Some questions of the theory of computational complexity from the
point of view of elementary theory of models

ZLogic Proof
Israel, Institute for Advanced Studies
Department of Computer Science
Email: logic-proof@outlook.com

Abstract

The presented study considers one of the most famous problems of computational complezity theory: what is the
ratio of complexity classes N'P and co— NP ? To answer this question, the well-known fundamental concept of model
completeness of the theory under study, a section of mathematics ”Model Theory”, was rethought and reformulated
accordingly. The purpose of reformulating this fundamental concept was to describe the ratio of complexity classes
NP and co— NP, from a model-theoretical point of view. It is a well-known fact: the hierarchy of properties in any
model of a model-complete theory breaks off at the first level. This key idea has been the basis for a fruitful study
of the relationship between the complezity classes NP and co — N'P. It is a well-known fact that there exists an
oracle A such that the complezity class N'P(A) differs from the complexity class co — N'P(A). By developing oracle
computations in an appropriate manner and formalizing them in the class of primitive recursive algorithms, and
then using the theoretical-model relationship between the specified classes, it was possible to relate the relationship
between the complexity classes of computations NP and co— NP with the relationship between the complezity classes
NP(A) and co — N'P(A), which then made it possible to establish that the complezity class N'P is not a Boolean
algebra. In formalizing oracle computations in the class of primitive recursive algorithms, a number of interesting
theorems were proved, one of which is an analogue of the fized point theorem, which was used in the key theorem that
allowed establishing that the complexity class NP s not a Boolean algebra. After reading the presented research,
one can understand why the relativization effect prevents one from obtaining high lower bounds or separating one
complezity class from another complexity class of computations using the methods of "Discrete Mathematics” !

The presented study is original, and many important concepts that are used in this study have not been encoun-
tered in any studies known to me.

KeyWords: Argument words, functor, simple evaluation of the functor, a simple evaluation of the functor.
using the oracle, length of evaluation, PPr functors, function words, functor for constructing a function word,

universal function word, words standard model, polynomial slicing.
Introduction

One of the most interesting problems of computational complexity is the problem of whether or not there is a
polynomial algorithm that, when executed on an arbitrary formula of propositional calculus, can yield an answer
as to whether the propositional calculus formula in question is satisfiable or not. This problem, which is usually
denoted by SAT, is interesting because it is simply formulated and forms a feeling for a quick answer to this
problem. And a positive solution to this problem makes it possible to construct very effective algorithms for many
practical problems. Tens of thousands of scientific and very interesting studies have been devoted to this problem,

which have allowed us to more deeply clarify the essence of the fundamental concept of an algorithm, but there

1By methods of Discrete Mathematics, I mean those proofs that can be expressed in the standard model of arithmetic, for example,
the proof of Consis cannot be expressed in the standard model of arithmetic, although this sentence is true in this model, Not all
statements that are subject to relativization can be proved using the methods of Discrete Mathematics. And this is demonstrated in
this research.

is still no answer to the question posed. However, an answer in a certain sense was obtained in [12], in which the
essence of the SAT problem was understood at a certain level. In the mentioned study, which was original and
unexpected, an oracle A was constructed such that the class of polynomial oracle algorithms using A as an oracle
will not be able to recognize a language such as L(A) = {« : Jz(Ja] = |z| Az € A)}, but will obviously be able to
recognize a nondeterministic polynomial oracle algorithm with the same oracle. This outstanding result formed in
me an approach, implementing which, it would be possible to obtain an answer to the above question. What was
necessary to obtain for this?

First. Formalize (syntactically describe) the computations of primitive recursive word functions and oracle
primitive recursive word functions.

See Part I and Part II.

Second. Syntactically describe the class of polynomially computable word functions and polynomially com-
putable word functions that can be computed using an oracle, i.e. a polynomial oracle algorithm.

See Part III.

Third. Relate the formalized computation of primitive recursive word functions to the formalized computation
of oracle primitive recursive word functions.

See Part IV and Part V.

Fourth. Express the syntactic properties of the languages under study, e.g., SAT, using the concepts and
methods developed in "Model Theory".

See Part VI.

Having realized all four cases, it was possible to answer the question N'P=7co — N'P.

Part 1

Equality calculus for calculating closed terms

Let the alphabets .27, ..., % be such that: %4 = {5, 1,Z,§,Length, —, Concat,D, }, % = {A, z},

L= {RTY, Li= (=]} = {1 ()} Lo = (U}, & = le (U) = £ U %. The alphabet Z(U) will

formalize the calculation of closed terms for the class of oracle ;:l"imitive recursive word functions [1, p. 204],[2].
For the sake of completeness, we present a few fairly traditional definitions.

Definition of a functor and its arity

1) Words of the form: Z,d,Length, S|S,S||S,...,S||,...,| S - one-place functors. functor having the form
——

m— times
S |,...,| S will be denoted as Sy.
——
k— times
2) Words of the form: I |,...,]|, |,...,| - n - place functor, which will be denoted traditionally I, at 1 < m <
—— ——

m— times n— times

3) Word U - one-place functor. In what follows, the functor U will also be called undefined function symbol or
oracular symbol.

4) Words of the form: —, Concat, D - two-place functors.

5) If ® - k - place functor, ¥q,..., ¥y - n - place functors, then the word [J®¥y,..., Ux] - n - place functor.
This functor will be called the superposition functor.

Let us introduce the following important concept:

a) A - the argument word, which is called the empty word,;

0) if - is an argument word, then the word Si(«a) is an argument word, which will be denoted as cay.

An argument word « is called k - alphabetic if this word does not contain functors S;, for [> k.

A set B of argument words is called k - alphabetic if each word « € B is k - alphabetic. Let £ > 1. The number

of all k - alphabetic words with length [is equal to k!. The number of all k - alphabetic words with length at most
kl+l -1
k-1~

Argument words that do not contain the functor Sy for £ > 1 are called natural numbers.

I > 0is equal to

6) If « is an argument word, ®4,...,d,, are 2-place functors, then the word [Ra®y,--- ,®,,] - 1 - place functor.
7) If ® - k is a place functor, ¥q,..., ¥, - k + 2 are place functors, then the word [R®Uq,...,¥,,] - k+ 1
is a place functor. The functors of items 6 and 7 will be called recursive functors, and the functors ®, ®4,...¥,,
will be called component functors, the number m is called the branching degree of the recursive functor under
consideration.
The functors of items 1-4 will be called the original functors.
Words of the form: z |,...,| « are variables. Let us denote these words traditionally as z;.
——
l— times
The concept of the term.
1) Every argument word and every variable is a term.

2) If tq,...,t; are terms, ¥ - k is a place functor, then the word W(¢y,...,t;) is a term.

For any subset A of argument words, we introduce the following equalities (defining equalities), as axioms of the

formalization to be defined for calculating oracle closed terms:

1) T =T, where T is an arbitrary term,

2) Z(x1) = A,
3) Iz(xlv vxn) = Ty,
4) 8(A) = A,

5) d(xz1a) = a1,

6) Length(A) = A,

7) Length(zia;) = Length(z1)ay,

8) x1—A = u,

9) x1——ax9a), = d(x1—x2),

10) Concat(z1,A) = 21,

11) Concat(z1,x2a;) = Concat(z, z2)ag,

12) D(z1,A) = A,

13) D(x1,x2ai) = Concat(z1, D(x1, z2)),

14) [JOUy,..., Ui |(T) = &(V(T), ..., Vi(T)),

15) [Ra®@q,...,P,](A) = a,

16)[Ra®q, ..., Pp](zar) = @r(z, [Ra®y, ..., D,](2)), at k < m,

17)[Ra®q, ..., Pn](zar) = [Ra®y, ..., Dp](x), at k& > m,

18) [RO®Y,..., ¥, |(Z,A) = ®(T),

19) [ROV,..., U,](Z, yar) = Vi (T, y, [ROVy,..., U ,](Z,y)), at k < m,

20) [R®Vq,...,9,](Z,yar) = [ROVy,...,U,](T,y)), at k > m.

Let A - be some set of argument words. Axioms of interpretation of the undefined function symbol U
a) Ulw) =Aifa €A,

6) U(a) =ay, if a ¢ A.

Equalities a) and b) are called axioms of interpretation, which correspond to the set A, the set of argument

words A is called the interpretation set.

Rules of inference Calculus of equalities of closed terms

Sb : - —, Cuty : , Cuty :
[T2]r, = [Qzlq, ! T, =Ts 2 Ty =Ts

In the Sb rule, the variable x is the rule’s own variable.
Remark. To calculate the values of closed terms, it is sufficient to use only the Cut; rule.

To prove the equalities of closed terms, the Cuts rule is added. You can do without the Cuts rule by replacing
T =Q1,T2=Q2

the Sb rule with the rule = —
[Tz}Ql = [Qz]Tl

Definition of proof. Let A - some set of argument words. Sequence of equalities Ty = Qq,..., T, = Q,
is a derivation (proof of T,, = Q,), if for each i = 1,2,...,n, T; = Q; is either an axiom or an axiom of the
interpretation of U(a) = A, U(a) = a1, which correspond to the set A, or obtained from the previous equalities
according to one of the inference rules.

If the proof P is such that it contains the interpretation axioms U(a) = A or U(8) = a;, then we will say
that the words «, 8 were used in this output, and the word a was used positively, the word [is used negatively.
With the proof of P, given the interpretation set A, we associate a pair of sets: (AT)p - the set of all positively
of interviewed words in the output P, (A7)p is the set of all negatively interviewed words in the output P. If the
output P does not contain interpretive axioms, then it will be output in the alphabet .#. The definition of the
derived equality is assumed to be traditional.

The sequence of equalities t; = ¢1,...,t, = ¢ is a quasi-inference, if each equality in this sequence is either a
derivable equality or is obtained from the previous equalities according to one of the inference rules.

Note. The idea of the above calculus of equalities for computing closed oracle terms was borrowed in [3-5].

The length of the proof P is the number of equalities in the proof P. This number is denoted as lp.

The total length of the proof P is the length of the word obtained by joining all equalities in the proof P,
separated by a comma. This number is denoted by FI(P).

Denote the resulting calculus of closed terms as CalcEq, CalcEqy; in the alphabet ., £ (U) respectively.

The notation F ¢t = r - the equality ¢ = r is derivable in the calculus CalcEqy;, for any interpretation of the
functor U.

The notation A -t = r - the equality ¢ = r is derivable in the calculus CalcEqy;, with interpretation axioms

corresponding to the set A.

A functor ®, a term ¢ are said to be n > 0 alphabetic if the presented words do not contain functors .S;, for
[> n. All original functors are n alphabetic for every n.

For each n and any argument word « one can construct n - place functor, denoted as Const},, which yields the
equality Const” (8, ..., ,) = «, for any sequence 3 of argument words.

Theorem 1.1. One can compose an algorithm such that for each term ¢ one can construct a functor ®,; such
that - ®;(y) = t, where 7 - list of variables containing the variables of term ¢. See |3, p. 62| for the proof and full
formulation of this theorem.

Theorem 1.2. For any closed n alphabetical term ¢, for a given interpretation A of the functor U, there exists
a unique such argument word « of the same alphabet that A ¢ = a. The proof is carried out by induction on the
construction of the functor, then by induction on the construction of the term t.

The proof of the P equality of the form ¢t = «, where ¢ is a closed term and « is some argument word, will be
called the calculation of the term t.

Note. For any term ¢(T), for any sequence of argument words @, there exists a positive integer k such that for
any interpretation set of argument words A, it is possible to construct such a calculation of the term ¢(Z) on @, in
which no more than k argument words will be used.

Theorem 1.3. Let [J®Uq,...,¥k] - n - be a place functor, aq, ..., a, - some sequence of argument words. Let
Py, s be the calculation of the functor ¥; on the sequence of argument words o, ..., ay,, with the result of the
calculation f3;, in the interpretation set A, 1 <14 < n. Let P4 5 be the calculation of the functor ® on the sequence of
argument words 1, ..., 8k, with the result calculation +, in the interpretation set A, then it is possible to construct

the calculation P[;py, ... w,] of the functor [JO®W,, ..., ¥;] on the sequence of argument words a, . . ., ay, for which:
B)ean, oy = Uy o U), 50 (e, = U8R, UB e, 5

[JOUy,..., U(z1,...,2n) = P(¥1(T), ..., Pk(T)),...,

[JOU,...,¥kl(a1,...,a0n) = ®(Uy(@),..., Y(@), P(x1,...,20n) = P(z1,...,Zn),- .-,

(U (@),..., V(@) = P(B1,..-,0n), Pa,2(¥1(a),..., V(@) = ~, [JPVy,...,¥](a,...,a,) = v - calculation
of the functor [J®WUq,..., U] on the sequences aq,...,qy,, in the interpretation set A, with the specified set of

positively and negatively interrogated words.

Theorem 1.4. Let n+ 1 - a place functor [R®W4, ..., U], a1,...,ay, Ba; - some sequence of argument words.

Let Py be the computation of the functor ® on the sequence of argument words aq, ..., ay,, in the interpretation
set, A.

Let Pirow,, . .w,),a1,...,a,.,3 D€ the computation functor [ROUq,...,Pg] on the sequence of argument words
Qq, - .., 0, B, with the result of computing ~y, in the interpretation set A.

Let Py, be the computation of the functor ¥; on the sequence of argument words a,...,ay, 5,7, with the

result of the calculation 7, in the interpretation set A, then you can construct the calculation
Plrow, ..., Psiyl,a1,...,an,Ba; Of the functor [ROWy, ... W] on the sequence of argument words a, ..., apn, Ba;, in the

interpretation set A, for which:

,,,,,,,,,,

Proof. Point (1) is obvious. Point (2). We compose the following sequence of equalities:
Prow,,.. v],a1,....0n.8
[ROUy, ..., UL](z1,.. . &, 20;) = ¥(21,. .., &0, 2, [ROV, ..., ULl(1,...,Tn,2)),...,
[ROUy,...,Uk(aq,...,an, Ba;) = Vi(aq,...,an, 8, [ROY, ..., Url(aq,...,an, B)),
Uiz, ny 2yu) = V(21,0 Ty 2,0), ey
Ui(ar, ..., an, B, [ROUy, ..., Url(ar,...,an,0)) = Vi(aq,...,an, 5,7),
Py,,
Ui(ag,...,0n, B, [RO¥y, ..., Ur)(a1,...,an,B)) =n,
[ROUy,...,Uk(a,...,an, Ba;) = n - functor calculation [RP®Tq,...,¥s] on the sequence of argument words
Q1,...,0Qn, Ba;, in interpretation set A, with the specified set of positively and negatively interrogated words.
Theorem 1.5. Let a functor be given [Ra¥y, ..., ¥k], ai,...,an, Ba; - - some sequence of argument words.
Let P(raw,....,v,],s be the evaluation of the functor [RaWy, ..., W] on the argument word 3, with the result of
the evaluation -y, in the interpretation set A.
Let Py, be a computation of the functor ¥; on a sequence of argument words (3,v, with the result of the

computation 7, in the interpretation set A, then we can construct a computation

Plraw,,..,w,],8q4, Of the functor [RaWy, ..., ¥;] on the argument word fSa;, in the interpretation set A, for which

the following is true:

vy, ame, = APy s UAT)P Ly s
,,,,, wipe = AT)Pe 8y UAT)Pres, a6
Proof. Point (1) is obvious. Point (2). Let us compose the following sequence of equalities:
Plrav,,... 0.8
[RaVy, ..., Ul(za;) = Ui(z, [RaVy, ..., ULl(2))
[RaWy, ..., W](Bai) = Wi(B, [RaVy, ..., UL](B)),
U (z,u) = ¥;(z,u),...,
(8, [RaVy, ..., ¥](B8)) = Wi(B,7),

P\I’i;ﬂﬂv

\Ijl(/B’ [R(I)\Ijla) \Ijk}(ﬂ)) =1,

[Ra¥y,...,U:](Ba;) = n - calculation of the functor [RaW¥y, ..., ¥;] on the sequence of argument words Ba;, in the
interpretation set A, with the specified set of positively and negatively interrogated words.

Given that Length(A) = A, Length(aa;) = S1(a). |[A| = A, |aa;| = |a|+1 = S(|al]), |z| is a function of the
length of the word x, then expression of the form Length(t), will be denoted as |t|. Obviously, the argument word
a is a natural number if and only if F |o| = a, Length(«) is a natural number.

A term containing only functors of the form: Concat, D, as well as natural numbers, is called a word polynomial,
word polynomials will be denoted as P(Z).

From properties: |Concat(x,y)| = |Concat(|z|,y)| = |Concat(z, |y|)| = Concat(|z|, |y|) = |=| + |y|,
ID(2,y)| = D(|z[,y) = D(z, [y))] = D(|=[,|yl) = |=[- ly| = D(Jy|,z), we get [P(z1,...,)| = P(|z1],. .., |zal),
VYafvy[Concat(|al,|5]) = vV D(|al, 5) = 7], then « is a natural number.

