
Some questions of the theory of computational complexity from the

point of view of elementary theory of models

L ogic Proof

Israel, Institute for Advanced Studies

Department of Computer Science

Email: logic-proof@outlook.com

Abstract

The presented study considers one of the most famous problems of computational complexity theory: what is the
ratio of complexity classes NP and co−NP? To answer this question, the well-known fundamental concept of model
completeness of the theory under study, a section of mathematics ”Model Theory”, was rethought and reformulated
accordingly. The purpose of reformulating this fundamental concept was to describe the ratio of complexity classes
NP and co−NP, from a model-theoretical point of view. It is a well-known fact: the hierarchy of properties in any
model of a model-complete theory breaks o� at the �rst level. This key idea has been the basis for a fruitful study
of the relationship between the complexity classes NP and co − NP. It is a well-known fact that there exists an
oracle A such that the complexity class NP(A) di�ers from the complexity class co−NP(A). By developing oracle
computations in an appropriate manner and formalizing them in the class of primitive recursive algorithms, and
then using the theoretical-model relationship between the speci�ed classes, it was possible to relate the relationship
between the complexity classes of computations NP and co−NP with the relationship between the complexity classes
NP(A) and co−NP(A), which then made it possible to establish that the complexity class NP is not a Boolean
algebra. In formalizing oracle computations in the class of primitive recursive algorithms, a number of interesting
theorems were proved, one of which is an analogue of the �xed point theorem, which was used in the key theorem that
allowed establishing that the complexity class NP is not a Boolean algebra. After reading the presented research,
one can understand why the relativization e�ect prevents one from obtaining high lower bounds or separating one
complexity class from another complexity class of computations using the methods of "Discrete Mathematics" 1

The presented study is original, and many important concepts that are used in this study have not been encoun-
tered in any studies known to me.

KeyWords: Argument words, functor, simple evaluation of the functor, a simple evaluation of the functor.

using the oracle, length of evaluation, PPr functors, function words, functor for constructing a function word,

universal function word, words standard model, polynomial slicing.

Introduction

One of the most interesting problems of computational complexity is the problem of whether or not there is a

polynomial algorithm that, when executed on an arbitrary formula of propositional calculus, can yield an answer

as to whether the propositional calculus formula in question is satis�able or not. This problem, which is usually

denoted by SAT, is interesting because it is simply formulated and forms a feeling for a quick answer to this

problem. And a positive solution to this problem makes it possible to construct very e�ective algorithms for many

practical problems. Tens of thousands of scienti�c and very interesting studies have been devoted to this problem,

which have allowed us to more deeply clarify the essence of the fundamental concept of an algorithm, but there

1By methods of Discrete Mathematics, I mean those proofs that can be expressed in the standard model of arithmetic, for example,

the proof of Consis cannot be expressed in the standard model of arithmetic, although this sentence is true in this model, Not all

statements that are subject to relativization can be proved using the methods of Discrete Mathematics. And this is demonstrated in

this research.

1

is still no answer to the question posed. However, an answer in a certain sense was obtained in [12], in which the

essence of the SAT problem was understood at a certain level. In the mentioned study, which was original and

unexpected, an oracle A was constructed such that the class of polynomial oracle algorithms using A as an oracle

will not be able to recognize a language such as L(A) = {α : ∃x(|α| = |x| ∧ x ∈ A)}, but will obviously be able to

recognize a nondeterministic polynomial oracle algorithm with the same oracle. This outstanding result formed in

me an approach, implementing which, it would be possible to obtain an answer to the above question. What was

necessary to obtain for this?

First. Formalize (syntactically describe) the computations of primitive recursive word functions and oracle

primitive recursive word functions.

See Part I and Part II.

Second. Syntactically describe the class of polynomially computable word functions and polynomially com-

putable word functions that can be computed using an oracle, i.e. a polynomial oracle algorithm.

See Part III.

Third. Relate the formalized computation of primitive recursive word functions to the formalized computation

of oracle primitive recursive word functions.

See Part IV and Part V.

Fourth. Express the syntactic properties of the languages under study, e.g., SAT, using the concepts and

methods developed in "Model Theory".

See Part VI.

Having realized all four cases, it was possible to answer the question NP=?co−NP.

Part I

Equality calculus for calculating closed terms

Let the alphabets L1, . . . ,L6 be such that: L1 = {S, I,Z, δ,Length, . ,Concat,D, }, L2 = {Λ, x},

L3 = {R, J}, L4 = {=, |, ,}, L5 = {[,], (,)}, L6 = {U}, L =
i=5⋃
i=1

Li, L (U) = L ∪L6. The alphabet L (U) will

formalize the calculation of closed terms for the class of oracle primitive recursive word functions [1, p. 204],[2].

For the sake of completeness, we present a few fairly traditional de�nitions.

De�nition of a functor and its arity

2

1) Words of the form: Z, δ,Length, S|S, S||S, . . . , S ||, . . . , |︸ ︷︷ ︸
m− times

S - one-place functors. functor having the form

S |, . . . , |︸ ︷︷ ︸
k− times

S will be denoted as Sk.

2)Words of the form: I |, . . . , |︸ ︷︷ ︸
m− times

, |, . . . , |︸ ︷︷ ︸
n− times

- n - place functor, which will be denoted traditionally Inm, at 1 ≤ m ≤

n.

3) Word U - one-place functor. In what follows, the functor U will also be called unde�ned function symbol or

oracular symbol.

4) Words of the form: . ,Concat,D - two-place functors.

5) If Φ - k - place functor, Ψ1, . . . ,Ψk - n - place functors, then the word [JΦΨ1, . . . ,Ψk] - n - place functor.

This functor will be called the superposition functor.

Let us introduce the following important concept:

à) Λ - the argument word, which is called the empty word;

á) if α - is an argument word, then the word Sk(α) is an argument word, which will be denoted as αak.

An argument word α is called k - alphabetic if this word does not contain functors Sl, for l > k.

A set B of argument words is called k - alphabetic if each word α ∈ B is k - alphabetic. Let k > 1. The number

of all k - alphabetic words with length l is equal to kl. The number of all k - alphabetic words with length at most

l > 0 is equal to
kl+1 − 1

k − 1
.

Argument words that do not contain the functor Sk for k > 1 are called natural numbers.

6) If α is an argument word, Φ1, . . . ,Φm are 2-place functors, then the word [RαΦ1, · · · ,Φm] - 1 - place functor.

7) If Φ - k is a place functor, Ψ1, . . . ,Ψm - k + 2 are place functors, then the word [RΦΨ1, . . . ,Ψm] - k + 1

is a place functor. The functors of items 6 and 7 will be called recursive functors, and the functors Φ,Φ1, . . .Ψm

will be called component functors, the number m is called the branching degree of the recursive functor under

consideration.

The functors of items 1-4 will be called the original functors.

Words of the form: x |, . . . , |︸ ︷︷ ︸
l− times

x are variables. Let us denote these words traditionally as xl.

The concept of the term.

1) Every argument word and every variable is a term.

2) If t1, . . . , tk are terms, Ψ - k is a place functor, then the word Ψ(t1, . . . , tk) is a term.

For any subset A of argument words, we introduce the following equalities (de�ning equalities), as axioms of the

3

formalization to be de�ned for calculating oracle closed terms:

1) T = T, where T is an arbitrary term,

2) Z(x1) = Λ,

3) Ink (x1, . . . , xn) = xk,

4) δ(Λ) = Λ,

5) δ(x1ak) = x1,

6) Length(Λ) = Λ,

7) Length(x1ak) = Length(x1)a1,

8) x1
. Λ = x1,

9) x1
. x2ak = δ(x1

. x2),

10) Concat(x1,Λ) = x1,

11) Concat(x1, x2ak) = Concat(x1, x2)ak,

12) D(x1,Λ) = Λ,

13) D(x1, x2ak) = Concat(x1,D(x1, x2)),

14) [JΦΨ1, . . . ,Ψk](x) = Φ(Ψ1(x), . . . ,Ψk(x)),

15) [RαΦ1, . . . ,Φm](Λ) = α,

16)[RαΦ1, . . . ,Φm](xak) = Φk(x, [RαΦ1, . . . ,Φm](x)), at k 6 m,

17)[RαΦ1, . . . ,Φm](xak) = [RαΦ1, . . . ,Φm](x), at k > m,

18) [RΦΨ1, . . . ,Ψm](x,Λ) = Φ(x),

19) [RΦΨ1, . . . ,Ψm](x, yak) = Ψk(x, y, [RΦΨ1, . . . ,Ψm](x, y)), at k 6 m,

20) [RΦΨ1, . . . ,Ψm](x, yak) = [RΦΨ1, . . . ,Ψm](x, y)), at k > m.

Let A - be some set of argument words. Àxioms of interpretation of the unde�ned function symbol U

à) U(α) = Λ, if α ∈ A,

á) U(α) = a1, if α /∈ A.

Equalities a) and b) are called axioms of interpretation, which correspond to the set A, the set of argument

words A is called the interpretation set.

4

Rules of inference Calculus of equalities of closed terms

Sb :
T1 = Q1,T2 = Q2

[T2]
x
T1

= [Q2]
x
Q1

, Cut1 :
T1 = T2,T2 = T3

T1 = T3
, Cut2 :

T1 = T2,T3 = T2

T1 = T3
.

In the Sb rule, the variable x is the rule's own variable.

Remark. To calculate the values of closed terms, it is su�cient to use only the Cut1 rule.

To prove the equalities of closed terms, the Cut2 rule is added. You can do without the Cut2 rule by replacing

the Sb rule with the rule
T1 = Q1,T2 = Q2

[T2]
x
Q1

= [Q2]
x
T1

.

De�nition of proof. Let A - some set of argument words. Sequence of equalities T1 = Q1, . . . ,Tn = Qn

is a derivation (proof of Tn = Qn), if for each i = 1, 2, . . . , n, Ti = Qi is either an axiom or an axiom of the

interpretation of U(α) = Λ,U(α) = a1, which correspond to the set A, or obtained from the previous equalities

according to one of the inference rules.

If the proof P is such that it contains the interpretation axioms U(α) = Λ or U(β) = a1, then we will say

that the words α, β were used in this output, and the word α was used positively, the word β is used negatively.

With the proof of P, given the interpretation set A, we associate a pair of sets: (A+)P - the set of all positively

of interviewed words in the output P, (A−)P is the set of all negatively interviewed words in the output P. If the

output P does not contain interpretive axioms, then it will be output in the alphabet L . The de�nition of the

derived equality is assumed to be traditional.

The sequence of equalities t1 = q1, . . . , tn = qn is a quasi-inference, if each equality in this sequence is either a

derivable equality or is obtained from the previous equalities according to one of the inference rules.

Note. The idea of the above calculus of equalities for computing closed oracle terms was borrowed in [3-5].

The length of the proof P is the number of equalities in the proof P. This number is denoted as lP.

The total length of the proof P is the length of the word obtained by joining all equalities in the proof P,

separated by a comma. This number is denoted by Fl(P).

Denote the resulting calculus of closed terms as CalcEq, CalcEqU in the alphabet L , L (U) respectively.

The notation ` t = r - the equality t = r is derivable in the calculus CalcEqU, for any interpretation of the

functor U.

The notation A ` t = r - the equality t = r is derivable in the calculus CalcEqU, with interpretation axioms

5

corresponding to the set A.

A functor Φ, a term t are said to be n > 0 alphabetic if the presented words do not contain functors Sl, for

l > n. All original functors are n alphabetic for every n.

For each n and any argument word α one can construct n - place functor, denoted as Constnα, which yields the

equality Constnα(β1, . . . , βn) = α, for any sequence β of argument words.

Theorem 1.1. One can compose an algorithm such that for each term t one can construct a functor Φt such

that ` Φt(y) = t, where y - list of variables containing the variables of term t. See [3, p. 62] for the proof and full

formulation of this theorem.

Theorem 1.2. For any closed n alphabetical term t, for a given interpretation A of the functor U, there exists

a unique such argument word α of the same alphabet that A ` t = α. The proof is carried out by induction on the

construction of the functor, then by induction on the construction of the term t.

The proof of the P equality of the form t = α, where t is a closed term and α is some argument word, will be

called the calculation of the term t.

Note. For any term t(x), for any sequence of argument words α, there exists a positive integer k such that for

any interpretation set of argument words A, it is possible to construct such a calculation of the term t(x) on α, in

which no more than k argument words will be used.

Theorem 1.3. Let [JΦΨ1, . . . ,Ψk] - n - be a place functor, α1, . . . , αn - some sequence of argument words. Let

PΨi,α be the calculation of the functor Ψi on the sequence of argument words α1, . . . , αn, with the result of the

calculation βi, in the interpretation set A, 1 ≤ i ≤ n. Let PΦ,β be the calculation of the functor Φ on the sequence of

argument words β1, . . . , βk, with the result calculation γ, in the interpretation set A, then it is possible to construct

the calculation P[JΦΨ1,...,Ψk] of the functor [JΦΨ1, . . . ,Ψk] on the sequence of argument words α1, . . . , αn, for which:

(A+)P[JΦΨ1,...,Ψk],α =
k⋃
i=1

(A+)PΨi
,α

⋃
(A+)PΦ,β

, (A−)P[JΦΨ1,...,Ψk],α =
k⋃
i=1

(A−)PΨi
,α

⋃
(A−)PΦ,β

.

Proof. We compose the following sequence of equalities: PΨ1
, . . . ,PΨk ,

[JΦΨ1, . . . ,Ψk](x1, . . . , xn) = Φ(Ψ1(x), . . . ,Ψk(x)), . . . ,

[JΦΨ1, . . . ,Ψk](α1, . . . , αn) = Φ(Ψ1(α), . . . ,Ψk(α)),Φ(x1, . . . , xn) = Φ(x1, . . . , xn), . . . ,

Φ(Ψ1(α), . . . ,Ψk(α)) = Φ(β1, . . . , βn),PΦ,Φ(Ψ1(α), . . . ,Ψk(α)) = γ, [JΦΨ1, . . . ,Ψk](α1, . . . , αn) = γ - calculation

of the functor [JΦΨ1, . . . ,Ψk] on the sequences α1, . . . , αn, in the interpretation set A, with the speci�ed set of

positively and negatively interrogated words.

6

Theorem 1.4. Let n+ 1 - a place functor [RΦΨ1, . . . ,Ψk], α1, . . . , αn, βai - some sequence of argument words.

Let PΦ be the computation of the functor Φ on the sequence of argument words α1, . . . , αn, in the interpretation

set A.

Let P[RΦΨ1,...,Ψk],α1,...,αn,β be the computation functor [RΦΨ1, . . . ,Ψk] on the sequence of argument words

α1, . . . , αn, β, with the result of computing γ, in the interpretation set A.

Let PΨi be the computation of the functor Ψi on the sequence of argument words α1, . . . , αn, β, γ, with the

result of the calculation η, in the interpretation set A, then you can construct the calculation

P[RΦΨ1,..., Psik],α1,...,αn,βai of the functor [RΦΨ1, . . . ,Ψk] on the sequence of argument words α1, . . . , αn, βai, in the

interpretation set A, for which:

1. (A+)P[RΦΨ1,...,Ψk],α1,...,αn,Λ
= (A+)PΦ ,

(A−)P[RΦΨ1,...,Ψk],α1,...,αn,Λ
= (A−)PΦ

2. (A+)P[RΦΨ1,...,Ψk],α1,...,αn,βai
= (A+)PΨi,

,α1,...,αn,β,γ

⋃
(A+)P[RΦΨ1,...,Ψk],α1,...,αn,β

,

(A−)P[RΦΨ1,...,Ψk],α1,...,αn,βai
= (A−)PΨi

,α1,...,αn,β,γ

⋃
(A−)P[RΦΨ1,...,Ψk],α1,...,αn,β

Proof. Point (1) is obvious. Point (2). We compose the following sequence of equalities:

P[RΦΨ1,...,Ψk],α1,...,αn,β ,

[RΦΨ1, . . . ,Ψk](x1, . . . , xn, zai) = Ψ(x1, . . . , xn, z, [RΦΨ1, . . . ,Ψk](x1, . . . , xn, z)), . . . ,

[RΦΨ1, . . . ,Ψk](α1, . . . , αn, βai) = Ψi(α1, . . . , αn, β, [RΦΨ1, . . . ,Ψk](α1, . . . , αn, β)),

Ψi(x1, . . . , xn, z, u) = Ψi(x1, . . . , xn, z, u), . . . ,

Ψi(α1, . . . , αn, β, [RΦΨ1, . . . ,Ψk](α1, . . . , αn, β)) = Ψi(α1, . . . , αn, β, γ),

PΨi ,

Ψi(α1, . . . , αn, β, [RΦΨ1, . . . ,Ψk](α1, . . . , αn, β)) = η,

[RΦΨ1, . . . ,Ψk](α1, . . . , αn, βai) = η - functor calculation [RΦΨ1, . . . ,Ψk] on the sequence of argument words

α1, . . . , αn, βai, in interpretation set A, with the speci�ed set of positively and negatively interrogated words.

Theorem 1.5. Let a functor be given [RαΨ1, . . . ,Ψk], α1, . . . , αn, βai - - some sequence of argument words.

Let P[RαΨ1,...,Ψk],β be the evaluation of the functor [RαΨ1, . . . ,Ψk] on the argument word β, with the result of

the evaluation γ, in the interpretation set A.

Let PΨi be a computation of the functor Ψi on a sequence of argument words β, γ, with the result of the

computation η, in the interpretation set A, then we can construct a computation

7

P[RαΨ1,...,Ψk],βai of the functor [RαΨ1, . . . ,Ψk] on the argument word βai, in the interpretation set A, for which

the following is true:

1. (A+)P[RαΨ1,...,Ψk],Λ
= ∅,

(A−)P[RαΨ1,...,Ψk],Λ
= ∅

2. (A+)P[RαΨ1,...,Ψk],βai
= (A+)PΨi

,β,γ

⋃
(A+)P[RαΨ1,...,Ψk],β

,

(A−)P[RαΨ1,...,Ψk],βai
= (A−)PΨi

,β,γ

⋃
(A−)P[RαΨ1,...,Ψk],β

Proof. Point (1) is obvious. Point (2). Let us compose the following sequence of equalities:

P[RαΨ1,...,Ψk],β ,

[RαΨ1, . . . ,Ψk](zai) = Ψi(z, [RαΨ1, . . . ,Ψk](z))

[RαΨ1, . . . ,Ψk](βai) = Ψi(β, [RαΨ1, . . . ,Ψk](β)),

Ψi(z, u) = Ψi(z, u), . . . ,

Ψi(β, [RαΨ1, . . . ,Ψk](β)) = Ψi(β, γ),

PΨi;β,γ ,

Ψi(β, [RΦΨ1, . . . ,Ψk](β)) = η,

[RαΨ1, . . . ,Ψk](βai) = η - calculation of the functor [RαΨ1, . . . ,Ψk] on the sequence of argument words βai, in the

interpretation set A, with the speci�ed set of positively and negatively interrogated words.

Given that Length(Λ) = Λ, Length(αai) = S1(α). |Λ| = Λ, |αai| = |α| + 1 = S(|α|), |x| is a function of the

length of the word x, then expression of the form Length(t), will be denoted as |t|. Obviously, the argument word

α is a natural number if and only if ` |α| = α, Length(α) is a natural number.

A term containing only functors of the form: Concat,D, as well as natural numbers, is called a word polynomial,

word polynomials will be denoted as P(x).

From properties: |Concat(x, y)| = |Concat(|x|, y)| = |Concat(x, |y|)| = Concat(|x|, |y|) = |x|+ |y|,

|D(x, y)| = D(|x|, y) = |D(x, |y|)| = D(|x|, |y|) = |x| · |y| = D(|y|, x), we get |P(x1, . . . , xn)| = P(|x1|, . . . , |xn|),

∀αβγ[Concat(|α|, |β|) = γ ∨D(|α|, β) = γ], then γ is a natural number.

For any word polynomial P(x), one can construct polynomial with natural coe�cients P ∗(x), which is true

P ∗(|x|) = |P(x)|.

Let us compose a 3 ≤ n - place functor of the form [JConcatIn1 [JConcatInn−1[JConcatInn−1In] . . .]. For this

functor in the calculus CalcEq the following equality holds

8

[JConcatIn1 [JConcatIn2 . . . [JConcatInn−1I
n
n] . . .](x1 . . . xn) = Concat(x1,Concat(x2, . . .Concat(xn−1, xn) . . .)).

Let's Concatn
 [JConcatIn1 [JConcatIn2 . . . [JConcatInn−1I
n
n] . . .], at n ≥ 3, then ` Concatn(x1, . . . xn) =

Concat(x1,Concat(x2, . . .Concat(xn−1, xn) . . .)). At n = 2, Concat2
 Concat, at n = 1, Concat1
 I1
1 and

the following equations hold : ` Concat2(x1, x2) = Concat(x1, x2), ` Concat1(x1) = I1
1(x1) = x1.

` Concatn+1(x1, . . . xn+1) = Concat(x1,Concacatn(x2, . . . xn+1)).

De�nition. Let D be some set of n - alphabetical functors. For each set A of argument words, we de�ne the

concept of a standard word model, which we denote as WordMn,A,D .

The universe of this model is all argument words, or n - alphabetic argument words. For each k− place functor

Φ ∈ D we de�ne an operation, denoted fΦ and de�ned as ∀α∀β[fΦ(α) = β ⇐⇒ A ` Φ(α) = β].

