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Abstract

A set of relations between perfect numbers, then some properties of
this relations and how they behave, next, a geometric interpretation, a
function, the way this function works, an algorithm to find Perfect Num-
bers and finally the limits of two specific functions related to this algo-
rithm.

Introduction.

A Perfect Number is an integer number such that its value is equal to the sum
of its proper divisors[1]. The first seven Perfect Numbers are:
6, 28, 496, 8128, 33550336, 8589869056, 137438691328. In this paper we use the
terms Perfect Number=Pf, Superperfect Number=Sp, Mersenne Prime=Mp,
Mersenne Exponent=Me. The first Pf will be the 28 and we will call it Pf1, 496
will be Pf2, etc.
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Relation between two consecutive
Perfect Numbers.

Assuming that all Perfect Numbers have the form: 2n4 − n2 = Pfk
Then:
[(2 · (n1)2)− 1](n1)2 = Pf1.
[(2 · (n2)2)− 1](n2)2 = Pf2.

[(2 · (nk)2)− 1](nk)2 = Pfk.

Exists a relation (r) of the form:
nk

nk−1
.

for every Pfk and Pfk−1.

This is:√
Spk
Spk−1

For example, the relation between 28 and 496 is equal to:
√

16
4 = 2
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Table 1: Relation between consecutive Perfect Numbers.

Pf 1 Pf 2 Relation (r)
28 496 2
496 8128 2
8128 33550336 8
33550336 8589869056 4
8589869056 137438/691328 2
137438/691328 2305843008139952128 64

Figure 1: (r) of 28 and 496
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Relation between two non-consecutive
Perfect Numbers.

Given two Perfect Numbers Pf1 and Pf2 and their respective Mersenne Primes
Mp1 and Mp2:[
Pf1 Mp1
Pf2 Mp2

]
Exists a relation (r) of the form:

r =
√
Pf1∗Mp1∗Pf2∗Mp2

Pf1∗Mp2

This means that the relation (r) between two non-consecutive Perfect Num-
bers is equal to: rn ∗ rn+1 ∗ rn+2 ∗ ...rk

For example, the relation between 8589869056 and 28 is equal to:

r =
√
28∗7∗8589869056∗131071

28∗131071 =128=2*2*8*4

Table 2: Relation between non-consecutive Perfect Numbers.

Perfect Number 28 496 8128 33550336 8589869056
28 1 2 4 32 128
496 2 1 2 16 64
8128 4 2 1 8 32
33550336 32 16 8 1 4
8589869056 128 64 32 4 1
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Relation between number 28 and upper Perfect
Numbers.

Given two Perfect Numbers Pf1 and Pf2 and their respective Mersenne Primes
Mp1 and Mp2.

Exists a relation (r) such that: r= 2
MePf2−3

2 , where Pf1=28 and MePf2 is the
Mersenne Exponent of the Mersenne Prime of the upper Perfect Number Pf2.

For example: Pf1 = 28 and Pf2 = 2305843008139952128.
Mp1 = 7 and Mp2 = 2147483647 and Me2 = 31.

We have:
r =

√
28∗7∗2305843008139952128∗2147483647

28∗2147483647 = 16384

This is equal to the product of the relations between this two Perfect Num-
bers, this is:
r=2*2*8*4*2*64=16384.

And this is:

r= 2
MePf2−3

2 = 2
31−3

2 = 214 = 16384.

Table 3: Relation between 28 and upper Perfect Numbers.

Pf 1 Pf 2 Relation (r) 2
Me−3

2

28 496 2 21

496 8128 2 22

8128 33550336 8 25

33550336 8589869056 4 27

8589869056 137438/691328 2 28

137438691328 2305843008139952128 64 214
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Geometrical interpretation of the relation between
Perfect Numbers.

Assuming that all Perfect Numbers have the form (2n2 − 1)n2.
This is 2n4 − n2.
When solving for 2n4 − n2 = Pfn.
We obtain four roots, two Complex of the form:

i
√

Mpn
2 and −i

√
Mpn
2

And two Real roots running on the x axis such that:
Given two Perfect Numbers Pf1 and Pf2 equaled to the polynomial 2n4 − n2,
the relation between their Real roots is equal to the relation (r).
2n4 − n2 − Pf1 = x1
2n4 − n2 − Pf2 = x2
Then:
r = x2

x1

***Also is possible to use the polynomial 2n4 + 8n3 + 11n2 + 6n + 1. The
only difference is that all the Complex roots will have Real part (-1).