For any word polynomial P(Z), one can construct polynomial with natural coefficients P*(Z), which is true
P* () = [P(7)].

Let us compose a 3 < n - place functor of the form [JConcatI}[JConcatl}_,[JConcatI_;I,]...]. For this

functor in the calculus CalcEq the following equality holds

[JConcatI}[JConcatl} ... [JConcatI?_,I"]...](z1...z,) = Concat(z;, Concat(xs,...Concat(r,_1,%,) ..

Let’s Concat” = [JConcatI}[JConcatl} ...[JConcatI”?_;I?]...], at n > 3, then - Concat"(z1,...2,) =
Concat(z;, Concat(zs, ... Concat(z,_1,,)...)). At n =2, Concat® = Concat, at n = 1, Concat' = I} and
the following equations hold : F Concat?(z1,z3) = Concat(z1, z;), - Concat' (z;) = I} (z;) = z;.
 Concat™*!(zy,...2,.1) = Concat(z;, Concacat” (za,... Zn 1))

Definition. Let 2 be some set of n - alphabetical functors. For each set A of argument words, we define the
concept of a standard word model, which we denote as WordM,, 4 .

The universe of this model is all argument words, or n - alphabetic argument words. For each k— place functor
® € Z we define an operation, denoted f¢ and defined as VaVj[fs(a) = f < A+ &(a) = 3.

If the set of functors 2 coincides with the set of all primitive recursive functors, then the standard model will be
denoted as WordM,, », WordM,,, in the alphabet £ (U), .Z respectively, or more simply WordM,, WordM.

If every functor belonging to the set Z is a functor of the alphabet £, then the standard word model corre-
sponding to the set of functors & will be denoted as WordMg. The model WordM, o will also be referred to as
the model in signature Z of the alphabet £ (U).

Remark. Note that the set of all operations of the standard word model WordM,, coincides with the class of
word functions Pr(X), where ¥ is an alphabet consisting of n different symbols|2, p.220, Definition 3].

Theorem 1.6. There is an algorithm, executing which, according to an arbitrary formula A(x1,...,x,) for
propositional calculus, in which elementary propositions are propositions of the form r = ¢, where r, g - terms of
the alphabet £ (U), one can construct n - a place functor ® 4 such that

Va[WordM, E A(@) & AF & 4(a) = A] (WordM, E VZ[A(T) = 4 (T) = A))]5].
Part 11
Simple calculation of functor

With each n - ary functor ® and a sequence of argument words ag,...,a,, hereinafter denoted as @, we
associate a simple (canonical) computation of the functor ® on the sequence of argument words a1, . .., a,,, denoted
as Pa.q,....a, - We construct this simple computation by induction on the construction of the functor ®, and inside
this induction, for a recursive functor by induction on the construction of the argument word. With each simple
calculation we indicate the sets (AT)p ¢ and (A7)p ¢ and the length of the calculation lp (@) - the number of

equalities in the output Pg.q,, . a0,

).

For original functors: Sy, Z,I" ,d,Length, —, Concat, D:

ym?

For the functor: Sg:

L. Si(z) = Sk(x),

2. Si(a) = Sg(a).

(AT)ps, =0,

(A7)ps, =0.

Calculation length Ip g, (z) = 2.
For the functor Z:

1. Z(xz1) = A,

2. Z(a) = A

Calculation length lp z(z) = 2.

(AN)pz =10,

For the functor U:

U(a) = A, if a € A, otherwise,

U(a) = ay.

Calculation length Ip y(x) = 1.
ANpu={a}, A)pu=0,ifa €A,
(AN)pu=0, (AT)pu={a},ifa g A

For the functor I,

1. I (21, oy @n) = Tim,y
2. IZl(al’I25"'7xn) =Ty e e ey
n+1. I (a1, ..., 0n) = Q.

Calculation length Ip 1 (1,...,2n) =n+ 1.
(AT)p1 =10,

(A7)pan = 0.

For the functor §:

1. 8(A) = A,

10

2. §(z1a;) = 1,

3. §(aa;) = a.

The length of the calculation is given by the defining equalities:
lps(A) =1,

lps(z1) =2, at a # A,

(AY)ps =0,

(A)ps=0.

For the functor Length:

1. |A] = A,
1.\m1ak| = |a:1\a1,
2.|aag| = |ala,

[Let Prength;a - simple calculation of functor Length on the argument word «, Next, we write out this simple
calculation Prength,«, at the end of this conclusion is the equality |a| = v, continue]

Prength;as

3. Si(z1) = Sy(x1),

4. S1(|af) = S1(v),

5. |aak| = vay.

The length of the calculation is given by the defining equalities:

lp(A) =1,

Ip Length(z101) = lp(z1) + 5,

lp Length(21) =1+ 5 - |21]

(AT)p Length = 0,

(A7)p Length = 0.

For the functor —:

1. x1—A =z,

2. a—A = q,

1. x1—xoar = 0(x1—22),

2. a—xsay, = 6(a—x2),

11

3. aéﬁak = é(aiﬂ))
[Let P__., g - simple calculation of functor — on the argument words «, 3, next, we write out this simple
calculation P_._., 3, at the end of this calculation is the equality o— 3 = v, continue]

P;Whﬁ?

5. 8(a=8) = 8(~).
| Let Ps,, - simple calculation of functor § on the argument word +, at the end of this calculation there is an

equality of the form &(y) = 7, continue]

P(S,'y:
6. 6(a—p) =n.
7. a—=pPay =,

The length of the calculation is given by the defining equalities:
lp . (xl,A) =2,

lp——(z1,22a) = lp—(z1,22) + lps(x1—22) + 7,

249 |z, if |z1| > |za| > 0;
e (21,%2) = oy | + 8 - o], if 1< |21 < |2o] -
2+8 |aa|, if [z =A
(At)p . =0,
(A7)p,— =10

For the functor Concat:

1. Concat(z1,A) = 1,

2. Concat(a, A) = «,

1. Concat(x1, z2a;) = Concat(z, x2)ar,

2. Concat(«, z9ai) = Concat(a, x2)ay,

3. Concat(«, Sa) = Concat(q, B)ay,

[Let Pconcat;o,s - simple calculation of functor Concat on the argument word « and word 3, at the end of
this calculation there is an equality of the form Concat(«, 5) = ~, continue]

PConcat;a,Ba

12

4. Si(x1) = Sk(z1),

5. Si(Concat(«, 3)) = Si(7),

6. Concat(a, Say) = Sk(7)-

The length of the calculation is given by the defining equalities:

IPGoneas (@,) = 2,

IPGoncat (@ B1k) = IPconeat (@, B) + 6.

IPGoneat (@ B) =2+ 6 - [4],

(AT)p.concat = 0,

(A7)p.concat = 0.

For the functor D:

1. D(z1,A) = A,

2. D(a,A) = A,

1. D(z1,x2a;) = Concat(z1, D(x1, z2)),

2. D(«, z9ax) = Concat(a, D(a, x2)),

3. D(a, Bax) = Concat(«, D(a, §)),

[Let Pp.qo p - simple calculation of functor D on the argument word o and word 3, at the end of this calculation
there is an equality of the form D(«, 8) = v, continue]

Pp;a,g,

4. Concat(z1,z2) = Concat(xy,z2),

5. Concat(a, z2) = Concat(a, z2),

6. Concat(a,D(a, §)) = Concat(a,),

[Let Pconcat;a,~ - simple calculation of functor Concat on the argument word «, -, at the end of this calculation
there is an equality of the form Concat(a,v) = 7, continue].

Pconcat;a,v

7. Concat(a,D(¢, 8)) =,

8. D(a, fax) = 7.

The length of the calculation is given by the defining equalities:

ZPD (a, A) = 2,

13

lpp (a76ak) =lpp (O‘vﬂ) + lPConcat (a’ D(a7 6)) +38,
lpp(a, B) =2+10-[B]+ 3 [af - |B](|8]=1),

(AT)pp =0,

(A7)pp =0.

For the functor [JO®Wy, ..., U]:

Let Py, .5 - simple calculation of functor ¥; on a sequence of argument words @, . .., Py, .5 - simple calculation
of functor ¥ on a sequence of argument words @.

Let’s compose a sequence of equalities:

Py, ..., Po,.=,

[at the end of this calculation Py, at the end of this calculation there is an equality of the form ¥;(a@) = ~;,
continue]

s+ 1. ®(xq,...,zr) = O(x1,...,28),

s+2. D(Vy(a),za,...,x) = P(y1, @2, .o, Tk)y .-y

s+k+1. (U (a),..., V(@) = P(v,-.-, V%),

|[Let Py - simple calculation of functor ® on a sequence of argument words 7, at the end of this calculation is
the equality ®(v1,...,vx) = 1, continue]

P<I>Wv

s+k+r+2. (¥ (a),..., V1 (a)) =n,

s+k+r+3. [JOUy, ..., U)(z1,...,20) = P(U1(21,. ., Zn)y- -, Vi(T1, ... 20)),

s+k4+r+4. [JOU, ..., U](oa,. .. 2n) = P(P1(aa, .., Tn), - oy Uiloa, .oy Tn)), o oy

s+k+r+n+3. [JOU, ..., U](ar,...,an) = P(T1(ar,...,an), ..., Vplag,...,an)),

s+k+r+n+4 [JOU,,..., U)(a,...,a,) =1 - the resulting sequence of equalities - simple calculation of
functor [J®Pq, ..., Ui on a sequence of argument words @.

The length of the calculation is given by the defining equalities:

For the functor [R®Uq, ..., ¥,,]:

14

Let’s compose a sequence of equalities:

1. [ROTy,..., U,)(z1,. .y &n, A) = (21, ..., 24),

2. [ROUy,..., Up)(a1, ..., 2n, A) = P(a1,. .., Tp)y ey

n+1. [ROYy,..., U,](a1,...,an,A) = P(aq,...,an),

[Let Pgw - simple calculation of functor ® on a sequence of argument words @, at the end of this calculation is
the equality ®(ay,...,a,) =7, continue]

Po.a,

n+r+2. [ROUy,..., U,](as,...,an,A) =mn,

[Let Prow, ... 0,];01,....ans, - Simple calculation of functor [R®Yq,...,¥,,] on a sequence of argument words
aq,...,0n4+1, at the end of this calculation is the equality [R®U 1, ..., ¥,](aq,. .., ap, @yy1) = 3, continue]

Prow,,.. . w.]ia1,.aniss

[Let Py, ay,...,an,.,5- simple calculation of functor W] on a sequence of argument words as, ..., anq1, 3, at the
end of this calculation is the equality [V (a1, ..., Qn, @nt1,3) = 0, continue]

Py, ani.ps

s+t+1. [ROUy,...,U](x1,. . s Tn, Tnt10k) = V(1, ..o Ty Tt 1, [ROVY, o, U] (21, - oy Ty Tg1))s

s+t+2. [ROUy,...,Up](a1,.. ., Tny Tny1ak) = Vi(oq, ..y Tn, Tng1, [ROV, ..., U](01, .o Ty Tpg1))s - - -

n+s+t+2. [ROVq,..., U, (a1, ..,¢n, ant1ar) = Vr(ag, ..., qn, nt1, [ROU, ..., U] (aq, ..., an, ng1)),

n+s+t+3 Up(zy,...,Zn12) = Va1, ..., Tni2),

n+s+t+4 Uplon,...,2n42) = Vg(aa, ..., Tpya),. ..,

2n+s+t+4 Up(ar,...,qni1,ZTng2) = Yi(aa,. .., ant1, Tnta),

n+s+t+5 Upla,...,an11, [ROU, ..., Up)(a1, ... an, ant1)) = Yr(ag, ..., ang1, B),

2n+s+t+6. Up(ar,...,ane1, [ROU, ..., U](a1, ... an, ant1)) =0,

n+s+t+7. [ROUy,...,U,](a1,...,Qn,anp1ai) = 0 - this sequence of equalities is a simple calculation of
the functor [R®Vq,...,¥,,] on a sequence of argument words o, ..., Qp41.

The length of the calculation is given by the defining equalities:

] (aa Oén+1) + ZP\I/k (aa Qn41, [R(I)\I/h sy \I/k](av an-i-l)) +2n+7

15

(Ai)P[Rq)\Pl,“q‘Pk],ul an.Ba; (Ai)Pw‘ U(Ai)P[RCD\I!l,...,\I/k],al,...,an,ﬁ(See Theorem 1'4)'

The case when the recursion functor has the form [Ra®, ..., ®,,] is treated similarly.

For [Ra®,...,P,,], the defining equality lengths of the simple calculus are as follows:

_____ vy (@) +ipy, (a, [Ra¥y, ..., ¥y](a)) + 7(see Theorem 1.5).

Properties of simple the calculation functor:

1. The last equality of a simple calculation of the n— place functor ® on a sequence of argument words @ is an
equality of the form ®(@) = (8, where 8 is an argument word, which is called the result of a simple calculation of
the n— place functor ® on the sequence of argument words @.

2. A simple calculation of the n— place functor ® on a sequence of argument words @ consists only of those
functors that are subfunctors of the functor ®.

3. All the words queried in a simple computation of the functor [J®¥,..., ¥,,] on the sequence of argument
words aq, ..., ay, consist of interrogated words that enter into a simple calculation of the functor ¥, on the sequence
of argument words ag,...,ax, and so on. from the interrogated words that are included in the simple calculation
of the functor ¥, on the sequence of argument words aq,...,ax, from the interrogated words that are included
in the simple calculation of the functor ® on the sequence of argument words 1, ..., Vm, where ~; is the result of
calculating the functor ¥; on the sequence of argument words «q, ..., ak.

4. All interrogated words, when simply calculating the functor [R®V4,..., ¥,,] on the sequence of argument
words @, Bag, consist from the interrogated words that are included in the simple calculation of the functor ® on the
sequence of argument words @, from the interrogated words of the functor [R®W¥1, ..., ¥,,] in a simple calculation
on the sequence of argument words @, § (previous step), from the interrogated words that are included in the simple
calculation of the functor WUy on the sequence of argument words @, 3, where is the result of calculating the
functor [R®Vq,...,¥,,] on the word sequence @, 3.

5. Any n— place functor ® can be interpreted as some algorithm, executing which, it is possible to calculate
the value of this functor on a given sequence of argument words aq, ..., a,. A simple calculation of this functor on

the specified sequence of argument words is an implementation of this algorithm.

16

For each initial functor: I}, Sk, Z, §, Length, =, Concat, D is true

lpy, (X1, o) = lp%(|x1|, oo lzal),

Ip,(x) = lpy(|=]),

lps, (z) = lpg, (|21),

lps(x) = lp, (|2]),

IPLengen () = IPpengen (17]);

lp__(w1,22) = lp__(|21], |22]),

IPGoncat (15 %2) = IPgoneas (171, [72]),

lpp (21, 22) = lpp (21], [22]).

Remark. Let ® - n -ary functor of the alphabet . composed of the functors I7,,S,Z, §, Length,
-, Concat,D with the help of the superposition operator J, then for this functor we have

Fl®(z1, ... x0)| = O(|21], - -, |T0])-

Part III

Bounded recursion functor. PPr functors

An equality of the form x——y = A will be denoted as « < y. Given the property x—y = A < |z|=—|y| = A, a
formula of the form z < y, will also be written as |z| < |y|.

A, if fal < yl;
Ty =)

z, other

7

where z - is such a word which is the beginning of word x and whose length is |z| — |y|.

For any word polynomial P (%), given that |P(7)| = P(|y|), we have: |z| < |P(7)| < |z| < P(|7]).

Denote the two-place functor J[-—1I%J[—I7I3]] as min. For this functor of the alphabet %, in the calculus
CalcEq we derive the equality min(x,x2) = z1 = (1 —x2).

Properties: - min(x;, z5) = min(x1, |22]), F |min(zq, 22)| = min(|24|, |22])

z, if |zl < yl;
min(z,y) = ;

z, other

where z is such a word which is the beginning of word = and whose length is |y|.

VafWordM = |min(a, §)| < |B).

17

Let ® be an arbitrary n -place functor. Compose the functor [J®I}™!, ... 17+1] - introducing n + 1 fictitious
variable, this functor will be denoted as [J®,,11].

Let ® be an arbitrary n -place functor. Compose the functor [J(IDI?H, ..., 1" - introducing n + 1 fictitious
variable, this functor will be denoted as [J®,,41].

Let P - n-ary polynomial functor, ® - n- ary functor, ¥ - n 4+ 1 - ary functor. Compose functors: [Jmin®, P],
[Jmin¥[JP, ;]| - functors restrictions, respectively, without the introduction of a dummy variable and with the
introduction of a dummy variable. We denote these functors as Bound(®, P).

Let @ - n - ary functor, ¥y,..., ¥y - n+ 2 -ary functors, P, Py - respectively n, n+ 1 - ary polynomial functors.
Compose a functor [RBound(®, P), Bound(¥;,P;),...,Bound(¥;,P;)] is a bounded recursion functor.