If the set of functors D coincides with the set of all primitive recursive functors, then the standard model will be

denoted as WordMn,A, WordMn, in the alphabet L (U), L respectively, or more simply WordMA, WordM.

If every functor belonging to the set D is a functor of the alphabet L , then the standard word model corre-

sponding to the set of functors D will be denoted as WordMD . The model WordMA,D will also be referred to as

the model in signature D of the alphabet L (U).

Remark. Note that the set of all operations of the standard word model WordMn coincides with the class of

word functions Pr(Σ), where Σ is an alphabet consisting of n di�erent symbols[2, p.220, De�nition 3].

Theorem 1.6. There is an algorithm, executing which, according to an arbitrary formula A(x1, . . . , xn) for

propositional calculus, in which elementary propositions are propositions of the form r = q, where r, q - terms of

the alphabet L (U), one can construct n - a place functor ΦA such that

∀α[WordMA |= A(α)⇔ A ` ΦA(α) = Λ] (WordMA |= ∀x[A(x) ≡ ΦA(x) = Λ])[5].

Part II

Simple calculation of functor

With each n - ary functor Φ and a sequence of argument words α1, . . . , αn, hereinafter denoted as α, we

associate a simple (canonical) computation of the functor Φ on the sequence of argument words α1, . . . , αn, denoted

as PΦ;α1,...αn . We construct this simple computation by induction on the construction of the functor Φ, and inside

this induction, for a recursive functor by induction on the construction of the argument word. With each simple

calculation we indicate the sets (A+)P,Φ and (A−)P,Φ and the length of the calculation lP,Φ(α) - the number of

equalities in the output PΦ;α1,...αn .

9

For original functors: Sk,Z, I
n
m, δ,Length, . ,Concat,D:

For the functor: Sk:

1. Sk(x) = Sk(x),

2. Sk(α) = Sk(α).

(A+)P,Sk = ∅,

(A−)P,Sk = ∅.

Calculation length lP,Sk(x) = 2.

For the functor Z:

1. Z(x1) = Λ,

2. Z(α) = Λ.

Calculation length lP,Z(x) = 2.

(A+)P,Z = ∅,

(A−)P,Z = ∅.

For the functor U:

U(α) = Λ, if α ∈ A, otherwise,

U(α) = a1.

Calculation length lP,U(x) = 1.

(A+)P,U = {α}, (A−)P,U = ∅, if α ∈ A,

(A+)P,U = ∅, (A−)P,U = {α}, if α /∈ A

For the functor Inm:

1. Inm(x1, . . . , xn) = xm,

2. Inm(α1, x2, . . . , xn) = xm, . . . ,,

n+ 1. Inm(α1, . . . , αn) = αm.

Calculation length lP,Inm(x1, . . . , xn) = n+ 1.

(A+)P,Inm = ∅,

(A−)P,Inm = ∅.

For the functor δ:

1. δ(Λ) = Λ,

10

2. δ(x1ai) = x1,

3. δ(αai) = α.

The length of the calculation is given by the de�ning equalities:

lPδ (Λ) = 1,

lPδ (x1) = 2, at α 6= Λ,

(A+)P,δ = ∅,

(A−)P,δ = ∅.

For the functor Length:

1. |Λ| = Λ,

1.|x1ak| = |x1|a1,

2.|αak| = |α|a1,

[Let PLength;α - simple calculation of functor Length on the argument word α, Next, we write out this simple

calculation PLength,α, at the end of this conclusion is the equality |α| = γ, continue]

PLength;α,

3. S1(x1) = S1(x1),

4. S1(|α|) = S1(γ),

5. |αak| = γa1.

The length of the calculation is given by the de�ning equalities:

lP(Λ) = 1,

lP,Length(x1ak) = lP(x1) + 5,

lP,Length(x1) = 1 + 5 · |x1|

(A+)P,Length = ∅,

(A−)P,Length = ∅.

For the functor . :

1. x1
. Λ = x1,

2. α . Λ = α,

1. x1
. x2ak = δ(x1

. x2),

2. α . x2ak = δ(α . x2),

11

3. α . βak = δ(α . β),

[Let P . ;α,β - simple calculation of functor . on the argument words α, β, next, we write out this simple

calculation P . ;α,β , at the end of this calculation is the equality α . β = γ, continue]

P . ;α,β ,

4. δ(z) = δ(z),

5. δ(α . β) = δ(γ).

[Let Pδ;γ - simple calculation of functor δ on the argument word γ, at the end of this calculation there is an

equality of the form δ(γ) = η, continue]

Pδ,γ ,

6. δ(α . β) = η.

7. α . βak = η,

The length of the calculation is given by the de�ning equalities:

lP . (x1,Λ) = 2,

lP . (x1, x2ak) = lP . (x1, x2) + lPδ (x1
. x2) + 7,

lP (x1, x2) =



2 + 9 · |x2|, if |x1| > |x2| ≥ 0;

|x1|+ 8 · |x2|, if 1 ≤ |x1| ≤ |x2|

2 + 8 · |x2|, if |x1| = Λ

,

(A+)P, . = ∅,

(A−)P, . = ∅.

For the functor Concat:

1. Concat(x1,Λ) = x1,

2. Concat(α,Λ) = α,

1. Concat(x1, x2ak) = Concat(x1, x2)ak,

2. Concat(α, x2ak) = Concat(α, x2)ak,

3. Concat(α, βak) = Concat(α, β)ak,

[Let PConcat;α,β - simple calculation of functor Concat on the argument word α and word β, at the end of

this calculation there is an equality of the form Concat(α, β) = γ, continue]

PConcat;α,β ,

12

4. Sk(x1) = Sk(x1),

5. Sk(Concat(α, β)) = Sk(γ),

6. Concat(α, βak) = Sk(γ).

The length of the calculation is given by the de�ning equalities:

lPConcat
(α,Λ) = 2,

lPConcat
(α, βak) = lPConcat

(α, β) + 6.

lPConcat
(α, β) = 2 + 6 · |β|,

(A+)P,Concat = ∅,

(A−)P,Concat = ∅.

For the functor D:

1. D(x1,Λ) = Λ,

2. D(α,Λ) = Λ,

1. D(x1, x2ak) = Concat(x1,D(x1, x2)),

2. D(α, x2ak) = Concat(α,D(α, x2)),

3. D(α, βak) = Concat(α,D(α, β)),

[Let PD;α,β - simple calculation of functor D on the argument word α and word β, at the end of this calculation

there is an equality of the form D(α, β) = γ, continue]

PD;α,β ,

4. Concat(x1, x2) = Concat(x1, x2),

5. Concat(α, x2) = Concat(α, x2),

6. Concat(α,D(α, β)) = Concat(α, γ),

[Let PConcat;α,γ - simple calculation of functor Concat on the argument word α, γ, at the end of this calculation

there is an equality of the form Concat(α, γ) = η, continue].

PConcat;α,γ ,

7. Concat(α,D(α, β)) = η,

8. D(α, βak) = η.

The length of the calculation is given by the de�ning equalities:

lPD
(α,Λ) = 2,

13

lPD
(α, βak) = lPD

(α, β) + lPConcat
(α,D(α, β)) + 8,

lPD
(α, β) = 2 + 10 · |β|+ 3 · |α| · |β|(|β| 1),

(A+)P,D = ∅,

(A−)P,D = ∅.

For the functor [JΦΨ1, . . . ,Ψk]:

Let PΨ1;α - simple calculation of functor Ψ1 on a sequence of argument words α, . . . , PΨk;α - simple calculation

of functor Ψk on a sequence of argument words α.

Let's compose a sequence of equalities:

PΨ1;α, . . . ,PΨk;α,

[at the end of this calculation PΨi at the end of this calculation there is an equality of the form Ψi(α) = γi,

continue]

s+ 1. Φ(x1, . . . , xk) = Φ(x1, . . . , xk),

s+ 2. Φ(Ψ1(α), x2, . . . , xk) = Φ(γ1, x2, . . . , xk), . . . ,

s+ k + 1. Φ(Ψ1(α), . . . ,Ψk(α)) = Φ(γ1, . . . , γk),

[Let PΦ;γ - simple calculation of functor Φ on a sequence of argument words γ, at the end of this calculation is

the equality Φ(γ1, . . . , γk) = η, continue]

PΦ;γ ,

s+ k + r + 2. Φ(Ψ1(α), . . . ,Ψ1(α)) = η,

s+ k + r + 3. [JΦΨ1, . . . ,Ψk](x1, . . . , xn) = Φ(Ψ1(x1, . . . , xn), . . . ,Ψk(x1, . . . , xn)),

s+ k + r + 4. [JΦΨ1, . . . ,Ψk](α1, . . . , xn) = Φ(Ψ1(α1, . . . , xn), . . . ,Ψk(α1, . . . , xn)), . . . ,,

s+ k + r + n + 3. [JΦΨ1, . . . ,Ψk](α1, . . . , αn) = Φ(Ψ1(α1, . . . , αn), . . . ,Ψk(α1, . . . , αn)),

s+ k + r + n + 4. [JΦΨ1, . . . ,Ψk](α1, . . . , αn) = η - the resulting sequence of equalities - simple calculation of

functor [JΦΨ1, . . . ,Ψk] on a sequence of argument words α.

The length of the calculation is given by the de�ning equalities:

lP[JΦΨ1,...,Ψk]
(α) = lPΨ1

(α)+, . . . ,+lPΨk
(α) + lPΦ(Ψ1(α), . . . ,Ψk(α)) + n + k + 4.

(A+)P[JΦΨ1,...,Ψk];α =
k⋃
i=1

(A+)PΨi
;α

⋃
(A+)PΦ;γ ,

(A−)P[JΦΨ1,...,Ψk];α =
k⋃
i=1

(A−)PΨi
;α

⋃
(A−)PΦ;γ(see Theorem 1.3).

For the functor [RΦΨ1, . . . ,Ψm]:

14

Let's compose a sequence of equalities:

1. [RΦΨ1, . . . ,Ψm](x1, . . . , xn,Λ) = Φ(x1, . . . , xn),

2. [RΦΨ1, . . . ,Ψm](α1, . . . , xn,Λ) = Φ(α1, . . . , xn), . . . ,,

n + 1. [RΦΨ1, . . . ,Ψm](α1, . . . , αn,Λ) = Φ(α1, . . . , αn),

[Let PΦ;α - simple calculation of functor Φ on a sequence of argument words α, at the end of this calculation is

the equality Φ(α1, . . . , αn) = γ, continue]

PΦ;α,

n + r + 2. [RΦΨ1, . . . ,Ψm](α1, . . . , αn,Λ) = η,

[Let P[RΦΨ1,...,Ψm];α1,...,αn+1
- simple calculation of functor [RΦΨ1, . . . ,Ψm] on a sequence of argument words

α1, . . . , αn+1, at the end of this calculation is the equality [RΦΨ1, . . . ,Ψm](α1, . . . , αn, αn+1) = β, continue]

P[RΦΨ1,...,Ψm];α1,...,αn+1
,

[Let PΨk;α1,...,αn+1,β- simple calculation of functor Ψk] on a sequence of argument words α1, . . . , αn+1, β, at the

end of this calculation is the equality [Ψk(α1, . . . , αn, αn+1, β) = θ, continue]

PΨk;α1,...,αn+1,β ,

s+ t+ 1. [RΦΨ1, . . . ,Ψm](x1, . . . , xn, xn+1ak) = Ψk(x1, . . . , xn, xn+1, [RΦΨ1, . . . ,Ψm](x1, . . . , xn, xn+1)),

s+ t+ 2. [RΦΨ1, . . . ,Ψm](α1, . . . , xn, xn+1ak) = Ψk(α1, . . . , xn, xn+1, [RΦΨ1, . . . ,Ψm](α1, . . . , xn, xn+1)), . . .,

n + s+ t+ 2. [RΦΨ1, . . . ,Ψm](α1, . . . , αn, αn+1ak) = Ψk(α1, . . . , αn, αn+1, [RΦΨ1, . . . ,Ψm](α1, . . . , αn, αn+1)),

n + s+ t+ 3. Ψk(x1, . . . , xn+2) = Ψk(x1, . . . , xn+2),

n + s+ t+ 4. Ψk(α1, . . . , xn+2) = Ψk(α1, . . . , xn+2), . . . ,

2n + s+ t+ 4. Ψk(α1, . . . , αn+1, xn+2) = Ψk(α1, . . . , αn+1, xn+2),

2n + s+ t+ 5. Ψk(α1, . . . , αn+1, [RΦΨ1, . . . ,Ψm](α1, . . . , αn, αn+1)) = Ψk(α1, . . . , αn+1, β),

2n + s+ t+ 6. Ψk(α1, . . . , αn+1, [RΦΨ1, . . . ,Ψm](α1, . . . , αn, αn+1)) = θ,

2n + s + t + 7. [RΦΨ1, . . . ,Ψm](α1, . . . , αn, αn+1ak) = θ - this sequence of equalities is a simple calculation of

the functor [RΦΨ1, . . . ,Ψm] on a sequence of argument words α1, . . . , αn+1.

The length of the calculation is given by the de�ning equalities:

lP[RΦΨ1,...,Ψk]
(α,Λ) = lPΦ

(α) + n + 2,

lP[RΦΨ1,...,Ψk]
(α, αn+1ak) = lP[RΦΨ1,...,Ψk]

(α, αn+1) + lPΨk
(α, αn+1, [RΦΨ1, . . . ,Ψk](α, αn+1)) + 2n + 7

1. (A+)P[RΦΨ1,...,Ψk],α1,...,αn,Λ
= (A+)PΦ;α1,...,αn ,

15

(A−)P[RΦΨ1,...,Ψk],α1,...,αn,Λ
= (A−)PΦ;α1,...,αn ,

2. (A+)P[RΦΨ1,...,Ψk],α1,...,αn,βai
= (A+)PΨi

⋃
(A+)P[RΦΨ1,...,Ψk],α1,...,αn,β

,

(A−)P[RΦΨ1,...,Ψk],α1,...,αn,βai
= (A−)PΨi

⋃
(A−)P[RΦΨ1,...,Ψk],α1,...,αn,β

(see Theorem 1.4).

The case when the recursion functor has the form [RαΦ1, . . . ,Φm] is treated similarly.

For [RαΦ1, . . . ,Φm], the de�ning equality lengths of the simple calculus are as follows:

lP[RαΨ1,...,Ψk]
(Λ) = 1,

lP[RαΨ1,...,Ψk]
(αak) = lP[RαΨ1,...,Ψk]

(α) + lPΨk
(α, [RαΨ1, . . . ,Ψk](α)) + 7(see Theorem 1.5).

Properties of simple the calculation functor:

1. The last equality of a simple calculation of the n− place functor Φ on a sequence of argument words α is an

equality of the form Φ(α) = β, where β is an argument word, which is called the result of a simple calculation of

the n− place functor Φ on the sequence of argument words α.

2. A simple calculation of the n− place functor Φ on a sequence of argument words α consists only of those

functors that are subfunctors of the functor Φ.

3. All the words queried in a simple computation of the functor [JΦΨ1, . . . ,Ψm] on the sequence of argument

words α1, . . . , αk, consist of interrogated words that enter into a simple calculation of the functor Ψ1 on the sequence

of argument words α1, . . . , αk, and so on. from the interrogated words that are included in the simple calculation

of the functor Ψm on the sequence of argument words α1, . . . , αk, from the interrogated words that are included

in the simple calculation of the functor Φ on the sequence of argument words γ1, . . . , γm, where γi is the result of

calculating the functor Ψi on the sequence of argument words α1, . . . , αk.

4. All interrogated words, when simply calculating the functor [RΦΨ1, . . . ,Ψm] on the sequence of argument

words α, βak, consist from the interrogated words that are included in the simple calculation of the functor Φ on the

sequence of argument words α, from the interrogated words of the functor [RΦΨ1, . . . ,Ψm] in a simple calculation

on the sequence of argument words α, β (previous step), from the interrogated words that are included in the simple

calculation of the functor Ψk on the sequence of argument words α, β, γ where γ is the result of calculating the

functor [RΦΨ1, . . . ,Ψm] on the word sequence α, β.

5. Any n− place functor Φ can be interpreted as some algorithm, executing which, it is possible to calculate

the value of this functor on a given sequence of argument words α1, . . . , αn. A simple calculation of this functor on

the speci�ed sequence of argument words is an implementation of this algorithm.

16

For each initial functor: Inm,Sk,Z, δ,Length, ,Concat,D is true

lPInm
(x1, . . . , xn) = lPInm

(|x1|, . . . , |xn|),

lPZ
(x) = lPZ

(|x|),

lPSk
(x) = lPSk

(|x|),

lPδ (x) = lPδ (|x|),

lPLength
(x) = lPLength

(|x|),

lP (x1, x2) = lP (|x1|, |x2|),

lPConcat
(x1, x2) = lPConcat

(|x1|, |x2|),

lPD
(x1, x2) = lPD

(|x1|, |x2|).

Remark. Let Φ - n -ary functor of the alphabet L composed of the functors Inm,S1,Z, δ,Length,

......... ,Concat,D with the help of the superposition operator J , then for this functor we have

` |Φ(x1, . . . , xn)| = Φ(|x1|, . . . , |xn|).

Part III

Bounded recursion functor. PPr functors

An equality of the form x . y = Λ will be denoted as x 6 y. Given the property x . y = Λ⇐⇒ |x| . |y| = Λ, a

formula of the form x 6 y, will also be written as |x| 6 |y|.

x y =


Λ, if |x| ≤ |y|;

z, other

,

where z - is such a word which is the beginning of word x and whose length is |x| − |y|.

For any word polynomial P(y), given that |P(y)| = P(|y|), we have: |x| 6 |P(y)| ⇐⇒ |x| 6 P(|y|).

Denote the two-place functor J [. I2
1J [. I2

1I
2
2]] as min. For this functor of the alphabet L , in the calculus

CalcEq we derive the equality min(x1, x2) = x1
. (x1

. x2).

Properties: `min(x1, x2) = min(x1, |x2|), ` |min(x1, x2)| = min(|x1|, |x2|)

min(x, y) =


x, if |x| ≤ |y|;

z, other

,

where z is such a word which is the beginning of word x and whose length is |y|.

∀αβWordM |= |min(α, β)| ≤ |β|.

17

Let Φ be an arbitrary n -place functor. Compose the functor [JΦIn+1
1 , . . . , In+1

n] - introducing n + 1 �ctitious

variable, this functor will be denoted as [JΦn+1].

Let Φ be an arbitrary n -place functor. Compose the functor [JΦIn+1
1 , . . . , In+1

n] - introducing n + 1 �ctitious

variable, this functor will be denoted as [JΦn+1].

Let P - n-ary polynomial functor, Φ - n- ary functor, Ψ - n+ 1 - ary functor. Compose functors: [JminΦ,P],

[JminΨ[JPn+1]] - functors restrictions, respectively, without the introduction of a dummy variable and with the

introduction of a dummy variable. We denote these functors as Bound(Φ,P).

Let Φ - n - ary functor, Ψ1, . . . ,Ψk - n+ 2 -ary functors, P,P1 - respectively n, n+ 1 - ary polynomial functors.

Compose a functor [RBound(Φ,P),Bound(Ψ1,P1), . . . ,Bound(Ψk,P1)] is a bounded recursion functor.

For each functor of bounded recursion Γ
 [RBound(Φ,P),Bound(Ψ1,P1), . . . ,Bound(Ψk,P1)] the following

equations are derivable:

` Γ(x1, . . . , xn,Λ) = min(Φ(x1, . . . , xn),P(x1, . . . , xn)),

` Γ(x1, . . . , xn,Sk(xn+1)) = min(Ψk(x1, . . . , xn, xn+1,Γ(x1, . . . , xn+1)),P1(x1, . . . , xn, xn+1)),

for any set of argument words A the following is true: ∀α,∀β 6= Λ A ` |Γ(α,Λ)| 6 |P(α)|,

A ` |Γ(α, β)| 6 |P1(α, β)|.

We inductively de�ne a set of functors, denoted as PPr(U):

1) Words of the form U - polynomial program;

2) Words of the form Z, δ,Length, Sk, I
m
n ,

. ,Concat,D - polynomial programs;

3) If Φ - k is a place functor, Ψ1, . . . ,Ψk - n are place functors and are polynomial programs, then the functor

[JΦΨ1, . . . ,Ψk] - polynomial program, i.e. belongs to the set PPr(U);

4) If Φ - n is a place functor, Ψ1, . . . ,Ψk - n + 2 are place functors and are polynomial programs, P,P1 -

respectively n, n+ 1 are place polynomial functors, then the functor

[RBound(Φ,P),Bound(Ψ1,P1), . . . ,Bound(Ψk,P1)] - polynomial program.

The set of functors de�ned according to items 2-4 will also be called polynomial programs, but in the alphabet

L . This set of functors will also be denoted as PPr. It will be clear from the context in which alphabet L or

L (U), the set PPr is considered.

The set of all operations of the standart word model WordMn,PPr coincides with the class of function E2(Σ)[1,

p.220. De�nition 7], where Σ is an alphabet consisting of n di�erent symbols a1, . . . , an.

18

Theorem 3.1. Let Φ is an n-place polynomial program, i.e. Φ ∈ PPr, then there exists (can be constructed)

such a word polynomial P(x) of the same place as for any set of argument words α is true:

a) ∀AWordMA |= |Φ(α)| < |P(α)|.

b) ∀AWordMA |= lPΦ(α) < |P(α)|;

c) ∀AWordMA |= FlPΦ
(α) < |P(α)|.