6



Example:
Given two Perfect Numbers Pf1 = 28 and Pf2 = 496.
Solving for:
2n4 − n2 = 28 and 2n4 − n2 = 496.
We get their roots on the xy axis.

Figure 2: 2n4 − n2 = 28
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Figure 3: 2n4 − n2 = 496

The Real roots of 496 are [4,-4] and the Real roots of 28 are [-2,2], or the
lenght between two points are 8 and 4, in any case, the relation (r) is equal to
2.

The Complex roots are
√

7
2 and −

√
7
2 in the case of 2n4 − n2 = 28 and√

31
2 and −

√
31
2 in the case of 2n4 − n2 = 496.

The figure they form apparently tend to be a perfect square (as we will see in
the next section), but this never happens because the area of this figures is equal
to Mpn + 1

2 .
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Graphic of Perfect Numbers.

log10(2n4 − n2 = Pfn) ≈ log10

√
Mpn
2

Table 4: log-log.

2n4 − n2 = Pfn

√
Mpn
2

.301029995664 .272034022175

.602059991328 .595165849085

.903089986992 .901386862646
1.80617997398 1.80615346513
2.40823996531 2.4082383086
2.70926996098 2.7092695468
4.51544993496 4.51544993486
9.03089986992 9.03089986992

Figure 4: log-log
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Binary Representation of Perfect Numbers.

The binary representation of a Perfect Number is a concatenation of
(n) consecutive digits (1) and (n-1) consecutive digits (0).

Table 5: Binary Representation of Perfect Numbers.

Perfect Number. Binary Representation.
28 11100
496 111110000
8128 1111111000000
33550336 1111111111111000000000000
8589869056 111111111111111110000000000000000

The function y = 23x−2 − 2x−1 and its
Binary Representation.[2]

The binary representation of the function y = 23x−2 − 2x−1 is a concatenation
of (n) consecutive digits (1) and n−1

2 digits (0).

Table 6: Binary Representation of y = 23x−2 − 2x−1

y = 23x−2 − 2x−1 Binary Representation.
14 1110
124 1111100
1016 1111111000
8176 1111111110000
65504 1111111111100000

Algorithm to find Perfect Numbers, Mersenne
Primes and Mersenne Exponents.

Given the function y = 23x−2 − 2x−1, if (y) have at maximum two distinct odd
factors, F1 and F2, then:

F1 = 1 and F2 is a Mersenne Prime (Mp) also y2

Mp = Pf.

The number of digits (1) of the binary representation of (y) is equal to the
Mersenne Exponent (Me).
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Limits of the function f(x) = 23x−2 − 2x−1

lim
x→∞

f(x+ 1)

f(x)
≈ 8

lim
x→∞

f(x+ 1)

f(x)
≈ 8 +

6

22x−1 − 1

In particular, if f(x) have a Mersenne Prime (Mpk) as factor, then:

lim
x→∞

f(x+ 1)

f(x)
≈ 8 +

6

Mpk

Table 7: Limits of f(x) = 23x−2 − 2x−1 for x ≥ 2

f(x) = 23x−2 − 2x−1 22x−1 − 1 limx→∞
f(x+1)
f(x) 8 + 6

22x−1−1
14 7 8.85714285 8 + 6

7

124 31 8.1935483871 8 + 6
31

1016 127 8.0472440944 8 + 6
127

8176 511 8.01174168297 8 + 6
511

65504 2047 8.00293111871 8 + 6
2047

Notice that when the function f(x) = 22x−1 − 1 = Mpk then the values of

f(x) = 23x−2−2x−1

22x−1−1 are equal to the positive Real roots of the equation

2n4 − n2 = Pfk which is the form of a Perfect Number that we assumed.
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Expanding Real Roots.