For each functor of bounded recursion I' = [RBound(®, P), Bound(¥;,P;), ..., Bound(¥;, P;)| the following
equations are derivable:

FD(x1,. . 20, A) = min(®(z1, ..., 2,), P(x1,...,240)),

FT(z1,. oy @0, Sk (ny1)) = min(Pg (21, ..oy Zn, Tog1, D@1, oo Tng1))y Pr(@n, ooy Ty Big1),

for any set of argument words A the following is true: Va,V8 # A AF |I'(a,A)| < |[P(@)],

AF (@ B)| < [P1(@ B)l-

We inductively define a set of functors, denoted as PPr(U):

1) Words of the form U - polynomial program;

2) Words of the form Z, §, Length, S;,I”", —, Concat, D - polynomial programs;

3) If ® - k is a place functor, ¥q,..., ¥y - n are place functors and are polynomial programs, then the functor
[JOW,, ..., ¥] - polynomial program, i.e. belongs to the set PPr(U);

4) If ® - n is a place functor, ¥y,..., ¥y - n + 2 are place functors and are polynomial programs, P, Py -
respectively n, n + 1 are place polynomial functors, then the functor
[RBound(®,P),Bound(¥,,P,),...,Bound(¥;, P;)] - polynomial program.

The set of functors defined according to items 2-4 will also be called polynomial programs, but in the alphabet
. This set of functors will also be denoted as PPr. It will be clear from the context in which alphabet £ or
Z(U), the set PPr is considered.

The set of all operations of the standart word model WordM,, pp, coincides with the class of function E9(X)[1,

p-220. Definition 7], where ¥ is an alphabet consisting of n different symbols aq, ..., ay,.

18

Theorem 3.1. Let ® is an n-place polynomial program, i.e. ® € PPr, then there exists (can be constructed)
such a word polynomial P(Z) of the same place as for any set of argument words @ is true:

a) YAWordM, E |®(@)| < |P(@)|.

b) VAWordM,, = lp, (@) < |P(a);

¢) VAWordMy = Flp, (a) < |P(a)|.

Proof. See the definition of a simple evaluation of the functor & - see part II.

Note. Let ® € PPr is an n-place functor, A - set of argument words, then there exists a word polynomial P(Z)
such that for any sequences argument words g, ..., a,, the length of all used words in a simple calculation of the
functor ® on ag,...,a, and the number of interrogated words is limited to |P(aq, ..., a,)|.

Note. Let MT is an oracle Turing machine with input alphabet A = {a1,...,ax}, and oracle set B, whose
running time is bounded by some polynomial P(x1,...,x,) with natural coefficients. Let fyvr(x1,...,2,) is a
vocabulary function, which is generated by the oracle MT . Then we can construct such a functor ® € PPr(U)
of the same place, whose set of input words is the set of argument words {S;(A),...,Sk(A)}, which is true
Vai,...,cp, BBE®(ay...,a) = B <= fmr(al,...,ar) = 5|2 p. 224. Theorem 6]%[1, Theorem 1 p. 228]3.

Note. Let ® € PPr(U) -n - ary functor whose set of input words, is the set of argument words {S1(A),...,Sg(A)}.
Let B be the interpretation of the oracle symbol U. Then we can construct an oracle Turing machine MT - with
input alphabet A = {a1, ..., ax} and oracle set B, whose running time is bounded by some polynomial P(z1,...,z,)
with natural coefficients, that for the dictionary function far(z1,...,2,) which is generated by the oracle MT
under consideration it is true that
Yoaq,...,05, B BF ®(a;r...,ar) =8 < fmr(aa,...,ax) = B[[2 p. 224. Theorem 7|[1, Theorem 1 p. 230].

Let A is the interpretation of the oracle symbol U. Let us inductively define the set of functors, denoted as
PPr(A):

1) Words of the form U - PPr(A) - program;

2) Words of the form Z, §, Length, S;,I", —, Concat,D - PPr(A) programs;

3) If @ - k - ary functor, Uy, ..., Uy - n -ary functors and are PPr(A) programs, then the functor [J®WUq, ..., U]
- PPr(A) - program;

4) If ® - n - ary functor, ¥Uy,..., Uy - n+ 2 - ary funktors and are PPr(A) programs, P - n + 1 - ary word

2This theorem is easily transferred to the case when the Turing machine under consideration is an oracle machine
3All the word functions mentioned on pages 212-215 are PPr functions of the alphabet .#, so the theorem under consideration is
easily transferred to an oracle Turing machine

19

polynomial, then if it is true WordMy |= VZ, y{|[R® V1, ..., V](T,y)| < |P(T,y)|}, then functor [ROY, ..., U]
is a PPr(A) - program.

Note. If ® € PPr(A), then we can construct such a word polynomial P(Z), which is true
WordM, E Vz{|®(z)| < |P(Z)|}.

The proof is by induction on the construction of the functor ®, and within this induction, by induction on the
construction of the argument word.

Note. For any functor ® € PPr(U), for any oracle A, ® € PPr(A) is true.

Note. Let A be the interpretation of the oracle symbol U. For any functor ® € PPr(A), we can construct such
a functor ¥ € PPr(U), which is true WordM,, = VZ[®(Z) = ¥(T)].

The proof is by induction on the construction of the functor ®, and within this induction, by induction on the
construction of the argument word.

For each natural number k£ > 1 we write the following defining equalities:

expkx(A) = aq,

expx(aa;) = D(aq,. .., a1, expk(a)).

There is a primitf\;eti;zz;rsive word functor that satisfies these defining equalities. Let’s denote it as exp,. For
the functor exp, true WordM |= Vz[|lexpy (z)| = kl*!], VaB[expy (o) = f], then § is a natural number.

For k > 1 expy(«) is the number of k - alphabetic words whose length is equal to the length of the word «,

expy(aay) — 1

— - number k - alphabetic words preceding in the lexicographic ordering of the word |aay|.

Note. Note that for the relation expy(z) = y one can compose a functor EXPy belonging to PPr such that

WordM [Vaylexpy (z) = y ©F EXPg(z,y) = A
Part IV
Function words and their properties

Let’s compose the following word term Concat(|«a|, Concat(az, Concat(a, Concat(8, Concat(asz,as))))). Let
1 be the designation of the argument word Si(A), 2 be the designation of the argument word S3(A), then the
word term Concat(]a|, Concat(az, Concat(a, Concat(3, Concat(as, az2))))) For clarity, we will denote in the

form 1,...,12a822.
——

|a]- times

20

Let ¢ - such a functor for which in the calculus CalcEq we derive the equality

c(z,y) =1,...,122y22 = |z|2xy22.

|z|- times
Let an arbitrary sequence of pairs of argument words be given (a1,71) ..., (@, ¥,). This sequence will be called

functional if the following conditions are met:

1. Vi[y; = AV vy = aq],

2. Vi, jla; = aj = v = 5]

Let us introduce a concept that will be of great importance in what follows.

Definition. 1. A is a function word.

2. If a sequence of pairs (a1,71) ..., (n,¥n) is a functional, then a word of the form
Concat(c(aq,v1), Concat(c(az,y2), . . ., Concat(c(ax, Vi), A)), . ..,) - function word, where 1 < k < n.

Visually, a functional word can be written in the form |a1|2017122,. .., |ak|207:22.

The words of the sequence aj,...,a; will be called the domain of definition of the functional word under
consideration, and the words of the sequence 71, ...,y will be called the corresponding values.

Note. Any functional word 6 will be interpreted as a word according to its definition and as a function with
the same name. Domain of definition and set of values of the function 6 - domain of definition and set of values of
the functional word 6, moreover, 6(«) = A, if and only if the word c(«, A) is a subword of 8 and 6(a) = a; if and
only if the word c¢(a, ay) - subword of the word 6.

The domain of definition of the functional word 6 will be denoted as dom(9).

Let 6 C 61(0; D 0) = Vo € dom(0)[0(x) = 01(x)].

Note. The relation z € dom(6) can be expressed using the PPr functor.

The function word 6 is consistent with the set A (6 C A) if Vo € dom(0)[0(z) = A < z € A].

Remark. For any function words 61,60 that are compatible with the set A, there exists function word 6
consistent with A and 6; C 6, 6, C 0, e.g. 6; U6b2(Concat(f;,62)).

For the relation 6 C 01, there exists a PPr functor ¢ of the alphabet .Z that is true
WordM = [0 C 6, < ¢(6,61) = Al

Let 6 be some function word. For this functional word, we construct a set of argument words defined as
Ap = {a:a € dom(f) and 6(a) = A}.

For any term ¢(Z), for any sequence of argument words @, for any set of argument words A, one can construct

21

such a functional word 6z 4 ¢, consistent with the set A, that A - t(a) = 8 & Ay, ,, - t(@) = 3. To do this, it
suffices to construct a calculation of the closed term t(@) on the set A, collect all the interrogated words in this
calculation, and use the obtained interrogated words to compose the corresponding functional word. Of course, the
function word constructed in this way depends on the constructed calculation of the term ¢(@), but in this case the
following property will be fulfilled: for any functional word 6 D 0z 4, true A - t(@) = 8 < Ay F t(a) = 5. This
property is true for any quantifier-free sentence ® (a sentence composed using logical connectives from equalities of
closed terms): WordMy = ® < WordM,, = @.

Let Fw be a functor of the alphabet . for which:

1. Ya[- Fw(a) = AV F Fw(a) = a4];

2. F Fw(a) = A & « - functional word.

3. Functor Fw - is a PPr functor.

Let us introduce the binary relation 8 C 6;:

0 C 0 < WordM = Fw(0) AFw(0;) AVz € dom(0)[0(x) = 61(z)].

The relation 6 C 6, belongs to PPr of the alphabet Z.

Let us introduce a binary relation =::

WordM [0 = 6, <= Fw(0) AFw(61) A dom(0) = dom(01) AVz € dom(0)0(z) = 61(z).
The relation = = y belongs to PPr of the alphabet .Z.

Remark. If § = 0, then Concat(0,6,) =~ Concat(6,0)A Concat(d,0;) = A0 C 6, A C6.

Let G be a two-place functor of the alphabet £ that satisfies the following conditions:

1. If 6 is a function word, a € dom(6) and (o) = 7, then - G(0,) = .

2. If 0 is a function word, o ¢ dom(6), then - G(6,) = ay.

3. If 0 is not a function word, then Va - G(0, o) = a;.

4. Functor G - is a PPr functor.

The functor G has the following properties:

1. For any function words 6,6, such that 6 C 01, Vo € dom(0) - [G(6, o) = G(61,)]

2. Relation x C U = Fw(z) = A AVz € dom(2))[(G(z,2) = A = U(z) = A) A (G(z,2) = a1 = U(z) = a1)]
belong PPr, i.e. there is a one-place PPr functor ¢ alphabet .#(U) such that

WordM, | Vz[z C U < ¢(z) = A

22

Definition. Given a functor ®, a sequence of argument words @, and an interpretation set A. Let P be a simple
computation of the functor ®, on the sequence @, in the interpretation of A. Then, using a simple calculation of P,
we compose a function word:

1. Let’s write out all the words from the set (A")p, .. Let these be the words f1,..., Bk, arrange them, for
example, in lexicographic order.

2. Let’s write out all the words from the set (A™)p, .. Let these be the words 71,...,7s, arrange them also in
lexicographic order.

3. Let’s make a functional word
Concat(c(f1,A), ..., Concat(c(fk, A), Concat(c(y1,a1), ..., Concat(c(ys—1,a1),¢(7s,a1))),...,). A functional
word composed in this way is called a functional word composed according to a simple calculation P functor ¢ on
the sequence @, in the interpretation of A. Denote such a function word as simpleFw,o,a,4-

Definition. Terms of the form |z|22U(z)22|2]|22U(2)22, ..., |v|2vU(v)22 will be called functional terms of the
alphabet .Z(U). The set of functional terms constructed in this way will be denoted as Ftermy, and the specific
functional term of this set as fierm(z, 2, ..., V).

Definition. Terms of the form |2|22G(y, x)22|2|22G(y, 2)22, ..., |v |2vG(y, v)22 will be called functional terms

of the alphabet .Z. The set of functional terms constructed in this way will be denoted as Fterm, and the specific

functional term of this set as fi,. (¥, 2, 2,...,v).
Properties. 1. fiom(fterm(2,2,...,V),2,2,...,V) = fterm (T, 2,...,V) - like words.
2' f;erm(ft*erm(a:? Z’ R 7V)7 177 Z’ M ’V> = f;erm(x7 Z7 R ’V) B like Words'

3. For any function word 0 true Vz, z,...,v € dom(0) feeem (0, 2, 2, ..., v) C 6.
Definition of a functor for constructing a function word

For each n - place functor ®, we define the functional word construction functor associated with this functor.

We will carry out the definition by induction on the construction of the functor ®..

1.For original functors: Sy, Z,d, Length, =—, Concat, D, I}, U:
Os, = Z, Oz = Z, O5 = Z, Orengtn = [JZI3], ©_— = [JZI3], Oconcat = [JZ13], Op = [JZI3], O = [JZI}],
Oy = [JcliU].

For these functors in the calculus CalcEq the equalities are derivable: Og, (x1) = A, Oz(x1) = A, O5 = A,

OLength(71) = A, O (21,22) = A, Oconcat(71,72) = A, Op(z1,72) = A, 91;; (1, xn) = A,

23

F Oy(z1) = c(x1,U(xy)) - in calculus CalcEqy and the expression Va VA A F G(Oy(«w),a) = U(w) is true.

2. For the functor [J®WUy, ..., ¥t]. Let for the functor ® functor built @4, for the functor ¥; functor built Oy, ,
etc. for the functor ¥y functor built Oy, , then O ¢y, .. v, = [JConcat" ™! [JOa W1, ..., Ty, Ov,,...,0y,] at
k > 2. The obtained functor is n - place and the following provable equations are true for it

- [JConcat" ! [JOa Uy, ..., U],04,,...,08,](z1,...,2,) =
Concat" ™ ([JO U, ... U](21,...,2,), O, (#1,...,20) ... Op, (z1,...,2,))

F Concat" ! ([JO W, ... Uk](21,...,20), 00, (1, ., 2n) ... Ou, (T1,...,2,)) =
Concat"™ (05 (U (z1,...,2,) ... Up(x1,...,20)), O, (T1, ..., Tn) ... Op (T1,...,Tp)).

So, we have - Oyew, . v, (T1,...,7n) = [JConcat"™[JO4 ¥, ... ¥,], Oy, ...Op,](z1,...,2,) =
Concat" (05 (Uy(z1,...,2,) ... Up(x1,...,20)), O, (T1,...,2n) ... Op, (T1,..., 7)),

FOuew,..w,)(T1, .. Tn) = Concat™ ™ (Og (U (z1...,2,) ... Vi(z1,...,20)), 00, (T1,...,2n) ... Op, (T1,...,Tn)),

F Oew,..w,)(T) = Concat([JOs V1, ..., ¥](Z), (Concat(Oy, (7),...,Concat(Oy,_,(T), Oy, (T))),...,).

Let ® - k - place functor(k = 1), then O;3y,] = [/Concat[JOs¥1]|Oy,], then

Oew,)(71,...,7,) = [JConcat[JOsV1]|Oy,|(71,...,7,) = Concat(Og(V1(21,...,7,)), Ov(21,...,2n))

3. For the functor [Ra¥; ... V] and funtor [R®P; ... Uy]. Let for the functor ® functor built O, for functor
U, functor built ©y,, etc. for the functor ¥y functor built Oy, , then for the functor Orey, .. . v,)in calculus
CalcEqy; holds (defining equality)(see theorem 1):

F ORaw,..w,)(A) = A

F Olraw,...v,](710;) = Concat(Oy, (z1, [ROVy, ..., Vi](21)), Olraw,.,...,w,) (1)), at i < k.

F ORaw,..v,](710i) = ORavw, ..., v, (1), at i > k

F Olrow,..w,)(T,A) = Op(T).

= @[R@\I/l___\pk](f, Tnt16;) = Concat(Oy, (T, Tny1, [ROY1, ..., Vi|(T, 2ny1)), G[Rq,q,l___q,k](f, Tnt1)),
at 1 < k.

F Orew,..v,) (T, Tnt1ai) = Oraw,..v,) (T, Tnt1)), at i > k.

Theorem 4.1. Let ® be a functor of the alphabet £, then in the calculus CalEq it is true - O (T) = A.

The proof is carried out by induction on the construction of the functor ®, and within this induction, by
induction on the construction of the argument word.

Theorem 4.2. Let ® be an arbitrary functor that belongs to PPr, then the functor ©¢ belongs to PPr.

4gsee Application

24

The proof is by induction on the construction of PPr of the functor ®, and within this induction, by induction
on the construction of the argument word.

Theorem 4.3. Let ® be an arbitrary n - place functor. For any interpretation set A, any sequence of argument
words @, 3, the following is true:

If AF ©g(a) = (3 then S is a function word and OsimpleFw, om0 C 8 C A;

Proof. The proof is carried out by induction on the construction of the functor.

