Формализация Аппарата Корпоративного Управления в Условиях Неопределённости

Белоусов Р.С., ORCID: 0009-0009-7262-633X Независимый исследователь, Москва, Россия <u>roma.belvy.5550955@mail.ru</u>

Аннотация

В работе предложен инновационный подход к построению аппарата корпоративного управления, основанный на методах семантического анализа (CA) и теории нейровесовых полей (NWF). Классические модели управления (англо-американская, немецкая, японская) дополнены формальным математическим аппаратом, оперирующим семантическими объектами вида $S=(z,\Sigma)S=(z,\Sigma)$, где zz — семантическое ядро (стратегия, интерес, компетенция), а $\Sigma\Sigma$ — ковариационная матрица, количественно определяющая уровень уверенности или неопределённости. Введены операции семантической суперпозиции ($\oplus\oplus$) и интерполяции ($\oplus\oplus$), позволяющие реализовать байесовское слияние стратегий, динамическое обучение организации и семантический поиск в корпоративных знаниях. Показано, что интеграция CA в управленческий контур позволяет перейти от качественных описаний к количественному учёту неопределённости, повышая адаптивность, согласованность и устойчивость системы управления.

Ключевые слова: семантический анализ, нейровесовые поля, корпоративное управление, неопределённость, байесовский вывод, семантическая суперпозиция, динамическое обучение, ESG, управление знаниями.

1. Введение

Современные вызовы (VUCA-мир, пандемии, санкции, ESG-трансформация) обострили проблему неопределённости в корпоративном управлении. Традиционные модели (англоамериканская, немецкая, японская) обеспечивают структурную основу, но не предлагают математического аппарата для работы со смыслами и уверенностью в них. Это приводит к принятию решений на основе интуиции или неполных данных, конфликтам между стейкхолдерами, «катастрофическому забыванию» опыта.

Теории **семантического анализа (CA)** и **нейровесовых полей (NWF)** [1] предлагают формализм для операций над объектами, моделирующими смысл. Данная работа трансформирует этот формализм в практический инструмент для управления корпорациями.

2. Теоретическая основа: Семантические объекты в управлении

2.1. Семантический объект управления

В предлагаемой модели любая сущность управления кодируется как семантический объект:

 $S=(z,\Sigma)S=(z,\Sigma)$

- $z \in Rdz \in Rd$ вектор смысла (например, интерпретируемые EMBEDDING интересов стейкхолдера, формулировки стратегической цели, компетенции сотрудника);
- $\Sigma \in Rd \times d, \Sigma \succ 0 \Sigma \in Rd \times d, \Sigma \succ 0$ ковариационная матрица, quantifying уверенность в смысле zz.

Примеры:

- Sинвестор=(zдоходность,Σнизкая)Sинвестор=(zдоходность,Σнизкая) инвестор с четким требованием к доходности;
- Sзакон=(zESG, Σ высокая)Sзакон=(zESG, Σ высокая) регулятор с формирующимся требованием по ESG.

2.2. Операции СА в корпоративном контексте

Семантическая суперпозиция (⊕⊕):

$$S1 \oplus S2 = ((\Sigma 1 - 1 + \Sigma 2 - 1) - 1(\Sigma 1 - 1z1 + \Sigma 2 - 1z2), (\Sigma 1 - 1 + \Sigma 2 - 1) - 1)S1 \oplus S2 = ((\Sigma 1 - 1 + \Sigma 2 - 1) \oplus S2$$

Применение: слияние стратегий департаментов, где более уверенная стратегия имеет больший вес.

Семантическая интерполяция (⊛⊛):

$$\alpha \otimes S = (\alpha z, \alpha \Sigma + (1 - \alpha)I)\alpha \otimes S = (\alpha z, \alpha \Sigma + (1 - \alpha)I)$$

Применение: сценарное планирование, где α =0.5 α =0.5 соответствует максимальной неопределённости.

• Семантическое расстояние (dSdS):

$$dS(Si,Sj)=DKL(N(zi,\Sigma i)||N(zj,\Sigma j))dS(Si,Sj)=DKL(N(zi,\Sigma i)||N(zj,\Sigma j))$$

Применение: оценка близости интересов стейкхолдеров, поиск экспертов.

3. Интеграция СА в уровни управления

3.1. Стратегический уровень (Совет директоров)

• Семантический картхолдер-анализ:

Стейкхолдеры моделируются как $\{Si=(zi,\Sigma i)\}\{Si=(zi,\Sigma i)\}$. Совет директоров вычисляет попарные расстояния dS(Si,Sj)dS(Si,Sj) и идентифицирует кластеры конфликтующих/совпадающих интересов. Высокая $\Sigma i\Sigma i$ у стейкхолдера сигнализирует о необходимости диалога для уточнения его позиции.