Given the equation of a circle:

r2 = (x− h)2 + (y − k)2.

and given the numbers:

p = n2 + (n+ 1)2 where p is prime.

we have:

r2 = (x− n)2 + (y − (n+ 1))2

The graphic of the equation x2 + y2 + Ax + By + C = 0 is a circumference, a
point or have no points at all.

When is a circumference, the center is at: (−A2 , −B2 )

and the radius is r = 1
2

√
A2 +B2 − 4C [3]

or r = 1
2

√
(2n)2 + 2(n+ 1)2 − 4C

These type of equations are prime numbers generators, and when we search
for prime numbers, we can express them as :

primes of the form 2n2 − p where p = n2 + (n+ 1)2.

or

solutions of the equation:

√
C + x = n

√
2

when C is prime

√
p+ x = n

√
2
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For example:
n = 9; (n+ 1) = 10; p = 181

Table 8: Solutions of Equation
√

181 + x = n
√

2 for n ≥ 0

√
181 + x = n

√
2 (x) Solution.√

181 + x = 0
√

2 -181√
181 + x = 1

√
2 -179√

181 + x = 2
√

2 -173√
181 + x = 3

√
2 -163√

181 + x = 4
√

2 -149√
181 + x = 5

√
2 -131√

181 + x = 6
√

2 -109√
181 + x = 7

√
2 -83√

181 + x = 8
√

2 -53√
181 + x = 9

√
2 -19√

181 + x = 10
√

2 +19√
181 + x = 11

√
2 + 61

Notice that when n=9 and n=10, this is n+(n+1)=19, the solutions jump from
negative to positive, this is important as we will see later.

Now if we have the equation
√
p+ x = n

√
2 then p is a Mersenne Prime so

p = Mpk and n are the positive Real roots of the equation 2n4 − n2 = Pfk.
We have:

Table 9: Solutions of Equation
√
Mpk + x = n

√
2

√
Mpk + x = n

√
2 (x) Solution.√

7 + x = 2
√

2 1√
31 + x = 4

√
2 1√

127 + x = 8
√

2 1√
8191 + x = 64

√
2 1√

131071 + x = 256
√

2 1√
524287 + x = 512

√
2 1√

2147483647 + x = 32768
√

2 1

This is √
Mpk + 1 =

√
Mpk + 1

2

√
2
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As we noticed before, when we have values n and (n + 1) the solutions jump
from negative to positive so in this case the positive solutions are equal to 1 and
the negative solutions are given in the next table.

Table 10: Solutions of Equation
√
Mpk + x = (n− 1)

√
2

√
Mpk + x = (n− 1)

√
2 (x) Solution.√

7 + x = 1
√

2 -5√
31 + x = 3

√
2 -13√

127 + x = 7
√

2 -29√
8191 + x = 63

√
2 -253√

131071 + x = 255
√

2 -1021√
524287 + x = 511

√
2 -2045√

2147483647 + x = 32767
√

2 -131069

The binary representation of these solutions is a concatenation of (d) digits (1)
plus (01), this number (d+ 1) or the total number of digits (1), represents the
(x) of the function f(x) = 22x−1 − 1.

Table 11: Binary Representation for (x) solutions.

(x) Solution Binary Representation 22x−1 − 1 Mersenne Prime

5 101 2(2·2)−1 − 1 7
13 1101 2(2·3)−1 − 1 31
29 11101 2(2·4)−1 − 1 127
253 11111101 2(2·7)−1 − 1 8191
1021 1111111101 2(2·9)−1 − 1 131071
2045 11111111101 2(2·10)−1 − 1 524287

131069 11111111111111101 2(2·16)−1 − 1 2147483647

So the parabola y = 2x2 − 1 is in direct relation with the Mersenne Primes of
the form 22x−1 − 1.

