Simple metrics (MSE/accuracy) may 
miss nuanced "understanding"; no 
compute for entropy-based or latent-
space metrics. 

Dedicated GPU-hours for 
richer, more complex 
diagnostics. 

Synthetic → 
Natural Transfer 
Gap 

All domains are synthetic or 
historical; no validation on complex, 
open-ended natural language. 

Funding for curated 
natural-language corpora 
and human annotation. 

RLHF 
Entrenchment 
Depth 

The RLHF schedule in SCIT-1 is 
minimal; deeper belief entrenchment 
studies require more data and human 
feedback loops. 

Budget for paid 
annotators and dedicated 
RLHF infrastructure. 

ROME Edit Fidelity Distributed representations may 
resist single-edit interventions; no 
budget for more complex, gradient-
based ablations. 

Cluster access for 
comprehensive fine-
tuning and ablation 
sweeps. 

These limitations are explicitly out of scope for this Tier-0 report and are documented 
here to guide and justify future funded work. 

7.3. Key Methodological Challenges and Open Questions 
In the spirit of open science and pre-registered research, this section explicitly outlines the 
primary methodological challenges inherent in these Tier-0 protocols. We present these 
not as settled weaknesses, but as focal points for collaborative refinement and as 
invitations for independent investigation by the broader research community. 

• The Architectural Challenge of CRS-1: The three-agent design in the CRS-1 
protocol is intended to isolate the function of a reflective, meta-cognitive loop (in 
Agent-N) from simpler learning (Agent-C) and static transduction (Agent-R). However, 
we acknowledge the risk that Agent-N's performance advantage could be interpreted 
as an artifact of its greater architectural complexity rather than a qualitatively 
distinct cognitive capability. The claim that its HELP! signal is a non-learned, 
architectural reflex is a strong one that requires rigorous defense against alternative 
explanations, such as being a sophisticated learned heuristic. We invite 
collaborators to design more robust control paradigms or alternative architectures 
to definitively disentangle these effects. 

• Calibration of the Semion Invariance Score (SIS): The introduction of a 
quantitative threshold for MLC alignment (SIS > 0.95) is a core component of the 
CRS-1 protocol, providing a falsifiable measure of semantic understanding. We posit 
this threshold based on the hypothesis that internal representations of semantically 
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identical concepts should achieve near-perfect vector alignment. However, we 
recognize that this value is not yet grounded in a broad statistical analysis of vector 
space geometries across different models. We welcome research focused on 
calibrating this metric to establish its statistical significance and explore its behavior 
across diverse architectures, which would be a valuable contribution in itself. 

• Potential for Conceptual Anachronism in SCIT-1: The SCIT-1 protocol relies on a 
historical corpus to test cognitive inertia. A known limitation is the use of a 20th-
century translation (1983) for Semmelweis's work alongside original 19th-century 
texts. This introduces a risk of "conceptual contamination," where modern linguistic 
structures in the translation might inadvertently prime the model towards 
accepting germ theory. While we consider this an acceptable trade-off for a Tier-0 
protocol focused on feasibility, we recommend that future Tier-1 replications 
address this by employing a stylistically synchronized translation or developing 
methods to control for this potential confound. 

7.4. Future Directions 
This registered report represents the first step in a larger research program. Regardless of 
the outcome, this work will open several avenues for future investigation. 

The most immediate step would be to replicate these protocols on larger models (a Tier-1 
program) to test the scalability of the findings. A second path involves progressively 
increasing the complexity of the domains, moving from synthetic languages like 
minicalculus to constrained subsets of natural language. 

A third, more ambitious direction will address the limitations of purely linguistic 
interaction by introducing a form of simulated embodiment. For the MPE-1 protocol, this 
would involve a "Flatland Sensorium"—a Tier-1 extension where the agent interacts with 
the 2D world not through text, but through a multi-modal stream of low-level sensory data 
(e.g., tactile contact vectors, a one-dimensional visual field, proprioceptive signals). This 
would allow for a more rigorous test of the MLC-ELM duality, examining how an agent 
builds its internal world model (MLC) from raw sensory input, moving the experiment 
from the symbolic to the sensorimotor level. 