Proof. See the de�nition of a simple evaluation of the functor Φ - see part II.

Note. Let Φ ∈ PPr is an n-place functor, A - set of argument words, then there exists a word polynomial P(x)

such that for any sequences argument words α1, . . . , αn, the length of all used words in a simple calculation of the

functor Φ on α1, . . . , αn and the number of interrogated words is limited to |P(α1, . . . , αn)|.

Note. Let MT is an oracle Turing machine with input alphabet A = {a1, . . . , ak}, and oracle set B, whose

running time is bounded by some polynomial P (x1, . . . , xn) with natural coe�cients. Let fMT(x1, . . . , xn) is a

vocabulary function, which is generated by the oracle MT . Then we can construct such a functor Φ ∈ PPr(U)

of the same place, whose set of input words is the set of argument words {S1(Λ), . . . ,Sk(Λ)}, which is true

∀α1, . . . , αk, β B ` Φ(α1 . . . , αk) = β ⇐⇒ fMT(α1, . . . , αk) = β[2 p. 224. Theorem 6]2[1, Theorem 1 p. 228]3.

Note. Let Φ ∈ PPr(U) -n - ary functor whose set of input words, is the set of argument words {S1(Λ), . . . ,Sk(Λ)}.

Let B be the interpretation of the oracle symbol U. Then we can construct an oracle Turing machine MT - with

input alphabet A = {a1, . . . , ak} and oracle set B, whose running time is bounded by some polynomial P (x1, . . . , xn)

with natural coe�cients, that for the dictionary function fMT(x1, . . . , xn) which is generated by the oracle MT

under consideration it is true that

∀α1, . . . , αk, β B ` Φ(α1 . . . , αk) = β ⇐⇒ fMT(α1, . . . , αk) = β[[2 p. 224. Theorem 7][1, Theorem 1 p. 230].

Let A is the interpretation of the oracle symbol U. Let us inductively de�ne the set of functors, denoted as

PPr(A):

1) Words of the form U - PPr(A) - program;

2) Words of the form Z, δ,Length, Sk, I
m
n ,

. ,Concat,D - PPr(A) programs;

3) If Φ - k - ary functor, Ψ1, . . . ,Ψk - n -ary functors and are PPr(A) programs, then the functor [JΦΨ1, . . . ,Ψk]

- PPr(A) - program;

4) If Φ - n - ary functor, Ψ1, . . . ,Ψk - n + 2 - ary funktors and are PPr(A) programs, P - n + 1 - ary word

2This theorem is easily transferred to the case when the Turing machine under consideration is an oracle machine
3All the word functions mentioned on pages 212-215 are PPr functions of the alphabet L , so the theorem under consideration is

easily transferred to an oracle Turing machine

19

polynomial, then if it is true WordMA |= ∀x, y{|[RΦΨ1, . . . ,Ψk](x, y)| ≤ |P(x, y)|}, then functor [RΦΨ1, . . . ,Ψk]

is a PPr(A) - program.

Note. If Φ ∈ PPr(A), then we can construct such a word polynomial P(x), which is true

WordMA |= ∀x{|Φ(x)| ≤ |P(x)|}.

The proof is by induction on the construction of the functor Φ, and within this induction, by induction on the

construction of the argument word.

Note. For any functor Φ ∈ PPr(U), for any oracle A, Φ ∈ PPr(A) is true.

Note. Let A be the interpretation of the oracle symbol U. For any functor Φ ∈ PPr(A), we can construct such

a functor Ψ ∈ PPr(U), which is true WordMA |= ∀x[Φ(x) = Ψ(x)].

The proof is by induction on the construction of the functor Φ, and within this induction, by induction on the

construction of the argument word.

For each natural number k > 1 we write the following de�ning equalities:

expk(Λ) = a1,

expk(αai) = D(a1, . . . , a1︸ ︷︷ ︸
k−times

, expk(α)).

There is a primitive recursive word functor that satis�es these de�ning equalities. Let's denote it as expk. For

the functor expk true WordM |= ∀x[|expk(x)| = k|x|], ∀αβ[expk(α) = β], then β is a natural number.

For k > 1 expk(α) is the number of k - alphabetic words whose length is equal to the length of the word α,

expk(αa1)− 1

k− 1
- number k - alphabetic words preceding in the lexicographic ordering of the word |αa1|.

Note. Note that for the relation expk(x) = y one can compose a functor EXPk belonging to PPr such that

WordM |= ∀xy[expk(x) = y ⇔` EXPk(x, y) = Λ].

Part IV

Function words and their properties

Let's compose the following word term Concat(|α|,Concat(a2,Concat(α,Concat(β,Concat(a2, a2))))). Let

1 be the designation of the argument word S1(Λ), 2 be the designation of the argument word S2(Λ), then the

word term Concat(|α|,Concat(a2,Concat(α,Concat(β,Concat(a2, a2))))) For clarity, we will denote in the

form 1, . . . , 1︸ ︷︷ ︸
|α|- times

2αβ22.

20

Let c - such a functor for which in the calculus CalcEq we derive the equality

c(x, y) = 1, . . . , 1︸ ︷︷ ︸
|x|- times

2xy22 = |x|2xy22.

Let an arbitrary sequence of pairs of argument words be given (α1, γ1) . . . , (αn, γn). This sequence will be called

functional if the following conditions are met:

1. ∀i[γi = Λ ∨ γi = a1],

2. ∀i, j[αi = αj → γi = γj].

Let us introduce a concept that will be of great importance in what follows.

De�nition. 1. Λ is a function word.

2. If a sequence of pairs (α1, γ1) . . . , (αn, γn) is a functional, then a word of the form

Concat(c(α1, γ1),Concat(c(α2, γ2), . . . ,Concat(c(αk, γk),Λ)), . . . ,) - function word, where 1 ≤ k ≤ n.

Visually, a functional word can be written in the form |α1|2α1γ122, . . . , |αk|2αkγk22.

The words of the sequence α1, . . . , αk will be called the domain of de�nition of the functional word under

consideration, and the words of the sequence γ1, . . . , γk will be called the corresponding values.

Note. Any functional word θ will be interpreted as a word according to its de�nition and as a function with

the same name. Domain of de�nition and set of values of the function θ - domain of de�nition and set of values of

the functional word θ, moreover, θ(α) = Λ, if and only if the word c(α,Λ) is a subword of θ and θ(α) = a1 if and

only if the word c(α, a1) - subword of the word θ.

The domain of de�nition of the functional word θ will be denoted as dom(θ).

Let θ ⊆ θ1(θ1 ⊇ θ)
 ∀x ∈ dom(θ)[θ(x) = θ1(x)].

Note. The relation x ∈ dom(θ) can be expressed using the PPr functor.

The function word θ is consistent with the set A (θ ⊂ A) if ∀x ∈ dom(θ)[θ(x) = Λ⇐⇒ x ∈ A].

Remark. For any function words θ1, θ2 that are compatible with the set A, there exists function word θ

consistent with A and θ1 ⊆ θ, θ2 ⊆ θ, e.g. θ1 ∪ θ2(Concat(θ1, θ2)).

For the relation θ ⊆ θ1, there exists a PPr functor φ of the alphabet L that is true

WordM |= [θ ⊆ θ1 ⇐⇒ φ(θ, θ1) = Λ].

Let θ be some function word. For this functional word, we construct a set of argument words de�ned as

Aθ = {α : α ∈ dom(θ) and θ(α) = Λ}.

For any term t(x), for any sequence of argument words α, for any set of argument words A, one can construct

21

such a functional word θα,A,t, consistent with the set A, that A ` t(α) = β ⇔ Aθα,A,t ` t(α) = β. To do this, it

su�ces to construct a calculation of the closed term t(α) on the set A, collect all the interrogated words in this

calculation, and use the obtained interrogated words to compose the corresponding functional word. Of course, the

function word constructed in this way depends on the constructed calculation of the term t(α), but in this case the

following property will be ful�lled: for any functional word θ ⊇ θα,A,t, true A ` t(α) = β ⇔ Aθ ` t(α) = β. This

property is true for any quanti�er-free sentence Φ (a sentence composed using logical connectives from equalities of

closed terms): WordMA |= Φ⇔WordMAθ |= Φ.

Let Fw be a functor of the alphabet L for which:

1. ∀α[` Fw(α) = Λ∨ ` Fw(α) = a1];

2. ` Fw(α) = Λ⇔ α - functional word.

3. Functor Fw - is a PPr functor.

Let us introduce the binary relation θ ⊆ θ1:

θ ⊆ θ1 ⇐⇒WordM |= Fw(θ) ∧ Fw(θ1) ∧ ∀x ∈ dom(θ)[θ(x) = θ1(x)].

The relation θ ⊆ θ1 belongs to PPr of the alphabet L .

Let us introduce a binary relation ≈:

WordM |= θ ≈ θ1 ⇐⇒ Fw(θ) ∧ Fw(θ1) ∧ dom(θ) = dom(θ1) ∧ ∀x ∈ dom(θ)θ(x) = θ1(x).

The relation x ≈ y belongs to PPr of the alphabet L .

Remark. If θ ≈ θ1 then Concat(θ, θ1) ≈ Concat(θ1, θ)∧ Concat(θ, θ1) ≈ θ ∧ θ ⊆ θ1 ∧ θ1 ⊆ θ.

Let G be a two-place functor of the alphabet L that satis�es the following conditions:

1. If θ is a function word, α ∈ dom(θ) and θ(α) = γ, then ` G(θ, α) = γ.

2. If θ is a function word, α /∈ dom(θ), then ` G(θ, α) = a1.

3. If θ is not a function word, then ∀α ` G(θ, α) = a1.

4. Functor G - is a PPr functor.

The functor G has the following properties:

1. For any function words θ, θ1 such that θ ⊆ θ1, ∀α ∈ dom(θ) ` [G(θ, α) = G(θ1, α)].

2. Relation x ⊂ U
 Fw(x) = Λ ∧ ∀z ∈ dom(x))[(G(x, z) = Λ → U(z) = Λ) ∧ (G(x, z) = a1 → U(z) = a1)]

belong PPr, i.e. there is a one-place PPr functor ϕ alphabet L (U) such that

WordMA |= ∀x[x ⊂ U⇔ ϕ(x) = Λ].

22

De�nition. Given a functor Φ, a sequence of argument words α, and an interpretation set A. Let P be a simple

computation of the functor Φ, on the sequence α, in the interpretation of A. Then, using a simple calculation of P,

we compose a function word:

1. Let's write out all the words from the set (A+)PΦ,α . Let these be the words β1, . . . , βk, arrange them, for

example, in lexicographic order.

2. Let's write out all the words from the set (A−)PΦ,α
. Let these be the words γ1, . . . , γs, arrange them also in

lexicographic order.

3. Let's make a functional word

Concat(c(β1,Λ), . . . ,Concat(c(βk,Λ),Concat(c(γ1, a1), . . . ,Concat(c(γs−1, a1), c(γs, a1))), . . . ,). A functional

word composed in this way is called a functional word composed according to a simple calculation P functor Φ on

the sequence α, in the interpretation of A. Denote such a function word as θSimpleFw,Φ,α,A.

De�nition. Terms of the form |x|2xU(x)22|z|2zU(z)22, . . . , |v|2vU(v)22 will be called functional terms of the

alphabet L (U). The set of functional terms constructed in this way will be denoted as FtermU, and the speci�c

functional term of this set as fterm(x, z, . . . , v).

De�nition. Terms of the form |x|2xG(y, x)22|z|2zG(y, z)22, . . . , |v |2vG(y, v)22 will be called functional terms

of the alphabet L . The set of functional terms constructed in this way will be denoted as Fterm, and the speci�c

functional term of this set as f∗term(y, x, z, . . . , v).

Properties. 1. f∗term(fterm(x, z, . . . , v), x, z, . . . , v) = fterm(x, z, . . . , v) - like words.

2. f∗term(f∗term(x, z, . . . , v), x, z, . . . , v) = f∗term(x, z, . . . , v) - like words.

3. For any function word θ true ∀x, z, . . . , v ∈ dom(θ)f∗term(θ, x, z, . . . , v) ⊆ θ.

De�nition of a functor for constructing a function word

For each n - place functor Φ, we de�ne the functional word construction functor associated with this functor.

We will carry out the de�nition by induction on the construction of the functor Φ..

1.For original functors: Sk,Z, δ,Length, . ,Concat,D, Ink , U:

ΘSk = Z, ΘZ = Z, Θδ = Z, ΘLength = [JZI2
2], Θ . = [JZI2

2], ΘConcat = [JZI2
2], ΘD = [JZI2

2], ΘInk
= [JZInk],

ΘU = [JcI1
1U].

For these functors in the calculus CalcEq the equalities are derivable: ΘSk(x1) = Λ, ΘZ(x1) = Λ, Θδ = Λ,

ΘLength(x1) = Λ, Θ . (x1, x2) = Λ, ΘConcat(x1, x2) = Λ, ΘD(x1, x2) = Λ, ΘInk
(x1, . . . , xn) = Λ,

23

` ΘU(x1) = c(x1,U(x1)) - in calculus CalcEqU and the expression ∀α ∀A A ` G(ΘU(α), α) = U(α) is true.

2. For the functor [JΦΨ1, . . . ,Ψk]. Let for the functor Φ functor built ΘΦ, for the functor Ψ1 functor built ΘΨ1
,

etc. for the functor Ψk functor built ΘΨk , then Θ[JΦΨ1,...,Ψk]
 [JConcatk+1[JΘΦΨ1, . . . ,Ψk],ΘΨ1
, . . . ,ΘΨk] at

k ≥ 2. The obtained functor is n - place and the following provable equations are true for it

` [JConcatk+1[JΘΦΨ1, . . . ,Ψk],ΘΨ1
, . . . ,ΘΨk](x1, . . . , xn) =

Concatk+1([JΘΦΨ1 . . .Ψk](x1, . . . , xn),ΘΨ1
(x1, . . . , xn) . . .ΘΨk(x1, . . . , xn))

` Concatk+1([JΘΦΨ1 . . .Ψk](x1, . . . , xn),ΘΨ1(x1, . . . , xn) . . .ΘΨk(x1, . . . , xn)) =

Concatk+1(ΘΦ(Ψ1(x1, . . . , xn) . . .Ψk(x1, . . . , xn)),ΘΨ1
(x1, . . . , xn) . . .ΘΨk(x1, . . . , xn)).

So, we have ` Θ[JΦΨ1...Ψk](x1, . . . , xn) = [JConcatk+1[JΘΦΨ1 . . .Ψk],ΘΨ1
. . .ΘΨk](x1, . . . , xn) =

Concatk+1(ΘΦ(Ψ1(x1, . . . , xn) . . .Ψk(x1, . . . , xn)),ΘΨ1(x1, . . . , xn) . . .ΘΨk(x1, . . . , xn)),

` Θ[JΦΨ1...Ψk](x1, . . . , xn) = Concatk+1(ΘΦ(Ψ1(x1 . . . , xn) . . .Ψk(x1, . . . , xn)),ΘΨ1
(x1, . . . , xn) . . .ΘΨk(x1, . . . , xn)),

` Θ[JΦΨ1...Ψk](x) = Concat([JΘΦΨ1, . . . ,Ψk](x), (Concat(ΘΨ1
(x), . . . ,Concat(ΘΨk−1

(x),ΘΨk(x))), . . . ,).

Let Φ - k - place functor(k = 1), then Θ[JΦΨ1]
 [JConcat[JΘΦΨ1]ΘΨ1], then

Θ[JΦΨ1](x1, . . . , xn)
 [JConcat[JΘΦΨ1]ΘΨ1
](x1, . . . , xn) = Concat(ΘΦ(Ψ1(x1, . . . , xn)),ΘΨ(x1, . . . , xn))

3. For the functor [RαΨ1 . . .Ψk] and funtor [RΦΨ1 . . .Ψk]. Let for the functor Φ functor built ΘΦ, for functor

Ψ1 functor built ΘΨ1 , etc. for the functor Ψk functor built ΘΨk , then for the functor Θ[RΦΨ1,...,Ψk]in calculus

CalcEqU holds (de�ning equality)(see theorem 1)4:

` Θ[RαΨ1...Ψk](Λ) = Λ.

` Θ[RαΨ1...Ψk](x1ai) = Concat(ΘΨi(x1, [RΦΨ1, . . . ,Ψk](x1)),Θ[RαΨ1,...,Ψk](x1)), at i ≤ k.

` Θ[RαΨ1...Ψk](x1ai) = Θ[RαΨ1,...,Ψk](x1), at i > k

` Θ[RΦΨ1...Ψk](x,Λ) = ΘΦ(x).

` Θ[RΦΨ1...Ψk](x, xn+1ai) = Concat(ΘΨi(x, xn+1, [RΦΨ1, . . . ,Ψk](x, xn+1)),Θ[RΦΨ1...Ψk](x, xn+1)),

at i ≤ k.

` Θ[RΦΨ1...Ψk](x, xn+1ai) = Θ[RΦΨ1...Ψk](x, xn+1)), at i > k.

Theorem 4.1. Let Φ be a functor of the alphabet L , then in the calculus CalEq it is true ` ΘΦ(x) = Λ.

The proof is carried out by induction on the construction of the functor Φ, and within this induction, by

induction on the construction of the argument word.

Theorem 4.2. Let Φ be an arbitrary functor that belongs to PPr, then the functor ΘΦ belongs to PPr.

4see Application

24

The proof is by induction on the construction of PPr of the functor Φ, and within this induction, by induction

on the construction of the argument word.

Theorem 4.3. Let Φ be an arbitrary n - place functor. For any interpretation set A, any sequence of argument

words α, β, the following is true:

If A ` ΘΦ(α) = β then β is a function word and θSimpleFw,Φ,α,A ⊆ β ⊂ A;

Proof. The proof is carried out by induction on the construction of the functor.

Induction basis. For original functors Sk,Z, δ,Length, . ,Concat,D, Ink the proof is immediate. For the

functor U, we get: A ` ΘU(α) = β, if and only if

(β = |α|2α22&α ∈ A) ∨ (β = |α|2αa122&α /∈ A), then β = θSimpleFw,U,α,A and β ⊂ A.

Inductive assumption. 1. Let the theorem be true for the functor Φ, functors Ψ1, . . . ,Ψk. Let us prove that

the theorem is true for the functor [JΦΨ1, . . . ,Ψk].

By the inductive hypothesis, we have: if A ` ΘΨ1
(α) = γ1, . . . ,A ` ΘΨk(α) = γk, then γi - function words and

θSimpleFw,Ψ1,α,A ⊆ γ1 ⊂ A, . . . , θSimpleFw,Ψk,α,A ⊆ γk ⊂ A,

Function word θSimpleFw,Ψi,α,A, composed according to sets (A+)PΨi
,α, (A−)PΨi

,α. then

k⋃
i=1

θSimpleFw,Ψi,α,A ⊆ Concat(ΘΨ1
(α), . . . ,Concat(ΘΨk−1

(α),ΘΨk(α)), . . . ,).

For A ` Ψi(α) = βi, if A ` ΘΦ(β1, . . . , βk) = η, then η - function word and θSimpleFw,Φ,β1,...,βk,A ⊆ η ⊂ A,

Function word θSimpleFw,Φ,β,A composed according to the set (A+)PΦ,β
, (A−)PΦ,β

, then

θSimpleFw,Φ,β1,...,βk,A ⊆ Concat(ΘΦ(β1, . . . , βk),Concat(ΘΨ1
(α), . . . ,Concat(ΘΨk−1

(α),ΘΨk(α)), . . . ,), then

θSimpleFw,Φ,β1,...,βk,A ⊆ Concat(ΘΦ(Ψ1(α), . . . ,Ψë(α)),Concat(ΘΨ1(α), . . . ,Concat(ΘΨk−1
(α),ΘΨk(α)), . . . ,). Func-

tion word θSimpleFw,[JΦΨ1,...,Ψk],α,A composed according to set

(A+)P[JΦΨ1,...,Ψk],α =
k⋃
i=1

(A+)PΨi
,α

⋃
(A+)PΦ,β

, (A−)P[JΦΨ1,...,Ψk],α =
k⋃
i=1

(A−)PΨi
,α

⋃
(A−)PΦ,β

, then, according to

the de�ning equality for Θ[JΦΨ1,...,Ψk], we get θSimpleFw,[JΦΨ1,...,Ψk],α,A ⊆ Θ[JΦΨ1,...,Ψk](α) ⊂ A.

2. Let the theorem be true for the functor Φ, the functors Ψ1, . . . ,Ψk. Let us prove that the theorem is true for

the functor [RΦΨ1, . . . ,Ψk].

According to the de�ning equalities for the functor Θ[RΦΨ1,...,Ψk], we have:

` Θ[RΦΨ1,...,Ψk](x,Λ) = ΘΦ(x).

` Θ[RΦΨ1,...,Ψk](x, zai) = Concat(ΘΨi(x, β, [RΦΨ1, . . . ,Ψk](x, z)),Θ[RΦΨ1,...,Ψk](x, z)).

Induction basis.

25

By the inductive hypothesis, we have:

A ` ΘΦ(α) = β - function word and θSimpleFw,Φ,α,A ⊆ β ⊂ A. Function word θSimpleFw,Φ,α,A built on sets:

(A+)PΦ,α
, (A−)PΦ,α. Function word θSimpleFw,[RΦΨ1,...,Ψk],α,Λ,A also built on sets: (A+)PΦ,α

, (A−)PΦ,α, taking into

account the de�ning equality, Θ[RΦΨ1,...,Ψk](α,Λ) = ΘΦ(α), we obtain θSimpleFw,[RΦΨ1,...,Ψk],α,Λ,A ⊆ β è β ⊂ A.