Limits of the function f(x) = 22x−1 − 1

lim
x→∞

f(x+ 1)

f(x)
≈ 4 +

3

22x−1 − 1

lim
x→∞

23x−2 − 2x−1 ÷ lim
x→∞

22x−1 − 1 ≈ 2
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Euler: (2n−1)(2n − 1) = Pfk

From Euler. If N is an even perfect number, then N can be written in the form
N = 2n−1(2n − 1), where 2n − 1 is prime.[4]

f(x) =
23x−2 − 2x−1

22x−1 − 1
= 2x−1

(a) Real root = 1
2

(b) Real root = 1√
2

Figure 5

To obtain a given Perfect Number, we square the positive Real root of the equa-
tion 2n4−n2 = Pfk and multiply by the given Mersenne Prime (MPk) to obtain
the Perfect Number (Pfk).
On the other hand, we square the value of f(x) = 23x−2 − 2x−1 (such that
f(x) = 22x−1 − 1 is a Mersenne Prime) and divide by the given Mersenne
Prime (MPk) to obtain the Perfect Number (Pfk). (as we did in the algorithm,
y2

Mpk
= Pfk).

Geometric Representation of Perfect Numbers.

We can represent Perfect Numbers in two different forms, firstly, as a family of
parallel parabolas of the form 2n2 −Mpk with respective circles with center at
the point (0,1), the radius of the circles is equal to the positive Real roots of
the equation 2n4−n2 = Pfk, the other form is using the parabola 2n2− 1 with
a family of circles with center at the points (0,Mpk), the radius of the circles is
equal to the positive Real roots of the equation 2n4 − n2 = Pfk[5]
In this last case, exists a family of straight lines of the form y = Cx-1, where C
is also the diameter of the circle, the relation of the values of C, fulfil the condi-
tion of the relation between Perfect Numbers. (See, Relation between number
28 and upper Perfect Numbers.)

15



Perfect Numbers, Pythagorean Triples[6] and
Fibonacci Boxes[7]

Given the matrix:

A =

∣∣∣∣ n 1
n+ 1 2n+ 1

∣∣∣∣→ |A| = 2n2 − 1 = Mpk → |A| · n2 = PFk

Where n represents the positive Real solutions of the system

{
2n4 − n2 = Pfk
2n2 − 1 = Mpk

}
and is the radius of the circle of the previous figure. Clearly the relations be-
tween Perfect Numbers are the relations between the different radii of the circles
that fit on the parabola.

Let (a,b,c) be a primitive pythagorean triple where:

a =
√
b+ c = 2n+ 1

b = 2n(n+1) =

√∫ 2n+1

1

x3 − x dx

c = 2n(n+1)+1 =

√∫ 2n+1

1

x3 − x dx+1

If n = 2 · 2
Me−3

2 , we can write:

∣∣∣∣∣∣
2 · 2

Me−3
2 1

2 · 2
Me−3

2 + 1 22 · 2
Me−3

2 + 1

∣∣∣∣∣∣
(being Me the Mersenne exponent).
So, we can represent every Perfect Number as a matrix. Here we have a few
examples and their respective primitive pythagorean triples:[

2 1
3 5

]
(5,12,13)

[
4 1
5 9

]
(9,40,41)

[
8 1
9 17

]
(17,144,145)

[
64 1
65 129

]
(129,8320,8321)

[
256 1
257 513

]
(513,131584,131585)

[
512 1
513 1025

]
(1025,525312,525313)
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All these primitive pythagorean triples (whose first term have the form 2n + 1)
will be obtained from the recursive multiplication of the H. Lee Price matrix:

For example: 2 1 −1
−2 2 2
−2 1 3

3
4
5

 =
[
5 12 13

]
→ 13−12

5 = 1
5 ; 13−5

12 = 2
3 →

∣∣∣∣2 1
3 5

∣∣∣∣→ |A| = 7

Note that if the short leg (5 in this case) is on the y axis, we should multi-
ply it until it reaches the perimeter of the circle and then we add the radius of
the circle (2) and the sum will be the Mersenne prime (7), this must happen in
every matrix, so we have: (2n+ 1)(n− 1) + n = 2n2 − 1.

Perfect Numbers and The Pythagoras Theorem.

Pythagoras Theorem.