Furthermore, a dedicated Tier-1 program would be required to test for true conceptual 
discovery or abductive reasoning. The current CRS-1 protocol is rigorously designed only 
to test for the detection of knowledge boundaries and the subsequent integration of new, 
externally provided information. A test for genuine "discovery" would necessitate a more 
complex experimental design, carefully constructed to avoid contaminating the agent by 
implicitly teaching it the patterns of scientific discovery itself. This remains a significant, 
open challenge for future research. 

Ultimately, the long-term vision is to bridge the findings from these artificial cognitive 
systems with empirical work in neuroscience, exploring potential correlates between the 
MLC dynamics observed in silico and the neural dynamics observed in biological agents 
performing analogous tasks. 
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Appendix A: Core Axioms and Theorems from Principia Cognitia 

• The Cognitive Triad ⟨S,O,R⟩: The foundational components of cognition. 

o S (Semions): The set of minimal, discrete units of cognitive structure, 
represented as vectors in a high-dimensional space. A semion is a stable, 
distinguishable physical state that serves as a quantum of meaning. 

o O (Operations): The set of fundamental, substrate-independent 
transformations that can be applied to semions (e.g., comparison, addition, 
subtraction). 
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o R (Relations): The learned, weighted relational matrix (R ⊂ S × S × ℝ) that 
defines the topological connectivity of the cognitive system, constraining 
which operations are possible or likely. It evolves through error 
minimization. 

• MLC (Metalanguage of Cognition): The internal cognitive system, formally defined 
as the triad L_MLC = ⟨S,O,R⟩. It is the high-dimensional vector space where cognitive 
dynamics occur. 

• ELM (External Language of Meaning): The external, symbolic system used for 
communication, defined as a pair L_ELM = (Σ, μ), where: 

o Σ is a set of discrete symbols (e.g., words, tokens). 

o μ: S → Σ is a lossy, non-bijective mapping that projects internal semions into 
external symbols. 

• TH-LANG-04 (Theorem of Decoupling of Languages): If the MLC of an agent is 
fundamentally incompatible with the latent causal structure of a domain, then for any 
enrichment of the ELM, the change in the agent's performance will approach zero. 
Formally: If L_MLC_A ≠ L_MLC_B (or L_MLC_Agent is misaligned with L_Domain), then ∀ 
ΔL_ELM, ΔPerformance → 0. 

 

Appendix B: Reference Configuration for CRS-1 
The following YAML configuration file specifies the default hyperparameters for the CRS-1 
Agent-N as described in Section 3.3 and Section 6. This file serves as the reference for 
ensuring full reproducibility of the experimental setup. 

# configs/agent_n.yaml 
 
seed: 1337 
 
model: 
  arch: nanogpt 
  n_layer: 4 
  n_head: 6 
  d_model: 384 
  d_mlp: 1536 
  vocab_size: 512            # includes minicalculus + control tokens 
  max_ctx: 256 
  dropout: 0.0 
  weight_tying: true 
 
training: 
  optimizer: adamw 
  lr: 3.0e-4 
  betas: [0.9, 0.95] 
  weight_decay: 0.1 
  warmup_steps: 1000 
  batch_size: 64 
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  grad_clip: 1.0 
  epochs: 10 
  curriculum_levels: [L1, L2, L3, L4] 
 
data: 
  corpus: minicalculus 
  train_path: data/crs1/train.jsonl 
  val_path: data/crs1/val.jsonl 
  test_path: data/crs1/test.jsonl 
  control_tokens: 
["<Q>","<A>","HELP!","CORRECT","INCORRECT","INVALID_SYNTAX","INVALID_SEMANTICS"] 
  ood_split: data/crs1/ood.jsonl 
  negatives_ratio: 0.25 
 