Induction hypothesis. Take a sequence of argument words α1, . . . , αn.βai.

By the inductive hypothesis, we have:

If A ` Θ[RΦΨ1,...,Ψk](α, β) = γ, then γ - function word and θSimpleFw,[RΦΨ1,...,Ψk],α,β,A ⊆ γ ⊂ A.

Let A ` [RΦΨ1, . . . ,Ψk](α, β) = η.

If A ` ΘΨi(α, β, η) = ξi, then ξi - function word and θSimpleFw,Ψi,α,β,η,A ⊆ ξi ⊂ A.

According to the de�nition of the function word θSimpleFw,[RΦΨ1,...,Ψk],α,β,A it is built on sets:

(A+)P[RΦΨ1,...,Ψk],α,β
, (A−)P[RΦΨ1,...,Ψk],α,β

, then

θSimpleFw,[RΦΨ1,...,Ψk],α,β,A ⊆ Concat(ΘΨi(α, β, [RΦΨ1, . . . ,Ψk](α, β)),Θ[RΦΨ1,...,Ψk](α, β)).

Function word θSimpleFw,[RΦΨ1,...,Ψk],α,βai,A built on sets:

(A+)P[RΦΨ1,...,Ψk],α,βai
= (A+)PΨi,

,α,β,η

⋃
(A+)P[RΦΨ1,...,Ψk],α,β

,

(A−)P[RΦΨ1,...,Ψk],α1,...,αn,βai
= (A−)PΨi,

,α,β,η

⋃
(A−)P[RΦΨ1,...,Ψk],α,β

, then

θSimpleFw,[RΦΨ1,...,Ψk],α,βai,A = θSimpleFw,Ψi,α,β,η,A
⋃
θSimpleFw,[RΦΨ1,...,Ψk],α,β,A, then

θSimpleFw,[RΦΨ1,...,Ψk],α,βai,A ⊆ Concat(ΘΨi(α, β, [RΦΨ1, . . . ,Ψk](α, β)),Θ[RΦΨ1,...,Ψk](α, β)). Considering de�n-

ing equality Θ[RΦΨ1,...,Ψk](α, βai) = Concat(ΘΨi(α, β, [RΦΨ1, . . . ,Ψk](α, β)),Θ[RΦΨ1,...,Ψk](α, β)), we get

θSimpleFw,[RΦΨ1,...,Ψk],α,βai,A ⊆ Θ[RΦΨ1,...,Ψk](α, βai) ⊂ A.

The remaining recursion axioms (15,16,17,20) are treated similarly.

Theorem 4.4 Let Φ be an arbitrary n− place functor of the alphabet L (U). For any interpretation set A, any

sequence of argument words α, it is true WordMA |= ΘΦ(α) ≈ ΘΘΦ(α).

The proof is carried out by induction on the construction of the functor Φ5.

Note. Let Φ be an arbitrary n− place functor of the alphabet L (U). For any interpretation set A, it is true

WordMA |= ∀x[θSimpleFw,Φ,x,A ≈ ΘΦ(x)].

5see Application

26

Part V

Converting alphabetical expressions L (U), to alphabetical expressions L

By induction on the construction of a functor, we construct a transformation, denoted as ∗, of functor of the

alphabet L (U) into functor of the alphabet L .

For initial functors:

1. (Sk)∗ = [JSkI
2
2],

2. (Z)∗ = [JZI2
2],

3. (δ)∗ = [JδI2
2],

4. (U)∗ = G,

5. (Length)∗ = [JLengthI3
2I

3
3],

6. (.)∗ = [J . I3
2I

3
3],

7. (Concat)∗ = [JConcatI3
2I

3
3],

8. (D)∗ = [JDI3
2I

3
3],

9. (Ink)∗ = [JInkIn+1
2 , . . . , In+1

n+1],

1. ([JΦΨ1, . . . ,Ψk])∗ = [J(Φ)∗In+1
1 (Ψ1)∗, . . . , (Ψk)∗],

2. ([RαΦ1, . . . ,Φm])∗ = [RConst1
α(Φ1)∗, . . . , (Φm)∗],

3. ([RΦΨ1, . . . ,Ψm])∗ = [R(Φ)∗(Ψ1)∗, . . . , (Ψm)∗].

Note. If the functor Φ is a functor of the alphabet L , then the �rst argument of the functor (Φ)∗ is a dummy

variable ` Φ(x) = (Φ)∗(y, x).

Theorem 5.1. For any n - place functor Φ, ∀A , ∀α ∀θ ⊇ θSimpleFw,Φ,α,A true

A ` [Φ(α) = (Φ)∗(θ, α)] (WordMA |= [Φ(α) = (Φ)∗(θ, α)]).

Proof. The proof is by induction on the construction of the functor, inside this induction for a recursive functor,

the proof is by induction on the construction of the argument word.

Basis of induction. Initial functors

For initial functors: Sk,Z, δ,Length, . ,Concat,D, Ink can be veri�ed directly by writing out the indicated

functor φ and functor (φ)∗.

Let us prove the theorem for the functor U. According to the de�nition (U)∗ = G, need to show ∀A ∀α

∀θ ⊇ θSimpleFw,U,α,A A ` [U(α) = G(θ, α)].

27

Let α ∈ A, then U(α) = Λ - axiom and is a simple calculation of the functor U on the word α. As a functional

word, we take the word θSimpleFw,U,α,A = c(α,Λ) = |α|2α22, then according to the de�nition of the functor G, we

get ∀θ ⊇ θSimpleFw,U,α,A ` G(θ, α) = Λ. Let Pθ,α - for example, a simple calculation of the functor G on a sequence

of words θ, α, then sequence of equalities U(α) = Λ,Pθ,α,U(α) = G(θ, α) - derivation of equality U(α) = G(θ, α),

when interpreting the function symbol U by the set A.

Likewise: let α 6∈ A, then U(α) = a1 - is a simple calculation of the functor U on the word α. As a functional

word, we take the word θSimpleFw,U,α,A = c(α, a1) = |α|2αa122(|α|2α122), then according to the de�nition of the

functor G, we get ∀θ ⊇ θSimpleFw,U,α,A, ` G(θ, α) = a1(` G(θ, α) = 1). Let Pθ,α - a simple calculation of the

functor G on a sequence of words θ, α , then sequence of equalities U(α) = a1,Pθ,α,U(α) = G(θ, α) -derivation of

equality U(α) = G(θ, α), when interpreting the function symbol U by the set A.

(a) Induction hypothesis. Let the theorem be true for functors: Φ,Ψ1, . . . ,Ψk, prove the theorem for the

functor [JΦΨ1, . . . ,Ψk]. Denote f� [JΦΨ1, . . . ,Ψk].

We have: i) for the set of argument words A, the sequence of argument words α1, . . . , αn, for the functor

Ψ1 true ∀θ ⊇ θSimpleFw,Ψ1,α,A, A ` Ψ1(α) = (Ψ1)∗(θ, α) , . . ., for the functor Ψk, true ∀θ ⊇ θSimpleFw,Ψk,α,A,

A ` Ψk(α) = (Ψk)∗(θ, α).

ii) for the set of argument words A, the sequence of argument words β1, . . . , βk, for the functor Φ true ∀θ ⊇

θSimpleFw,Φ,β,A, A ` Φ(β) = (Φ)∗(θ, β).

Function word θSimpleFw,f,α,A, according to his de�nition, is composed of sets:

(A+)P[JΦΨ1,...,Ψk],α
=

k⋃
i=1

(A+)PΨi,α

⋃
(A+)PΦ,γ , (A−)P[JΦΨ1,...,Ψk],α

=
k⋃
i=1

(A−)PΨi
,α

⋃
(A−)PΦ,γ], then

θSimpleFw,f,α,A ⊇ θSimpleFw,Ψi,α,A and θSimpleFw,f,α,A ⊇ θSimpleFw,Φ,β,A. Let θf ⊇ θSimpleFw,f,α,A.

The following sequence of equalities:

1. (Ψ1)∗(θf, α) = γ1, . . . , (Ψk)∗(θf, α) = γk - Calculate

2.(Φ)∗(θf, γ1, . . . , γk) = η - Calculate,

3. [J(Φ)∗In+1
1 (Ψ1)∗, . . . , (Ψ)∗k](θf, α) = (Φ)∗(θf, (Ψ1)∗(θf, α), . . . , (Ψ)∗k(θf, α)) - almost an axiom,

4. (Φ)∗(y, x1, . . . , xk) = (Φ)∗(y, x1, . . . , xk) - axiom,

5. (Φ)∗(θf, (Ψ1)∗(θf, α), . . . , (Ψ)∗k(θf, α)) = (Φ)∗(θf, γ1, . . . , γk) - from 1,4,

6. (Φ)∗(θf, (Ψ1)∗(θf, α), . . . , (Ψ)∗k(θf, α)) = η - from 2,5,

7. [J(Φ)∗In+1
1 (Ψ1)∗, . . . , (Ψ)∗k](θf, α) = η - from 3,6,

28

[Equalities 1-7 are proved in the calculus CalcEq]

8. [JΦΨ1, . . . ,Ψk](α) = Φ(Ψ1(α), . . . ,Ψk(α)) - almost an axiom,

9. Ψ1(α) = (Ψ1)∗(θf, α), . . . ,Ψk(α) = (Ψk)∗(θf, α) - induction hypothesis,

10. Φ(x1, . . . , xk) = Φ(x1, . . . , xk) - axiom,

11.Φ(Ψ1(α), . . . ,Ψ1(α)) = Φ((Ψ1)∗(θf, α), . . . , (Ψk)∗(θf, α)) - from 9,10,

12. Φ((Ψ1)∗(θf, α), . . . , (Ψk)∗(θf, α)) = Φ(γ1, . . . , γk) - from 1,10,

13. Φ(γ1, . . . , γk) = (Φ)∗(θf, γ1, . . . , γk) - induction hypothesis,

14. Φ(γ1, . . . , γk) = η - from 2,13,

15. Φ((Ψ1)∗(θf, α), . . . ,Ψk)∗(θf, α)) = η - from 12,14,

16. Φ(Ψ1(α), . . . ,Ψ1(α)) = η - from 11,15,

17. [JΦΨ1, . . . ,Ψk](α) = η - from 8,16,

18. [JΦΨ1, . . . ,Ψk](α) = [J(Φ)∗In+1
1 (Ψ1)∗, . . . , (Ψ)∗k](θf, α)- from 7,17

19. [JΦΨ1, . . . ,Ψk](α) = ([JΦΨ1, . . . ,Ψk])∗(θf, α) - from 18 - quasi-derivation with interpretation set A, in the

calculus of CalcEqA.

(b) Induction hypothesis. Let the theorem be true for functors: Φ,Ψ1, . . . ,Ψk, prove the theorem for the

functor f� [RΦΨ1, . . . ,Ψk].

By the inductive hypothesis, we have:

i) for the set of argument words A, the sequence of argument words α1, . . . , αn, for the functor Φ, true ∀θ ⊇

θSimpleFw,Φ,α,A, and A ` Φ(α) = (Φ)∗(θ, α);

ii) for the set of argument words A, the sequence of argument words α1, . . . , αn, β, γ, for the functor Ψ1, true

∀θ ⊇ θSimpleFw,Ψ1,α,β,γ,A, A ` Ψ1(α) = (Ψ1)∗(θ, α, β, γ) , . . ., for the functor Ψk, true ∀θ ⊇ θSimpleFw,Ψk,α,β,γ,A,

A ` Ψk(α) = (Ψk)∗(θ, α, β, γ).

Further, the proof will be carried out by induction on the construction of the argument word.

Induction base. Let us prove that for the set of argument words A, the sequences of argument words α1, . . . , αn,

true ∀θf ⊇ θSimpleFw,f,α,Λ A ` [RΦΨ1, . . . ,Ψk](α,Λ) = ([RΦΨ1, . . . ,Ψk])∗(θf,Λ).

According to the de�nition of ∗, we have: ([RΦΨ1, . . . ,Ψk])∗ = [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗], therefore, it is necessary

to prove ∀θf ⊇ θSimpleFw,f,α,Λ A ` [RΦΨ1, . . . ,Ψk](α,Λ) = [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf,Λ).

The following sequence of equalities:

29

1. [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](y, x,Λ) = (Φ)∗(y, x) - axiom,

2. [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α,Λ) = (Φ)∗(θf, α) - from 1;

[Equalities 1,2 are proved in the calculus CalcEq]

[Considering that θf ⊇ θSimpleFw,f,α,Λ ⊇ θSimpleFw,Φ,α,A, we get]

3. [RΦΨ1, . . . ,Ψk](α,Λ) = Φ(α) - almost an axiom

4. Φ(α) = (Φ)∗(θf, α) - induction hypothesis,

5. [RΦΨ1, . . . ,Ψk](α,Λ) = (Φ)∗(θf, α) - from 1,4,

6. [RΦΨ1, . . . ,Ψk](α,Λ) = [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf,, α,Λ) -from 2,5

7. [RΦΨ1, . . . ,Ψk](α,Λ) = ([RΦΨ1, . . . ,Ψk])∗(θf,, α,Λ) - from 6 - quasi-inference under interpretation set A.

Inductive step. By the induction hypothesis, we have: for a set of argument words A, for any sequence of

argument words α1, . . . , αn, β, true

∀θf ⊇ θSimpleFw,f,α,β A ` [RΦΨ1, . . . ,Ψk](α, β) = [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf,, α, β);

ii) For the set of argument words A, sequences of argument words α1, . . . , αn, β, γ, true:

∀θ ⊇ θSimpleFw,Ψi,α,β,γ,A, A ` Ψi(α, β, γ) = (Ψi)
∗(θ, α, β, γ).

It is required to prove that for the functor f, for the set of argument words A, the sequence of argument words

α1, . . . , αn, βai, true

∀θf ⊇ θSimpleFw,f,α,βai A ` [RΦΨ1, . . . ,Ψk](α, βai) = [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf,, α, βai).

Let's compose a functional word according to the sets:

(A+)P[RΦΨ1,...,Ψk],α1,...,αn,βai
= (A+)PΨi

,α1,...,αn,β,γ

⋃
(A+)P[RΦΨ1,...,Ψk],α1,...,αn,β

,

(A−)P[RΦΨ1,...,Ψk],α1,...,αn,βai
= (A−)PΨi

,α1,...,αn,β,γ

⋃
(A−)P[RΦΨ1,...,Ψk],α1,...,αn,β

, where P[RΦΨ1,...,Ψk],α1,...,αn,βai -

simple calculation of the functor [RΦΨ1, . . . ,Ψk] on a sequence of argument words α1, . . . , αn, βai, PΨi - simple

calculation of the functor Ψi on a sequence of argument words α1, . . . , αn, β, γ, we get θSimpleFw,f,α,βai , then

θSimpleFw,f,α,βai ⊇ θSimpleFw,Ψi,α,β,γ,A, θSimpleFw,f,α,βai ⊇ θSimpleFw,f,α,β . Let's take θf ⊇ θSimpleFw,f,α,βai

The following sequence of equalities:

1. [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α, β) = γ - Calculate,

2. (Ψi)
∗(θf, α, β, γ) = η - Calculate,

3. [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α, βai) = (Ψi)
∗(θf, α, β, [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α, β)) - almost an axiom

4. (Ψi)
∗(y, x, z, u) = (Ψi)

∗(y, x, z, u) - axiom,

30

5. (Ψi)
∗(θf, α, β, [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α, β)) = (Ψi)

∗(θf, α, β, γ)) - from 1,4,

6. (Ψi)
∗(θf, α, β, [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α, β)) = η - from 2,5,

7. [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α, βai) = η - from 3,6,

[Equalities 1,7 are proved in the calculus CalcEq]

8. [RΦΨ1, . . . ,Ψk](α, βai) = Ψi(α, β, [RΦΨ1, . . . ,Ψk](α, β)) - almost an axiom,

9. [RΦΨ1, . . . ,Ψk](α, β) = [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf,, α, β) - induction hypothesis,

10.Ψi(x, u, v) = Ψi(x, u, v) - axiom,

11. Ψi(α, β, [RΦΨ1, . . . ,Ψk](α, β)) = Ψi(α, β, [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α, β)) - from 9,10,

12. Ψi(α, β, [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf, α, β)) = Ψi(α, β, γ) - from 1,10,

13. Ψi(α, β, γ) = (Ψi)
∗(θf, α, β, γ) - induction hypothesis,

14. Ψi(α, β, [RΦΨ1, . . . ,Ψk](α, β)) = Ψi(α, β, γ) - from 11,12,

15. Ψi(α, β, [RΦΨ1, . . . ,Ψk](α, β)) = (Ψi)
∗(θf, α, β, γ) - from 13,14,

16. Ψi(α, β, [RΦΨ1, . . . ,Ψk](α, β)) = η - from 2,15,

17. [RΦΨ1, . . . ,Ψk](α, βai) = η - from 8,16,

18. [RΦΨ1, . . . ,Ψk](α, βai) = [R(Φ)∗(Ψ1)∗, . . . , (Ψk)∗](θf,, α, βai) - from 7,17,

19. [RΦΨ1, . . . ,Ψk](α, βai) = ([RΦΨ1, . . . ,Ψk)])∗(θf,, α, βai) - from 18 - quasi-inference under interpretation set

A, i.e in the calculus CalcEqA.

The remaining recursion axioms (15,16,17,20) are treated similarly.

Corollary 5.2. For any n - place functor Φ, ∀A , ∀α true A ` [Φ(α) = Φ∗(ΘΦ(α), α)]

(WordMA |= [Φ(α) = Φ∗(ΘΦ(α), α)]).

2. For any n - place functor Φ, ∀A , ∀α ∀θ ⊇ ΘΦ(α), true A ` [Φ(α) = Φ∗(θ, α)]

(WordMA |= [Φ(α) = Φ∗(θ, α)]),

3. For any n - place functor Φ, ∀A , ∀α, β ∀θ ⊇ ΘΦ(α), true A ` Φ(α) = β ⇔ ` Φ∗(θ, α) = β

(WordMA |= Φ(α) = β ⇔WordM |= Φ∗(θ, α) = β).

4. For any n - place functor Φ, ∀α true WordMA |= (ΘΦ)∗(ΘΦ(α), α) = ΘΦ(α) -as equality of words (smallest

�xed point: ∀θ ⊇ ΘΦ(α)[(ΘΦ)∗(θ, α) ⊆ θ] {∀θ ⊇ ΘΦ(α)[ΘΦ(α) = (ΘΦ)∗(θ, α)]}, moreover, if ΘΦ(α) 6= Λ, then

dom(ΘΦ(α)) = dom((ΘΦ)∗(θ, α)) for any any functional word θ.

Theorem 5.3. For arbitrary n - place functor Φ, for arbitrary argument words α, β, γ,

31

if WordMA |= (ΘΦ)∗(β, α) = γ, then γ is a function word.

Proof. The proof is by induction on the construction of the functor Φ.

Theorem 5.4. For an arbitrary n - place functor Φ, for an arbitrary set of argument words A, true

WordMA |= ∀α∀β[ΘΦ(α) = β =⇒ (ΘΦ)∗(β, α) = β ∧ β ⊂ A].

Proof. For arbitrary argument words α, β we have WordMA |= ΘΦ(α) = β ⇐⇒ (ΘΦ)∗(ΘΦ(α), α) = β, then

WordMA |= (ΘΦ)∗(β, α) = β ∧ β ⊂ A.

Òheorem 5.5. Suppose that for n - place functor Φ, for the argumentative words α1, . . . , αn, for a set of

argument words A, for the function word β is true WordMA |= (ΘΦ)∗(β, α1, . . . , αn) ⊆ β∧β ⊂ A, then WordMA |=

ΘΦ(α1, . . . , αn) ⊆ β.

Proof. The proof is by induction on the construction of the functor Φ.

Basis of induction. Φ - initial functor, for example U, then ΘU = [JcI1
1U], then (ΘU)∗ = [Jc∗I2

1[JI1
1I

2
2]G],

then WordMA |= (ΘU)∗(β, α) = c∗(β, α,G(β, α)) = |α|2αG(β, α)22(` c∗(x, y, z) = c(y, z), see Note p.27).

Assume WordMA |= (ΘU)∗(β, α) ⊆ β and β ⊂ A, then |α|2αG(β, α)22 ⊆ β.

Let's break down the cases:

a) G(β, α) = Λ, then β(α) = Λ, then α ∈ A, then U(α) = Λ, then ΘU(α) = |α|2α22, given that

(ΘU)∗(β, α) = |α|2αG(β, α)22 = |α|2α22 ⊆ β, then ΘU(α) ⊆ β;

b) G(β, α) = 1, then β(α) = 1, then α /∈ A, then U(α) = 1, then ΘU(α) = |α|2α122, given that

(ΘU)∗(β, α) = |α|2αG(β, α)22 = |α|2α122 ⊆ β, then ΘU(α) ⊆ β.

For the rest of the initial functors the proof is quite clear.