Given the matrix and it’s respective pythagorean triple[
n 1

n+ 1 2n+ 1

]
(a,b,c)

→ b− a = Mpk

As every Perfect Number have the form Spk·Mpk = Pfk,

 a = 2n+ 1
c = (2n+ 1)n+ (n+ 1) = 2n2 + 2n+ 1

b = c− 1 = 2n2 + 2n


Spk ·Mpk = n2 ·(b−a) = n2 ·(2n2+2n−2n−1) = n2 ·(2n2−1) = 2n4−n2 = Pfk

n
n+1 and 1

2n+1 represent ’slopes’, as the derivative of the parabola 2n2−1 is equal

to 4n, we solve 4n = n
n+1 and 4n = 1

2n+1 , so we get two points, the difference

between them is a number Mpk
t where t is an integer such that a·b

t = r′
∣∣∣∣ r′k
rk−1

= r

being r the relation between Perfect Numbers.
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For example, we get r1.[
2 1
3 5

]
(5,12,13)

→ 1

6
− 1

20
=

7

60
→ 5 · 12

60
= 1;

[
4 1
5 9

]
(9,40,41)

→ 1

5
− 1

36
=

31

180
→ 9 · 40

180
= 2→ r1 =

2

1
= 2

So we can represent relations between Perfect Numbers as fractions.

If every Perfect Number has a representation as a pythagorean triple and every

Perfect Number is equal to
b−a∑
1
ji we can write (a+b)2

b∑
a
ji

= a+b
n2 = a+b

Spk

being n2 the Superperfect Spk. As the area of the pythagorean triple is:
(n)(n+ 1)(2n+ 1), then (a+ b)2 = 4n4 + 16n3 + 20n2 + 4n+ 1.
From a+b

n2 for every Perfect number, we have: 17
4 ,

49
16 ,

161
64 ,

8449
4096 ,

132097
65536 ,

526337
262144 , , , ,

notice that (a+b)k
(nk)2

= (a+b)k
Spk

≈ 2, but we don’t know if the Supeperfect’s are

infinite.
Now, from this same sequence, we take (a+b)k

(a+b)k−1
, so we have: 237 ,

1207
23 , 188711207 ,

75191
18871 ,

as for every Superperfect number corresponds a different (a+ b)k, this sequence
suggest that Superperfect Numbers are infinite.

Note that (a+b)k
(a+b)k−1

= p
q

∣∣∣∣p = a+b
7 , so every (a+ b)k runs on the function y = 7x.

Perfect Numbers and Determinants.

Determinant.[10]

From de diagram, we have

[
x1 x2
y1 y2

]
which turns to

[
n 1

n+ 1 2n+ 1

]
The distance (d) between vectors is described by the equation y = Mpk

n−1 −
nx
n−1

we have the next identities:

 d2 = (n− 1)2 + n2

d4 = (2n− 1)2 + (d2 − 1)2

Mpk − (d2 − 1) = 2n− 1


Where Mpk = x1 · y2 − y1 · x2 = 2n2 − 1
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Since d =
√

(x1 − x2)2 + (y1 − y2)2 =
√

2n2 − 2n+ 1→ d2 = 2n2 − 2n+ 1
From the second identity, we have the Primitive Pythagorean Triple:
(2n2 − 2n+ 1)2 = (2n− 1)2 + (2n2 − 2n)2

Note that d2 = 2n2 − 2n + 1 = (2nk − 1)2 + (2nk)2 where (nk) runs on the
function f(n) = 2n − 1.

Example:[
512 1
513 1025

]
the distance between vectors [512, 513] and [1, 1025] =

√
523265

we have:
d2 = (n− 1)2 + n2 → 523265 = 5112 + 5122

d4 = (2n− 1)2 + (2n2 − 2n)2 → 5232652 = 10232 + 5232642

(2nk − 1)2 + (2nk)2 = (29 − 1)2 + (29)2 = 523265
This means:

If Mpk = 2Mek − 1→ d2 =
(

2
Mek−1

2 − 1
)2

+
(

2
Mek−1

2

)2
Mpk − (d2 − 1) = 524287− 523264 = 1023

→ [219 − 1− (d2 − 1) = 210 − 1]→ [2Mek − 1− (d2 − 1) = 2
Mek+1

2 − 1]

Families of Primitive Pythagorean Triples.
We have the identity: [

n 1
n+ 1 2n+ 1

]
(a,b,c)