Induction basis. For original functors Sy, Z, d, Length, —, Concat, D, I} the proof is immediate. For the
functor U, we get: A+ Oy(a) = 8, if and only if
(B =|a2a22&a € A) V (= |a|20a122&a ¢ A), then § = OsimpleFw,U,a,a and 8 C A,

Inductive assumption. 1. Let the theorem be true for the functor ®, functors ¥q,..., V. Let us prove that
the theorem is true for the functor [J®Uy, ..., ¥g].

By the inductive hypothesis, we have: if A - Oy, (@) = v1,...,A F Og, (@) = V&, then 7; - function words and
OsimpleFw,¥;,a,a €71 C A, ..., 0SimpleFw, v, a4 C Tk C A,

Function word OsimpleFw,v,,a,4, composed according to sets (A*)p%a, (A*)pwwa. then

k

OsimpleFw,v; @4 C Concat(Oy, (@),...,Concat(Oy, ,(@),Oy,(@)),...,).
=1

1=

For A - ¥;(a@) = 3;, if AF O¢(f1,...,8k) = n, then n - function word and OsimpleFw,@.4,,....8..4 7 C A,
Function word fg;,\opw .0 5.4 cOmposed according to the set (AT)p_ 3, (A7)p, 5, then
OsimpleFw. @81 ,...3:.4 © Concat(©¢(61, ..., Bk), Concat(Oy, (@),...,Concat(Oy, ,(a),Ou,(@)),...,), then
OsimpleFw. @81 ... 3x.o © Concat(Og(¥1(@),..., ¥, (a)), Concat(Oy, (@),...,Concat(Oy, ,(@),Ov,(@)),...,). Func-

tion word OgimpleFw,[JoW, ..., ¥,],@,a composed according to set

k k
(AP aw,wpm = UB)py, aUA)p, 5 (AP uw, wym = U(A7)py, aU(A7)p, 5, then, according to

,,,,,

i=1 i=1

the defining equality for Ojaw, ... v,], We get OsimpleFw,[Jov,,... v,] aa C Opaw, .. v, (@) C A

2. Let the theorem be true for the functor ®, the functors ¥y, ..., V. Let us prove that the theorem is true for
the functor [R®Tq, ..., Ug].

According to the defining equalities for the functor O gey,,....v,), We have:

F Olrow, .., v, (T, A) = Oa(T).

F Orow,,...,v,](T, za;) = Concat(Oy, (7, 3, [ROVy, ..., V;](T, 2)), Oraw, ... v, (T, 2))-

Induction basis.

25

By the inductive hypothesis, we have:

A F ©g(@) = B - function word and bsimpleFw,o,z.4 C 8 C A. Function word OsimpleFw o,z 4 built on sets:
(AM)py s (A7)py @ Function word OsimpleFw,[Row, ..., w,]@,A,4 also built on sets: (A*)p, ., (A7)p, &, taking into
account the defining equality, O(raw, .. v,)(@, A) = Og(a), we obtain OgimpleFw,[ROw, ..., v,]@,4,4 C B 1 B C A,

Induction hypothesis. Take a sequence of argument words o, ..., a,.8a;.

By the inductive hypothesis, we have:

If AF Orow,,... v, (@ B) =7, then ~ - function word and OgimpleFw, ROV, ,....w,]a,84 C 7 C A.

Let AF [ROUy,...,U](a,B) =n.

If AF Og,(@ B,n) =&, then & - function word and Osimplerw,;,a,8,n,8 C & C A.

According to the definition of the function word fsimpleFw,[Ro¥,,...,w,]a,8,4 it is built on sets:
(AP yuny.uyy s then

OSimpleFw,[RoV, ... v,],a,8,A C Concat(Oy, (a, 5, [ROVy, ..., Vi](a,B)), Orow, ... v, (@, F)).

Function word OsimpleFw,[RoW ..., ¥,)@, 8a;,4 DUilt on sets:

Plrow, . ay o ansa, = B)Py, @80 UAT)P ey, 4«4 then
OSimpleFw,[ROU, ..., 04],a,8a;,A = OSimpleFw, ;@814 U OSimpleFw,[Row,,... . w,],3,8,4, then
OSimpleFw,[ROV,,...)., 8q,,4 & Concat(Og, (@, 3, [ROVy,..., V,](@,), Oraw,....v,) (@ 3)). Considering defin-
ing equality O(gew, ,....v,](@, fa;) = Concat(Oy, (@, 3, [ROVy, ..., V](@, B)), Oraw, ... v, (@ B)), we get
OSimpleFw,[ROV, ... 4],a,8a:,A & ORew, ..., v, (@, Ba;) C A.

The remaining recursion axioms (15,16,17,20) are treated similarly.

Theorem 4.4 Let ® be an arbitrary n— place functor of the alphabet .2 (U). For any interpretation set A, any
sequence of argument words @, it is true WordM, = Og(a) = Og, (a).

The proof is carried out by induction on the construction of the functor ®°.

Note. Let ® be an arbitrary n— place functor of the alphabet £ (U). For any interpretation set A, it is true

WordMy, = VZ[0simpleFw, 3,74 =~ O (T)].

5gsee Application

26

Part V
Converting alphabetical expressions .#(U), to alphabetical expressions .¥

By induction on the construction of a functor, we construct a transformation, denoted as *, of functor of the
alphabet Z(U) into functor of the alphabet Z.

For initial functors:

L (Sk)* = [JS:I3],

2. (2)" = [JZ13],

3. (60) = [Jo13],

4. (U)* = G,

5. (Length)* = [JLengthI3I3],

6. (=) = =11

7. (Concat)* = [JConcatI3I3],

8. (D)" = [JDEL,

0. (1) = [T, I,

L ([JOW, ..., Uy))" = [J(@) TP (W0)", .., (W),

2. ([Ra®,,...,®,,))* = [RConst. ()", ..., (®,n)"],

3. ([ROVy,..., U,)" = [R(D)*(T1)*, ..., (Tn)*].

Note. If the functor ® is a functor of the alphabet £, then the first argument of the functor (®)* is a dummy
variable - ®(T) = (®)*(y,).

Theorem 5.1. For any n - place functor ®, VA , V& V0 D OsimpleFw,o,a,4 true
At [0(a) = () (0,@)] (WordM, E [6(a) = (@)*(6,).

Proof. The proof is by induction on the construction of the functor, inside this induction for a recursive functor,
the proof is by induction on the construction of the argument word.

Basis of induction. Initial functors

For initial functors: Sy, Z,§, Length, —, Concat, D,I}} can be verified directly by writing out the indicated
functor ¢ and functor (¢)*.

Let us prove the theorem for the functor U. According to the definition (U)* = G, need to show VA Va

V0 2 fsimpleFw,U,a,a A F [U(a) = G(0,a)).

27

Let a € A, then U(a) = A - axiom and is a simple calculation of the functor U on the word «. As a functional
word, we take the word OsimpleFw,U,a,a = ¢(@, A) = |&|2022, then according to the definition of the functor G, we
get V0 O OsimpleFw U,a,0 - G(8,a) = A. Let Py ,, - for example, a simple calculation of the functor G on a sequence
of words 6, o, then sequence of equalities U(a) = A, Py o, U(a) = G(0, o) - derivation of equality U(a) = G(0, a),
when interpreting the function symbol U by the set A.

Likewise: let a € A, then U(a) = a; - is a simple calculation of the functor U on the word . As a functional
word, we take the word OgimpleFw,U,a.a = ¢(@, a1) = |a|2aa122(|a|2122), then according to the definition of the
functor G, we get V0 O OsimpleFw,U,a,a, = G(0,a) = a1(F G(0,a) = 1). Let Py, - a simple calculation of the
functor G on a sequence of words 6, o , then sequence of equalities U(a) = a1, Py o, U(a) = G(0, o) -derivation of
equality U(a) = G(0, «), when interpreting the function symbol U by the set A.

(a) Induction hypothesis. Let the theorem be true for functors: ®, ¥y, ..., Uy, prove the theorem for the
functor [J®¥q,...,U,]. Denote f = [JOUq, ..., Ty].

We have: i) for the set of argument words A, the sequence of argument words «;, ..., ,, for the functor
U, true V0 O OsimpleFw, o, 7.4, A F Ui(@) = (V1)*(6,@) ,..., for the functor Uy, true V0 O OgimpleFw, v, a4,
AFYi(@) = (Ve)*(0,@).

ii) for the set of argument words A, the sequence of argument words f,..., Bk, for the functor ® true V6 D
05imp1er,<I>,B,Av AF CI’(B) = (q))*(aag)'

Function word 0simpleFw,j,a,4, according to his definition, is composed of sets:

k

(A+)P[J<I>\I/1 v lE U (A+)Pwi,a U(A+)Pq>,77 (Ai)P[Jq»pl

k
U v = U8 ey, U(A e, 5, then

OsimpleFw 3,4 2 UsimpleFw,v; 7,4 and OsimpleFw.j,a,4 2 Ugimplerw .o 3.4 L€t 05 2 OsimpleFw,f,a,4-
The following sequence of equalities:

L (Wy)*(05,@) = v1,- -, (Wr)* (05, @) = & - Calculate

2.(®)* (05,71, .. .,vk) = n - Calculate,

3. [J(®) T (), . (9)E] (05, @) = (D)*(65, (1) (05, @), ..., (V)5 (65,@)) - almost an axiom,

4. (D)*(y, z1,...,2k) = (®)*(y, 21, ..., k) - axiom,

5. (®)* (6, (U1)*(b5,@),..., (V)i (b5,@)) = (®)*(05,71,---»Vk) - from 1,4,

6. (9)" (05, (V1)" (65,). .. ()65, @) = 7 - from 2,5,

7. [J(@) TP (Wy)*, ..., (9);] (65, @) = 7 - from 3,6,

28

[Equalities 1-7 are proved in the calculus CalcEq]

8. [JOTy,...,¥i](@) = D(Ty(a),..., Ui(a)) - almost an axiom,

9. ¥y(a) = (V)" (b,@),...,¥(a@) = (¥i)* (05, @) - induction hypothesis,

10. ®(z1,...,25) = ®(x1,...,2x) - axiom,

1L.9(¥(a),..., ¥ (@) = 2((¥1)* (), @), . .., (Vi)*(65,@)) - from 9,10,

12. &((U1)*(65,@), ..., (V)" (05,@)) = ®(1,..., M) - from 1,10,

13. ®(v1,..-,7%) = (®)* (5,71, - ..,7%) - induction hypothesis,

14. ®(v1,...,7%) = n - from 2,13,

15. ©((¥1)* (0, @), ..., ¥)*(05,@)) =7 - from 12,14,

16. ®(¥y(a),..., ¥ (@) =n - from 11,15,

17. [J®P4,...,Ui](a) = n - from 8,16,

18, [JOWy,..., U](@) = [J()* Iy (W)Y, ..., (9)5](0;,@)- from 7,17

19. [JOV,..., V(@) = ([JPYy,...,¥])*(6), @) - from 18 - quasi-derivation with interpretation set A, in the
calculus of CalcEq,.

(b) Induction hypothesis. Let the theorem be true for functors: ®, ¥y, ..., ¥y, prove the theorem for the
functor § = [RO®U4,. .., Ug].

By the inductive hypothesis, we have:

i) for the set of argument words A, the sequence of argument words a1, ..., a,, for the functor ®, true V6 D
OsimpleFw. @.@,4, and A - &(a) = ()" (0, @);

ii) for the set of argument words A, the sequence of argument words as, ..., a,, 3,7, for the functor ¥y, true
VO O OsimpleFw, v, .,a,8,v,4, A F ¥i(a) = (V1)"(0,@, 5,7) ,..., for the functor ¥y, true V0 O OsimpleFw,v,,a,5,7,4
AF V(@) = ()" (0, 8,7).

Further, the proof will be carried out by induction on the construction of the argument word.

Induction base. Let us prove that for the set of argument words A, the sequences of argument words a;, . . ., an,,
true V0; O OsimpleFw,ja,n A F [ROU, ..., Ui](@, A) = ([ROVy, ..., UL])* (05, A).

According to the definition of *, we have: ([R®Uq,..., U;])* = [R(P)*(T1)*, ..., (Vk)*], therefore, it is necessary
to prove V0; D OsimpleFw.f,a,a A [ROV, ... U)(@,A) = [R(P)*(V1)*, ..., (Vr)*](05,A).

The following sequence of equalities:

29

L [R(®)"(¥1)", .-, (W)](y, T, A) = (®)"(y, T) - axiom,
2. [R(®)*(¥1)*, ..., (¥r)*](b), @, A) = (®)*(6;, @) - from 1;
[Equalities 1,2 are proved in the calculus CalcEq]
[Considering that 65 O OsimpleFw,j,a,A 2 OSimpleFw,o,a,4, We get |
3. [R®Yy,...,¥](@,A) = (@) - almost an axiom
4. ®(@) = (®)*(6;, @) - induction hypothesis,
5. [ROVy,..., Uil(a,A) = (®)* (05, @) - from 1,4,
6. [ROV,,..., Uil(a,A) = [R(P)" (Y1), ..., (¥r)*](6),,a,A) -from 2,5
7. [ROYy, ..., ¥il(a,A) = ([ROY,...,¥])* (6, @, A) - from 6 - quasi-inference under interpretation set A.
Inductive step. By the induction hypothesis, we have: for a set of argument words A, for any sequence of
argument words aq, ..., ay, 3, true
V05 O OsimpleFw,fa,s A F [ROV, ... Wi](@, B) = [R(P)*(¥1)*, ..., (¥r)*](6),, @, B);
ii) For the set of argument words A, sequences of argument words aq, ..., ay, 3,7, true:
V8 O OsimpleFw, v, @,8,v.0, A U (@, 5,7) = (¥:)*(0,@,8,7).
It is required to prove that for the functor f, for the set of argument words A, the sequence of argument words
ai, ..., 0n, Ba;, true
V05 O OsimpleFw,ja,8q; A F [ROVy, ..., Wi](@, Ba;) = [R(P)*(W1)*, ..., (¥r)*](6;,, @, Ba;).
Let’s compose a functional word according to the sets:
(AP ras, ayoronpe, = APy anan 8y UAT) P ran, waran s

(Ai)P[Ré\Pl,...,\Pk],al on.Ba; (Ai)P\I/i Qe Qi B,y U(Ai)P[Ré\PI,...,\Pk],al an.B? where P[R‘P‘I’l7---7‘1’1@]7(117---7(1",75(171 -

simple calculation of the functor [R®Tq,..., ¥;] on a sequence of argument words aq,...,ay, Sa;, Py, - simple
calculation of the functor ¥; on a sequence of argument words ag,...,an,, 3,7, we get OsimpleFw,f&,8q;> then
0SimpleFw,f,& 8a; = 0SimpleFw,v;,a,8,7,4 0SimpleFw.f,&,8q; =2 USimpleFw j&,8. Let’s take 05 O OsimpleFw,f,a,8q;

The following sequence of equalities:

1 [R(®)*(Wy)*, ..., (We)*](0f,@, B) = 7 - Calculate,

2. (¥;)*(65,@, B,v) = n - Calculate,

3. [R(®)* (U1, ..., (V)05 @, Ba;) = (U;)* (05,3, B, [R(®)*(T1)*,. .., (U4)*] (65, @, B)) - almost an axiom

30

5. (W0 (05, B, [R(D)* (1", .., (0)°) (01,0, B)) = (W,)"(6;,@, B,7)) - from 14,

6. (¥;)* (05, @, B, [R(®)*(¥1)*,...,(V)*](65, @, B)) =n - from 2,5,

7. [R(®)*(W1)*, ..., (Yk)*](05, @, Ba;) = n - from 3,6,

[Equalities 1,7 are proved in the calculus CalcEq]

8. [ROVy,..., ¥ (@, Ba;) = ¥(a, B, [RP¥, ..., Ui)(a, B)) - almost an axiom,

9. [RO¥4,...,V](a, B) = [R(®)*(T1)*, ..., (¥k)*](6s,, @, B) - induction hypothesis,

10.9,(Z, u,v) = (T, u,v) - axiom,

11. Vy(@, B, [ROVy, ..., V(@ B)) = ¥i(@, B, [R(P)*(¥1)*, ..., (¥r)*](05,@, B)) - from 9,10,

12. U(@, B, [R(®)*(¥1)*, ..., (¥r)*](65, @, B)) = ¥,(a, B,7) - from 1,10,

13. V(@ B,7) = (¥;)*(05,@, B,7) - induction hypothesis,

14. V;(@, B,[R®V4, ..., U](w, B)) = ¥,;(w, 8,7) - from 11,12,

15. V(@ B, [RO®Vq,..., V(@ B)) = (V)" (05, @, 5,7) - from 13,14,

16. U;(@, 5, [R®PVq,..., ¥;](w,B)) = n - from 2,15,

17. [R®Y, ..., ¥L](a, fa;) = n - from 8,16,

18. [ROVy, ..., Vi|(@, fa;) = [R(®)"(¥1)*, ..., (¥r)*](6;,, @, Ba;) - from 7,17,

19. [ROVy, ..., Vi](@, Ba;) = ([ROWYy,. .., ¥y)])*(05,, @, Ba,) - from 18 - quasi-inference under interpretation set
A, i.e in the calculus CalcEq,.