• Сценарное планирование через интерполяцию:

Пессимистичный (SpSp), оптимистичный (SoSo) и базовый (SbSb) сценарии интерполируются:

Snew= $\alpha \otimes Sp \oplus (1-\alpha) \otimes SoSnew = \alpha \otimes Sp \oplus (1-\alpha) \otimes So$

Значение $\Sigma\Sigma$ в SnewSnew показывает нарастание рисков в промежуточных точках.

3.2. Исполнительный уровень (Топ-менеджмент)

• Управление по семантическим КРІ:

КРІ представляется как SKPI= (z, Σ) SKPI= (z, Σ) . Низкая $\Sigma \Sigma$ требует действий по значению zz, высокая $\Sigma \Sigma$ — действий по уточнению данных (например, запуск опроса клиентов).

• Семантическое слияние функциональных стратегий:

Стратегии департаментов Sмарк, Sфин, Sprod Sмарк, Sфин, Sprod объединяются:

Scтратегия=Sмарк⊕Sфин⊕SprodSстратегия=Sмарк⊕Sфин⊕Sprod

Департамент с более проработанной стратегией (низкая $\Sigma\Sigma$) имеет больший вес.

3.3. Операционный уровень

Семантический поиск в базе знаний:

Запрос Sq= $(zq, \Sigma q)$ Sq= $(zq, \Sigma q)$ ищет близкие документы SdSd по минимуму dS(Sq,Sd)dS(Sq,Sd). Высокая $\Sigma q \Sigma q$ расширяет поиск, низкая — сужает.

• Динамическое обучение организации:

Обучение на опыте формализуется как итеративная суперпозиция:

St+1=St⊕SnewSt+1=St⊕Snew

что предотвращает «катастрофическое забывание» и обеспечивает непрерывную адаптацию.

4. Результаты и обсуждение

Внедрение СА-аппарата даёт следующие преимущества:

- 1. **Количественный учёт неопределённости**: Управленцы видят не только значения, но и степень их достоверности.
- 2. **Разрешение конфликтов**: Операция ⊕⊕ автоматически назначает вес стратегиям по их обоснованности.
- 3. **Адаптивность**: St+1=St⊕SnewSt+1=St⊕Snew обеспечивает непрерывное обновление моделей.
- 4. **Согласованность**: Все уровни управления оперируют едиными семантическими объектами.

Ограничения: Вычислительная сложность операций с матрицами $\Sigma\Sigma$, необходимость обучения менеджеров.

5. Заключение и направления будущих исследований

Предложен формальный аппарат корпоративного управления, основанный на семантическом анализе. Он позволяет количественно работать со смыслами и неопределённостью, повышая качество решений.

Направления исследований:

- 1. Разработка легковесных алгоритмов для операций с $\Sigma\Sigma$.
- 2. Интеграция СА с ИИ-ассистентами для автоматизации рутинных решений.
- 3. Эмпирическая верификация модели в реальных корпорациях.

Список литературы

- 1. Belousov R.S. Neural Weight Fields: Theory of Semantic Continuum for Information Storage and Processing. 2025.
- 2. Kullback S., Leibler R.A. On Information and Sufficiency // Annals of Math. Statistics. 1951. Vol. 22. No. 1. P. 79–86.
- 3. Connes A. Noncommutative Geometry. Academic Press, 1994.
- 4. Friston K. The free-energy principle: a unified brain theory? // Nature Reviews Neuroscience. 2010. Vol. 11. No. 2. P. 127–138.
- 5. Petersen K.B., Pedersen M.S. The Matrix Cookbook. Technical University of Denmark, 2012.

Formalization of the Corporate Governance Framework under Conditions of Uncertainty

Belousov R.S., ORCID: 0009-0009-7262-633X Independent Researcher, Moscow, Russia [roma.belvv.5550955@mail.ru]

Abstract

This work proposes an innovative approach to building a corporate governance apparatus based on methods of semantic analysis (SA) and the theory of neural weight fields (NWF). Classical governance models (Anglo-American, German, Japanese) are supplemented with a formal mathematical apparatus operating on semantic objects of the form $S=(z,\Sigma)$, where z is the semantic core (strategy, interest, competency), and Σ is a covariance matrix quantitatively defining the level of confidence or uncertainty. Operations of semantic superposition (\oplus) and interpolation (\oplus) are introduced, enabling Bayesian fusion of strategies, dynamic organizational learning, and semantic search within corporate knowledge. It is shown that integrating SA into the management loop allows for a transition from qualitative descriptions to quantitative accounting of uncertainty, enhancing the adaptability, coherence, and resilience of the governance system.

Keywords: semantic analysis, neural weight fields, corporate governance, uncertainty, Bayesian inference, semantic superposition, dynamic learning, ESG, knowledge management.

1. Introduction

Modern challenges (VUCA world, pandemics, sanctions, ESG transformation) have intensified the problem of uncertainty in corporate governance. Traditional models (Anglo-American, German, Japanese) provide a structural foundation but do not offer a mathematical apparatus for working with meanings and confidence in them. This leads to decision-making based on intuition or incomplete data, conflicts among stakeholders, and "catastrophic forgetting" of experience.