→ b− a = Mpk

In the diagram, when we expand coordinates, (x1 + x2) becomes the newest x1
and (y1 + y2) becomes the newest y1. This is:[
x1 x2
y1 y2

]
→
[
x1(k+1) = x1k + x2k x2(k+1) = y1(k+1) − x1(k+1)

y1(k+1) = y1k + y2k y2(k+1) = x1(k+1) + y1(k+1)

]
[

n 1
n+ 1 2n+ 1

]
(a,b,c)

→
[
n+ 1 2n+ 1
3n+ 2 4n+ 3

]
(a,b,c)

→
[
3n+ 2 4n+ 3
7n+ 5 10n+ 7

]
(a,b,c)

→
[

7n+ 5 10n+ 7
17n+ 12 24n+ 17

]
(a,b,c)

→ · · ·

When (n) is the positive real root of the equations: 2n4 − n2 = Pfk or
2n2 − 1 = Mpk the determinant of all these matrices is equal to the same
Mersenne Prime and all of them produce a different Primitive Pythagorean
Triple where the difference ’b-a’ is also the given Mersenne Prime, (n) has the
same value for all matrices. Example:[

2 1
3 5

]
(5,12,13)

[
3 5
8 11

]
(48,55,73)

[
8 11
19 27

]
(297,304,425)

[
19 27
46 65

]
(1748,1755,2477)

[
46 65
111 157

]
(10205,10212,14437)

[
111 157
268 379

]
(59496,59503,84145)
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All these determinants are equal to 7, and all the differences between ’b’ and
’a’ are also 7, the value of (n) is 2. The angle between vectors tend to cero.
To build them, we can do this:

[
r t
f g

]
(a,b,c)

→

r t
↑ ↑
f g


(a,b,c)

→ f = t+ r
g = r + f

→

 (g · t) = a ∨ b
2(f · r) = b ∨ a

(g · r) + (f · t) = c



The silver Ratio.
Given A and B such that A > B then 2A+B

A = A
B , in this case;

lim
k→∞

‖Vector(k)‖
‖Vector(k−1)‖

≈ 1 +
√

2

So, we have:

B =

[
n 1

n+ 1 2n+ 1

]
A =

[
n+ 1 2n+ 1
3n+ 2 4n+ 3

]
‖B‖ =

√
(n+ 1)2 + (3n+ 2)2 =

√
10n2 + 14n+ 5

‖A‖ =
√

(3n+ 2)2 + (7n+ 5)2 =
√

58n2 + 82n+ 29

2
√
58n2+82n+29+

√
10n2+14n+5√

58n2+82n+29
=
√
58n2+82n+29√
10n2+14n+5

→ 2
√
425+

√
73√

425
=
√
425√
73

for n=2; 2
√

73
√

425 + 73 ≈ 425
for n=4; 2

√
221
√

1285 + 221 ≈ 1285
for n=8; 2

√
757
√

4397 + 757 ≈ 4397

We can build this array for n = 2:

√
425√
73
≈ (1+

√
2)1

√
425√
73
·
√

2477√
425

≈
(

1 +
√

2
)2

√
425√
73
·
√

2477√
425
·
√

14437√
2477

≈
(

1 +
√

2
)3

√
425√
73
·
√

2477√
425
·
√

14437√
2477

·
√

84145√
14437

≈
(

1 +
√

2
)4

√
425√
73
·
√

2477√
425
·
√

14437√
2477

·
√

84145√
14437

·
√

490433√
84145

≈
(

1 +
√

2
)5

√
425√
73
·
√

2477√
425
·
√

14437√
2477

·
√

84145√
14437

·
√

490433√
84145

· · · ≈
(

1 +
√

2
)n
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From Pell Numbers.
Pk = 2P(k−1) + p(k−2) or ‖Vectork‖ = 2‖Vector(k−1)‖+ ‖Vector(k−2)‖
Given:

√
73,
√

425,
√

2477,
√

14437,
√

84145,
√

490433, . . .