The remaining recursion axioms (15,16,17,20) are treated similarly.

Corollary 5.2. For any n - place functor ®, VA ,Va true AF [®(@) = *(Os (@), @)]
(WordM, E [®@(a) = *(O¢(a),@))).

2. For any n - place functor ®, VA , Va V60 D Og(a), true A - [d(@) = D*(0,@))
(WordM, E [@(a) = o*(0,@)]),

3. For any n - place functor &, VA , Vo, 8 V0 2 Og(a), true A d(@) =< Fd*(0,a) =7
(WordM, E ®(a) = 5 < WordM E o*(0,@) = j).

4. For any n - place functor ®, V& true WordM,, |= (©¢)*(Og (@), @) = O (a) -as equality of words (smallest
fixed point: V0 2 Og(@)[(Os)*(8,@) C 6] {V0 D Os(a)[Os(a) = (Os)*(f,@)]}, moreover, if Og(a) # A, then
dom(04(@)) = dom((04)*(0,@)) for any any functional word 6.

Theorem 5.3. For arbitrary n - place functor ®, for arbitrary argument words @, 3,7,

31

if WordM, = (©4)*(8,@) = v, then « is a function word.

Proof. The proof is by induction on the construction of the functor ®.

Theorem 5.4. For an arbitrary n - place functor ®, for an arbitrary set of argument words A, true
WordM, | Vavp[0s(a) = 8 = (0g)*(8,@) = BA LB C Al

Proof. For arbitrary argument words @, 8 we have WordM, = O4(a) = § < (04)*(0s(a),a) = S, then
WordM, = (©g)*(B,@) =8 A B CA.

Theorem 5.5. Suppose that for n - place functor @, for the argumentative words ag,...,a,, for a set of
argument words A, for the function word g is true WordMy = (04)*(8, a1, ...,) € BASB C A, then WordM, =
Os(aq,...,a,) C L.

Proof. The proof is by induction on the construction of the functor ®.

Basis of induction. ® - initial functor, for example U, then Oy = [JcIiU], then (Oy)* = [Jc*'B[JL]G],
then WordMy = (Ou)* (8, o) = c¢* (8,0, G(B, @) = |a|2aG (8, @)22(F c*(x,y, 2) = c(y, 2), see Note p.27).

Assume WordM, = (Ou)*(8,«) C f and 8 C A, then |a|2aG (8, a)22 C 5.

Let’s break down the cases:

a) G(B,a) = A, then B(a) = A, then a € A, then U(a) = A, then Oy (a) = |o|2022, given that
(Ou)*(B, @) = |a|2aG (8, @)22 = |a]2a22 C 3, then Oy (a) C B;

b) G(5,a) =1, then (o) =1, then « ¢ A, then U(a) = 1, then Oy () = |a|2a122, given that
(Ou)*(B, @) = |a|2aG (8, a)22 = |a|2a122 C B, then Oy (a) C 5.

For the rest of the initial functors the proof is quite clear.

Inductive step. 1). Let the theorem be true for k - place functor @, for n - place functors ¥y, ..., Uy. Let us
prove the theorem for the functor [J®Py,..., U;]. We have
F Oraw,,...v,](T) = Concat([JOs ¥y, ..., ¥;](T), (Concat(Oy, (Z),...,Concat(Oy, _, (7), Oy, (7))),...,), then

F (Opaw, .. wy)* (¥, T) = Concat([J (O) I} T (T1)*, ..., (¥4)*](y,T), (Concat((Oy,)*(y, T),
...,Concat((©y,_,)*(y,7),(0v,)*(y,T))),...,)%, then

WordM,, = (Opaw,,...,w,]) (B, @) = Concat([J(04) TP (T))*, ..., (¥4)*)(B, @), (Concat((Oy,)* (8, @),

.., Concat((O, ,)*(5,@),(0u,)*(5,@),..)-
Let’s (Oyw,...w,))"(8,@) C B C A, then [J(Oa) T (W1)", ..., (Wx)*](,) = (O0)* (8, (¥1)* (8,0, ..,

6see Application

32

By induction assumption we obtain O¢((V1)*(8,@),. .., (¥x)*(8,@)) C B, as well as
Oy, (@) CB,...,0q¢, (@) C B, then ¥y(a) = (V1)*(8,@),..., Yr(a) = (¥)*(3,a), then
Os((T1)*(8,@),..., (Tp)*(B,@)) = Op(¥1(a),... ¥k(a)), then Op(¥y(a),... ¥i(a)) C B, then
Concat([JOg ¥, ..., U;]|(Z), (Concat(Og, (Z),...,Concat(Oy, ,(T),Oy,(T))),...,) C B, then
Ouaw,,.. v, (@) C B.
2). Let the theorem be true for n - place functor ®, for n + 2 - place functors ¥y, ..., U. Let us prove the
theorem for n + 1 - place functor [R®Uy, ..., ¥y].
We have: F Orav,,....v,](T, A) = Os(T).
F Orow, ... w,] (T, Tny1a;) = Concat(Oy, (T, ny1, [ROVy, ..., Vi |(T, ny1)), Orow, ..., w,) (T, Tni1)),
..... v.)) (4,7, A) = (O2)"(y,7),
F (Orow, ... v,)) (Y, T, Tny10:) =
= Concat((0Ov,)" (y, T, Zni1, ([ROV1, ..., V) (¥, Z, Tny1)), (Oraw,,... . w,]) (Y, T, Zng1)), then
c) WordM, = (Oraw,,..v,])" (B, @A) = (Ba)" (8, @),
d) WordM, = (Ogew,,...v,])" (8,a,7a;) =
= Concat((0y,)*(8,@,7, ([ROV1,..., Ui])*(8,®,7)), (Oraw,....w,))" (B, 7))".
Case study (c¢). Let’s (0¢)*(8,@) C 8 C A. By the induction assumption we obtain WordM, = ©4(a) C 5,
then O (gaw, ... v, (T,A) C B.

Case study (d). Let’s (QOraw, ... w,]) (B, @ va;) € B C A, then

Concat((0y,)"(8,,7, ((ROVy,..., ¥k])*(8,@, 7)), (Orew,....w,))" (8, @ 7)) € B, then
(Orraw,,...,w,])" (B,a,v) C B, then by the induction assumption we obtain O(raw, ... w,(@,7) C B, then Oraw, .. v, (@,7) =
0 <= (Oraw,,...,v,]) (B, @,7)) = 6 uw 6 C . Further considering
[ROWy,..., Uk]) (@, 7)) = n <= ([ROV1,..., Vi])*"(Oraw,, . v, (@ 7),@,7)) =1 and Orsw,, . v,(@,7) C B, we
get [ROWq, ..., Ui))(@,7)) = n <> ([ROVy,..., T,])*(8,a,7),a,7)) = n, then
Concat((0y,)"(8,,7, ([R®Vy,..., ¥k])*(8,@, 7)), (Orew,....v,)" (B, 7)) =
= Concat((0Oy,)"(8,a,v, [ROV1,..., V](&,7)), Oraw, ... v, (@, 7))
We have (Og,)*(8,@,~, ([R®¥q,..., V)" (8,a,v)) C B, then (Og,)*(8,@,, [R®Vq,...,P:](@,v)) C S, then

by induction assumption, we obtain Oy, (a,~, [R®V4, ..., Uk](a,vy)) C S, then

COIICElt(@q/i (a»% [Rq)\Illa R \Ilk](av 7))) @[R<I>‘1/1,...,‘I/k](aﬂ 7)) - 57 then @[RQ\I’h...,\I’k](aa ’yaz) c 5 and ﬂ C A. The

"see Application

33

remaining axioms of recursion (15,16,17,20) are considered similarly, then
VIvy{[(Os)*(y,T) =y Ay C U] = O4(T) C y} € Th(U)(see p.39).

Corollary 5.6. For an arbitrary n - place functor @, for an arbitrary sequence of argument words aq, ..., ay,,
for an arbitrary set of argument words A, There is only one function word 3, such that
WordM, E Og(ai,...,a,) = 5 <= WordM, E (©s)*(8,a1,...,a,) = AL C U, then
vzAly[(©e)*(y,7) =y Ay C U] € Th(U). vz3ly{[0s(7) =y = [(Os)*(y,T) =y Ay C U]} € Th(U).

Note. Let ® be an arbitrary n - a place functor of the alphabet £ (U). A simple calculation of the functor @
on the sequence of argument words @ can be decomposed into two calculations: a simple calculation of the functor
Oy of the alphabet Z(U) on the sequence of argument words @ and then a simple calculation of the functor (®)*
of the alphabet % on the sequence of argument words O4(a),@. Moreover, the domain of the functional word
©g (@) consists of those and only those argument words that were used in a simple calculation of the functor ®
on the sequence of argument words @ and for any extension of the functional word O¢(@) C 6, not necessarily
consistent with the oracle set A, the result of a simple calculation of the functor (®)* on the sequence O (@), @
will coincide with the result of a simple calculation of the same functor (®)* on the sequence 6, @(analogous to
the "Use Principle"("Use Principle") of oracle computing, e.g. on Turing machines) and, as noted earlier,
(Bg)*(8,@) C 0 - "Use Principle" will play an important role in the future when transferring (spreading) this
fundamental concept, associated with calculations in the standard model, to non-standard models.

If in a simple evaluation of the functor ® on a sequence of argument words @ each interpretation axiom of
the form U(a) = A is replaced by an equality of the form G(|a|2a22,«) = A (replaced by an equality of the
form G(0,a) = A, where |@|2022 C), an axiom of the form U(a) = a; is replaced by an equality of the form
G(|o|20a122, o) = ay (replaced by an equality of the form G(6,«) = ay, where |a|2aa;122 C), then the resulting
sequence of equalities will be a quasi-inference that does not contain interpretative axioms, and this quasi-inference
can be easily transformed into an simple inference of .Z, by replacing the indicated equalities, for example, their

simple calculations.

Bounded formulas. Universal functional word.

Let us define the notion of a bounded formula ¥ and accompanying this notion, sets denoted as Bwpy, Vwpy.
1) Any quantifier-free formula A is a bounded formula, Bwpy = 0, Vwpa = 0;

2) Let A(z,z1,...,Zn;Y1,-..,Yk) - bounded formula, P(z1,...,z,) - word polinomial, z ¢ Vwp,4, then formula

34

B = 3z[|z| < |P(x1,...,20)|&A(z, 21, ..., Tn; Y1, .- -, Yk)] OF

B =Vz[|z| < |P(z1,...,2,)| D A(z,21,. .., Tn; Y1, ..., Yx)] - bounded formula, P(z1,...,z,) € Bwpa,

{z1,...,2,} C Vwpa, variables y1, ...,y - are called the parameters of the bounded formula in question, this list is
separated by a semicolon and may be empty. We will denote this formula as El,lzp(acl """ gc")lfl(z7 Tlyee s TniYly .oy Yk))
or VLP(wl""’w’L)IA(z, Tlyeoos TniYls-- o Yk)]-

A word polynomial belonging to the set Bwpy is called a bounding word polynomial.

A bounded formula A is called an 3(V) bounded formula if it has the form
Ellzlljl(i)‘, . EI‘ZI,:;’“(E)“B(Zl7 2 T YLy e s Yk) (V‘zlil(f)l, .. .Vlzl:k(f)lﬂ(zl, 2k, T3 Y1, -+ -5 YUk)), Where
B(z1,..-2k,T; Y1, - - -, Yi) -quantifier-free formula.

Note. Vo Va VP(Z) :

1. Word, = 3 @o(@,u) = A < AP DN (@) (04 (@,), @,u) = A,

2. Word,, = V¥ @@ (@, u) = A o viF (@) (04 (@, u), @, u) = A,

Vg

3. Word,, = V¥ @og(@,u) € 8= EF @ 0@, u) = A < w8 C = AT DN(@)(0,a u) = A},

4. Word,, =¥ @@, u) C 8= (vVF Plo@, u) = A < V3 C 0= VF DN (@) 0,a,u) = A}

Consider the following word function: Order(«) is a word § such that the number of words preceding the word
B in the lexicographic ordering is equal to |«|. In [1 p. 217] that this word function is a primitive recursive word
function, then for the word function Order there exists a one-place functor Order of the alphabet ., which is true:
Vo, B]Order(a) = 8 < + Order(a) = f].

Let us write out the defining equations for the functor Order:

1). Order(A) = A;

2). Order(S;(«)) = R(Order(«)), where

a). R(A) = ay;

b). R(S;(a)) = Sit+1(a), where 1 < i < p;
Note. For each set of p - alphabetic words, there will be its own p - alphabetic functor Order,. From the

context it will be clear which p - alphabetic funtor is meant. The functor Order has the property:

1. WordM [= Vaf[|a| = |8] D Order(a) = Order(f)];

35

2. At k> 2Ap>1WordM = |Order, (k)| < k;
pn+1 -1
(

L Hy=1,...,1.
))

3. For each p > 2 true Order, 1
— ——

n+l—times

4. For each p > 2 true WordM |= Vz[|z| > 2 = Order,(p/*l) = (p —1),...,(p — 1) p);

|z|—1—times

5.According to the defining equalities given in [1 p. 217], it follows that this functor belongs to PPr, i.e.

Order € PPr.
p|P(T)|+1 -1
From (3) we get WordM = Order,(——)= 1,...,1
p—1 S—
|P(Z)|+1—times

If for argument words «, 3 it is true that WordM = Order(a) = 3, then the argument word |«| is a natural
number, we will call it the Godel number of the argument word 8 and denote it by 757 = |a|.

Obviously, for any argument word /3 there exists a natural number « such that

T67 = a(WordM |= Order(a) =), then WordM |="(p — 1),...,(p — 1) p? = pl*l, for |z| > 2.

|x|—1—times
With each n > 1 -place functor ® we associate a functor, denoted as ©gy, satisfying the following defining

equalities:

Oay(T,A) = Oa (T, A);

O©4 v (T, Sk(z,)) = Concat(O4 v(Z,), O (T, Order(Si(z,))))-

That is right: 1. If ® € PPr = Ogy € PPr;

2. WordM,, = Ve, 8,%[|a| = |8] = Os v (T, @) = Oa v (T, 5)];

3. WordM,, = V2V, (04 (%, y) C Qo v (T, p|zp+11_1

Let us define a universal function word denoted as Oy.

Defining equalities:

Ou(A) = A,

Ou(aa;) = Concat(Oy(a), c(Order(a), U(Order(w)))). According to the definition, the functor Oy belongs
PPr alphabet %.

We have:

(©0)*(y, A) = A,

(Oy)*(y, aa;) = Concat((Oy)*(y, o), c(Order(«, G(y, Order(a)))),

Ya Y0 O Oy(a)WordMy | [Op(a) = 8 < (Oy)*(0, @) = 5], in particular
WordM, E VaVy[Oy(z) = y < (Oy)*(Ou(x),x) = y).

Let 8 be a function word such that for some word « it is true

36

WordM, = (Op)*(8,a) C 8 C A, then WordM, = Opy(a) C 8. We have
vvy{Fw(y) = [[(Ov)"(y,7) Sy Ay C Ul = Ouy(7) C y]} € Th(U).
Note. For each p, its own p is defined - an alphabetic universal function word Q.
True:
1. WordM, = Ve, S[la| = |5] < Ou(a) = Ou(P)];

2. WordM, = Vo, B|a| < || <= Ou(a) C Oy(B)].
plvl+1 —1

3. WordM, | Va{|z| < [y| = [Ou(—— 1

)(z) = A < z € A}, where A - set p - alphabetic argument of
words.

4. WordM, = Va[Opy(a) = Og,(a)], using Goodstein’s rule, it can be proven that F Oy(z) = Og, ().

Let given n +m - ary(n > 1,m > 1), p - alphabetic functor ® € PPr, interpretative p - alphabetic set of

argument words A be given. For this functor, there exists a word polynomial P(x1,...,Z,,y1 ... Ym) such that for

Va, B, in a simple calculation of the functor ® on @, 3, all used words have length not exceeding |P (@, 3)|, then
pIP(&B)IH 1

p—1
Next, let |v1] < |P1(@)],...,|¥m| < |Pm(@)|, then in a simple calculation of the functor ® on @,7, all used

Os (@, f) € Oy(

PP@EPL@). Pru(@)|+1 _
words have length at most |P (@, P1(@),..., P, (@))|, then we get O (a,7) C Oy(

p—1
Next, consider a formula of the form P @) [®(@, z) = A], then for any word ~ such that |y| < |Py(@)|, true

p\P(aPl(H))Hl -1
p—1

Os(a,v) C Oy(), then

pP@EPI@)IH1 _

WordM,, = {3F"@le (g, 2) = A & IP @) (0y(:
.