Inductive step. 1). Let the theorem be true for k - place functor Φ, for n - place functors Ψ1, . . . ,Ψk. Let us

prove the theorem for the functor [JΦΨ1, . . . ,Ψk]. We have

` Θ[JΦΨ1,...,Ψk](x) = Concat([JΘΦΨ1, . . . ,Ψk](x), (Concat(ΘΨ1(x), . . . ,Concat(ΘΨk−1
(x),ΘΨk(x))), . . . ,), then

` (Θ[JΦΨ1,...,Ψk])
∗(y, x) = Concat([J(ΘΦ)∗In+1

1 (Ψ1)∗, . . . , (Ψk)∗](y, x), (Concat((ΘΨ1
)∗(y, x),

. . . ,Concat((ΘΨk−1
)∗(y, x), (ΘΨk)∗(y, x))), . . . ,)6, then

WordMA |= (Θ[JΦΨ1,...,Ψk])
∗(β, α) = Concat([J(ΘΦ)∗In+1

1 (Ψ1)∗, . . . , (Ψk)∗](β, α), (Concat((ΘΨ1)∗(β, α),

. . . ,Concat((ΘΨk−1
)∗(β, α), (ΘΨk)∗(β, α))), . . . ,).

Let's (Θ[JΦΨ1,...,Ψk])
∗(β, α) ⊆ β ⊂ A, then [J(ΘΦ)∗In+1

1 (Ψ1)∗, . . . , (Ψk)∗](β, α) = (ΘΦ)∗(β, (Ψ1)∗(β, α), . . . ,

(Ψk)∗(β, α)) ⊆ β and (ΘΨ1)∗(β, α) ⊆ β, . . . , (ΘΨk)∗(β, α) ⊆ β.
6see Application

32

By induction assumption we obtain ΘΦ((Ψ1)∗(β, α), . . . , (Ψk)∗(β, α)) ⊆ β, as well as

ΘΨ1
(α) ⊆ β, . . . ,ΘΨk(α) ⊆ β, then Ψ1(α) = (Ψ1)∗(β, α), . . . ,Ψk(α) = (Ψk)∗(β, α), then

ΘΦ((Ψ1)∗(β, α), . . . , (Ψk)∗(β, α)) = ΘΦ(Ψ1(α), . . .Ψk(α)), then ΘΦ(Ψ1(α), . . .Ψk(α)) ⊆ β, then

Concat([JΘΦΨ1, . . . ,Ψk](x), (Concat(ΘΨ1(x), . . . ,Concat(ΘΨk−1
(x),ΘΨk(x))), . . . ,) ⊆ β, then

Θ[JΦΨ1,...,Ψk](α) ⊆ β.

2). Let the theorem be true for n - place functor Φ, for n + 2 - place functors Ψ1, . . . ,Ψk. Let us prove the

theorem for n+ 1 - place functor [RΦΨ1, . . . ,Ψk].

We have: ` Θ[RΦΨ1,...,Ψk](x,Λ) = ΘΦ(x).

` Θ[RΦΨ1,...,Ψk](x, xn+1ai) = Concat(ΘΨi(x, xn+1, [RΦΨ1, . . . ,Ψk](x, xn+1)),Θ[RΦΨ1,...,Ψk](x, xn+1)),

then ` (Θ[RΦΨ1,...,Ψk])
∗(y, x,Λ) = (ΘΦ)∗(y, x),

` (Θ[RΦΨ1,...,Ψk])
∗(y, x, xn+1ai) =

= Concat((ΘΨi)
∗(y, x, xn+1, ([RΦΨ1, . . . ,Ψk])∗(y, x, xn+1)), (Θ[RΦΨ1,...,Ψk])

∗(y, x, xn+1)), then

c) WordMA |= (Θ[RΦΨ1,...,Ψk])
∗(β, α,Λ) = (ΘΦ)∗(β, α),

d) WordMA |= (Θ[RΦΨ1,...,Ψk])
∗(β, α, γai) =

= Concat((ΘΨi)
∗(β, α, γ, ([RΦΨ1, . . . ,Ψk])∗(β, α, γ)), (Θ[RΦΨ1,...,Ψk])

∗(β, α, γ))7.

Case study (c). Let's (ΘΦ)∗(β, α) ⊆ β ⊂ A. By the induction assumption we obtain WordMA |= ΘΦ(α) ⊆ β,

then Θ[RΦΨ1,...,Ψk](x,Λ) ⊆ β.

Case study (d). Let's (Θ[RΦΨ1,...,Ψk])
∗(β, α, γai) ⊆ β ⊂ A, then

Concat((ΘΨi)
∗(β, α, γ, ([RΦΨ1, . . . ,Ψk])∗(β, α, γ)), (Θ[RΦΨ1,...,Ψk])

∗(β, α, γ)) ⊆ β, then

(Θ[RΦΨ1,...,Ψk])
∗(β, α, γ) ⊆ β, then by the induction assumption we obtain Θ[RΦΨ1,...,Ψk](α, γ) ⊆ β, then Θ[RΦΨ1,...,Ψk](α, γ) =

δ ⇐⇒ (Θ[RΦΨ1,...,Ψk])
∗(β, α, γ)) = δ è δ ⊆ β. Further considering

[RΦΨ1, . . . ,Ψk])(α, γ)) = η ⇐⇒ ([RΦΨ1, . . . ,Ψk])∗(Θ[RΦΨ1,...,Ψk](α, γ), α, γ)) = η and Θ[RΦΨ1,...,Ψk](α, γ) ⊆ β, we

get [RΦΨ1, . . . ,Ψk])(α, γ)) = η ⇐⇒ ([RΦΨ1, . . . ,Ψk])∗(β, α, γ), α, γ)) = η, then

Concat((ΘΨi)
∗(β, α, γ, ([RΦΨ1, . . . ,Ψk])∗(β, α, γ)), (Θ[RΦΨ1,...,Ψk])

∗(β, α, γ)) =

= Concat((ΘΨi)
∗(β, α, γ, [RΦΨ1, . . . ,Ψk](α, γ)),Θ[RΦΨ1,...,Ψk](α, γ)).

We have (ΘΨi)
∗(β, α, γ, ([RΦΨ1, . . . ,Ψk])∗(β, α, γ)) ⊆ β, then (ΘΨi)

∗(β, α, γ, [RΦΨ1, . . . ,Ψk](α, γ)) ⊆ β, then

by induction assumption, we obtain ΘΨi(α, γ, [RΦΨ1, . . . ,Ψk](α, γ)) ⊆ β, then

Concat(ΘΨi(α, γ, [RΦΨ1, . . . ,Ψk](α, γ)),Θ[RΦΨ1,...,Ψk](α, γ)) ⊆ β, then Θ[RΦΨ1,...,Ψk](α, γai) ⊆ β and β ⊂ A. The
7see Application

33

remaining axioms of recursion (15,16,17,20) are considered similarly, then

∀x∀y{[(ΘΦ)∗(y, x) = y ∧ y ⊂ U]⇒ ΘΦ(x) ⊆ y} ∈ Th(U)(see p.39).

Corollary 5.6. For an arbitrary n - place functor Φ, for an arbitrary sequence of argument words α1, . . . , αn,

for an arbitrary set of argument words A, There is only one function word β, such that

WordMA |= ΘΦ(α1, . . . , αn) = β ⇐⇒WordMA |= (ΘΦ)∗(β, α1, . . . , αn) = β ∧ β ⊂ U, then

∀x∃!y[(ΘΦ)∗(y, x) = y ∧ y ⊂ U] ∈ Th(U). ∀x∃!y{[ΘΦ(x) = y ≡ [(ΘΦ)∗(y, x) = y ∧ y ⊂ U]} ∈ Th(U).

Note. Let Φ be an arbitrary n - a place functor of the alphabet L (U). A simple calculation of the functor Φ

on the sequence of argument words α can be decomposed into two calculations: a simple calculation of the functor

ΘΦ of the alphabet L (U) on the sequence of argument words α and then a simple calculation of the functor (Φ)∗

of the alphabet L on the sequence of argument words ΘΦ(α), α. Moreover, the domain of the functional word

ΘΦ(α) consists of those and only those argument words that were used in a simple calculation of the functor Φ

on the sequence of argument words α and for any extension of the functional word ΘΦ(α) ⊆ θ, not necessarily

consistent with the oracle set A, the result of a simple calculation of the functor (Φ)∗ on the sequence ΘΦ(α), α

will coincide with the result of a simple calculation of the same functor (Φ)∗ on the sequence θ, α(analogous to

the "Use Principle"("Use Principle") of oracle computing, e.g. on Turing machines) and, as noted earlier,

(ΘΦ)∗(θ, α) ⊆ θ - "Use Principle" will play an important role in the future when transferring (spreading) this

fundamental concept, associated with calculations in the standard model, to non-standard models.

If in a simple evaluation of the functor Φ on a sequence of argument words α each interpretation axiom of

the form U(α) = Λ is replaced by an equality of the form G(|α|2α22, α) = Λ (replaced by an equality of the

form G(θ, α) = Λ, where |α|2α22 ⊂ θ), an axiom of the form U(α) = a1 is replaced by an equality of the form

G(|α|2αa122, α) = a1 (replaced by an equality of the form G(θ, α) = a!, where |α|2αa122 ⊂ θ), then the resulting

sequence of equalities will be a quasi-inference that does not contain interpretative axioms, and this quasi-inference

can be easily transformed into an simple inference of L , by replacing the indicated equalities, for example, their

simple calculations.

Bounded formulas. Universal functional word.

Let us de�ne the notion of a bounded formula Ψ and accompanying this notion, sets denoted as BwpΨ, V wpΨ.

1) Any quanti�er-free formula A is a bounded formula, BwpA = ∅, V wpA = ∅;

2) Let A(z, x1, . . . , xn; y1, . . . , yk) - bounded formula, P(x1, . . . , xn) - word polinomial, z /∈ V wpA, then formula

34

B
 ∃z[|z| 6 |P(x1, . . . , xn)|&A(z, x1, . . . , xn; y1, . . . , yk)] or

B
 ∀z[|z| 6 |P(x1, . . . , xn)| ⊃ A(z, x1, . . . , xn; y1, . . . , yk)] - bounded formula, P(x1, . . . , xn) ∈ BwpA,

{x1, . . . , xn} ⊂ V wpA, variables y1, . . . , yk - are called the parameters of the bounded formula in question, this list is

separated by a semicolon and may be empty. We will denote this formula as ∃|P(x1,...,xn)|
z A(z, x1, . . . , xn; y1, . . . , yk)]

or ∀|P(x1,...,xn)|
z A(z, x1, . . . , xn; y1, . . . , yk)].

A word polynomial belonging to the set BwpA is called a bounding word polynomial.

A bounded formula A is called an ∃(∀) bounded formula if it has the form

∃|P1(x)|
z1 , . . .∃|Pk(x)|

zk B(z1, . . . zk, x; y1, . . . , yk) (∀|P1(x)|
z1 , . . .∀|Pk(x)|

zk B(z1, . . . zk, x; y1, . . . , yk)), where

B(z1, . . . zk, x; y1, . . . , yk) -quanti�er-free formula.

Note. ∀Φ ∀α ∀P(x) :

1. WordA |= ∃|P(α)|
u Φ(α, u) = Λ⇔ ∃|P(α)|

u (Φ)∗(ΘΦ(α, u), α, u) = Λ,

2. WordA |= ∀|P(α)|
u Φ(α, u) = Λ⇔ ∀|P(α)|

u (Φ)∗(ΘΦ(α, u), α, u) = Λ,

∀β :

3. WordA |= ∀|P(α)|
u ΘΦ(α, u) ⊆ β ⇒ {∃|P(α)|

u Φ(α, u) = Λ⇔ ∀θ[β ⊆ θ ⇒ ∃|P(α)|
u (Φ)∗(θ, α, u) = Λ]},

4. WordA |= ∀|P(α)|
u ΘΦ(α, u) ⊆ β ⇒ {∀|P(α)|

u Φ(α, u) = Λ⇔ ∀θ[β ⊆ θ ⇒ ∀|P(α)|
u (Φ)∗(θ, α, u) = Λ]}.

Consider the following word function: Order(α) is a word β such that the number of words preceding the word

β in the lexicographic ordering is equal to |α|. In [1 p. 217] that this word function is a primitive recursive word

function, then for the word function Order there exists a one-place functor Order of the alphabet L , which is true:

∀α, β[Order(α) = β ⇔ ` Order(α) = β].

Let us write out the de�ning equations for the functor Order:

1). Order(Λ) = Λ;

2). Order(Si(α)) = R(Order(α)), where

a). R(Λ) = a1;

b). R(Si(α)) = Si+1(α), where 1 ≤ i < p;

�c). R(Sp(α)) = S1(R(α)).

Note. For each set of p - alphabetic words, there will be its own p - alphabetic functor Orderp. From the

context it will be clear which p - alphabetic funtor is meant. The functor Order has the property:

1. WordM |= ∀αβ[|α| = |β| ⊃ Order(α) = Order(β)];

35

2. At k ≥ 2 ∧ p > 1 WordM |= |Orderp(k)| < k;

3. For each p ≥ 2 true Orderp(
pn+1 − 1

p− 1
) = 1, . . . , 1︸ ︷︷ ︸

n+1−times

.

4. For each p ≥ 2 true WordM |= ∀x[|x| ≥ 2⇒ Orderp(p
|x|) = (p− 1), . . . , (p− 1)︸ ︷︷ ︸

|x|−1−times

p];

5.According to the de�ning equalities given in [1 p. 217], it follows that this functor belongs to PPr, i.e.

Order ∈ PPr.

From (3) we get WordM |= Orderp(
p|P(x)|+1 − 1

p− 1
) = 1, . . . , 1︸ ︷︷ ︸

|P(x)|+1−times

.

If for argument words α, β it is true that WordM |= Order(α) = β, then the argument word |α| is a natural

number, we will call it the Godel number of the argument word β and denote it by pβq = |α|.

Obviously, for any argument word β there exists a natural number α such that

pβq = α(WordM |= Order(α) = β), then WordM |= p(p− 1), . . . , (p− 1)︸ ︷︷ ︸
|x|−1−times

pq = p|x|, for |x| ≥ 2.

With each n ≥ 1 -place functor Φ we associate a functor, denoted as ΘΦ,∀∀∀, satisfying the following de�ning

equalities:

ΘΦ,∀∀∀(x,Λ) = ΘΦ(x,Λ);

ΘΦ,∀∀∀(x,Sk(xn)) = Concat(ΘΦ,∀∀∀(x, xn),ΘΦ(x,Order(Sk(xn)))).

That is right: 1. If Φ ∈ PPr⇒ ΘΦ,∀∀∀ ∈ PPr;

2. WordMA |= ∀α, β, x[|α| = |β| ⇒ ΘΦ,∀∀∀(x, α) = ΘΦ,∀∀∀(x, β)];

3. WordMA |= ∀x∀|z|y [ΘΦ(x, y) ⊆ ΘΦ,∀∀∀(x,
p|z|+1 − 1

p− 1
)].

Let us de�ne a universal function word denoted as ΘU.

De�ning equalities:

ΘU(Λ) = Λ,

ΘU(αai) = Concat(ΘU(α), c(Order(α),U(Order(α)))). According to the de�nition, the functor ΘU belongs

PPr alphabet LU.

We have:

(ΘU)∗(y,Λ) = Λ,

(ΘU)∗(y, αai) = Concat((ΘU)∗(y, α), c(Order(α,G(y,Order(α)))),

∀αβ∀θ ⊇ ΘU(α)WordMA |= [ΘU(α) = β ⇐⇒ (ΘU)∗(θ, α) = β], in particular

WordMA |= ∀x∀y[ΘU(x) = y ⇐⇒ (ΘU)∗(ΘU(x), x) = y].

Let β be a function word such that for some word α it is true

36

WordMA |= (ΘU)∗(β, α) ⊆ β ⊂ A, then WordMA |= ΘU(α) ⊆ β. We have

∀x∀y{Fw(y)⇒ [[(ΘU)∗(y, x) ⊆ y ∧ y ⊂ U]⇒ ΘU(x) ⊆ y]} ∈ Th(U).

Note. For each p, its own p is de�ned - an alphabetic universal function word ΘU.

True:

1. WordMA |= ∀α, β[|α| = |β| ⇐⇒ ΘU(α) = ΘU(β)];

2. WordMA |= ∀α, β[|α| ≤ |β| ⇐⇒ ΘU(α) ⊆ ΘU(β)].

3. WordMA |= ∀x{|x| ≤ |y| ⇒ [ΘU(
p|y|+1 − 1

p− 1
)](x) = Λ⇐⇒ x ∈ A}, where A - set p - alphabetic argument of

words.

4. WordMA |= ∀α[ΘU(α) = ΘΘU(α)], using Goodstein's rule, it can be proven that ` ΘU(x) = ΘΘU(x).

Let given n + m - ary(n ≥ 1,m ≥ 1), p - alphabetic functor Φ ∈ PPr, interpretative p - alphabetic set of

argument words A be given. For this functor, there exists a word polynomial P(x1, . . . , xn, y1 . . . ym) such that for

∀α, β, in a simple calculation of the functor Φ on α, β, all used words have length not exceeding |P(α, β)|, then

ΘΦ(α, β) ⊆ ΘU(
p|P(α,β)|+1 − 1

p− 1
).

Next, let |γ1| ≤ |P1(α)|, . . . , |γm| ≤ |Pm(α)|, then in a simple calculation of the functor Φ on α, γ, all used

words have length at most |P(α,P1(α), . . . ,Pm(α))|, then we get ΘΦ(α, γ) ⊆ ΘU(
p|P(α,P1(α),...,Pm(α))|+1 − 1

p− 1
).

Next, consider a formula of the form ∃|P1(α)|
z [Φ(α, z) = Λ], then for any word γ such that |γ| ≤ |P1(α)|, true

ΘΦ(α, γ) ⊆ ΘU(
p|P(α,P1(α))|+1 − 1

p− 1
), then

WordMA |= {∃|P1(α)|
z Φ(α, z) = Λ⇔ ∃|P1(α)|

z (Φ)∗(ΘU(
p|P(α,P1(α))|+1 − 1

p− 1
), α, z) = Λ}.

Similarly, reasoning, we get WordMA |= {∃|P2(β)|
z2 ∃|P1(β)|

z1 Φ(β, z1, z2) = Λ⇔

⇔ ∃|P2(β)|
z2 ∃|P1(β)|

z1 (Φ)∗(ΘU(
p|P(β,P1(β),P2(β))|+1 − 1

p− 1
), β, z1, z2) = Λ}.

Proposition 5.7 . Let n + m(n ≥ 1,m ≥ 1) be a place p - alphabetic functor Φ ∈ PPr, an interpretive p -

an alphabetic set of A argument words, and word polynomials P1(x), . . . ,Pm(x), then you can construct a word

polynomial P(x), which

WordMA |= {∃|P1(x)|
z1 . . . ∃|Pm(x)|

zm Φ(x, z1, . . . zm) = Λ⇔ ∃|P1(x)|
z1 , . . . ,∃|Pm(x)|

zm (Φ)∗(ΘU(
p|P(x)|+1 − 1

p− 1
), x, z1, . . . , zm) =

Λ}.

Likewise.

Proposition 5.8 Let n + m(n ≥ 1,m ≥ 1) be a place p - alphabetic functor Φ ∈ PPr, an interpretative p -

37

an alphabetic set of A argument words, and word polynomials P1(x), . . . ,Pm(x), then we can construct a word

polynomial such P(x), that

WordMA |= {∀|P1(x)|
z1 . . . ∀|Pm(x)|

zm Φ(x, z1, . . . zm) = Λ⇔⇔ ∀|P1(x)|
z1 , . . . ,∀|Pm(x)|

zm (Φ)∗(ΘU(
p|P(x)|+1 − 1

p− 1
), x, z1, . . . , zm) =

Λ}.

Basic complexity classes of computational complexity

The set of B n - of argument words, given the interpretation of the oracle symbol U by the set of argument

words A, is called polynomial, if there exists (can be constructed) such a quanti�er-free formula B, which is built

from functors belonging to PPr, which is true ∀∀∀α[WordMA |= B(α)⇐⇒ α ∈ B].

The class of all polynomial sets with respect to the set A - argument words will be denoted by PA(U). This

class of word sets is closed with respect to Boolean operations: intersection, union, additionû, and hanging of the

limited existence and universal quanti�er (∃,∀) over subwords.

A set of B n - of argument words is called a set of type
∑
, with respect to some set of argument words

A, if for some ∃ a restricted formula B(x) whose quanti�er-free formula is built from functors belongs to PPr,

∀α{α ∈ B⇐⇒WordMA |= B(α)}.

Let co − NPA(U) = {C : C ∈ NPA(U}. The set belonging to the class co − NPA(U) will be called a set of

type
∏
[7].

Part VI

Complexity classes and elementary model theory

The known relations between the introduced classes:

a). There is an oracle A, such that PA(U) = NPA(U);

b). There is an oracle B, such that PB(U) 6= NPB(U);

c). There is an oracle C, such that PC(U) 6= NPC(U) è NPC(U) = co−NPC(U);

d). There is an oracle D, such that NPD(U) 6= co−NPD(U);

e). There is an oracle E, such that PE(U) = NPE(U)
⋂

co−NPE(U);

f). There is an oracle F, such that PF(U) = NPF(U)
⋂

co−NPF(U) and NPF(U) = co−NPF(U);

g). There is an oracle G, such that PG(U) = NPG(U)
⋂

co−NPG(U) and NPG(U) 6= co−NPG(U);

h). There is an oracle H, such that PH(U) 6= NPF(U)
⋂

co−NPH(U) and NPH(U) = co−NPH(U)

38

i). There is an oracle I, such that PI(U) 6= NP I(U)
⋂

co−NPI(U) and NP I(U) 6= co−NP I(U).