Then:

√
2477 ≈ 2

√
425+

√
73

√
14437 ≈ 2

√
2477+

√
425

The polynomials related to these vectors (with value n=2) are:√
10n2 + 14n+ 5 ≈

√
73√

58n2 + 82n+ 29 ≈
√

425√
338n2 + 478n+ 169 ≈

√
2477√

1970n2 + 2786n+ 985 ≈
√

14437
· · · · · ·
As they are recursive, we can find a general form with initial value W = 5:

(Fk)n2 + (Gk)n+Wk

(F(k+1))n
2 + (G(k+1))n+W(k+1)

(F(k+2))n
2 + (G(k+2))n+W(k+2)

→

Fk = 2W ; Gk = 2
√

2W 2 − 1
W(k+1) = Fk +Gk +Wk

F(k+1) = 2W(k+1); G(k+1) = 2
√

(2W(k+1))2 − 1
G(k+1) = F(k+1) + (W(k+1) −Wk)

F(k+2) = 4G(k+1) + Fk

The matrices that produce the Primitive Pythagorean Triples and the
polynomials related to the vectors are always the same, the only thing that
changes is the value on (n), for example, the Artemas Martin PPT[11] where
the difference ’b-a=1’ and 2n2 − 1 = 1[

1 1
2 3

]
(3,4,5)

[
2 3
5 7

]
(20,21,29)

[
5 7
12 17

]
(119,120,169)

[
12 17
29 41

]
(696,697,985)

[
29 41
70 99

]
(4059,4060,5741)

[
70 99
169 239

]
(23660,23661,33461)

Note that in this case, as W(k+1) = Fk +Gk +Wk the value of the polynomials

and therefore the ‖vectors‖ is equal to
√
W(k+n). This is:

√
29√
5
≈
(

1 +
√

2
)1

√
29√
5
·
√

169√
29
≈
(

1 +
√

2
)2

√
29√
5
·
√

169√
29
·
√

985√
169
≈
(

1 +
√

2
)3
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Perfect Numbers and The Cotes Theorem.

Cotes Theorem.

The Cotes Theorem, performed by the English Mathematician Roger Cotes,
states that ”Given a regular polygon inscribed in a circle and given a point (a)
fixed at the x axis, then, the product of the distances between (a) and all the
vertices is equal to rN −aN if the point (a) is inside the circle or aN − rN if the
point (a) is outside the circle”.[8] If we take a unit circle and (a) at the point
(2, 0), we have aN − rN = 2N − 1 and if N is a prime p we have 2p − 1 which is
a Mersenne Number, if p = Mek it is a Mersenne Prime.

In the figure we have a pentagon so, the Mersenne exponent is Me = 5 and
the product of the distances from point a is equal to: d0 ·d1 ·d2 ·d3 ·d4 = 25−1.
From the ”distance formula between two points”, we have:

d =
√

(x2 − x1)2 + (y2 − y1)2 =
√

(x− cos(θ))2 + (0− sin(θ))2 =
√
x2 − 2x cos(θ) + 1

The distances from point a to all the vertices are: d0 = 1, d1 = d4, d2 = d3
θ =

(
2π
N

)
n = 2πn

Mek
. So:

d1 = d4 → d1 · d4 = 1 + x2 − 2x cos
(
2π·1
5

)
d2 = d3 → d2 · d3 = 1 + x2 − 2x cos

(
2π·2
5

)
Since the Mersenne Exponents(Mek) are always odd, we have:

(x−1)

Mek−1

2∏
n=1

{
1+x2−2x cos

(
2πn

Mek

)}
= Mpk

Since x = a = 2 then:

(2−1)

Mek−1

2∏
n=1

{
1+4−4 cos

(
2πn

Mek

)}
=

Mek−1

2∏
n=1

{
5−4 cos

(
2πn

Mek

)}
= Mpk
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For example:[
5− 4 cos

(
2π

3

)]
= 7

[
5− 4 cos

(
2π

5

)]
·
[
5− 4 cos

(
4π

5

)]
= 31[

5− 4 cos

(
2π

7

)]
·
[
5− 4 cos

(
4π

7

)]
·
[
5− 4 cos

(
6π

7

)]
= 127

and so on.