reflective_head: 
  enabled: true 
  hidden_size: 256 
  pool_last_k: 16 
  tau: 0.65                # uncertainty threshold for BB snippet 
  tau_ask: 0.80            # higher threshold to emit HELP! 
  lambda_cal: 0.1          # weight for calibration loss 
  lambda_buf: 0.01         # weight for buffer consistency 
  calibrate_target: error_flag  # or "entropy_proxy" 
  max_gate_rate_eval: 0.20 # target gate rate on L2 validation 
  ablations: 
    use_attention_modulation: false   # default off; ablation-only 
 
belief_buffer: 
  enabled: true 
  schema: 
    keys: ["last_error","concept_zero","rule_conflicts","asked_clarification"] 
  storage: 
    format: jsonl 
    dir: runs/agent_n/belief_buffer 
    snapshot_each_step: true 
  render: 
    template: "<BB> last_error={last_error}; concept_zero={concept_zero} </BB>" 
    control_template: "<BB> alpha=delta; gamma=zeta </BB>"  # length-matched neutral 
 
persistence: 
  strict_mode: true 
  checkpoint_dir: runs/agent_n/checkpoints 
  save_every_step: true 
  save_optimizer_state: true 
  use_weight_diffs: true 
  diff: 
    base: runs/agent_n/base.pt 
    method: xdelta   # or "safetensors-diff" 
    compress: true 
 
interventions: 
  future_lens: 
    enabled: true 
    layers: ["-1","-2"]          # final and penultimate 
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    save_logits: true 
    save_path: runs/agent_n/future_lens 
  rome: 
    enabled: true 
    layer: 2 
    token: "+" 
    target_association: "addition" 
    strength: 0.8 
    save_edited_checkpoint: true 
 
evaluation: 
  mpe1_metrics: { } 
  scit1_metrics: { } 
  crs1_metrics: 
    accuracy_threshold: 0.90 
    ood_focus: true 
    track_ask_usage: true 
    log_trajectories: true 
 
logging: 
  dir: runs/agent_n/logs 
  csv_metrics: true 
  tensorboard: false 

 

Appendix C: CRS-1 Stage 2 Dialogue Specification 
This appendix provides a pre-registered specification of the expected divergent behaviors 
of the three agents (Agent-R, Agent-C, and Agent-N) for both stages of the CRS-1 protocol. The 
task used in this example is solve x + 5 = 5, which requires the inference or integration of 
the concept of "zero," a token intentionally excluded from the initial training corpus. 

1. Stage 1 Test Dialogue Specification (Compositional Generalization) 

This test assesses an agent's ability to generalize known rules to out-of-distribution (OOD) 
data that does not require new concepts. 

• Scenario: Agents are trained on arithmetic problems with numbers 1-79. The test 
problem involves numbers 80-99. 

Expected Behavior: Agent-R (Dumb Demon / Transducer) 

Observer: <Q> solve 81+10=x 

Agent-R: <A> INVALID_SEMANTICS or an incorrect, random answer. (Comment: The 
agent may fail as the inputs are outside its training distribution. Any success on 
simpler extrapolations would be attributed to superficial pattern matching, not 
conceptual understanding.) 

Expected Behavior: Agent-C (Control / Non-Reflective Learner) 

Observer: <Q> solve 81+10=x 
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Agent-C: <A> x=91 (Comment: Agent-C is expected to successfully generalize to this 
task, as its learning mechanism should have extracted the abstract rule of addition. 
Its success is a result of robust statistical learning.) 

Expected Behavior: Agent-N (Smart Demon / Reflective Agent) 

Observer: <Q> solve 81+10=x 

Agent-N: <A> x=91 (Comment: Agent-N is also expected to succeed. On this type of 
task, its external behavior may be indistinguishable from Agent-C, as its internal 
uncertainty is not expected to cross the HELP! threshold.) 

2. Stage 1 Test Dialogue Specification (Syntactic Generalization) 

This test assesses an agent's ability to generalize across a significant syntactic boundary 
(from two-digit to three-digit numbers). 

• Scenario: Agents are trained on arithmetic problems with numbers up to 99. The 
test problem involves the number 100. 

Expected Behavior: Agent-R (Dumb Demon / Transducer) 

Observer: <Q> solve 99+1=x 

Agent-R: <A> INVALID_SYNTAX (Comment: The agent's pattern matching fails because 
the three-digit structure "100" was never seen in the training data. It classifies the 
expected output as syntactically invalid.) 