Every speci�ed ratio in the non-relativized version is a problem.

The main concepts and considered theorems in this section are borrowed from [8-13] and transformed accordingly.

Let F (U) be some set of functors containing the original functors.

A �rst-order language, de�ned by a given set of functors, and denoted as LF(U), consists of the function symbols

fΦ, for each functor Φ ∈ F (U) whose locality is equal to the locality of the Φ functor, constant symbol Λ, basic

predicate symbol ≤ .

Note. As a rule, the function symbol fΦ will be denoted as Φ and interpreted as a function. Constant symbols

will also continue to be denoted as ak. A language LF(U) is called k - alphabetic if the set of functors F (U) is k

is alphabetic.

If the set of functors F (U) consists of the entire set of word primitive recursive functors, then the language

LF(U) will be denoted as L(U) L.

For each �xed set of p ≥ 2 -alphabetic argument words, we de�ne the following theories:

Th = {A : WordM |= A- proposition of language L}+ ∀xy(x ≤ y ≡ |x| . |y| = Λ).

Th - complete theory in language L.

Let us de�ne a theory in the language L(U), denoted as Th(U):

Th(U) = {A : For any set of argument words A WordMA |= A, A - proposition of language

L(U)}+ ∀xy(x ≤ y ≡ |x| . |y| = Λ).

Th(A) = {A : WordMA |= A, A - proposition of language LA}+ ∀xy(x ≤ y ≡ |x| . |y| = Λ)

Th(A) - complete theory in language LA. Takes place Th ⊂ Th(U) ⊂ Th(A)

Theorem 6.1. Let A′ |= Th. Let u : A′ → {Λ, 1}, then the model A′ of the language L can be enriched to a

model A of the language L(U), such that A |= Th(U), ∀b ∈ A′ u(b) = UA(b) and for any formula A (x) in L, for

∀a ∈ A′ if A′ |= A (a), then A |= A (a),

Proof.

Äîêàçàòåëüñòâî.

Let's create a theory Th(A′A′) (see [9, p. 130]). Let's interpret the oracle function U:

U(a) =


Λ, if u(a) = Λ;

S1(Λ), if u(a) = 1.

for each element a ∈ A′ (S1(Λ)
 a1
 1)

39

Next, we construct the theory Th(A′A′) + Th(U) + {U(ca) = b : a ∈ A′}. This theory is either consistent or

not. Let the theory Th(A′A′) + Th(U) + {U(ca) = b : a ∈ A′} be inconsistent, then

Th(U) `
∧
i≤k

U(cai) = bi ⊃ ¬
∧
j≤m

Bj(ca1
, . . . , cak), then Th(U) `

∧
i≤k

U(yi) = bi ⊃ ¬
∧
j≤m

Bj(y1, . . . , yk).

We have: the theory Th is a complete theory in language L, A′ |= Th, and A′ |=
∧
j≤m

Bj(a1, . . . , ak), then there

exist distinct argument words α1, . . . , αk such that WordM |=
∧
j≤m

Bj(α1, . . . , αk), then

Th(U) `
∧
i≤k

U(αi) = bi ⊃ ¬
∧
j≤m

Bj(α1, . . . , αk). Let's interpret the oracle U: U(αi) = bi, for other argument

words β we put U(β) = Λ. Let us denote the resulting interpretation as A, then WordMA |= Th(U) and

WordMA |=
∧
i≤k

U(αi) = bi, then WordMA |= ¬
∧
j≤m

Bj(α1, . . . , αk). The formula
∧
j≤m

Bj(α1, . . . , αk) is a formula

of the language L, then WordM |= ¬
∧
j≤m

Bj(α1, . . . , αk) is a contradiction.

Let A |= Th(A′A′) + Th(U) + {U(a) = b : a ∈ A′}, then for any formula A (x) in L, for ∀a ∈ A′, if A′ |= A (a),

then A |= A (a).

Let us introduce the following important concept.

De�nition. Let A be a model of the language L(U) (L) and a ∈ A . A polynomial cut de�ned by a set of

elements a ∈ A is such a model (algebraic system), denoted as Aa supported by the set

Aa = {b : for some word polynomial P(x) A |= |b| ≤ |P(a)|}, and the signature consists of all those functions fΦ

for which the functor is Φ ∈ PPr.

That's right: 1. Aa ⊆ A[7 p.36].

2. ∀a [Aa |= A(a)⇐⇒ A |= A(a)], where A(x) - bounded formula of the signature PPr.

By ∆A - we will denote the diagram of the model A, in particular ∆Aa is the diagram of the polynomial cut Aa.

Note. Let's A′ - reduct of the model A in lanquaqe L(U) to the model in language L, we have ∆A′ ⊆ ∆A, in

in particular ∆A′a
⊆ ∆Aa , considering Corollary 5.2, page 26, by the diagram ∆A′ , we can recover the diagram ∆A,

in this case, it is necessary to know the graph of the oracle U, in the model A. The diagram ∆A′ contains only

traces of oracle computations, the full information about oracle computations is contained in the diagram ∆A, for

example, if A |= ΘΦ(b) = c, then A′ |= (ΘΦ)∗(c.b) = c, if [ΘΦ(b) = c] ∈ ∆Aa , then [(ΘΦ)∗(c.b) = c] ∈ ∆A′a
.

Proposition 1. For an arbitrary n + 1(n ≥ 1) - ary functor Φ, for an arbitrary model A of LU such that

A |= Th(A), for an arbitrary set a ∈ A, for an arbitrary word polynomial P(x), for an arbitrary function word b

such that A |= ∀|P(a)|
u ΘΦ(a, u) ⊆ b is true:

1. A |= ∀|P(a)|
u Φ(a, u) = Λ⇐⇒ A |= ∀|P(a)|

u (Φ)∗(b,a, u) = Λ.

40

2. Aa |= ∀|P(a)|
u Φ(a, u) = Λ⇐⇒ A |= ∀|P(a)|

u (Φ)∗(b,a, u) = Λ.

Proposition 2. For an arbitrary n+1− place functor Φ, for an arbitrary model A of LU such that A |= Th(A),

for an arbitrary sequence of elements a ∈ A, for an arbitrary word polynomial P(x) , there exists a functional

element b with the smallest length such that ∀|P(a)|
u ΘΦ(a, u) ⊆ b.

Note. Such a functional element is not the only one, but for any such functional elements b, c true |b| =

|c| ∧ dom(b) = dom(c) ∧ ∀x[x ∈ dom(b)⇒ b(x) = c(x)].

Any extension of the polynomial cut Aa ⊆M |= Th(A), for any functor, any word polynomial P(x), produces

the following relations:

1. Aa ⊆Ma;

2. ∀b ∈ Aa true ΘΦ(b)A = ΘΦ(b)M;

3. ∀b, c ∈ Aa, if A |= (Φ)∗(ΘΦ(b), b) = c, then ∀f ∈ M , sush that ΘΦ(b) ⊆ f ,true M |= (Φ)∗(f , b) = c -

"Use Principle" when expanding models;

4. Let b ∈ Aa. Let cA - the smallest functional element in length, such that A |= ∀|P(b)|
u ΘΦ(b, u) ⊆ cA.

Let dM - the smallest functional element in length, such that M |= ∀|P(b)|
u ΘΦ(b, u) ⊆ dM. Then:

a). dom(cA) ⊂ Aa ∧ dom(dM) ⊂ Ma ∧ cA ⊆ dM;

b). If |e| ≤ |P(b)| and A |= Φ(b, e) = h, then A |= (Φ)∗(cA, b, e) = h è M |= (Φ)∗(dM, b, e) = h;

c). If A |= ∀|P(b)|
u (Φ)∗(cA, b, u) = Λ, then for any |f | ≤ |P(b)| we get A |= (Φ)∗(cA, b, f) = Λ, then M |=

(Φ)∗(dM, b, f) = Λ, then M |= ∀u(|u| ≤ |P(b)| ∧ u ∈ Aa ⊃ (Φ)∗(dM, b, u) = Λ. There is also, if M |= ∀u(|u| ≤

|P(b)| ∧ u ∈ Aa ⊃ (Φ)∗(dM, b, u) = Λ), then A |= ∀|P(b)|
u (Φ)∗(cA, b, u) = Λ.

"Use Principle" when expanding models.

Theorem 6.2. Let A be an arbitrary oracle. NP(A)) = co−NP(A) if and only if for any bounded ∃ formula

A(x) of signature PPr(U) there exists a bounded ∀ formula B(x) of the same signature such that

Th(A) ` ∀x[A(x) ≡ B(x)].

Theorem 6.3. Let A be an oracle set, A(x) be a bounded ∀ formula of the signature PPr of the language

L(U). The following conditions are equivalent:

1. For any model A |= Th(A), for any a ∈ A, for any b ∈ Aa, any model M |= Th(A) such that Aa ⊆ M, if

A |= A(b), then M |= A(b).

2. For a formula A(x) there exists a bounded ∃ formula B(x) of the language L(U),

41

such that Th(A) |= ∀x[A(x) ≡ B(x)].

Proof. We will prove that (1) implies (2). The idea of the proof is borrowed from [8 p. 156], [9 p.187-188].

If the formula A(x) is such that Th(A) |= ∀xA(x), then Th(A) |= ∀(x[A(x) ≡ B(x)], where B(x) is a bounded

∃ formula, such that Th(A) |= ∀xB(x).

Let the formula A(x) be such that Th(A) 2 ∀xA(x)(1).

Let's Γ(c) = {Θ(c) : Th(A) |= ¬A(x) ⊃ Θ(x)}, where Θ(x) - bounded ∀ formula, c - new constant symbols.

From (1) we obtain that Th(A) + Γ(c) - consistent theory. Let's prove it Th(A) + Γ(c) |= ¬A(c). Let's

A |= Th(A) + Γ(c), c ∈ A. Let ∆Ac - be a diagram of the model Ac.

Set of sentences Th(A) + ∆Ac + ¬A(c) - consistent or inconsistent. If Th(A) + ∆Ac + ¬A(c) - inconsistent,

then Th(A) + ∆Ac |= A(c), then Th(A) +
∧
i≤k

Λi(c, d) |= A(c), where Λi(c, d) ∈ ∆Ac , then

Th(A) |=
∧
i≤k

Λi(c, d) ⊃ A(c), then Th(A) |= ¬A(c) ⊃ ¬
∧
i≤k

Λi(c, d), then Th(A) |= ∀x∀y[¬A(x) ⊃ ¬
∧
i≤k

Λi(x, y)],

then Th(A) |= ∀x[¬A(x) ⊃ ∀y¬
∧
i≤k

Λi(x, y)](2).

For d, there exist such word polynomials P̃(c), that |d| ≤ |P̃(c)|. From(2) we obtain

Th(A) |= ∀x[¬A(x) ⊃ ∀|P̃(x)|
y ¬

∧
i≤k

Λi(x, y)], then ∀|P̃(c)|
y ¬

∧
i≤k

Λi(c, y) ∈ Γ(c), then A |= ∀|P̃(c)|
y ¬

∧
i≤k

Λi(c, y), then

A |= ¬
∧
i≤k

Λi(c, d) - contradiction, hence set sentences Th(A) + ∆Ac + ¬A(ñ) - consistent.

Let's M |= Th(A) + ∆Ac + ¬A(ñ), then we get Ac ⊆ M and M |= ¬A(ñ), then A |= ¬A(ñ), consequently

Th(A) + Γ(c) |= ¬Φ(c), then Th(A) |=
∧
j≤m

Ωj(c) ⊃ ¬A(ñ), where Ωj(c) ∈ Γ(c), then

Th(A) |=
∧
j≤m

Ωj(x) ⊃ ¬A(x).

We have Th(A) |= ¬A(x) ⊃
∧
j≤m

Ωj(x), then Th(A) |= ¬A(x) ≡
∧
j≤m

Λj(x), then

Th(A) |= ¬
∧
j≤m

Ωj(x) ≡ A(x).

Let us prove that (2) implies (1). Let A |= Th(A), a ∈ A, b ∈ Aa, M |= Th(A), such that Aa ⊆ M and

A |= A(b).

We have: for the formula A(x) there exists a bounded ∃ formula B(x) of the language L(U),

such that Th(A) |= ∀x[A(x) ≡ B(x)], given A |= Th(A), we obtain A |= ∀x[A(x) ≡ B(x)], then

A |= A(b) ≡ B(b), taking into account A |= A(b), we get A |= B(b), then Aa |= B(b), taking into account

that B(x) is a bounded ∃ formula, Aa ⊆ M and b ∈ Ma, we obtain M |= B(b). From M |= Th(A) and

Th(A) |= ∀x[A(x) ≡ B(x)] we get M |= ∀x[A(x) ≡ B(x)], then M |= A(b) ≡ B(b), then M |= A(b).

Note. A similar theorem holds for the theory Th in the language L and for the theory Th(U) in the language

42

L(U).

Theorem 6.4. For any oracle A, any bounded ∀ formula A(x) of language L(U) signature PPr, the following

conditions are equivalent:

1). For any model A |= Th(A), any elements of a ∈ A, any elements of b ∈ Aa, if Aa |= A(b), then for any

model B ⊇ Aa such that B |= Th(A), true B |= A(b).

2). For any model A |= Th(A), any elements of a ∈ A, any elements of b ∈ Aa, if Aa |= A(b), then

Th(A) + ∆Aa ` A(b).

3). For the formula A(x) there is a bounded ∃ formula B(x) of signature PPr such that

Th(A) ` ∀x[A(x) ≡ B(x)](equivalent to WordMA |= ∀x[A(x) ≡ B(x)]).

Proof. The proof of (1)⇔ (2) is quite simple. Let us prove that from (3) follows (1).

Let A |= Th(A), a ∈ A, b ∈ Aa and Aa |= A(b). Ïóñòü B ⊇ Aa, such that B |= Th(A). For some bounded ∃

formula B(x) signature PPr we have Th(A) ` ∀x[A(x) ≡ B(x)], thenB |= A(b) ≡ B(b). Suppose thatB |= ¬A(b),

then B |= ¬B(b), given B ⊇ Aa and the fact that ¬B(x) is a ∀ formula of signature PPr, we obtain Aa |= ¬B(b),

then A |= ¬B(b), given that A |= Th(A) and Th(A) ` ∀x[A(x) ≡ B(x], we obtain A |= A(b) ≡ B(b), then

Aa |= A(b) ≡ B(b), taking into account Aa |= A(b), we obtain Aa |= B(b), we get a contradiction, then B |= A(b).

This (1)⇒ (3) follows from Theorem 6.3.

Note. A similar theorem holds for the theory Th in the language L and for the theory Th(U) in the language

L(U).

Using Proposition 1 and Theorem 6.4, we can prove Theorem 4.5 in [11 p.469] quite simply.

Theorem 6.5 Let the second point of Theorem 6.4 be satis�ed for the theory Th in the language L, for any

bounded ∀ formula of signature PPr.

Let A |= Th(U), a ∈ A, b ∈ Aa. Let the formula ∀|P(x)|
y Φ(x, y) = Λ be such that A |= ∀|P(b)|

y Φ(b, y) = Λ, then

Th(U) + ∆A ` ∀|P(b)|
y Φ(b, y) = Λ.

Formula ∀x[∀|P(x)|
z Φ(x, z) = Λ ≡ ∀|P(x)|

u (Φ)∗(ΘU(expp(˜|P(x))|), x, u)) = Λ], belongs to theory Th(U), where

P̃(x) - is a suitable word polynomial, then

Th(U) ` ∀x[∀|P(x)|
z Φ(x, z) = Λ ≡ ∀|P(x)|

u (Φ)∗(ΘU(expp(˜|P(x)|)), x, u) = Λ], then

Th(U) ` [∀|P(b)|
z Φ(b, z) = Λ ≡ ∀|P(b)|

u (Φ)∗(ΘU(expp(˜|P(b)|)), b, u) = Λ](1). Let us calculate ˜|P(b)| = d1,

expp(d1) = d2, ΘU(d2) = d3, then A′ |= ∀|P(b)|
u (Φ)∗(d3, b, u) = Λ, where A′ is a reduct A of languageL(U) to L,

43

then Th + ∆A′a;d2
` ∀|P(b)|

u (Φ)∗(d3, b, u) = Λ, taking into account equality ΘU(d2) = d3, we get

Th + ∆A′a;d2
+{ΘU(d2)=d3} ` ∀

|P(b)|
u (Φ)∗(ΘU(d2), b, u) = Λ, considering (ΘU(d2) = d3) ∈ ∆Aa;d2

, we get

Th + ∆Aa;d2
` ∀|P(b)|

u (Φ)∗(ΘU(d2), b, u) = Λ. Considering Th ` ∀x∀y[expp(x) = y ≡ EXPp(x, y) = Λ] and

Th ` ∀z∀v∀x[A (z, v) ∧EXPp(x, v) = Λ ⊃ A (z, expp(x))], we get

Th + ∆Aa;d2
` ∀|P(b)|

u (Φ)∗(ΘU(expp(d1)), b, u) = Λ, considering ˜|P(b)| = d1, we get

Th + ∆Aa;d2
` ∀|P(b)|

u (Φ)∗(ΘU(expp(˜|P(b)|)), b, u) = Λ], considering (1), we get

Th(U) + ∆Aa;d2
` ∀|P(b)|

y Φ(b, y) = Λ, then Th(U) + ∆A ` ∀|P(b)|
y Φ(b, y) = Λ.

Theorem 6.6. If for a theory Th for any bounded ∀ - formula of the language L the �rst point of Theorem

6.4 is satis�ed, then for any oracle A, for any bounded ∀ - formula of the language L(U) for a theory Th(A) the

�rst point of this theorem is also satis�ed.

Proof. Let Φ be an arbitrary n + 1 - ary functor, signature L(U). Let P(x1, . . . , xn) be an arbitrary word

polynomial. Let us prove a theorem for a formula of the form ∀|P(x1,...,xn)|
z Φ(z, x1, . . . , xn) = Λ.

Let A |= Th(A), a ∈ A, b ∈ Aa , A |= ∀|P(b)|
z [Φ(z, b) = Λ], let's prove that

∀ M |= Th(A), such that M ⊇ Aa is true M |= ∀|P(b)|
z [Φ(b, z) = Λ].

Let A′ be the restriction of the model A of the language L(U) to a model of the language L.

Let's make a theory Th(A′A) 8 (see [9, p. 130]), next we will make up a theory Th(A′A) + ∆M′a
,

where M′a - reduct of the model Ma in language L(U) to the model in the languge L.

This theory is contradictory or it is not. Suppose that the theory Th(A′A) + ∆M′a
- is contradictory, then

Th `
∧
Ai(e, f) ⊃ ¬

∧
Bj(e, h), where e ∈ Aa , Ai(e, f) ∈ Th(A′A), Bj(e, h) ∈ ∆M′a

, then

Th `
∧
Ai(e, f) ⊃ ¬

∧
Bj(e, x), then Th `

∧
Ai(e, f) ⊃ ∀x¬

∧
Bj(e, x), then A′ |= ∀x¬

∧
Bj(e, x).

For h, there exists such a word polynomial Q(x) that |h| ≤ |Q(a)|, then A′ |= ∀|Q(a)|
x ¬

∧
Bj(e, x), then A′ |=

∀|Q(a)|
x ¬

∧
Bj(e, x), then, according to Theorem 6.4 (1) for the language L, given A′a ⊆ M′a , we obtain M′a |=

∀|Q(a)|
x ¬

∧
Bj(e, x) is a contradiction, hence the theory Th(A′A) + ∆M′a

is non-contradictory.

Note that in the models A′ and M′ there are traces of oracle computations of the oracle UA and the oracle UM

Let us construct an interpretation of the oracle symbol U:

U(a) =


UA(a), if a ∈ A;

UM(a), if a ∈Ma

Let us denote the obtained interpretation as B. According to Theorem 6.1. we get N1 |= Th(U) + ∆A′ + ∆M′a
.

8We can take a theory Th + ∆A′

44

We have:

1. A′ ⊆ N1
′, M′a ⊆ N1

′.

2. For the interpretation AA of the oracle symbol U in the model A and for the interpretation BN1
of the oracle

symbol U in the model N1, it is true that AA ⊆ BN1 (∀a ∈ A UA(a) = UN1(a)).

3. For the interpretation AMa
of the oracle symbol U in the model Ma and for the interpretation BN1

of the

oracle symbol U in the model N1, it is true that AMa
⊆ BN1

(∀b ∈Ma UMa
(b) = UN1

(b)).

4. For any functor Φ in L, ∀b ∈ A ∀c ∈ A A |= Φ(b) = c ⇐⇒ N1 |= Φ(b) = c, and (1) is used, then

∀b ∈ A ∀c ∈ A ∀d ∈ A A |= (ΘΦ)∗(c, b) = d⇐⇒ N1 |= Θ∗Φ(c, b) = d.

5. For any functor Φ in L(U), ∀b ∈ A ∀c ∈ A A |= ΘΦ(b) = c ⇐⇒ N1 |= ΘΦ(b) = c, using (2,4), Theorem 4.3,

Theorem 4.4, Theorem 5.1, and Theorem 5.5:

A |= ΘΦ(b) = cA ⇐⇒ A |= (ΘΦ)∗(cA.b) = cA ∧ cA ⊂ AA, then N1 |= (ΘΦ)∗(cA.b) = cA ∧ cA ⊂ BN1
, then

N1 |= ΘΦ(b) = dN1
⊂ cA, then N1 |= (ΘΦ)∗(cA.b) = ΘΦ(b) = dN1

, then N1 |= ΘΦ(b) = dN1
= cA.