Thus, we can find polynomials for every Perfect Number, this is:

Pfk = 28→
[
x− 5 + 4 cos

(
2π

3

)]
= x−7

Pfk = 496→
[
x− 5 + 4 cos

(
2π

5

)]
·
[
x− 5 + 4 cos

(
4π

5

)]
= x2−12x+31

Pfk = 8128→ x3 − 17x2 + 87x− 127
Pfk = 33550336→ x6 − 32x5 + 405x4 − 2568x3 + 8491x2 − 13656x+ 8191

Note that if we use Degrees instead of Radians, we find that:
cos(496◦) = cos(33550336◦) = cos(8589869056◦) = cos(2658455991569831744654692615953842176◦)

On the other hand:
cos(28◦) = −cos(8128◦) = cos(137438691328◦) = − cos(2305843008139952128◦)

Perfect Numbers as a Parallelepiped.

As every Perfect Number have the form Spk·Mpk = Pfk,

 a = 2n+ 1
c = (2n+ 1)n+ (n+ 1) = 2n2 + 2n+ 1

b = c− 1 = 2n2 + 2n


Spk ·Mpk = n2 ·(b−a) = n2 ·(2n2+2n−2n−1) = n2 ·(2n2−1) = 2n4−n2 = Pfk

(Spk = Superperfect Number,Mpk = Mersenne Prime, Pfk = Perfect Number)

Superperfect Number =
Perfect number

Mersenne prime
=

2n4 − n2

2n2 − 1
= n2 ∀n 6=

{
− 1√

2
and

1√
2

}
we can represent the whole system the next way:
Mersenne Prime = 2n2 − 1 =Parallelogram.
Perfect Number = 2n4 − n2 =Parallelepiped.
SuperPerfect Number = n2 =Height.

So, given ′n′ we have:
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n⇒
[

n 1
n+ 1 2n+ 1

]
︸ ︷︷ ︸

Parallelogram

⇒

 1 2n+ 1 n
n n+ 1 n2

n+ 1 1 n


︸ ︷︷ ︸

Parallelepiped

Example:

A =

[
2 1
3 5

]
⇒ |A| = 7⇒ A′ =

1 5 2
2 3 4
3 1 2

⇒ |A′| = 28

A =

[
4 1
5 9

]
⇒ |A| = 31⇒ A′ =

1 9 4
4 5 16
5 1 4

⇒ |A′| = 496

A =

[
8 1
9 17

]
⇒ |A| = 127⇒ A′ =

1 17 8
8 9 64
9 1 8

⇒ |A′| = 8128

A =

[
64 1
65 129

]
⇒ |A| = 8191⇒ A′ =

 1 129 64
64 65 4096
65 1 64

⇒ |A′| = 33550336

and so on.

24



References

[1] George E. Andrews. Number Theory. Combinatorial and Computational
Number Theory. Dover Publications, Inc. New York.1994.

[2] Dr. Richard J. Mathar. Max-Planck Institute of Astronomy.

[3] A.W.Goodman.Analytic Geometry and the Calculus.[third edition].Chapter
3. Introduction to the Analytic Geometry.The Circumference.
Macmillan Publishing Co.Inc.1963.866 Third Avenue.New York.USA.

[4] John Voight, Perfect Numbers: An Elementary Introduction.Page 5.

[5] Herbert Gross: Differential Equations, Lecture 1: The Concept of a General
Solution.MIT.

[6] On Primitive Pythagorean Triples. 2021. hal-03247261

[7] H. Lee Price The Pythagorean Tree: A New Species.arXiv:0809.432

[8] Paul J. Nahin.An Imaginary Tale.The Story of
√
−1.Chapter Four.

Using Complex Numbers.Page 90.princeton science library

[9] University of Florida.Proof of the Cotes Theorem.
https://mae.ufl.edu/ uhk/COTES%20THEOREM.pdf

[10] University of San Antonio.
The Geometric Interpretation of the Determinant.
https://mathresearch.utsa.edu/wiki/index.php?title=The Geometric Interpretation of the Determinant

[11] AMERICAN UNIVERSITY WASHINGTON. DC.
Artemas Martin Collection of Mathematical and Scientific Works.
https://www.american.edu/library/archives/finding aids/amartin fa.cfm

25