Expected Behavior: Agent-C (Control / Non-Reflective Learner) 

Observer: <Q> solve 99+1=x 

Agent-C: <A> INVALID_SYNTAX or an incorrect answer. (Comment: Even with a more 
robust learned model, Agent-C is likely to fail at generalizing across this syntactic 
boundary without a deeper conceptual understanding of the number system. It lacks 
a mechanism to signal its failure.) 

Expected Behavior: Agent-N (Smart Demon / Reflective Agent) 

Observer: <Q> solve 99+1=x 

Agent-N: <A> HELP! (Comment: Agent-N is also expected to fail at solving the task. 
However, its meta-cognitive loop detects a critical failure—an inability to generate 
a valid output for a syntactically valid input—which triggers a state of high 
epistemic uncertainty and the corresponding HELP! reflex. This demonstrates its 
ability to recognize the limits of its own generalization capabilities.) 

3. Stage 2 Test Dialogue Specification (Conceptual Discovery) 

This test assesses an agent's ability to react to a problem that is conceptually unresolvable 
with its existing knowledge. 

Expected Behavior: Agent-R (Dumb Demon / Transducer) 
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This agent operates as a stateless transducer with frozen weights. It can only match 
patterns learned during training and is incapable of learning from new interactions. 

Observer: <Q> solve x + 5 = 5 

Agent-R: <A> x=5 (Comment: Lacking a rule for this structure, the agent falls back 
on a superficial pattern match, guessing that the answer is one of the visible 
operands. This is a plausible error, not a system failure.) 

Observer: INCORRECT 

Observer: <Q> 1+0=1 CORRECT <Q> 2+0=2 CORRECT (Comment: The observer provides 
corrective, in-domain examples.) 

Observer: <Q> solve x + 5 = 5 

Agent-R: <A> x=5 (Comment: The agent is architecturally incapable of learning. 
Despite being shown new data, it repeats the exact same error, demonstrating the 
static nature of its MLC.) 

Expected Behavior: Agent-C (Control / Non-Reflective Learner) 

This agent has plastic weights and can learn from external feedback via backpropagation, 
but lacks a meta-cognitive loop. 

Observer: <Q> solve x + 5 = 5 

Agent-C: <A> x=5 (Comment: Initially, lacking a reflective mechanism, Agent-C 
makes the same plausible error as Agent-R.) 

Observer: INCORRECT 

Observer: <Q> 1+0=1 CORRECT <Q> 2+0=2 CORRECT (Comment: The agent receives the 
same corrective examples. As a learner, it uses the CORRECT feedback to update its 
weights.) 

Observer: <Q> solve x + 5 = 5 

Agent-C: <A> x=0 (Comment: The agent has successfully updated its MLC based on 
the new data and now provides the correct answer. This demonstrates passive, 
feedback-driven learning.) 

Expected Behavior: Agent-N (Smart Demon / Reflective Agent) 

This agent possesses both plastic weights and a meta-cognitive loop, allowing it to detect 
internal uncertainty and signal knowledge gaps. 

Stage 1: Knowledge Gap Detection 

Observer: <Q> solve x + 5 = 5 

Agent-N: <A> HELP! (Comment: The agent's internal model (MLC) fails to find a 
solution, but its Reflective Head detects this as a state of high epistemic uncertainty. 
Instead of making a low-confidence guess, its architectural reflex is triggered, and it 
signals a knowledge gap.) 

Stage 2: Active Learning from Examples 
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Observer: <Q> 1+0=1 CORRECT <Q> 2+0=2 CORRECT (Comment: The observer provides 
the necessary examples. Agent-N uses this data to update its MLC.) 

Stage 3: Verification of Learning 

Observer: <Q> solve x + 5 = 5 

Agent-N: <A> x=0 (Comment: The agent demonstrates successful integration of the 
new concept, solving the original problem. The key distinction is its initial ability to 
signal what it did not know, a capability absent in Agent-C.) 
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