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Abstract

Meaning is not attributed to the message itself but rather emerges

from its action on the recipient. On this principal idea a mathematical

model of meaning can be constructed. The recipient is de�ned by a set

of its states; the message is an operator that acts on these states and

transfers the recipient from one state into another. Meaning should

be ascribed to neither the recipient state nor the message operator;

meaning emerges while the set of recipient states maps to itself and the

recipient transfers from one state to another by the message operator.

This general approach can be realized in terms of such formalisms as

automata theory, matrix representation, algorithms, Markov chains,

parameter space, and others. Di�erent classes of meanings are con-

sidered including �nite, countable, and continuous; reversible and ir-

reversible; deterministic and probabilistic ones. It is shown that an

arbitrary meaning operator can be decomposed in to a product of el-

ementary meaning operators in case of their associativity.
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1 Introduction

Information should be included into a physical description of the world: this
is an important problem faced by theoretical physics in recent decades. At-
tempt in this direction is the known "It from Bit" hypothesis proposed by
Wheeler [1]. Another example is the Ur-theory of Weizs�acker [2].

In most physical theories, information is considered only in its quantity
aspect, which is insu�cient. Two messages may contain equal amounts of
information but have di�erent meanings to the recipient. From here on we
understand the message and recipient terms in their broadest sense. We
argue that physical models should include information in such a way that
takes explicit account of its meaning. Theoretical physics describes world by
mathematical models; hence, we need a mathematical model of meaning.

Sometimes information is considered with a focus on its value and math-
ematical models are elaborated accordingly. The value of information is
associated with the presence of a goal persuaded by the recipient and is de-
termined by how much it contributes to the achievement of the goal. In
particular, the value of information can be measured by an increase in the
probability for the recipient to achieve the goal [3, 4, 5]. In [6], the value of
information is equated to its meaning. Meaning is de�ned there in terms of
raising the chance for an organism to survive in natural selection. The value
of information can also be de�ned without using probabilities, e.g., through
the reduction of material or time costs expended to achieve the goal [7].

Value is an important characteristic of information. But value and mean-
ing are di�erent things. If meaning and value are identi�ed, then any infor-
mation appears to be meaningless unless the recipient as a speci�c goal. In
this study, we propose to describe meaning of information by a mathematical
model that is not related to its value.

The main idea of this work was reported at the 4th Conference on the
Foundations of Fundamental Physics and Mathematics [8] and published [9].

2 Relational model of meaning

2.1 Meaning is interpretation

ISO/IEC standard de�nes information as "knowledge concerning objects,
such as facts, events, things, processes, or ideas, including concepts, that
within a certain context has a particular meaning" [10]. In brief formula-
tion, information is what has meaning. Meaning is the de�ning property of
information.
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Meaning does not characterize information intrinsically but can emerge
in a certain context. The same message can have di�erent meanings for dif-
ferent recipients. According to Bateson [11], an object of perception acquires
meaning in the process of perception. Meaning is an emergent property aris-
ing when a message is exposed to a recipient. A message has no meaning in
the absence of a recipient and an impact on the recipient.

The key idea of the proposed approach can be expressed by the following
general equation:

A(ab)B(b) = C(b), (1)

Where mathematical objects a and b denote the message and the recipient,
respectively; operator A(ab) denotes the message-on-recipient impact, which
depends on both the message and the recipient; and mathematical objects
B(b) and C(b) describe the recipient state before and after the reception of
the message, respectively. The recipient state is understood in a broad sense.
For example, in case of a branching process, this may be a particular channel
of the process �ow.

We propose to consider equation (1) as the basic principle for mathe-
matical modeling of meaning. The key mathematical object is the set of
the recipient states. Meaning is mapping of this set to itself. Mathemati-
cally, meaning is captured by neither the recipient state nor the operator of
message; it is embodied in the recipient transition from one state to another.

A change in the recipient state is nothing else than the interpretation
of the received message. One may refer to a recipient as an interpreter.
Meaning is a property of the perception of information, or interpretation. It
emerges from the message � recipient relations. Thus, the proposed model is
a relational model of meaning.

Note that similar problems are studied in semantics [12]. Semantics uses
the denotatum term. Denotatum of an informational object (sign) is an
object that is designated by this sign. The di�erence between denotatum
and meaning can be clearly demonstrated with the example of a portrait.
Denotatum is the person depicted. Meaning is a change in the psychological
state of the viewer looking at the portrait.