Similarly, reasoning, we get WordM, {HLEZ(B”HLI?(B”@(B, z21,22) =A&

—- — [P(8,P1(8),P2(8)+1 _ 1
N 3|Z1;’2(5)|3|Z1131(5)|(CI))*(@U(p -

Proposition 5.7 . Let n +m(n > 1,m > 1) be a place p - alphabetic functor ® € PPr, an interpretive p -

)737 21, Z2) = A}

an alphabetic set of A argument words, and word polynomials P1(Z),...,P,,(Z), then you can construct a word
polynomial P(Z), which

WordM,, = {35 @1 IP@lgz 2 2 =AeIP@ aLf’nm(f)'(q>)*(@U(pP(;)|_+111),x, 2. Zm) =
A}

Likewise.

Proposition 5.8 Let n +m(n > 1,m > 1) be a place p - alphabetic functor ® € PPr, an interpretative p -

37

an alphabetic set of A argument words, and word polynomials P;(Z),...,P,,(T), then we can construct a word

polynomial such P(Z), that
p\P(E)|+1 -1

p—l ,f,Zl,...,Zm):

WordM,, = {v05 O vl @Mz, 2, 2,) = A & o V@ VPl @)+ (0y(

A}
Basic complexity classes of computational complexity

The set of B n - of argument words, given the interpretation of the oracle symbol U by the set of argument
words A, is called polynomial, if there exists (can be constructed) such a quantifier-free formula B, which is built
from functors belonging to PPr, which is true Va[WordM, E B(a) < @ € B].

The class of all polynomial sets with respect to the set A - argument words will be denoted by Ps(U). This
class of word sets is closed with respect to Boolean operations: intersection, union, additionsr, and hanging of the
limited existence and universal quantifier (3,V) over subwords.

A set of B n - of argument words is called a set of type >, with respect to some set of argument words
A, if for some 3 a restricted formula B(Z) whose quantifier-free formula is built from functors belongs to PPr,
Va{@ € B <= WordM, = B(a)}.

Let co — NP, (U) = {C : C € NP,(U}. The set belonging to the class co — NP (U) will be called a set, of

type [[7]-

Part VI
Complexity classes and elementary model theory

The known relations between the introduced classes:

a). There is an oracle A, such that P, (U) = NP, (U);

b). There is an oracle B, such that Pg(U) # N Pg(U);

¢). There is an oracle C, such that Pc(U) # NPc(U) u NPc(U) = co — NPc(U);

d). There is an oracle D, such that N"Pp(U) # co — N Pp(U);

e). There is an oracle E, such that Pg(U) = N'Pg(U) () co — N Pg(U);

f). There is an oracle F, such that Pp(U) = NPr(U) [co — NPr(U) and N'Pr(U) = co — NPg(U);
g). There is an oracle G, such that Pg(U) = NPg(U) (N co — NPg(U) and NPg(U) # co — NPg(U);

h). There is an oracle H, such that Pg(U) # NPr(U) [co — NPy(U) and NPg(U) = co — NPy (U)

38

i). There is an oracle I, such that Pr(U) # NP1(U) () co — NP1(U) and NPr(U) # co — NP;(U).

Every specified ratio in the non-relativized version is a problem.

The main concepts and considered theorems in this section are borrowed from [8-13] and transformed accordingly.

Let .#(U) be some set of functors containing the original functors.

A first-order language, defined by a given set of functors, and denoted as £z), consists of the function symbols
fa, for each functor ® € .%(U) whose locality is equal to the locality of the ® functor, constant symbol A, basic
predicate symbol < .

Note. As a rule, the function symbol fg will be denoted as ® and interpreted as a function. Constant symbols
will also continue to be denoted as aj. A language £z is called k - alphabetic if the set of functors .7 (U) is k
is alphabetic.

If the set of functors .% (U) consists of the entire set of word primitive recursive functors, then the language
L zuy will be denoted as L(U) L.

For each fixed set of p > 2 -alphabetic argument words, we define the following theories:

Th = {A : WordM = A- proposition of language L} + Vzy(z <y = |z|—|y| = A).

Th - complete theory in language L.

Let us define a theory in the language £(U), denoted as Th(U):

Th(U) = {A : For any set of argument words A WordM, = A, A - proposition of language
L(U)} + Vay(z < y = |z|=y| = A).

Th(A) = {A: WordM, = A, A - proposition of language L, } + Vay(x <y = |z|—=—]|y| = A)

Th(A) - complete theory in language £4. Takes place Th C Th(U) C Th(A)

Theorem 6.1. Let 2’ = Th. Let u: A’ — {A,1}, then the model 2’ of the language £ can be enriched to a
model 2 of the language £(U), such that A = Th(U), ¥b € A’ u(b) = Uy(b) and for any formula /(%) in L, for
Vae A it A = o/ (a), then A = o (a),

Proof.

JokasareybcTBO.

Let’s create a theory Th(2l;,) (see [9, p. 130]). Let’s interpret the oracle function U:

A, if u(a) = A;
Ula) = for each element a € A’ (S1(A) = a; = 1)

Si(A), if u(a)=1.

39

Next, we construct the theory Th(2;,) + Th(U) + {U(c,) = b: a € A’}. This theory is either consistent or
not. Let the theory Th(2(,,) + Th(U) 4+ {U(c,) = b: a € A’} be inconsistent, then

Th(U) - A U(ca,) =b; D=~ A\ BjlCay,---1¢a,), then Th(U) - A U(yi) =b; D= A B(y1,-- -, un).

i<k j<m i<k j<m
We have: the theory Th is a complete theory in language £, A’ |= Th, and A’ = A %;(a1,...,ax), then there
j<m
exist distinct argument words o, ..., ay such that WordM = A %,(aq,...,q), then
j<m
Th(U) - A U(ay) =b; D = A\ Bj(ai,...,ax). Let’s interpret the oracle U: U(w;) = b;, for other argument
i<k j<m

words 8 we put U(8) = A. Let us denote the resulting interpretation as A, then WordM, [Th(U) and

WordM, = A Ul(a;) = b;, then WordMy = -~ A %j(a,...,a;). Theformula A\ %;(aq,..., o) is a formula
i<k j<m j<m

of the language £, then WordM = - A A;(ai,...,a4) is a contradiction.

j<m

Let 20 = Th(,,) + Th(U) 4+ {U(a) = b: a € A’}, then for any formula <7 (Z) in L, for Va € A", if A’ = </ (a),
then 2 = &7 (a).

Let us introduce the following important concept.

Definition. Let 2 be a model of the language £(U) (£) and @ € A . A polynomial cut defined by a set of
elements @ € A is such a model (algebraic system), denoted as 2lz supported by the set
Ag = {b : for some word polynomial P(Z) 2 = |b| < |P(a)|}, and the signature consists of all those functions fg
for which the functor is ® € PPr.

That’s right: 1. g C A[7 p.36].

2. Va [Ag E A(a) < 2 | A(a)], where A(Z) - bounded formula of the signature PPr.

By Ay - we will denote the diagram of the model 2, in particular Ay is the diagram of the polynomial cut 2.

Note. Let’s 2’ - reduct of the model 2 in lanquaqe £(U) to the model in language £, we have Ags C Ag, in
in particular Ay, C Ay, considering Corollary 5.2, page 26, by the diagram Agy, we can recover the diagram Ay,
in this case, it is necessary to know the graph of the oracle U, in the model 2. The diagram Ay contains only
traces of oracle computations, the full information about oracle computations is contained in the diagram Ag, for
example, if A = O (b) = ¢, then A’ |= (Og)*(c.b) = ¢, if [Oa(b) = ¢] € Ag, then [(Og)*(c.b) =] € ACTAS

Proposition 1. For an arbitrary n + 1(n > 1) - ary functor ®, for an arbitrary model 2 of Ly such that
A = Th(A), for an arbitrary set @ € 2, for an arbitrary word polynomial P(Z), for an arbitrary function word b
such that A = VIF @04 (@, u) C b is true:

1L AE=VIE@o@) = A < A =V @(@)*(b,a,u) = A.

40

2. %z =VE@o(@,u) = A <= A= VE@ (@) (b,a,u) = A.

Proposition 2. For an arbitrary n+ 1— place functor ®, for an arbitrary model 2 of Ly such that 2 = Th(A),
for an arbitrary sequence of elements @ € 2, for an arbitrary word polynomial P(Z) , there exists a functional
element b with the smallest length such that VLP(E”@@(E, u) C b.

Note. Such a functional element is not the only one, but for any such functional elements b, c true |b| =
|c| A dom(b) = dom(c) A Vz[z € dom(b) = b(z) = c(x)].

Any extension of the polynomial cut Az C 9t = Th(A), for any functor, any word polynomial P(Z), produces
the following relations:

1. Az C Mg;

2. Vb € Ag true Og(b)y = Op(b)on;

3. Vb,c € Ag, if A = (®)*(O4(b),b) = ¢, then Vf € M, sush that O (b) C f,true M = ()*(f£,b) = c -
"Use Principle" when expanding models;

4. Let b € Ag. Let cg - the smallest functional element in length, such that 2 |= VLP(E”@@(E, u) C ey

Let doy - the smallest functional element in length, such that 9 |= VLP(E)|@¢(5, u) C dop. Then:

a). dom(cy) C Ag A dom(dsn) C Mz A ey C don;

b). If |e| < |P(b)| and A = ®(b,e) = h, then A = (®)*(ca, b, e) = h u M |= (®)*(dom, b, €) = h;

c). fAE VLP(E”(@)*(CQ[,E,U) = A, then for any |f| < |P(b)| we get 2 = (®)*(ca,b, f) = A, then M =
(®)*(don, b, f) = A, then M = Vu(|u| < [P(b)| Au € Ag D (®)*(dom, b,u) = A. There is also, if M = Vu(|u| <
IP(B)| Au € Ag O (®)*(dan, b,u) = A), then A = ViIE®@N(@)*(co, b, u) = A.

"Use Principle" when expanding models.

Theorem 6.2. Let A be an arbitrary oracle. NP(A)) = co — N'P(A) if and only if for any bounded 3 formula
A(z) of signature PPr(U) there exists a bounded V formula B(z) of the same signature such that
Th(A) k- Vz[A(z) = B(z)].

Theorem 6.3. Let A be an oracle set, A(Z) be a bounded V formula of the signature PPr of the language
L(U). The following conditions are equivalent:

1. For any model 2 = Th(A), for any @ € A, for any b € A5, any model 9 = Th(A) such that 2z C 9, if
2 = A(b), then M = A(b).

2. For a formula A(T) there exists a bounded 3 formula B(Z) of the language L(U),

41

such that Th(A) = VZ[A(T) = B(T)).

Proof. We will prove that (1) implies (2). The idea of the proof is borrowed from [8 p. 156], [9 p.187-188].

If the formula A(Z) is such that Th(A) = VZA(T), then Th(A) = V(Z[A(Z) = B(T)], where B(Z) is a bounded
3 formula, such that Th(A) = VZB(T).

Let the formula A(Z) be such that Th(A) ¥ VZA(Z)(1).

Let’s I'(¢) = {©(¢) : Th(A) = - A(Z) D ©(7)}, where ©(Z) - bounded V formula, ¢ - new constant symbols.
From (1) we obtain that Th(A) + I'(¢) - consistent theory. Let’s prove it Th(A) 4+ I'(¢) | —.A(¢). Let’s
A = Th(A) +T'(c), c € A. Let Agy_ - be a diagram of the model 2Az.

Set of sentences Th(A) + Ag, + —A(€) - consistent or inconsistent. If Th(A) + Ag + —A(¢) - inconsistent,

then Th(A) + Ag_ = A(¢), then Th(A) + A A(¢,d) |= A(e), where A;(C,d) € Agy_, then

i<k
Th(A) = é\k Ai(@,d) D A(e), then Th(A) = ~A(@) D - é\k A;(c, d), then Th(A) = Vavy[~A(T) O - é\k Ay, 7)],
then Th(A) = VZ[-A(Z) D Vj- _é\k Ai(T,9)](2)-

For d, there exist such word polynomials P(¢), that |d| < |P(¢)|. From(2) we obtain
Th(A) £ Va[~A@) > VE@ 5 A A7, 7)), then VP@'o A A,@5) € T(e), then 2% = VPElo A A;(2,7), then
i<k i<k i<k

A | = A\ Ai(c. d) - contradiction, hence set sentences Th(A) + Ag(_ 4+ —A(C) - consistent.
i<k C

Let’s 9 = Th(A) + Ag + -A(T), then we get Az C MM and M = —A(T), then A E —A(T), consequently

Th(A) + T'(@) = ~®(c), then Th(A) = A ;(2) D ~A(T), where Q;(7) € I'(c), then

Th(A) & é\ Q;(7) D ~A(Z).)
We have Th(A) = ~A(Z) > A ;(7), then Th(A) E - A(Z) = A A;(), then

ThA) =~ A 9,(7) = AGE).

Let us pr:)ve that (2) implies (1). Let 2 = Th(A), @ € A, b € Az, M = Th(A), such that Az C M and
2 = A(b).

We have: for the formula A(Z) there exists a bounded 3 formula B(Z) of the language £(U),
such that Th(A) E VZ[A(T) = B(T)], given A = Th(A), we obtain 2 = VZ[A(Z) = B(T)], then
2 = A(b) = B(b), taking into account A = A(b), we get 2 | B(b), then Az = B(b), taking into account
that B(F) is a bounded 3 formula, Az C 9 and b € Mg, we obtain 9 = B(b). From M | Th(A) and
Th(A) = VZ[A(Z) = B(T)] we get M = VZ[A(T) = B(T)], then M = A(b) = B(b), then M |= A(b).

Note. A similar theorem holds for the theory Th in the language £ and for the theory Th(U) in the language

42

L(U).

Theorem 6.4. For any oracle A, any bounded V formula A(Z) of language £(U) signature PPr, the following
conditions are equivalent:

1). For any model 2 = Th(A), any elements of @ € A, any elements of b € Ag, if 2z = A(b), then for any
model B D 2z such that B = Th(A), true B = A(b).

2). For any model 2 = Th(A), any elements of @ € A, any elements of b € Ag, if 2z = A(b), then
Th(A) + Ag_ A(b).

3). For the formula A(Z) there is a bounded 3 formula B(Z) of signature PPr such that
Th(A) F VZ[A(T) = B(T)|(equivalent to WordM, = VZ[A(T) = B(T))).

Proof. The proof of (1) < (2) is quite simple. Let us prove that from (3) follows (1).

Let 2 = Th(A), @ € A, b € Az and 5 | A(b). Ilycts B D g, such that B = Th(A). For some bounded 3
formula B(7) signature PPr we have Th(A) - VZ[A(T) = B(Z)], then B |= A(b) = B(b). Suppose that B = -A(b),
then B = —B(b), given B D A and the fact that ~B(ZF) is a V formula of signature PPr, we obtain 2z = ~B(b),
then 2 = —B(b), given that A = Th(A) and Th(A) + VZ[A(Z) = B(Z], we obtain 2 = A(b) = B(b), then
g = A(b) = B(b), taking into account Az = A(b), we obtain Az = B(b), we get a contradiction, then B = A(b).
This (1) = (3) follows from Theorem 6.3.

Note. A similar theorem holds for the theory Th in the language £ and for the theory Th(U) in the language
L(U).

Using Proposition 1 and Theorem 6.4, we can prove Theorem 4.5 in [11 p.469] quite simply.

Theorem 6.5 Let the second point of Theorem 6.4 be satisfied for the theory Th in the language L, for any
bounded V formula of signature PPr.

Let 2 = Th(U), @ € A, b € Az. Let the formula VLP(W@(E y) = A be such that 2 = VLP(E)lé(E, y) = A, then
Th(U) + Ag - VF®le(B, 1) = A.

Formula V[V @0(z, 2) = A = VIF@(®)*(@y(expp(|P(2))]), Z,u)) = A], belongs to theory Th(U), where

P(Z) - is a suitable word polynomial, then

Th(U) - vz[vF @ oz, 2) = A = VIE@(®)* (O (expp(|P(Z)])), 7, u) = A], then

Th(U) F [VFOla(B, 2) = A = VPP (@) (0y(expp ([P (B)))), b, u) = A](1). Let us calculate [P(B)| = dy,

expp(di) = da, Opy(dz) = ds, then A’ |= VLP(E)l(CI))*(dg,E, u) = A, where 2 is a reduct 2 of languageL(U) to L,

43

then Th+ Ag VLP(E)I(QJ)*(dg,B, u) = A, taking into account equality Oy(ds) = d3, we get

Th + Ag[%;d2+{em(d2):d3} F VLP(E)l(tI))*(@U(dg),B, u) = A, considering (Oy(dz) = d3) € A, , We get

Th + Agg,, V!MP(E)‘((I))*((_)U(dQ)’E’ u) = A. Considering Th F VaVylexpp(z) = y = EXPp(z,y) = A] and
Th F Vz2VuVz el (Z,v) NEXPy(z,v) = A D &/ (Z, expp(x))], we get

Th + Ag,,, - VLP(E)l(@)*(@U(expp(dl)),g, u) = A, considering |P(b)| = dy, we get

Th + Aa,,, F Y P (®)*(Oy(expp([P(B))). b, u) = Al, considering (1), we get

Th(U) + Ag., +VIP®1®(B,y) = A, then Th(U) + Ay - VIF®3(B, 1) = A.

iy

Theorem 6.6. If for a theory Th for any bounded V - formula of the language £ the first point of Theorem
6.4 is satisfied, then for any oracle A, for any bounded V - formula of the language £(U) for a theory Th(A) the
first point of this theorem is also satisfied.