6. For any functor Φ in L(U), ∀b ∈ A ∀c ∈ A A |= Φ(b) = c⇐⇒ N1 |= Φ(a) = b, using (4,5) and Theorem 5.1.

Thus, we obtain A ⊆ N1, then N1 |= ∆A, then N1 |= Th(U) + ∆A, Taking into account theorem 6.5, we obtain

N1 |= ∀|P(b)|
z [Φ(b, z) = Λ].

7. For any functor Φ in L of signature PPr, it is true that

∀b ∈Ma ∀c ∈Ma Ma |= Φ(b) = c⇐⇒ N1 |= Φ(b) = c, and (1) is used, then it is true that

∀b ∈Ma ∀c ∈Ma ∀d ∈Ma Ma |= (ΘΦ)∗(c, b) = d⇐⇒ N1 |= Θ∗Φ(c.b) = d

8. For any functor Φ of the language L(U), of signature PPr(U), we have

∀b ∈ Ma ∀c ∈ Ma Ma |= ΘΦ(b) = c ⇐⇒ N1 |= ΘΦ(b) = c, using (3,7), Theorem 4.3, Theorem 4.4, Theorem 5.1,

and Theorem 5.5.

9. For any functor Φ of the language L(U), signature PPr(U), it is true

∀b ∈Ma ∀c ∈Ma Ma |= Φ(b) = c⇐⇒ N1 |= Φ(b) = c, using (7,8) and Theorem 5.1. Thus we obtain Ma ⊆ N1.

We have: N1 |= ∀|P(b)|
y Φ(b, y) = Λ, Ma ⊆ N1, then Ma |= ∀|P(b)|

y Φ(b, y), then M |= ∀|P(b)|
y Φ(b, y).

Continue. Let A(z, x1, . . . , xn) - arbitrary quanti�er-free formula signatures PPr. For this formula, one can

construct such n+ 1 - ary functor ΦA, that

Th(U) ` ∀x,∀z[A(z, x) ≡ ΦA(z, x) = Λ](Theorem 1.6), then for any word polynomial P(x) true

Th(U) ` ∀x[∃|P(x)|
z A(z, x) ≡ ∃|P(x)|

z [ΦA(z, x) = Λ]], and also

45

Th(U) ` ∀x[∀|P(x)|
z A(z, x) ≡ ∀|P(x)|

z [ΦA(z, x) = Λ]], then

Th(U) ` ∀|P(b)|
z A(z, b) ≡ ∀|P(b)|

z [ΦA(z, b) = Λ]. Let A |= ∀|P(b)|
z A(z, b), then

A |= ∀|P(b)|
z [ΦA(z, b) = Λ], then M |= ∀|P(b)|

u [ΦA(u, b) = Λ], then M |= ∀|P(b)|
z A(z, b) = Λ.

For a formula that has two or more restricted quanti�ers ∀, the proof is similar.

End of the proof of the theorem .

The main idea in the proof of this theorem is the application of the ”Use Principle” and the assumption that

polynomial properties are preserved for models of the theory Th when they are extended to models of the same

theory.

Theorem 6.7. There exists an interpretation of the A functor U such that NP(A) 6= co − NP(A), then the

theory Th(A) fails the third item of Theorem 6.4.

Proof. Consider a formula of the form ∃|x|y [|x| = |y|&U(y) = Λ]. For this formula, one can construct an n -

alphabetical interpretation of the A functor U such that, for n ≥ 2, for any ∀ bounded formula A(x, z) signatures

PPr is true WordMA 6|= ∃z∀x[∃|x|y [|x| = |y|&U(y) = Λ] ≡ A(x, z)].

The construction of the set A can be found in [12, p. 437].

Note. For the calculus CalcEqU, it is very easy to construct the set A.

Corollary. NP 6= co−NP.

Proof. Let's use Theorems 6.2 - 6.7.

P.S. I have proof of the following, not a very simple statement: (NP
⋂

co−NP) 6= P.

46

References

1. Ìàëüöåâ À. È. Àëãîðèòìû è ðåêóðñèâíûå ôóíêöèè. Ì., 1986. ñ. 368.

2. F. W. v. Henke, K. Indermark, G. Rose, K. Weihrauch. On Primitive Recursive Wordfunctions. Computing,

vol 15, 1975, p. 217-234.

3. Øàíèí Í.À. Âñòóïèòåëüíàÿ ñòàòüÿ. Î ðåêóðñèâíîì ìàòåìàòè÷åñêîì àíàëèçå è èñ÷èñëåíèè àðèôìåòè÷åñêèõ

ðàâåíñòâ Ð.Ë. Ãóäñòåéíà - Â êí.: Ð.Ë. Ãóäñòåéí. Ðåêóðñèâíûé ìàòåìàòè÷åñêèé àíàëèç. Èçäàòåëüñòâî

Ì."Íàóêà", 1970. ñ. 7-75.

4. R.L. Goodstein. Recursive number theory. Amstrdam, 1957. p. 187.

5. H. B. Curry. A formalization of recursive arithmetic. Amer. J. Math. v.63 p. 263-282, 1941.

6. Cobham A. The intrinsic computational di�culty of functions. Proc. of the 1964 International Congress for

Logic, Methology, and the Philosophy of Sciens, North Holand Publishing Co., Amsterdam, p. 24-30.

7. L, J. Stockmeyer. The polinomial-time hierarchy. Theoretical Computer Science vol 3 1977, p.1-22.

8. J. Donald Monk. Mathematical Logic. Springer - Verlag, New York, Heidelberg, Berlin. 1977. p. 515.

9. C. C. CHANG, H.J. KEISLER. MODEL THEORY. STUDIES IN BOOK AND THE FOUNDATIONS OF

MATHEMATICS. V. 73, 1973.

10. J. BARWISE. HANDBOOK OF MATHEMATICAL LOGIC. NORTH-HOLLAND PUBLISHING COM-

PANY AMSTERDAM NEW YORK OXFORD, 1977.

11. Book R.V., Long T.J., Selman A.L. Quantitative relativization of complexity classes. SIAM J. Comput. vol

13 No 3 August 1984, p. 461-487.

12. Baker T, Gill J. Solovay R. Relativization of the P =?N P Question. SIAM J. Comput. vol 4 December

1971, p. 431-442.

47

Application

Let us construct a k ≥ 3 - place functor of the form [JConcatIk1 [JConcatIk2 . . . [JConcatIkk−1I
k
k] . . .]. For this

functor in the calculus CalcEq we derive the equality

[JConcatIk1 [JConcatIk2 . . . [JConcatIkk−1I
k
k] . . .](x1 . . . xk) = Concat(x1,Concat(x2, . . .Concat(xk−1, xk) . . .)).

Let Concatk
 [JConcatIk1 [JConcatIk2 . . . [JConcatIkk−1I
k
k] . . .], at k ≥ 3, then ` Concatk(x1, . . . xk) =

Concat(x1,Concat(x2, . . .Concat(xk−1, xk) . . .)). When k = 2, we getConcat2
 Concat, ` Concat2(x1, x2) =

Concat(x1, x2) at k = 1 Concat1
 I1
1, ` Concat1(x) = x.

We have ([JConcatIkk−1I
k
k])∗ = [J(Concat)∗Ik+1

1 (Ikk−1)∗(Ikk)∗] = [J [JConcatI3
2I

3
3]Ik+1

1 (Ikk−1)∗(Ikk)∗] =

[JConcat(Ikk−1)∗(Ikk)∗] = [JConcatIk+1
k Ik+1

k+1], then

(Concatk)∗ = ([JConcatIk1 [JConcatIk2 . . . [JConcatIkk−1I
k
k] . . .]∗ =

[JConcatIk+1
2 [JConcatIk+1

3 . . . [JConcatIk+1
k Ik+1

k+1] . . .], then

` (Concatk)∗(x1, x2, . . . , xk+1) = Concatk(x2, . . . , xk+1)

We have (Θ[JΦΨ1,...,Ψk])
∗ = (J [Concatk+1[JΘΦΨ1, . . .Ψk]ΘΨ1

, . . . ,ΘΨk])∗, then

(J [Concatk+1[JΘΦΨ1, . . .Ψk]ΘΨ1
, . . . ,ΘΨk])∗ = [J(Concatk+1)∗In+1

1 ([JΘΦΨ1, . . .Ψk])∗(ΘΨ1
)∗, . . . , (ΘΨk)∗].

Next ([JΘΦΨ1, . . .Ψk])∗ = [J(ΘΦ)∗In+1
1 (Ψ1)∗, . . . (Ψk)∗], then

` ([JΘΦΨ1, . . .Ψk])∗(x1, x2, . . . , xn+1) = [J(ΘΦ)∗In+1
1 (Ψ1)∗, . . . (Ψk)∗](x1, x2, . . . , xn+1), then

` [J(ΘΦ)∗In+1
1 (Ψ1)∗, . . . (Ψk)∗](x1, x2, . . . , xn+1) = (ΘΦ)∗(x1, (Ψ1)∗(x1, x2, . . . , xn), . . . (Ψk)∗(x1, x2, . . . , xn)),

then ` ([JΘΦΨ1, . . .Ψk])∗(x1, x2, . . . , xn+1) = (ΘΦ)∗(x1, (Ψ1)∗(x1, x2, . . . , xn), . . . (Ψk)∗(x1, x2, . . . , xn)), then

` (Θ[JΦΨ1,...,Ψk])
∗(x1, x2, . . . , xn+1) = (Concatk+1)∗(x1, ([JΘΦΨ1, . . .Ψk])∗(x1, x2, . . . , xn+1)

, (ΘΨ1
)∗(x1, x2, . . . , xn+1), (ΘΨk)∗(x1, x2, . . . , xn+1)), then

` (Θ[JΦΨ1,...,Ψk])
∗(x1, x2, . . . , xn+1) = Concatk+1(([JΘΦΨ1, . . .Ψk])∗(x1, x2, . . . , xn+1)

, (ΘΨ1
)∗(x1, x2, . . . , xn+1), (ΘΨk)∗(x1, x2, . . . , xn+1)), then

` (Θ[JΦΨ1,...,Ψk])
∗(x1, x2, . . . , xn+1) = Concatk+1((ΘΦ)∗(x1, (Ψ1)∗(x1, x2, . . . , xn), . . . (Ψk)∗(x1, x2, . . . , xn)),

(ΘΨ1)∗(x1, x2, . . . , xn+1), (ΘΨk)∗(x1, x2, . . . , xn+1)), then

` (Θ[JΦΨ1,...,Ψk])
∗(x1, x2, . . . , xn+1) = Concat((ΘΦ)∗(x1, (Ψ1)∗(x1, x2, . . . , xn+1), . . . (Ψk)∗(x1, x2, . . . , xn+1)),

Concat((ΘΨ1
)∗(x1, x2, . . . , xn+1), . . . ,Concat((ΘΨk−1

)∗(x1, x2, . . . , xn+1), (ΘΨk)∗(x1, x2, . . . , xn+1)), . . . ,).

Given Φ - n ≥ 1 - place functor, Ψ1, . . . ,Ψk - (n+ 2) place functors. Let's compose a functor [RΦΨ1, . . . ,Ψk] -

(n+ 1) - place. From this functor we construct a functor Θ[RΦΨ1,...,Ψk]

48

Let x� x1, . . . , xn, λ� [J [RΦΨ1, . . . ,Ψk]In+2
1 , . . . , In+2

n+1].

We have ` λ(x, z, u) = [J [RΦΨ1, . . . ,Ψk]In+2
1 , . . . , In+2

n+1](x, z, u) = [RΦΨ1, . . . ,Ψk](x, z)

Let Ψ̃i � [JConcat[JΘΨiI
n+2
1 , . . . , In+2

n+1λ]In+2
n+2], Ψ̃i - (n+ 2) - place functor.

We have: ` Ψ̃i(x, z, u)� [JConcat[JΘΨiI
n+2
1 , . . . , In+2

n+1λ]In+2
n+2](x, z, u) =

Concat([JΘΨiI
n+2
1 , . . . , In+2

n+1λ](x, z, u), In+2
n+2(x, z, u)) = Concat(ΘΨi(x, z, λ(x, z, u)), u) =

Concat(ΘΨi(x, z, [RΦΨ1, . . . ,Ψk](x, z)), u).

So, ` Ψ̃i(x, z, u) = Concat(ΘΨi(x, z, [RΦΨ1, . . . ,Ψk](x, z)), u)

Let Θ[RΦΨ1,...,Ψk] � [RΘΦΨ̃1, . . . , Ψ̃k].

De�ning equalities:

` Θ[RΦΨ1,...,Ψk](x,Λ) = [RΘΦΨ̃1, . . . , Ψ̃k](x,Λ) = ΘΦ(x)

` Θ[RΦΨ1,...,Ψk](x,Sk(z)) = [RΘΦΨ̃1, . . . , Ψ̃k](x,Si(z)) = Ψ̃i(x, z, [RΘΦΨ̃1, . . . , Ψ̃k](x, z)) =

Ψ̃i(x, z,Θ[RΦΨ1,...,Ψk](x, z)) = Concat(ΘΨi(x, z, [RΦΨ1, . . . ,Ψk](x, z)),Θ[RΦΨ1,...,Ψk](x, z)).

So, we have the following de�ning equalities for the functor Θ[RΦΨ1,...,Ψk] :

` Θ[RΦΨ1,...,Ψk](x,Λ) = ΘΦ(x),

` Θ[RΦΨ1,...,Ψk](x,Si(y)) = Concat(ΘΨi(x, z, [RΦΨ1, . . . ,Ψk](x, z)),Θ[RΦΨ1,...,Ψk](x, z)), where i ≤ k,

` Θ[RΦΨ1,...,Ψk](x,Si(y)) = Θ[RΦΨ1,...,Ψk](x, y), where i > k.

Next (λ)∗ � ([J [RΦΨ1, . . . ,Ψk]In+2
1 , . . . , In+2

n+1])∗.

([J [RΦΨ1, . . . ,Ψk]In+2
1 , . . . , In+2

n+1])∗ = [J([RΦΨ1, . . . ,Ψk])∗In+3
1 (In+2

1)∗, . . . , (In+2
n+1)∗]

We have: ` (λ)∗(y, x, z, u) = [J([RΦΨ1, . . . ,Ψk])∗In+3
1 (In+2

1)∗, . . . , (In+2
n+1)∗](y, x, z, u) =

([RΦΨ1, . . . ,Ψk])∗(In+3
1 (y, x, z, u), (In+2

1)∗(y, x, z, u), . . . , (In+2
n+1)∗(y, x, z, u)) = ([RΦΨ1, . . . ,Ψk])∗(y, x, z)

So, ` (λ)∗(y, x, z, u) = ([RΦΨ1, . . . ,Ψk])∗(y, x, z).

(Ψ̃i)
∗ � ([JConcat[JΘΨiI

n+2
1 , . . . , In+2

n+1λ]In+2
n+2])∗ = [J(Concat)∗In+3

1 ([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗(In+2
n+2)∗] =

[J [JConcatI3
2I

3
3]In+3

1 ([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗(In+2
n+2)∗].

([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗ = [J(ΘΨi)
∗In+3

1 (In+2
1)∗, . . . , (In+2

n+1)∗(λ)∗],

` ([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗(y, x, z, u) = [J(ΘΨi)
∗In+3

1 (In+2
1)∗, . . . , (In+2

n+1)∗(λ)∗](y, x, z, u) =

(ΘΨi)
∗(In+3

1 (y, x, z, u), (In+2
1)∗(y, x, z, u), . . . , (In+2

n+1)∗(y, x, z, u), (λ)∗(y, x, z, u)) =

(ΘΨi)
∗(y, x, z, (λ)∗(y, x, z, u)) = (ΘΨi)

∗(y, x, z, ([RΦΨ1, . . . ,Ψk])∗(y, x, z)).

So, ` ([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗(y, x, z, u) = (ΘΨi)
∗(y, x, z, ([RΦΨ1, . . . ,Ψk])∗(y, x, z)).

49

` (Ψ̃i)
∗(y, x, z, u) = [J(Concat)∗In+3

1 ([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗(In+2
n+2])∗](y, x, z, u) =

[J [JConcatI3
2I

3
3]In+3

1 ([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗(In+2
n+2)∗](y, x, z, u) =

[JConcatI3
2I

3
3](In+3

1 (y, x, z, u), ([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗(y, x, z, u), (In+2
n+2)∗(y, x, z, u)) =

Concat(([JΘΨiI
n+2
1 , . . . , In+2

n+1λ])∗(y, x, z, u), (In+2
n+2)∗(y, x, z, u)) = Concat((ΘΨi)

∗(y, x, z, ([RΦΨ1, . . . ,Ψk])∗(y, x, z)), u).

So, ` (Ψ̃i)
∗(y, x, z, u) = Concat((ΘΨi)

∗(y, x, z, ([RΦΨ1, . . . ,Ψk])∗(y, x, z)), u).

(Θ[RΦΨ1,...,Ψk])
∗ � ([RΘΦΨ̃1, . . . , Ψ̃k])∗ = [R(ΘΦ)∗(Ψ̃1)∗, . . . , (Ψ̃k)∗]

` (Θ[RΦΨ1,...,Ψk])
∗(y, x,Λ) = ([RΘΦΨ̃1, . . . , Ψ̃k])∗(y, x,Λ) = [R(ΘΦ)∗(Ψ̃1)∗, . . . , (Ψ̃k)∗](y, x,Λ) = (ΘΦ)∗(y, x)

` (Θ[RΦΨ1,...,Ψk])
∗(y, x,Si(z)) = ([RΘΦΨ̃1, . . . , Ψ̃k])∗(y, x,Si(z)) = [R(ΘΦ)∗(Ψ̃1)∗, . . . , (Ψ̃k)∗](y, x,Si(z)) =

(Ψ̃i)
∗(y, x, z, [R(ΘΦ)∗(Ψ̃1)∗, . . . , (Ψ̃k)∗](y, x, z)) = (Ψ̃i)

∗(y, x, z, ([RΘΦΨ̃1, . . . , Ψ̃k)])∗(y, x, z)) =

Concat((ΘΨi)
∗(y, x, z, ([RΦΨ1, . . . ,Ψk])∗(y, x, z)), ([RΘΦΨ̃1, . . . , Ψ̃k)])∗(y, x, z)) =

Concat((ΘΨi)
∗(y, x, z, ([RΦΨ1, . . . ,Ψk])∗(y, x, z)), (Θ[RΦΨ1,...,Ψk])

∗(y, x, z)).

So, ` (Θ[RΦΨ1,...,Ψk])
∗(y, x,Si(z)) = Concat((ΘΨi)

∗(y, x, z, ([RΦΨ1, . . . ,Ψk])∗(y, x, z)), (Θ[RΦΨ1,...,Ψk])
∗(y, x, z)).

Thus we get:

` (Θ[RΦΨ1,...,Ψk])
∗(y, x,Λ) = (ΘΦ)∗(y, x),

` (Θ[RΦΨ1,...,Ψk])
∗(y, x,Si(z)) = Concat((ΘΨi)

∗(y, x, z, ([RΦΨ1, . . . ,Ψk])∗(y, x, z)), (Θ[RΦΨ1,...,Ψk])
∗(y, x, z)),

at i ≤ k.

` (Θ[RΦΨ1,...,Ψk])
∗(y, x,Si(z)) = (Θ[RΦΨ1,...,Ψk])

∗(y, x, z), at i > k.

Let Ψ1, . . .Ψk - 2- place functor, α - some p− some p is an alphabetic word. Let's compose a functor

[RαΨ1, . . . ,Ψk] Let's compose a functor Θ[RαΨ1,...,Ψk].

Let γ � [J [RαΨ1, . . . ,Ψk]I2
1].

We have ` γ(x, z) = [J [RαΨ1, . . . ,Ψk]I2
1](x, z) = [RαΨ1, . . . ,Ψk](x).

Ïóñòü Ψ̃i � [JConcat[JΘΨiI
2
1γ]I2

2].

We have: ` Ψ̃i(x, z)� [JConcat[JΘΨiI
2
1γ]I2

2](x, z) = Concat([JΘΨiI
2
1γ](x, z), I2

2(x, z)) =

Concat(ΘΨi(x, γ(x, z)), z) = Concat(ΘΨi(x, [RαΨ1, . . . ,Ψk](x)), z).

So, ` Ψ̃i(x, z) = Concat(ΘΨi(x, [RαΨ1, . . . ,Ψk](x)), z).

Let Θ[RαΨ1,...,Ψk] � [RΛΨ̃1, . . . , Ψ̃k], then

` Θ[RαΨ1,...,Ψk](Λ) = [RΛΨ̃1, . . . , Ψ̃k](Λ) = Λ,

` Θ[RαΨ1,...,Ψk](Sk(x)) = [RΛΨ̃1, . . . , Ψ̃k](Si(x)) = Ψ̃i(x, [RΛΨ̃1, . . . , Ψ̃k](x)) = Ψ̃i(x,Θ[RαΨ1,...,Ψk](x)) =

50

Concat(ΘΨi(x, [RαΨ1, . . . ,Ψk](x)),Θ[RαΨ1,...,Ψk](x)).