2.2 Basic properties

Equation (1) can be represented in terms of speci�c mathematical objects.
Once chosen, an object for the recipient state de�nes the operator A(ab)
accordingly. Operator A(ab) emulates a message, while the meaning car-
ried by this message is emulated in the operator's impact on the recipient.
Note that operator A(ab) generally depends on the recipient b. Whatever
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the objects used to represent the recipient states and message operator, the
meaning should remain invariant, although di�erently represented. Meaning
is invariant with respect to mathematical representation.

The same operator may transfer di�erent states in di�erent ways. Hence
it follows that a message may have di�erent meanings for di�erent recipients
and even for the same recipient being in di�erent states at the instant of the
reception. In terms of the proposed model, any change in the recipient state
under the action of message is considered as an act of cognition.

The meaning of a message is strictly equal for recipients who were in the
same initial state at the instant of reception and transit to the same �nal
state after the reception of the message. If one de�nes a concept of close
states, then close meanings can be de�ned as a transformation that moves
close initial states to close �nal ones.

Note that no assumption of the recipient's mental activity is required to
treat the message as meaningful. A simplest reaction su�ces to recognize a
change in its state. Expression (1) potentially describes objects and actions
of any nature, and there is no need to identify some special class of infor-
mational, or meaningful impacts. Instead, any impact should be considered
in terms of meaning and information. From this viewpoint, any change in
the recipient state under the action of a message is an act of cognition. We
believe that this scheme grasps the basic properties of a universal model of
meaning.

The approach proposed may seem to be a mere replacement of one formal
language by another. It may be so if relatively simple systems are concerned,
but it is de�nitely not for more intricate ones. Suppose a system under study
reacts identically to two di�erent messages. The messages di�er in nature,
encoding, and the amount of information. Why do we get the same response
to both? What is similar about them? The answer is that both messages
have the same meaning for the given system.

3 Meaning classes and representations

3.1 Deterministic �nite meaning, automata representa-

tion

Consider the simplest case of a �nite set of recipient states. In this case,
meaning can be modeled within the framework of algebraic automata the-
ory, which is a branch of cybernetics [13]. Deterministic �nite meanings are
modeled using a well-studied class of �nite automata.

Automaton is an object de�ned by three nonempty sets R, X, Y and two
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functions f and g. These are the set of states R = {r}; an input alphabet, i.e.,
the set of input elements (inputs) X = {x}; an output alphabet, i.e., the set
of output elements (outputs) Y = {y}; the transition function f : R×X 7→ R
mapping the direct product of the set of states and the set of inputs to the set
of states; and the output function g : R×X 7→ Y mapping the direct product
of the set of states and the set of inputs to the set of outputs. Interpreting
the entries of (1) in terms of algebraic automata theory, we identify the set
of operators {A(ab)} with the input alphabet X, each operator A(ab) with
an input element, and states B(b) and C(b) with the elements of state set R.
The expression (1) itself de�nes the transition function f .

A convention in theoretical physics, e.g., in quantum theory, is that an
operator acting on a state is written to the left of the state, like in (1). In
automata theory, the inverse order is adopted: the state is written �rst, and
the operator stands to its right. In case under study, expression (1) appears
in the form

r 7→ f(r, x) = rx. (2)

The transition function re�ects the fact that each element of the input
alphabet de�nes a monary operation on the set of states. According to the
proposed model, this monary operation is the meaning corresponding to the
given element of the input alphabet. All mappings of the set of states to
itself driven by various sequences of the input elements comprise the set of
all meanings cognizable by the automaton.

When modeling meaning, we are not interested in the automaton out-
puts. Therefore, instead of a general automaton (known as transducer, or
Mealy automaton), we deal with a special case of automaton that has no
outputs (an acceptor). Such an automaton is speci�ed by a set of states,
an input alphabet, and a transition function. One can also use a Moore
automaton, whose output is determined by its current state only. Moreover,
any Mealy automaton can be represented by an equivalent Moore automa-
ton by rede�ning the set of states. In the context of meaning modeling, the
outputs of a Moore automaton are of interest to study the automaton states
and the meanings of elements of the input alphabet.