Proof. Let ® be an arbitrary n + 1 - ary functor, signature £(U). Let P(zy,...,x,) be an arbitrary word
polynomial. Let us prove a theorem for a formula of the form V‘Zp(xl""’x“)‘@(z, 1y Xn) = A

Let 2 =Th(A), @€ A, b€ Ag, A V'ZP(E)l[@(z,E) = A], let’s prove that
V¥ 9 = Th(A), such that M D A is true M = VEOS(B, 2) = A].

Let 2l' be the restriction of the model 2 of the language £(U) to a model of the language L.

Let’s make a theory Th(2l/,) ® (see [9, p. 130]), next we will make up a theory Th(2ly) + Aoy,
where MZ - reduct of the model Mgz in language L£(U) to the model in the languge L.

This theory is contradictory or it is not. Suppose that the theory Th((,) + Agﬁ% - is contradictory, then
Th+ A Ai(e, f) D = A\ Bj(e,h), where € € Ag, Ai(e, f) € Th(,), Bj(e,h) € Agnr, then
Tht A Ai(e, f) D = A Bj(€,), then Th= A Ai(e, f) D VZ— A B;(e,Z), then A’ = Vz— A B;(e,T).

For h, there exists such a word polynomial Q(%) that || < |Q(@)], then 2 |= V‘jQ(E)‘ﬁ/\ Bj(e,T), then A =
V%Q(E)lﬁ A\ B;(€,), then, according to Theorem 6.4 (1) for the language £, given 2L C ML, we obtain M, =
VlfQ(E)lﬁ A B;(e,T) is a contradiction, hence the theory Th(2ly) + Aoy, is non-contradictory.

Note that in the models 21" and 9’ there are traces of oracle computations of the oracle Uy and the oracle Ugy

Let us construct an interpretation of the oracle symbol U:
UQ[(G’)) Zf ac Aa
U(a) =
Ugn(a), if a € Mg
Let us denote the obtained interpretation as B. According to Theorem 6.1. we get 91 = Th(U) + Agr + Agp.

8We can take a theory Th + Ag

44

We have:

LaCc,’, meCcn,'.

2. For the interpretation Ay of the oracle symbol U in the model 2 and for the interpretation Bsy, of the oracle
symbol U in the model 91y, it is true that Ay C By, (Va € A Ug(a) = U, (a)).

3. For the interpretation Agy_ of the oracle symbol U in the model Mg and for the interpretation By, of the
oracle symbol U in the model 91y, it is true that Agp_ C By, (Vb € Mg Ugn(b) = Uy, (b)).

4. For any functor ® in £, Vb € AVe € AA | &) = ¢c <= N = &) = ¢, and (1) is used, then
Vbe AVee AVd € AAE (Op)*(c,b) =d < Ny | O%(c,b) = d.

5. For any functor ® in L(U), Vb € AVe € AU | Og(b) = ¢ < M | Op(b) = ¢, using (2,4), Theorem 4.3,
Theorem 4.4, Theorem 5.1, and Theorem 5.5:

A= Op(b) = cq = A = (Oa)*(ca.b) = ey Acy C Ag, then Ny = (Op)*(ca.b) = cy A cg C By, then
N, = Op(b) = dy, C ca, then Ny = (Og)*(ca.b) = Os(b) = dm,, then My |= O (b) = dm, = car.

6. For any functor ® in £L(U), Vb€ AVce€ AU ®(b) = c < M | (@) = b, using (4,5) and Theorem 5.1.
Thus, we obtain 2 C My, then My | Ay, then 9y = Th(U) + Ay, Taking into account theorem 6.5, we obtain
o VPO (B, 2) = A

7. For any functor @ in £ of signature PPr, it is true that
Vb € Mg Ve € Mg Mg = @(b) = c <= My |= ®(b) = ¢, and (1) is used, then it is true that
Vb € Mg Ve € Mg Vd € Mg Mg = (Os)*(c,b) =d <= Ny = O%(cb) =d

8. For any functor ® of the language £(U), of signature PPr(U), we have
Vb € Mg Ve € Mg Mg = Os(b) = ¢ == M |= Os(b) = ¢, using (3,7), Theorem 4.3, Theorem 4.4, Theorem 5.1,
and Theorem 5.5.

9. For any functor ® of the language £(U), signature PPr(U), it is true
Vb € Mg Ve € Mg Mg = ®(b) = c <= M = ®(b) = ¢, using (7,8) and Theorem 5.1. Thus we obtain Mg C M.

We have: 9, = VIP®l@ (b, y) = A, Mg C 9Ny, then Mz = VIF D@8,), then M = VIE® 3(b, y).

Continue. Let A(z,z1,...,z,) - arbitrary quantifier-free formula signatures PPr. For this formula, one can
construct such n 4+ 1 - ary functor ® 4, that
Th(U) - Vz,Vz[A(2,T) = P4(z,%) = A](Theorem 1.6), then for any word polynomial P(Z) true

Th(U) F vz 3 @ A(z,7) = 3F@/[D,(2,7) = A]], and also

45

Th(U) F vz[vF @ A(z,7) = VIE@ (D, (2, 7) = A]], then

Th(U) - VP® 42, 8) = VP ®[d 4 (2,b) = A]. Let A = VP A(2,B), then

A = VPO, (2,5) = A, then M = VIF®I[@ 4 (u, b) = A, then M = VA2,) = A.
For a formula that has two or more restricted quantifiers V, the proof is similar.

End of the proof of the theorem .

The main idea in the proof of this theorem is the application of the ”Use Principle” and the assumption that
polynomial properties are preserved for models of the theory Th when they are extended to models of the same
theory.

Theorem 6.7. There exists an interpretation of the A functor U such that NP(A) # co — NP(A), then the
theory Th(A) fails the third item of Theorem 6.4.

Proof. Consider a formula of the form E‘yx‘[|x| = |y|&U(y) = A]. For this formula, one can construct an n -
alphabetical interpretation of the A functor U such that, for n > 2, for any V bounded formula A(x,Z) signatures
PPr is true WordM,, (£ 32vz (3 [|z] = |y|&U(y) = A] = A(z,7)].

The construction of the set A can be found in [12, p. 437].

Note. For the calculus CalcEqu, it is very easy to construct the set A.

Corollary. NP # co — N'P.

Proof. Let’s use Theorems 6.2 - 6.7.

P.S. I have proof of the following, not a very simple statement: (NP ()co — NP) #£ P.

46

References

1. Manbnes A. 1. Anropurmbl u pekypcusabie dynkiuu. M., 1986. c. 368.

2. F. W. v. Henke, K. Indermark, G. Rose, K. Weihrauch. On Primitive Recursive Wordfunctions. Computing,
vol 15, 1975, p. 217-234.

3. Manwu H.A. Berynurenbras crarbsi. O peKypCHBHOM MaTEMATHICCKOM AHAJIN3E U HCIUCTICHUH apU(DMETHIECKUX
paseucts P.JI. I'yncreitna - B xu.: P.JI. T'yacreitn. PexypcmBubll Maremarmdeckuit ananms. V3mareascTBo
M."Hayka", 1970. c. 7-75.

4. R.L. Goodstein. Recursive number theory. Amstrdam, 1957. p. 187.

5. H. B. Curry. A formalization of recursive arithmetic. Amer. J. Math. v.63 p. 263-282, 1941.

6. Cobham A. The intrinsic computational difficulty of functions. Proc. of the 1964 International Congress for
Logic, Methology, and the Philosophy of Sciens, North Holand Publishing Co., Amsterdam, p. 24-30.

7. L, J. Stockmeyer. The polinomial-time hierarchy. Theoretical Computer Science vol 3 1977, p.1-22.

8. J. Donald Monk. Mathematical Logic. Springer - Verlag, New York, Heidelberg, Berlin. 1977. p. 515.

9. C. C. CHANG, H.J. KEISLER. MODEL THEORY. STUDIES IN BOOK AND THE FOUNDATIONS OF
MATHEMATICS. V. 73, 1973.

10. J. BARWISE. HANDBOOK OF MATHEMATICAL LOGIC. NORTH-HOLLAND PUBLISHING COM-
PANY AMSTERDAM NEW YORK OXFORD, 1977.

11. Book R.V., Long T.J., Selman A.L. Quantitative relativization of complexity classes. STAM J. Comput. vol
13 No 3 August 1984, p. 461-487.

12. Baker T, Gill J. Solovay R. Relativization of the & =74 & Question. STAM J. Comput. vol 4 December

1971, p. 431-442.

47

Application

Let us construct a k& > 3 - place functor of the form [JConcatI}{[JConcatl} ... [JConcatI{ IF]...]. For this
functor in the calculus CalcEq we derive the equality

[JConcatI}[JConcatl} ...[JConcatI} ,If]...](z1...x;) = Concat(x;, Concat(xs, ... Concat(r,_1,7k)...)).

Let Concat® = [JConcatI}[JConcatl}...[/ConcatIf ,I¥]...], at k > 3, then - Concat®(zi,...z;) =
Concat(x1, Concat(xs, ... Concat(xy_1,2t)...)). When k = 2, we get Concat? = Concat, - Concatz(xl, Xg) =
Concat(z,z;) at k = 1 Concat’ = I}, - Concat'(z) = .

We have ([JConcatIf 1}])* = [J(Concat)*Ty T (IF_)*(I})*] = [J[JConcatT3I3 I} T (1 _)" (18)*] =
[JConcat(I}_,)*(If)*] = [JConcatI; "' I;11], then

(Concat”)* = ([JConcatI¥[JConcatl} ...[JConcatIf ,I}]...]* =

[JConcatIs™ [JConcatI;™ ... [JConcatI’,zHIZﬁ] ...], then
- (Concat®)*(z1,zs,...,2411) = Concat”(zs, ..., 254 1)

We have (Oaw,, w,)" = (J[Concat" ! [JOsV1,... 4]0y, ,...,Ou,]), then
(J[Concat" T [JOs T, ... ¥.]Oy,,...,04,])* = [J(Concat") IM ([JOs U1, ... ¥])*(Og,)*, ..., (O,)]
Next ([JOaW1,... W) = [J(Og) TP ()", ... (Uy)*], then
F([JOsWy, ... UL * (1,22, ..., Tpy1) = [J(Oa) T} TH(W)*, ... (Ur)*] (1, 22, -+, Zni1), then
F [J(Oa) I (W))*, . (U] (21, T2 - Tng1) = (Op)* (@1, (1) (21,25 Tn), ... (V) (21, T2y - ..,),

then ([JG(I)\I/M s \IjkD*(Ihz% v ,SCn+1) = ((—)@)*(zla (\111)*(1’1,1'2, cee axn)v s (\pk)*(:rla L, ... ,In)), then

F(Opaw,,.. w,) (T1,22,...,2pnq1) = (Concat™)*(z1, ([JOT1, ... UL])* (@1, 22, . .., Tpi1)

, (Ow,) (x1,22, ..., Tpt1), (Ow,) (21,22, ..., Tnt1)), then

F (Opaw,,..wy)) (T1,22, ..., 2yt1) = Concat™ ! (([JO Uy, ... Up]) (z1, 22, ..., Tpi1)

, (Og) (21,22, ..., Tpt1), (Ow,) (21,22, ..., Tpt1)), then

= (@[J(b\l]l).“7\1]k])*(xl,x27 ey Tpy1) = Concatk+1((@q>)*(z1, (U)*(z1, 22,y)y - - (Tp) (1,22, .., ZTn)),
(Ow,)*(z1,22,. .., Tpy1), (Ow,) (x1, T2, ..., Tnt1)), then

F(Ouaw,,.. v,))" (T1,22,...,2,11) = Concat((Os)* (x1, (V1) (21,22, ..., Tnt1), .- (Pp)*(T1,22,. .., Tny1)),
Concat((Oy,)*(z1,22,...,Tnt1)s- - ., Concat((Og, _,)*(z1,22,...,Tn+1), (Ow,) (T1, T2, ..., Tnt1)),---,).

Given @ - n > 1 - place functor, ¥1,..., ¥y - (n + 2) place functors. Let’s compose a functor [R®Uq,..., U] -

(n 4 1) - place. From this functor we construct a functor O(grew, ..., v,

48

Let T = x1,...,%,, A= [J[ROU,..., U TP . TET).

We have = \(T, 2, u) = [J[R®Ty,..., U JI7 T2 I0ET)(7, 2,u) = [ROV, ..., U,)(T, 2)

Let ¥; = [JConcat[JOy, I7 2 ... , I'TINIMT3], U, - (n+ 2) - place functor.

We have: - U;(7, z,u) = [JConcat[JOg,IT 2, INTINI (T, 2,u) =
Concat([JOy,I12, ... I' 2N (T, z,u), IT3(7, z,u)) = Concat (O, (T, z, (T, 2, u)), u) =
Concat(Oy, (T, z, [ROPVy, ..., V;](Z, 2)), u).

So, - U,(Z, z,u) = Concat(Oy, (T, z, [ROU,, ..., U](T, 2)), u)

Let Oraw, .. v, = [ROsT1,. .., Tyl.

Defining equalities:

- Oraw, v, (T, A) = [ROs V1, ..., 0] (7, A) = O (T)

k= ®[R<I>\I’1,..A,\I’k](fa Sk(z)) = [Req)\illv Ty \Ijk](fa SZ(Z)) = \ili(fv Z, [Rg‘i’\ijla ey \Ilk](f7 Z)) =

\I/i(f, zZ, @[R@\I]l,“.v\ljk](f, Z)) = Concat(G\pi (f, z, [R(I)\Ifl, ey \I/k](f7 Z))7 @[R¢\111,...,\I/k](fv Z))

So, we have the following defining equalities for the functor Orevy,,. v, :

F Oraw,,... v, (T, A) = Os(7T),
F Olrow, ..., w,](T,Si(y)) = Concat(Oy, (T, 2, [ROV1, ..., Vi|(T, 2)), Orow,,... v, (T, 2)), where i < k,
= Oraw,,... v, (T, Si(y)) = Oraw,,...v,) (T, y), where i > k.
Next (A)* = ([J[ROq, ..., U T2 IR~
(J[R®Ty,..., U Iy 2 I = [J([R®Ty,..., U] I H3(IPH2)%, . (1))
We have: = (\)*(y, 7, z,u) = [J([ROUq, ..., U Iy 3@ 2) Lo () |(y, T, 2,u) =
([ROTy, ..., U)" (I3 (y, T, 2, u), M) (y, 7, 2,u), . . ., (IZﬁ)*(%T, z,u)) = ([R®VUy, ..., Ur])*(y, T, 2)
So, F (N)*(y, %, z,u) = ([R®Yq,..., V] (y,T, 2).
(0,)* = ([JConcat[JOy,IT T2, ... TV IINIIT2])* = [J(Concat)*I1 3 ([JOy,I1 2, ... IMTIN)* (I012)] =
[J[JConcatI3IIy 3 ([JO, I7 T2, TV EIA) (10 E3)"].
([JOw, 1772, .., InEIN)* = [J(Ow,) IT P (A7 F2) . (T D) (V)]
F (0w Iy LN (v, T 2 u) = [J(Ow,) TP, (D) (V) T, 2,u) =
(©0,) (v, 7, 2,u), T2 (v, 7, 2,u), -, (LD (3, T, 2,0), (V) (7, T, 2,0)) =
(©9,)"(y,7,2,(N)*(¥, T, z,u)) = (Ow,)" (¥, T, 2, ([ROVy, ..., Vi])* (v, T, 2)).

So, F ([JOu, I, ... LN (y, T, 2,u) = (Ou,)"(y, T, 2, ([ROVy, ..., Wi])* (v, 7, 2)).

49

- ()" (y,7, 2,u) = [J(Concat) T ([JOu, 112, .. T EN)* (L12))*](y, 7, 2, u) =
[J[JConcatB3II{ T3 ([0, 172, . IV (10 13) (v, T, 2, u) =
[JConcatB3I3| (I (v, 7, 2, u), (JO, I T2, .. I (v, 7, 2, u), (1 12) (v, 7, 2, u)) =

Concat(([JOy,ITT?, ... IV *(y, T, 2,u), I113)*(y, T, z,u)) = Concat((Oy,)* (v, 7, 2, ([ROV1,..., U,])*(y,T, 2)), u).
So, - (¥;)*(y, T, z,u) = Concat((Oy,)*(y, T, z, (RO, ..., V) (y, T, 2)), u).