So, we have the following de�ning equalities for the functor Θ[RαΨ1,...,Ψk]:

` Θ[RαΨ1,...,Ψk](Λ) = Λ

` Θ[RαΨ1,...,Ψk](Si(x)) = Concat(ΘΨi(x, [RαΨ1, . . . ,Ψk](x)),Θ[RαΨ1,...,Ψk](x)), where i ≤ k.

` Θ[RαΨ1,...,Ψk](Si(x)) = Θ[RαΨ1,...,Ψk](x), where i > k.

Let us write out the de�ning relations for the functor (Θ[RαΨ1,...,Ψk])
∗ � ([RΛΨ̃1, . . . , Ψ̃k])∗:

([RΛΨ̃1, . . . , Ψ̃k])∗ = ([RConst1
Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗],

` ([RΛΨ̃1, . . . , Ψ̃k])∗(x, y) = [RConst1
Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x, y),

` RConst1
Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x,Λ) = Const1

Λ(x) = Λ

` [RConst1
Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x,Si(y)) = (Ψ̃i)

∗(x, y, [RConst1
Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x, y)), then

` [RConst1
Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x,Si(y)) = (Ψ̃i)

∗(x, y, ([RΛΨ̃1, . . . , Ψ̃k])∗(x, y)),

` ([RΛΨ̃1, . . . , Ψ̃k])∗(x,Si(y)) = (Ψ̃i)
∗(x, y, ([RΛΨ̃1, . . . , Ψ̃k])∗(x, y)),

` (Θ[RαΨ1,...,Ψk])
∗(x,Si(y)) = (Ψ̃i)

∗(x, y, (Θ[RαΨ1,...,Ψk])
∗(x, y)),

Next (γ)∗ � ([J [RαΨ1, . . . ,Ψk]I2
1])∗,

([J [RαΨ1, . . . ,Ψk]I2
1])∗ = [J([RαΨ1, . . . ,Ψk])∗I3

1(I2
1)∗]

(I2
1)∗ = [JI2

1I
3
2I

3
3]

` (I2
1)∗(x, y, z) = [JI2

1I
3
2I

3
3](x, y, z) = I2

1(I3
2(x, y, z), I3

3(x, y, z)) = y

` ([J [RαΨ1, . . . ,Ψk]I2
1])∗(x, y, z) = [J([RαΨ1, . . . ,Ψk])∗I3

1(I2
1)∗](x, y, z)

` [J([RαΨ1, . . . ,Ψk])∗I3
1(I2

1)∗](x, y, z) = ([RαΨ1, . . . ,Ψk])∗(I3
1(x, y, z), (I2

1)∗(x, y, z))

` ([RαΨ1, . . . ,Ψk])∗(I3
1(x, y, z), (I2

1)∗(x, y, z)) = ([RαΨ1, . . . ,Ψk])∗(x, y)

` (γ)∗(x, y, z) = ([RαΨ1, . . . ,Ψk])∗(x, y).

(Ψ̃i)
∗ � ([JConcat[JΘΨiI

2
1γ]I2

2])∗,

([JConcat[JΘΨiI
2
1γ]I2

2])∗ = [J(Concat)∗I3
1([JΘΨiI

2
1γ])∗(I2

2)∗],

(Concat)∗ = [JConcatI3
2I

3
2],

([JΘΨiI
2
1γ])∗ = [J(ΘΨi)

∗I3
1(I2

1)∗(γ)∗],

(I2
1)∗ = [JI2

1I
3
2I

3
3]

(I2
2)∗ = [JI2

2I
3
2I

3
3]

We have:

51

` (I2
1)∗(x, y, z) = [JI2

1I
3
2I

3
3](x, y, z) = y,

` (I2
2)∗(x, y, z) = [JI2

2I
3
2I

3
3](x, y, z) = z

` (Concat)∗(x, y, z) = [JConcatI3
2I

3
2](x, y, z) = Concat(y, z),

` (Ψ̃i)
∗(x, y, z) = ([JConcat[JΘΨiI

2
1γ]I2

2])∗(x, y, z) = [J(Concat)∗I3
1([JΘΨiI

2
1γ])∗(I2

2)∗](x, y, z) =,

` ([JΘΨiI
2
1γ])∗(x, y, z) = [J(ΘΨi)

∗I3
1(I2

1)∗(γ)∗](x, y, z) = (ΘΨi)
∗(I3

1(x, y, z), (I2
1)∗(x, y, z), (γ)∗(x, y, z)),

` (ΘΨi)
∗(I3

1(x, y, z), (I2
1)∗(x, y, z), (γ)∗(x, y, z)) = (ΘΨi)

∗(x, y, (γ)∗(x, y, z))

` [J(Concat)∗I3
1([JΘΨiI

2
1γ])∗(I2

2)∗](x, y, z) = (Concat)∗(I3
1(x, y, z), ([JΘΨiI

2
1γ])∗(x, y, z), (I2

2)∗(x, y, z))

` (Concat)∗(I3
1(x, y, z), ([JΘΨiI

2
1γ])∗(x, y, z), (I2

2)∗(x, y, z)) = Concat(([JΘΨiI
2
1γ])∗(x, y, z), z)

` Concat(([JΘΨiI
2
1γ])∗(x, y, z), z) = Concat((ΘΨi)

∗(x, y, (γ)∗(x, y, z)), z)

` Concat((ΘΨi)
∗(x, y, (γ)∗(x, y, z)), z) = Concat((ΘΨi)

∗(x, y, ([RαΨ1, . . . ,Ψk])∗(x, y)), z).

Thus we get

` (Ψ̃i)
∗(x, y, z) = Concat((ΘΨi)

∗(x, y, ([RαΨ1, . . . ,Ψk])∗(x, y)), z), then

` (Ψ̃i)
∗(x, y, [RConst1

Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x, y)) =

Concat((ΘΨi)
∗(x, y, ([RαΨ1, . . . ,Ψk])∗(x, y)), [RConst1

Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x, y)), then

` [RConst1
Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x,Si(y)) =

Concat((ΘΨi)
∗(x, y, ([RαΨ1, . . . ,Ψk])∗(x, y)), [RConst1

Λ(Ψ̃1)∗, . . . , (Ψ̃k)∗](x, y)).

Thus we get

` (Θ[RαΨ1,...,Ψk])
∗(x,Λ) = Λ

` (Θ[RαΨ1,...,Ψk])
∗(x,Si(y)) = Concat((ΘΨi)

∗(x, y, ([RαΨ1, . . . ,Ψk])∗(x, y)), (Θ[RαΨ1,...,Ψk])
∗(x, y)),

at i ≤ k.

` (Θ[RαΨ1,...,Ψk])
∗(x,Si(y)) = (Θ[RαΨ1,...,Ψk])

∗(x, y), at i > k.

For any functor Φ ∀A we prove WordMA |= ∀x[ΘΦ(x) ≈ ΘΘΦ(x)].

Let's write out the meaning of the operator Θ:

for the original functors:

Sk,Z, δ,Length, . ,Concat,D, Ink , U:

ΘSk = Z, ΘZ = Z, Θδ = Z, ΘLength = [JZI2
2], Θ . = [JZI2

2], ΘConcat = [JZI2
2], ΘD = [JZI2

2], ΘInk
= [JZInk],

ΘU = [JcI1
1U].

for functor [JΦΨ1, . . . ,Ψk]

52

Θ[JΦΨ1,...,Ψk]
 [JConcatk+1[JΘΦΨ1 . . .Ψk],ΘΨ1 . . .ΘΨk].

for functor [RαΨ1, . . . ,Ψk]

Θ[RαΨ1,...,Ψk] � [RΛΨ̃1, . . . , Ψ̃k],

for functor Θ[RΦΨ1,...,Ψk]

Θ[RΦΨ1,...,Ψk] � [RΘΦΨ̃1, . . . , Ψ̃k].

For any functor Ψ alphabet L true ∀α ` ΘΨ(α) = Λ. When using Goodstein's rule, it is true ` ΘΨ(x) = Λ.

We will prove ` ΘU(x) = ΘΘU
(x):

ΘU = [JcI1
1U], ΘΘU

= Θ[JcI11U] = [JConcat3[JΘcI
1
1U]ΘI11

ΘU], Considering [JΘcI
1
1U] = [JZI1

1], ΘI11
= [JZI1

1],

we have ΘΘU
= ΘU, then ` ΘU(x) = ΘΘU

(x).

Induction hypothesis:

a. Let the following be true for the functor Φ WordMA |= ∀x[ΘΦ(x) ≈ ΘΘΦ
(x)].

b. Let the following be true for the functors Ψ1, . . . ,Ψk: WordMA |= ∀y1, . . . ,∀yn[ΘΨi(y1, . . . , yn) ≈ ΘΘΨi
(y1, . . . , yn)]

Let's prove it WordMA |= ∀y1, . . .∀ynΘ[JΦΨ1,...,Ψk](y1, . . . , yn) ≈ ΘΘ[JΦΨ1,...,Ψk]
(y1, . . . , yn).

We have Θ[JΦΨ1,...,Ψk] = [JConcatk+1[JΘΦΨ1, . . . ,Ψk]ΘΨ1
, . . . ,ΘΨk], then

` Θ[JΦΨ1,...,Ψk](y) = [JConcatk+1[JΘΦΨ1, . . . ,Ψk]ΘΨ1
, . . . ,ΘΨk](y) =

Concatk+1(ΘΦ(Ψ1(y), . . . ,Ψk(y)),ΘΨ1(y), . . .ΘΨk(y))(A).

Let's calculate Θ[JΘΦΨ1...Ψk]:

Θ[JΘΦΨ1...Ψk] = [JConcatk+1[JΘΘΦ
Ψ1 . . .Ψk]ΘΨ1

. . .ΘΨk], then

` Θ[JΘΦΨ1...Ψk](y) = [JConcatk+1[JΘΘΦΨ1 . . .Ψk]ΘΨ1 . . .ΘΨk](y) =

Concatk+1(ΘΘΦ
(Ψ1(y), . . . ,Ψk(y)),ΘΨ1

(y), . . .ΘΨk(y)).

Taking into account the induction hypothesis WordMA |= ∀x[ΘΦ(x) ≈ ΘΘΦ
(x)], we obtain

WordMA |= ∀y[Θ[JΘΦΨ1...Ψk](y) ≈ Concatk+1(ΘΦ(Ψ1(y), . . . ,Ψk(y)),ΘΨ1(y), . . .ΘΨk(y))].

Taking into account the induction hypothesis WordMA |= ∀y1, . . . ,∀yn[ΘΨi(y1, . . . , yn) ≈ ΘΘΨi
(y1, . . . , yn)], we

obtainWordMA |= ∀y[Concat(Θ[JΘΦΨ1...Ψk](y),ΘΘΨ1
(y)) ≈ Concatk+1(ΘΦ(Ψ1(y), . . . ,Ψk(y)),ΘΨ1

(y), . . .ΘΨk(y))],

WordMA |= ∀y[Concat3(Θ[JΘΦΨ1...Ψk](y),ΘΘΨ1
(y),ΘΘΨ2

(y)) ≈ Concatk+1(ΘΦ(Ψ1(y), . . . ,Ψk(y)),ΘΨ1(y), . . .ΘΨk(y))],...,

WordMA |= ∀y[Concatk+1(Θ[JΘΦΨ1...Ψk](y),ΘΘΨ1
(y),ΘΘΨ2

(y), . . . ,ΘΘΨk
(y)) ≈

Concatk+1(ΘΦ(Ψ1(y), . . . ,Ψk(y)),ΘΨ1
(y), . . .ΘΨk(y))], taking into account (A), we get

WordMA |= ∀y[Concatk+1(Θ[JΘΦΨ1...Ψk](y),ΘΘΨ1
(y),ΘΘΨ2

(y), . . . ,ΘΘΨk
(y)) ≈ Θ[JΦΨ1,...,Ψk](y)(B)

53

Let's calculate ΘΘ[JΦΨ1,...,Ψk
]:

ΘΘ[JΦΨ1,...,Ψk
] = Θ[JConcatk+1[JΘΦΨ1,...,Ψk]ΘΨ1

,...,ΘΨk
]

Θ[JConcatk+1[JΘΦΨ1,...,Ψk]ΘΨ1 ,...,ΘΨk
] =

[JConcatk+2[JΘConcatk+1 [JΘΦΨ1, . . . ,Ψk]ΘΨ1 , . . . ,ΘΨk]Θ[JΘΦΨ1,...,Ψk]ΘΘΨ1
. . . ,ΘΘΨk

], taking into account

ΘConcatk+1 [JΘΦΨ1, . . . ,Ψk]ΘΨ1
, . . . ,ΘΨk] = [JZIn1], we get

ΘΘ[JΦΨ1,...,Ψk
] = [JConcatk+1Θ[JΘΦΨ1,...,Ψk]ΘΘΨ1

. . . ,ΘΘΨk
], then

` ΘΘ[JΦΨ1,...,Ψk
](y) = [JConcatk+1Θ[JΘΦΨ1,...,Ψk]ΘΘΨ1

. . . ,ΘΘΨk
](y) =

Concatk+1(Θ[JΘΦΨ1,...,Ψk](y),ΘΘΨ1
(y), . . .ΘΘΨk

(y)),

taking into account (B), we get WordMA |= ∀y[ΘΘ[JΦΨ1,...,Ψk
](y) ≈ Θ[JΦΨ1,...,Ψk](y).

Let's calculate ΘΘ[RΦΨ1,...,Ψk]
� Θ[RΘΦΨ̃1,...,Ψ̃k].

We have Ψ̃i � [JConcat[JΘΨiI
n+2
1 , . . . , In+2

n+1λ]In+2
n+2].

Let's calculate Θ[JΘΨi
In+2
1 ,...,In+2

n+1λ]:

Θ[JΘΨi
In+2
1 ,...,In+2

n+1λ] = [JConcatn+3[JΘΘΨi
In+2
1 , . . . , In+2

n+1λ]ΘIn+2
1

, . . . ,ΘIn+2
n+1

Θλ], considering ΘIn+2
i

= [JZIn+1
1]

we have Θ[JΘΨi
In+2
1 ,...,In+2

n+1λ] = [JConcat[JΘΘΨi
In+2
1 , . . . , In+2

n+1λ]Θλ].

Let's calculate ΘΨ̃i
.

ΘΨ̃i
� Θ[JConcat[JΘΨi

In+2
1 ,...,In+2

n+1λ]In+2
n+2] =

[JConcat3[JΘConcat[JΘΨiI
n+2
1 , . . . , In+2

n+1λ]In+2
n+2]Θ[JΘΨi

In+2
1 ,...,In+2

n+1λ]ΘIn+2
n+2

], considering

[JΘConcat[JΘΨiI
n+2
1 , . . . , In+2

n+1λ]In+2
n+2] = [JZIn+2

1] and ΘIn+2
ò+2

= [JZIn+2
1] we have

[JConcat3[JΘConcat[JΘΨiI
n+2
1 , . . . , In+2

n+1λ]In+2
n+2]Θ[JΘΨi

In+2
1 ,...,In+2

n+1λ]ΘIn+2
n+2

] = Θ[JΘΨi
In+2
1 ,...,In+2

n+1λ], then

ΘΨ̃i
= [JConcat[JΘΘΨi

In+2
1 , . . . , In+2

n+1λ]Θλ].

We have:

Θ[RΦΨ1,...,Ψk] = [RΘΦΨ̃1, . . . ,Ψk]

Θ[RΘΦΨ̃1,...,Ψ̃k] = [RΘΘΦ

˜̃Ψ1, . . . ,
˜̃Ψk].

` Θ[RΦΨ1,...,Ψk](x,Λ) = [RΘΦΨ̃1, . . . , Ψ̃k](x,Λ) = ΘΦ(x)

` Θ[RΦΨ1,...,Ψk](x,Si(z)) = Ψ̃1(x, z,Θ[RΦΨ1,...,Ψk](x, z))

` Θ[RΦΨ1,...,Ψk](x,Si(z)) = [JConcat[JΘΨiI
n+2
1 , . . . , In+2

n+1λ]In+2
n+2](x,Si(z))

` Θ[RΦΨ1,...,Ψk](x,Si(z)) = Concat(ΘΨi(x, z, λ(x, z)),Θ[RΦΨ1,...,Ψk](x, z))

` ΘΘ[RΦΨ1,...,Ψk]
(x,Λ) = [RΘΘΦ

˜̃Ψ1, . . . ,
˜̃Ψk](x,Λ) = ΘΘΦ(x)

54

` ΘΘ[RΦΨ1,...,Ψk]
(x,Si(z)) = ˜̃Ψi(x, z,ΘΘ[RΦΨ1,...,Ψk]

(x, z))

We have ˜̃Ψi � [JConcat[JΘΨ̃i
In+2
1 , . . . , In+2

n+1λ]In+2
n+2], then

` ΘΘ[RΦΨ1,...,Ψk]
(x,Si(z)) = [JConcat[JΘΨ̃i

In+2
1 , . . . , In+2

n+1λ]In+2
n+2](x, z,ΘΘ[RΦΨ1,...,Ψk]

(x, z)), then

` ΘΘ[RΦΨ1,...,Ψk]
(x,Si(z)) = Concat([JΘΨ̃i

In+2
1 , . . . , In+2

n+1λ](x, z,ΘΘ[RΦΨ1,...,Ψk]
(x, z)), In+2

n+2(x, z,ΘΘ[RΦΨ1,...,Ψk]
(x, z)))

` ΘΘ[RΦΨ1,...,Ψk]
(x,Si(z)) = Concat(ΘΨ̃i

(x, z, λ(x, z)),ΘΘ[RΦΨ1,...,Ψk]
(x, z)).

We have ΘΨ̃i
= [JConcat[JΘΘΨi

In+2
1 , . . . , In+2

n+1λ]Θλ], then

` ΘΨ̃i
((x, z, u) = [JConcat[JΘΘΨi

In+2
1 , . . . , In+2

n+1λ]Θλ](x, z, u)

` ΘΨ̃i
(x, z, u) = Concat([JΘΘΨi

In+2
1 , . . . , In+2

n+1λ](x, z, u),Θλ(x, z, u))

` ΘΨ̃i
(x, z, u) = Concat(JΘΘΨi

(x, z, λ(x, z)),Θλ, (x, z, u))

We have Θλ = Θ[J[RΦΨi,...,Ψk]]In+2
1 ,...,In+2

n+1] = [JConcatn+2[JΘ[RΦΨ1,...,Ψk]I
n+2
1 , . . . , In+2

n+1]ΘIn+2
1

, . . . ,ΘIn+2
n+1

], then

Θλ = [JΘ[RΦΨi,...,Ψk]I
n+2
1 , . . . , In+2

n+1], then

` Θλ(x, z, u) = [JΘ[RΦΨi,...,Ψk]I
n+2
1 , . . . , In+2

n+1](x, z, u), then

` Θλ(x, z, u) = Θ[RΦΨi,...,Ψk](x, z), then

` ΘΨ̃i
(x, z, u) = Concat(ΘΘΨi

(x, z, λ(x, z)),Θ[RΦΨ1,...,Ψk], (x, z)), then

` ΘΘ[RΦΨ1,...,Ψk]
(x,Si(z)) = Concat(Concat(ΘΘΨi

(x, z, λ(x, z)),Θ[RΦΨ1,...,Ψk](x, z)),ΘΘ[RΦΨ1,...,Ψk]
(x, z)).

Let's sum it up:

` Θ[RΦΨ1,...,Ψk](x,Λ) = ΘΦ(x)

` ΘΘ[RΦΨ1,...,Ψk]
(x,Λ) = ΘΘΦ(x)

` Θ[RΦΨ1,...,Ψk](x,Si(z)) = Concat(ΘΨi(x, z, λ(x, z)),Θ[RΦΨ1,...,Ψk](x, z))

` ΘΘ[RΦΨ1,...,Ψk]
(x,Si(z)) = Concat(Concat(ΘΘΨi

(x, z, λ(x, z)),Θ[RΦΨ1,...,Ψk](x, z)),ΘΘ[RΦΨ1,...,Ψk]
(x, z)).

Let's assume that it is true:

∀αWordMA |= ΘΦ(α) ≈ ΘΘΦ
(α)

∀α∀β∀γWordMA |= ΘΨi(α, β, γ) ≈ ΘΘΨi
(α, β, γ)

∀α∀βWordMA |= Θ[RΦΨ1,...,Ψk](α, β) ≈ ΘΘ[RΦΨ1,...,Ψk]
(α, β), then we get

WordMA |= ΘΘ[RΦΨ1,...,Ψk]
(α,Si(β)) =

Concat(Concat(ΘΘΨi
(α, β, λ(α, β)),Θ[RΦΨ1,...,Ψk](α, β)),ΘΘ[RΦΨ1,...,Ψk]

(α, β)) ≈

Concat(Concat(ΘΨi(α, β, λ(α, β)),Θ[RΦΨ1,...,Ψk](α, β)),ΘΘ[RΦΨ1,...,Ψk]
(α, β)) ≈

Concat(ΘΨi(α, β, λ(α, β)),Θ[RΦΨ1,...,Ψk](α, β)) = Θ[RΦΨ1,...,Ψk](α,Si(β)), then

55

WordMA |= ∀x∀z[Θ[RΦΨ1,...,Ψk](x, z) ≈ ΘΘ[RΦΨ1,...,Ψk]
(x, z)].

Using induction on the construction of functors and induction on the construction of the argument word, we

obtain: for any functor Φ correctly WordMA |= ∀x[ΘΦ(x) ≈ ΘΘΦ
(x).

56