3.2 Algebras of meanings

In automata theory, the symbol sequences are supposed to comprise a semi-
group, which is called free semigroup. The elements of a free semigroup
over analphabet are all possible sequences of the alphabet symbols (words),
and the semigroup operation is adjoining of various sequences to each other.
The set of automaton state transformations forms a semigroup called the au-
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tomaton semigroup. There is a homeomorphism of the free semigroup to the
automaton semigroup since di�erent input sequences can lead to the same
transformation. Such sequences are called congruent. The identity element
is given by the identical transformation generated by an empty word. Since
symbol sequences form a semigroup, the adjoining of sequences is associative.
We propose to interpret the free and automaton semigroups as semigroups of
messages and meanings of these messages, respectively. Messages that have
the same meaning for a given automaton are congruent.

Based on the notion of semigroup, one can de�ne various types of au-
tomata and the respective classes of meanings. For example, a �nite semi-
group corresponding to �nite-type automata can be associated with the class
of �nite meanings. Other classes can be associated with group-type or a
commutative-group-type automata. A class of nondeterministic meanings
can be based on the automata whose transition and output functions are
many-valued.

In general case, meaning is irreversible. However, some messages may
have their counterparts with the opposite meaning. The product of a message
on its opposite-meaning counterpart is a zero-meaning message, which leave
the automat on state unchanged. A semigroup where every element has
the opposite one is a group. Thus, reversible meanings can be modeled
by the group-type automata. Reversible meanings are typical of executable
commands. An example is the turn on/turn o� messages sent to a circuit
breaker.

As an example of irreversible meaning, consider a recipient whose set of
states includes the out-of-range state. Once got into this speci�c state, the
recipient remains there whatever the message arrives. In other words, any
message has zero meaning as it should have since any information is mean-
ingless for an out-of-range recipient. This is an example of a transition into
absorbing set of states, which has no way out. In terms of the automata the-
ory, the system has moved to its own sub-automaton. Separation of meanings
into reversible and irreversible categories re�ects the existence of reversible
and irreversible processes in nature.

In physical phenomena, messages are not always associative. In case they
are not, a free semigroup turns into a groupoid, and the model goes beyond
the framework of algebraic automata theory. Non-associativity is physically
related to the interaction of messages. Indeed, suppose the recipient moves
into a new state not at the instant when the message arrives but after a de-
lay, i.e., by means of a transient process. If messages arrive with an interval
exceeding the delay time, the delay can be neglected, and the automaton
transitions can be regarded as instantaneous events occurring under the ac-
tion of instantaneous message symbols at discrete time instants (automaton
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time). If the next message sometimes arrives before the end of the transient
process caused by the previous one, the sequence can produce di�erent im-
pact on the recipient. It depends on which of the messages are superimposed
in the considered manner, and this dependence is mathematically described
as non-associativity.

3.3 Deterministic �nite meaning, matrix representation

In this section we introduce a simple and convenient representation of de-
terministic �nite meaning by matrices. If the set of recipient states is �nite,
the states can be enumerated, and the numbers considered as mathematical
object describing the respective states.

Let n be the number of all possible states of the recipient. Then, each
state can be represented by a matrix column |B > of size n where the element
with number equal to the number of state is unit and the rest entries are zeros.
An impact on state |B > is described as pre-multiplication of the column by
a square matrix A of size n × n, with one entry in each column equal to 1
and the rest zeros. As a result, expression (1) appears in the form

A|B >= |C > . (3)

An impact with zero meaning is given by the identity matrix I. Note
that the impact of the same message can be described by di�erent matrices
depending on the recipient.

A matrix of reversible meaning has precisely one unit in each line and the
determinant equal to ±1. The inverse matrix corresponds to the meaning
of message that cancels the e�ect produced by the original one. These are
matrices of permutations, which are known to form groups. By Cayley the-
orem, any �nite group is isomorphic to a subgroup of permutations. Hence
it follows that the mathematical theory under reversible deterministic �nite
meanings is a theory of �nite groups, that is, permutation groups. In matrix
representation, reversible messages are represented by permutation matrices.

A matrix of irreversible deterministic �nite meaning has a line containing
more than one unit in it. Accordingly, there is a line with all zero entries.
The determinant of such a matrix is zero, and the inverse matrix does not
exist. Due to the presence of more than one unit element in a line, the
matrix of message with irreversible meaning moves a system from more than
one initial state to the same �nal state.
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3.4 Factorization into elementary meanings

The discussed framework provides a constructible way to address the exis-
tence of a set of elementary meanings and expansion of an arbitrary meaning
into elementary meanings. A meaning that cannot be decomposed into other
meanings is elementary.