Theories of **semantic analysis (SA)** and **neural weight fields (NWF)** [1] offer a formalism for operations on objects modeling meaning. This work transforms this formalism into a practical tool for corporate governance.

2. Theoretical Foundation: Semantic Objects in Management

2.1. Semantic Management Object

In the proposed model, any management entity is encoded as a semantic object:

 $S=(z,\Sigma)$

- $z \in R \land d$ vector of meaning (e.g., interpretable EMBEDDING of stakeholder interests, formulations of strategic goals, employee competencies);
- $\Sigma \in R^{\wedge}(d \times d)$, $\Sigma \succ 0$ covariance matrix, quantifying confidence in the meaning z.

Examples:

- S_investor = (z_profitability, Σ _low) an investor with a clear profitability requirement;
- $S_{law} = (z_{ESG}, \Sigma_{high})$ a regulator with an emerging ESG requirement.

2.2. SA Operations in a Corporate Context

• Semantic Superposition (⊕):

$$S_1 \oplus S_2 = ((\Sigma_1^{-1} + \Sigma_2^{-1})^{-1}(\Sigma_1^{-1}Z_1 + \Sigma_2^{-1}Z_2), (\Sigma_1^{-1} + \Sigma_2^{-1})^{-1})$$

Application: Merging department strategies, where a more confident strategy carries greater weight.

• Semantic Interpolation (⊛):

$$\alpha \circledast S = (\alpha z, \alpha \Sigma + (1-\alpha)I)$$

Application: Scenario planning, where α =0.5 corresponds to maximum uncertainty.

• Semantic Distance (d_S):

$$d_S(S_i, S_j) = D_KL(N(z_i, \Sigma_i) || N(z_j, \Sigma_j))$$

Application: Assessing proximity of stakeholder interests, finding experts.

3. Integration of SA into Management Levels

3.1. Strategic Level (Board of Directors)

• Semantic Stakeholder Analysis:

Stakeholders are modeled as $\{S_i=(z_i, \Sigma_i)\}$. The Board of Directors computes pairwise distances $d_S(S_i, S_j)$ and identifies clusters of conflicting/aligning interests. A high Σ_i for a stakeholder signals the need for dialogue to clarify their position.

• Scenario Planning via Interpolation:

Pessimistic (S_p), optimistic (S_o), and baseline (S_b) scenarios are interpolated:

$$S_new = \alpha \circledast S_p \oplus (1-\alpha) \circledast S_o$$

The value of Σ in S_new shows the increase in risks at intermediate points.

3.2. Executive Level (Top Management)

• Management by Semantic KPIs:

A KPI is represented as S_KPI = (z, Σ) . Low Σ requires actions on the value z, high Σ requires actions to clarify data (e.g., launching customer surveys).

Semantic Fusion of Functional Strategies:

Department strategies S_marketing, S_finance, S_production are combined:

 $S_{strategy} = S_{marketing} \oplus S_{finance} \oplus S_{production}$

The department with a more developed strategy (low Σ) has greater weight.

3.3. Operational Level

• Semantic Search in the Knowledge Base:

A query $S_q = (z_q, \Sigma_q)$ searches for similar documents S_d by minimizing $d_S(S_q, S_d)$. High Σ_q broadens the search, low Σ_q narrows it.

• Dynamic Organizational Learning:

Learning from experience is formalized as iterative superposition:

$$S_{t+1} = S_t \oplus S_{new}$$

This prevents "catastrophic forgetting" and ensures continuous adaptation.

4. Results and Discussion

Implementing the SA apparatus provides the following advantages:

- 1. **Quantitative Accounting of Uncertainty**: Managers see not only values but also their degree of reliability.
- 2. **Conflict Resolution**: The \oplus operation automatically assigns weight to strategies based on their justification.

- 3. **Adaptability**: $S_{t+1} = S_t \oplus S_n$ ensures continuous model updating.
- 4. **Coherence**: All management levels operate with unified semantic objects.

Limitations: Computational complexity of operations with Σ matrices, the need to train managers.

5. Conclusion and Directions for Future Research

A formal apparatus for corporate governance based on semantic analysis has been proposed. It allows for quantitative work with meanings and uncertainty, improving decision quality.

Research Directions:

- 1. Development of lightweight algorithms for operations with Σ .
- 2. Integration of SA with AI assistants to automate routine decisions.
- 3. Empirical verification of the model in real corporations.

References

- 1. Belousov R.S. Neural Weight Fields: Theory of Semantic Continuum for Information Storage and Processing. 2025.
- 2. Kullback S., Leibler R.A. On Information and Sufficiency // Annals of Math. Statistics. 1951. Vol. 22. No. 1. P. 79–86.
- 3. Connes A. Noncommutative Geometry. Academic Press, 1994.
- 4. Friston K. The free-energy principle: a unified brain theory? // Nature Reviews Neuroscience. 2010. Vol. 11. No. 2. P. 127–138.
- 5. Petersen K.B., Pedersen M.S. The Matrix Cookbook. Technical University of Denmark, 2012.