(Oraw,,...v,))" = ([ROV1, ..., TL])* = [R(Os)*(V1)*, ..., (¥k)*]
+ (@[Rq)‘l’l ----- ‘Pk])*(Y7fa A) = ([RG@i}h IR \i}k})*(Y7E7 A) = [R(Gé)*(ﬁll)*a ERE (\ijk)*](Y7fv A) = (@¢)*(y7E)
F (Orew,,...v,))" (¥, 7,8i(2)) = ([ROsV1,..., W) (y,T,8i(2) = [R(Oa)*(¥1)*, ..., (¥)*](y,T,Si(z)) =

(i]i)*(yvfa Z, [R(@'@)*(@l)*a cey (\Ilk)*Kyafa Z)) = (i]i)*(yvfa Z, ([R@'@@lv s \i/k)])*(y,fv Z)) =

Concat((0Oy,)*(y,T, z, (RO, ..., U)*(y,T, 2), (RO ¥4, ..., U))*(y,T, 2)) =

So,F (Oraw,,....w,)) " (¥, T, Si(2)) = Concat((O,)*(y, T, z, (([ROVy, ..., ¥]) (¥, T, 2)), (Orow,,...v,]) (¥, T, 2)).

F (®[R<1>\I/1 \Pk])*(Y7§7 SZ(Z)) = Concat((g‘yi)*(y7faz7([R(I)\Illu"'a\ljk])*(y7ju Z))7(®[R<I>\I/1 \I/k])*(Y>f7 Z))a

F (Oraw,,...v,))* (¥, 7, 8i(2)) = (Oraw,....v,]) (¥, T, 2), at i > k.

Let ¥q,...¥, - 2- place functor, o - some p— some p is an alphabetic word. Let’s compose a functor
[RaVy, ..., W] Let’s compose a functor O(gaw,.... v,

Let v = [J[RaWy, ..., U,]13].

We have - v(z,2) = [J[Ra¥y,. .., U]13](x, 2) = [Ra¥y,..., U](x).

ycts ¥; = [JConcat[JOy,I37|13].

We have: - U,(z, z) = [JConcat[JOy, I24|13](z, z) = Concat([JOy,I27|(x, 2),I3(x, z)) =
Concat(Oy, (z,v(x, 2)), z) = Concat(Oy, (z, [Ra¥y,..., U](x)), 2).

So, - W;(x, 2) = Concat(Oy, (z, [Ra¥y, ..., ¥.](z)), 2).

Let O(raw,, v, = [RAT1,..., Ty, then

7, (A) = [RAT,, ..., U](A) = A,

)))))

w,)(Sk(x)) = [RAV1, ..., Wy (Si()) = Wie, [RAVy, ..., Uy (2)) = Ti(2, ORaw,,....w,) (2)) =

.....

50

Concat(Oy, (z,[RaVy,..., ¥](2)), Orav,,... v, (2)).
So, we have the following defining equalities for the functor Og,y,, .. v,:
F Oraw,,.., v, (A) = A
v,](Si(z)) = Concat(Oy, (z, [RaVy, ..., Vi](z)), Oraw, ... v, (7)), where i < k.

.....

- G[Roc\lll """" \pk](sz(l‘)) = @[Ra\Pl ’’’’ \yk](l‘), where 7 > k.

Let us write out the defining relations for the functor (O[raw,,...v,])" = ([RAY, ..., U])*

aaaaa

([RA\ill, ey \i]k])* = ([RCOHStll\(\ifl)*, ey (\I/k)*],

F ([RAW, ..., U])*(z,y) = [RConsth (T1)*, ..., (¥)*](z,v),

- RConst) (U1)*,...,(¥;)*](z,A) = Const} (z) = A

- [RConst} (U1)*, ..., (U)*](x,Si(y)) = (¥;)*(x,y, [RConst} (¥1)*, ..., (¥)*](x,y)), then

- [RConst) (U1)*, ..., (T4)*](z, Si(y)) = (Lo)* (2, y, ([RAV1,..., Up))*(2,y)),

F(RAY, . W) (2, Si(y) = (00)* (2, ([RAD, ... Wi))* (2, y)),

([J[RaWy, ..., U I3])* = [J([RaVy,. .., U] T3(13)%]

(I7)* = [JHIIL]

(@) (2, y,2) = [JRBE(2,y, 2) = BI3(z,y,2), B(2,y,2) =y
F([J[RaWy, ..., U2 (2, y, 2) = [J([RaVy, ..., U]) I (13)*] (2, y, 2)
FJ([Ra¥y,. . O] T (I3)* (2, y, 2) = ([Ra¥y,..., O])* (T(2, 9, 2), (1) * (2,9, 2))
F([Ra®y,..., Up))* (L (2, y, 2), @) (2,9, 2)) = ([Ra¥y, ..., Uk])*(z,y)
()" (2, y,2) = ([Ra¥y, ..., Wg])* (2, y)-

(¥;)* = ([JConcat[JOw, I}]13))",

([JConcat[JOy, I{1]I5])* = [J(Concat) I3([J Oy, Ii7])* (I13)"],
(Concat)* = [JConcatI3I3],

([JOuw, 1)) = [J(Ow,) TE(1})*(7)"],

()" = [JRBL]

(I3)* = VB

We have:

51

=) (z,y,2) = [JRBL(2,y,2) =y,
= (13)"(z,y, 2) = [JBBL(z,y,2) = 2
- (Concat)*(z,y, z) = [JConcatI3I3](z, y, z) = Concat(y, z),
- (U:)*(2,y, 2) = ([JConcat[JOu,I}1]13])* (2,9, 2) = [J(Concat) I} ([JOw, I11])" (13)] (2, y, 2) =,
= ([J0w, i) * (2, 2) = [J(Ow,) (L) (7) (2, y, 2) = (Ow,)* (T} (2, ¥, 2), T})* (2, 2), (7)* (%, 9, 2)),
= (0w,) (L(2,y, 2), @) (2,9, 2), (1) (2,9, 2)) = (Ow,)* (z,y, (V)" (.9, 2))
- [J(Concat) I} ([JOg,I3])* (13)"](2,y, 2) = (Concat)*(I{(z,y, 2), ([JOuw, I17])* (2, y, 2), (13)* (2, y, 2))
= (Concat)* (I} (z,y, 2), ([JOw,I17]) " (2,y, 2), (13)* (2,9, 2)) = Concat(([JOw,117])*(z,y, 2), 2)
- Concat(([/Oy,1{7])*(z,y, 2), 2) = Concat((Ow,)"(z,y, (7)*(z,¥,2)), 2)
= Concat((Ow,)"(z,y, (7)" (2, ¥, 2)), 2) = Concat((Oy,)"(z,y, ([Ra¥y, ..., Vi])*(z,y)), 2)-
Thus we get
F (B:)*(x,y, z) = Concat((Oy,)*(z,y, (Raly, ..., Uy])*(z,7)), 2), then

= (03)* (2, y, [RConst (1), ..., (¥4)"](x,y)) =
Concat((@wi)*(a Y, ([Ra\l/lv R \Pk])*(xa y))v [RCOI]Stjl\(\ill)*,) (\ilk)*](xv y)): then
F [RConst (¥1),..... ()")(x, Si(y)) =

Concat((Oyg,) (z,y, ([RaT,..., U]) (z,y)), [RConsth (T1)*,. ..., (F1)*](z,y)).

Thus we get

= (Olraw, ... w,])" (2, Si(y)) = Concat((Ow,)"(2,y, ((Ra¥y,. .., Vk])*(2,9)), (Oraw,....v.)" (#,9)),

F (Oraw,,....w,])" (7,8:(¥)) = (Oraw,,...w,)*(,y), at i > k.

For any functor ® VA we prove WordM, = VZ[04(T) = O, (T)].

Let’s write out the meaning of the operator O:

for the original functors:

Sk, Z,d,Length, —, Concat, D, I}, U:
Os, = Z, Oz = Z, O5 = Z, Orengtn = [JZI3], © - = [JZI3], Oconcat = [JZ13], Op = [JZI3], Or: = [JZI}],
Oy = [JcIiU].

for functor [JOPq, ..., U]

52

Olsow,,. v, = [JConcat’ ' [JOa T ... T}], Oy, ...Og,].
for functor [RaWy, ..., U]
ORaw,,. vy = [RAT, ..., Ty,
for functor O e, ... v,
Orow, ... vy = [ROsT1, ..., Uy,
For any functor ¥ alphabet . true Vo - Og (@) = A. When using Goodstein’s rule, it is true - O¢(Z) = A.
We will prove - Oy (x) = Ogy (2):
Oy = [JcIjU], Ooy = Oyeniy) = [JConcat’[JO I} U]Op Oy], Considering [JOI1U] = [JZI3], Op = [JZL],
we have Og,, = Oy, then I Oy(z) = O (2).
Induction hypothesis:
a. Let the following be true for the functor ® WordMy |= VZ[04(T) ~ O, (T)].
b. Let the following be true for the functors Uy, ..., ¥r: WordMy E Vy1,...,Vyn|[Ow, (Y1, .-, yn) = @@% (Y155 9n)]

Let’s prove it WordMy = VY1, ... VynOpow, . vk (Y1, Yn) 2 O6 ay, aw U1s-- s Yn)-

,,,,,

We have O(aw,, w,] = [/Concat* ' [JOsTy,..., ¥;]Oy,,...,0,], then

- Opaw,,. v, (¥) = [JConcat" ' [JOsV1,..., U;]Og,,...,0u,](H) =
Concat" (04 (V1 (7),...,Y4(7)), Ow, (@),... O, (7))(A).

Let’s calculate Oje,v,...v,]:

Olj0sw, .., = [JConcat" ™ [JOe, ;... ¥4]|Oy, ...Og,], then

- Oesv,...w,(F) = [JConcat" ' [JOe, U; ... ¥L]Oy, ...Og,](7) =
Concat* "' (0, (V1(7), ..., V(7)), 00, (7). .. Ow, (7).

Taking into account the induction hypothesis WordM, = VZ[04(T) =~ O, (T)], we obtain

WordM, = Vy[Oe,w,..v,)(7) = Concat" ™ (04 (¥, (7),...,¥4(7)), 0w, (7),...Ou, [@))]-

Taking into account the induction hypothesis WordMy = Vy1, ..., Vyn[Ow, (y1,-- -, Un) = Oey, (Y1, .-, Yn)], we
obtain WordM, = Vy[Concat(Oje,v,..v,](7), Ooy, (7)) = Concat" (04 (¥, (7),..., Y1), Ow, (7),...Ou,@))],
WordM, |= Vy[Concat®(Os,v,...w,) (), Ooy, (1), Ooy, (7)) ~ Concat"* ! (0 (U1 (7). ..., ¥k(7)), O, (@), - - - Ow, ()]
WordM, E V@[ConcatkH(@[J@q)\pl__,g,k] (¥): oy, (1), Oy, (¥),- .-, Oy, (1) ~
Concat" ! (04(¥(7),...,Y4(7)), O, (%), ... O, (7))], taking into account (A), we get

WordM,, |= Vj[Concat*"! (O 6,u,..v,](#). Oy, (1), Oo,, @), - -, Oo,, () = Ouaw, ... v (¥)(B)

53

Let’s calculate GQ[JWI L

ee[Jq»I/l oK) — (_)[JCOncat’“Jrl [JO2V¥1,...,¥%]Oy ,...,O0u0,]

G[JCOHCatk+1[J@@‘I’l,...,‘l/k]@\pl,H.,eq;k] =
[JConcat"?[JOconcatk+1[/O2V1,. .., U]Og,, ..., Ou,]Oe4v,....1,]06y, -, O6y, |, taking into account

®C0ncatk+1 [J@qﬂlll, ey \I’k]@\pl, ey @\pk] = [JZI;L], we get

Concat" (O j0,v,....v,) (), Ooy, (), - - - Ooy, (1)),

taking into account (B), we get WordM, = Vy[@@wwl il @) = Opaw, .. vk (7)-
Let’s calculate Gemwl _____ v = ®[R9q>\f/1 ____ B
We have U; = [JConcat[J@)q,iI{H'g, ce IZI%)\]Izig]

Let’s calculate @[J@\Pirizﬁ—Q 2y

vk
_ n+3 +2 +2 : : _ +1
G[J@‘Pilib+27~--alzi§)‘] = [JConcat [J@@q,ilrf Yo ,IZ+1/\]@I;L+2, AU @Izjﬁ ©,], considering @I;H»Z = [JZI7™]
_ n—+2 n—+2
we have 9[-79%1?“ ,,,, 2 = [JConcat[JOg, Ii"~, ..., INTTA|O,].

Let’s calculate @\f/i .

Oy, = @[JCOncat[J@\piI?+2,...,I”+2)\]I:L+2] =

n+1 142
[JConcat®[JOconcat[JOw, I} T2, . .. vIZﬁA]IZE]@[J@%I’f+2,“.,12j;';’>\] 61213], considering
0 Coneat T0w T2, ... TN = [JZ07] and Oy = [J21;] we have
[JCOnCat3 [JGConcat [J(aqu I;L+2, ey IZI%A]IZIS]G[J@Q111L+2 ____ Izifk]@Izig] = @['79Wi1?+27-~~7121fﬂ’ then

04, = [JConcat[JOe, T1*%,... T1IANO,].

We have:

ORev, ..., v, = [ROs V1, ..., Uy

O rout,.... 5 = (RO, V1,... Ty,

F Oraw,,.. .0, (T, A) = [ROeT1, ..., U)(T, A) = Op(T)

F O row,,... 0, (T, Si(2)) = V1 (T, 2, Oraw, ... 0, (T, 2))

- O(raw,,.. v, (T, Si(2)) = [JConcat[JOy, I1 2, ... TV TENIN2](7, S;(2))
F Orow,,...,v,](T,Si(2)) = Concat(Oy, (T, 2, A(T, 2)), Oraw, ... v,] (T, 2))

oy @A) = [ROe, V1,..., UL |(F, A) = O, ()

1oeees k]

54

We have \ill = [JConcat[JOg, T2, IVENINES), then

- O6inp, .. uyy (T Si(2) = [JConcat[JOg T2, LT NL2I(Z, 2, O e, o, (F>2)), then

- 00 .y (7:8i(2)) = Concat([J03 T2, TN, 2 O s, .y, (72 2) T3, 2, 00 g,

=06 hpu, ...y (T Si(2)) = Concat (O (T, 2, A(T; 2)), O 544, v, (T %))

We have Oy = [JConcat[JOe, I7*?, ..., I}TIA]0,], then

-0y (T, 2,u) = [JConcat[JOe, I1*?,... INTINOL\](T, 2,u)

- ©g,(Z,2,u) = Concat([JOe,, I IEN(T, 2,u), OA(T, 2, u)

-0y, (T, z,u) = Concat(J@@\I,i (T, 2, \(T, 2)), On, (T, z,u))

We have ©x = O jipogi,.. v, ...,] = [JConcat"*?[JOraw,, v I1T2,... ,IZI?]@I?H, . G)Iﬁﬁ]’ then
O\ = [JQ[R‘:I)‘IIZ',...7\III€]I?+27 cee IZﬁ], then

|_ @A(E, Z, ’LL) = [J("‘)[Rq)q;i’m,\pk]]:?—‘rg, ey IZI%](E, zZ, u), then

FO\T,z,u) = G[R@M,M\I,k](f, z), then

F ©6rau,. v, (T,Si(z)) = Concat(Concat(Oe,, (T, 2, A(T, 2)), ORav,,...1,](T. 2)), 06 neu, v, (T 7))
Let’s sum it up:

= Oraow, ... v, (T, A) = O(T)

F 06 ruu,. (T A) = O, (T)

F Orow, ... v,](T,Si(2)) = Concat(Oy, (T, 2, A(T, 2)), Oraw, ... v,] (T, 2))

- eemwlw,w (Z,8:(2)) = Concat(Concat(@e\Pi (T, 2, \(T, 2)), Oraw, ..., 5, (T, 7)), @@[Rwl """" v (T, 2))

Let’s assume that it is true:

VYaWordM, E O4(a) ~ B¢, (a)
VavvyWordM, = Oy, (@, 8,7) = Oe,, (@, B,7)
vavVfWordMy = Oraw,.... v, (@, B) = O
WordM,, = O6 4y, (@ Si(F)) =

Concat(Concat(Oe, (@, 3, \(@, 3)), Oraw, ... v,](@ B)), O6 ey,

.....

Concat(Concat (O, (@, 5, M@, §)), O(row,,...,v,] (¥, B)), O6 ey,

Concat(Oy, (@, 5, \(@, 8)), Oraw, ... v,](@,) = Oraw,,...v,] (@ Si(B)), then

95

WordM,, = VZVz[Oraw,....v,] (T, 2) = 00 neu,.....

Using induction on the construction of functors and induction on the construction of the argument word, we

obtain: for any functor ® correctly WordM, = VZ[04(T) = O, (T).

56