It is readily seen from previous subsection 3.3 that deterministic reversible
�nite meanings correspond to permutations. Every permutation can be fac-
torized into a product of cyclic permutations commuting with each other.
This factorization is unique up to the order of factors. Cyclic permutations
can be interpreted as representations of elementary meanings, and any �-
nite reversible meaning appears to be factorizable into a unique product of
elementary �nite reversible meanings.

In case of irreversible �nite meanings, one should use cyclic permutations
and elementary contractions. An elementary contraction moves a system
from state i to another state j. All other states, including state j, remain
unchanged. Thus, there is no transition into state i and there are two tran-
sitions into the same state j, from state i and j.

In general case, a non-elementary meaning is given by mapping of the set
of initial states to the set of �nal states, wherein every initial state is mapped
to a unique �nal state. If some �nal states have no incoming transitions
from an initial state, the elementary expansion of such meaning includes
both cyclic permutations and elementary contractions. Every �nal state
without an incoming transition is similar to state i in the above example
and generates an elementary contraction term in the expansion. Thus, the
number of elementary contractions in the expansion is equal to the number of
�nal states with no initial states being mapped to them. Mappings to the rest
states generate permutations and can be factorized into a product of cyclic
permutations. Elementary contractions commute with each other, and so do
cyclic permutations, but some elementary contractions do not commute with
some cyclic permutations. In the example above, an elementary contraction
does not commute with a cyclic permutation that includes state j. Hence it
follows that, in an elementary meaning expansion, an elementary contraction
must stand to the left of the cyclic permutation with which it does not
commute.

A deterministic �nal meaning can be decomposed into a product of ele-
mentary meanings up to the order of commuting factors. Of much interest are
future interpretations of this general result in various disciplines, especially
in the humanities.

Note that this elementary factorization of meanings was carried out under
the assumption of meanings comprising a semigroup.
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3.5 Non-deterministic �nite meaning

Now we turn to non-deterministic �nite meanings. In this case, the recipi-
ent state after the reception of message is not uniquely determined but may
be one of several variants. At the classical level, a recipient should always
exist in a certain state, and the multiple choice of the �nal stateis naturally
interpreted in the language of probabilities. Let a non-deterministic mean-
ing be expanded into the spectrum of k deterministic meanings with some
probabilities pk, which are real numbers ranging from 0 to 1. The sum of pk
is 1 since there is always a certain �nal state selected by the recipient. The
operator in equation (1) can be written in the form

A =
∑
k

pkAk, (4)

where A is an operator of non-deterministic meaning and Ak are the operators
of deterministic meanings comprising its spectrum. If the number of states
is �nite and all operators of congruent messages are identi�ed, then the set
of deterministic operators is �nite for a given recipient. Even if the initial
state of the recipient is de�nitely known, a non-deterministic message can
move it into various �nal states with probabilities summed up to a unit. In
automata theory, the recipient of a random message is known as random or
probabilistic automaton.

The proposed model of non-deterministic �nite meanings is closely re-
lated to the theory of Markov processes. Indeed, the reception of identical
non-deterministic messages is described by a homogeneous Markov chain, or
simply a Markov chain. In general case, the reception of a series of di�erent
non-deterministic messages is described by an inhomogeneous Markov chain.

Matrix representation is standard for Markovian chains. The recipient
state is described by a matrix column, whose entries are the probabilities
of the recipient being in this state. These are non-negative numbers not
exceeding 1. The sum of the elements in each column is 1. Matrix of non-
deterministic meaning is a general stochastic matrix, that is, a square matrix
whose non-negative entries do not exceed 1 and each column sums up to
1. Non-deterministic meanings can also be divided into reversible and ir-
reversible. A non-deterministic �nite meaning is reversible if its matrix is
inversible and the inverse matrix is stochastic.

3.6 In�nite meaning

The number of the recipient states can be in�nite: discrete or continuous.
In this case, any received message acts on a state from an in�nite set of
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states and, thus, has an in�nite meaning. Various formalisms can be used to
describe in�nite meanings.

Meanings which form a semigroup can be described in terms of the alge-
braic automata theory. Arbitrary (not necessarily �nite) semigroups concep-
tually correspond to generalized automata, which are less well studied than
�nite ones. If the set of recipient states is countable, one may use any of the
formalisms known for countable mathematical objects. These may be algo-
rithms, Turing machines, unlimited register machines, computable functions,
recursive functions, Diophantine sets.

Suppose the recipient states comprise an enumerable set. This means
that there is an algorithm that makes it possible to sequentially identify
all the states and enumerate them accordingly. Enumerable sets can be
viewed as ranges of de�nition and values of a computable function f(n) =
m, where n and m are natural numbers. Transition function f(n) = m
transforms the set of numbers enumerating the initial states into the set of
numbers enumerating the �nal states, both sets are enumerable. This is the
general description of enumerable meaning. In matrix formalism, enumerable
meaning is represented by an in�nite matrix. Transition function f(n) = m
corresponds to a matrix where the nth element of the mth line is 1 and the
rest elements in this line are zeros.

In the simplest case, the transition function is a computable (general
recursive) function, which is de�ned for any natural number n. If there are
numbers n for which the recipient states are non de�nable, the transition
function may be de�ned only for the numbers of states, not for an arbitrary
n. They are known as computable, or partially recursive functions.

The transition function may turn to be non computable. This occurs
when the set of recipient states is unenumerable. In this case, there is no
algorithm by which the matrix of meaning can be constructed. An illustra-
tive example was proposed by Penrose in [14], where he examines human
understanding of mathematics and argues why mentality cannot be reduced
to an algorithm.

Finally, the set of recipient states may be continuous. Let the recipient
state depends on n parameters which can take on values in a continuous
range. Each state corresponds to a point in the n-dimensional parameter
space. In general case, the probability of the recipient being in a certain
state is described by a distribution function normalized to unity over the
parameter space. Meaning emerges when the initial distribution function
transforms into another one. An example of parameter space is the phase
space of a conservative system in classical mechanics. In the case of contin-
uous meaning, the recipient may receive a message either at discrete time
instants or continuously. Such systems hold promise for applications and are
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studied in mathematical optimal control theory.
Further generalization of the recipient state space is obvious. The param-

eter space may be in�nite-dimensional. Some of the parameters may take on
continuous values, others may be countable or comprise a �nite set.

It is important to note that modeling of in�nite meanings is not a technical
problem; the appropriate mathematical tools are available. The question is
to what extent the in�nite models are helpful to describe real systems. Even
the most complicated, self-organizing systems seem to be characterizable by
a discrete set of discernable states, at least in speci�c cases. If such a system
is �nite in space and time (and we agree that the world is discrete at the
basic level), it can be only in a �nite number of states. Such a system is
algorithmic. However, if Roger Penrose is right and human understanding
is principally not algorithmic, we have to admit that human mental state
is governed not only by a �nite system like the brain, or even the brain
and body. The entire in�nite Universe should be engaged somehow into the
human thinking.

3.7 Quantum meaning

The formalism proposed in the previous section looks like that of quantum
mechanics, where the system states are vectors in the in�nite-dimensional
Hilbert space and the transformations of states are given by operators acting
on these vectors. Quantum mechanics can be viewed as a generalization of
the proposed formalism for matrices with complex entries.

There are many possible ways of interpreting quantum mechanics. Our
approach suggests one more interpretation in terms of some special quantum
meaning.

4 Conclusion

In our opinion, the proposed approach enables one to move in the studies of
meaning from humanitarian-type reasoning to mathematical modeling. The
simplicity of the formulas used does not imply the simplicity of the model.
The essential point of the model is how to specify the set of recipient states.
For complex systems, this can be a tricky task. Another nontrivial problem
is to de�ne the concept of distance between states and the related notion of
their proximity.

There are two main perspectives for further development of the proposed
formalism. The �rst one is to tailor it to certain speci�c cases. The e�ective-
ness of each model will strongly depend on the subject area and phenomenon
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under study. In some areas it may be ine�ective. In some others, similar
formalism accurate to notation has been used already. To our concern, de-
composition of an arbitrary meaning into a product of elementary meanings
holds much promise. Of special interest is the potential of this method in
the humanities. Another intriguing opportunity is that algebraic automata
theory and theory of algorithms can be tailored to nonlinear modeling in the-
oretical physics. Only future studies can reveal the potential of the proposed
formalism for certain applications.

The second focus of attention is on getting further general results. The
proposed formalism claims to embrace the widest possible application area,
including all the humanities, and applies for being a general mathematical
theory of meaning. We expect this framework to provide a general classi�-
cation of meanings and formulation of general theorems for di�erent classes
of meanings.
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