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Abstract

Large Language Models (LLMs) have rapidly become a central focus in
both research and practical applications, owing to their remarkable ability
to understand and generate text with a level of fluency comparable to
human communication. Recently, these models have evolved into multi-
modal large language models (MM-LLMs), extending their capabilities
beyond text to include images, audio, and video. This advancement has
enabled a wide array of applications, including text-to-video synthesis,
image captioning, and text-to-speech systems. MM-LLMs are developed
either by augmenting existing LLMs with multi-modal functionality or by
designing multi-modal architectures from the ground up.

This paper presents a comprehensive review of the current landscape of
LLMs with multi-modal capabilities, highlighting both foundational and
cutting-edge MM-LLMs. It traces the historical development of LLMs,
emphasizing the transformative impact of transformer-based architectures
such as OpenAI’s GPT series and Google’s BERT, as well as the role
of attention mechanisms in improving model performance. The review
also examines key strategies for adapting pre-trained models to specific
tasks, including fine-tuning and prompt engineering. Ethical challenges,
including data bias and the potential for misuse, are discussed to stress
the importance of responsible AI deployment. Finally, we explore the im-
plications of open-source versus proprietary models for advancing research
in this field. By synthesizing these insights, this paper underscores the
significant potential of MM-LLMs to reshape diverse applications across
multiple domains.
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Models (MM-LLMs), Transformer Architecture, GPT, BERT, Attention Mech-
anism, Fine-Tuning, Prompt Engineering, Text-to-Video Generation, Image
Captioning, Text-to-Speech, Ethical AI, Open-Source Models, Proprietary Mod-
els
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1 Introduction

Large Language Models (LLMs) have emerged as one of the most prominent
topics in contemporary artificial intelligence (AI) research, with growing interest
not only in academic circles but also in the broader public. Their visibility has
been amplified by the release of ChatGPT in 2022 [1], which showcased the
potential of LLMs to generate coherent, human-like text. By LLMs, we refer
specifically to language models built on the Transformer architecture, such as
OpenAI’s Generative Pre-trained Transformers (GPT), which began with GPT-1
in 2018 [9]. The increasing prominence of LLMs stems from their demonstrated
versatility across a wide spectrum of tasks, including text summarization [3], text-
to-image [4] and text-to-video [5] generation, conversational search [10], machine
translation, and broader generative AI (GenAI) applications. A systematic review
of over 1,300 related publications underscores their central role in advancing
GenAI [7].

Beyond OpenAI’s GPT series, other notable proprietary LLMs attracting pub-
lic and research attention include Google’s Gemini/BARD [11] and Anthropic’s
Claude [12]. At the same time, several high-profile open-source models, such as
Meta’s LLaMA [13], Google’s PaLM [?], and Falcon from the UAE’s Technology
Innovation Institute [?], have been introduced to the community. The release
or update of any LLM can generate significant interest both within academia
and in the media, making it challenging to track developments, compare model
capabilities, and identify their specific applications.

This review focuses on LLMs with particular attention to visual and multi-
modal capabilities (MM-LLMs), examining their architectures, optimization
strategies, and application-specific adaptation. While prior work [1] provides a
concise overview of LLMs covering their history, architecture, training strategies,
applications, and challenges, it does not extensively address models capable of
processing and generating multiple modalities, such as text, images, audio, and
video. Our work complements this literature by analyzing the technical aspects
of MM-LLMs, including open-source versus proprietary models, computational
considerations, and strategies for efficient fine-tuning. We also explore practical
aspects, such as which architectural or training components are most relevant
for reducing cost and improving model performance, as well as the evaluation
techniques commonly used to assess LLM quality.

Ethical considerations are increasingly central to discussions around LLMs.
Concerns highlighted in the literature include potential data biases [16, 17],
environmental and energy costs [16, 17], and the concentration of powerful
models within a few large technology companies [15]. This review examines these
issues in the context of MM-LLMs, particularly open-source implementations,
and evaluates how they can be deployed responsibly in practical multimedia
applications.
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2 What is a Language Model?

2.1 The Evolution of Language Models

Language Models (LMs) have long been a cornerstone of Natural Language Pro-
cessing (NLP), forming the foundation for a wide range of text-based applications.
Traditionally, LMs relied on statistical methods, where models were trained on
large text corpora to predict the next word in a sequence. By analyzing patterns,
frequency, and context in text, these models sought to capture the structure and
nuances of human language [18, 19].

The journey from early LMs to today’s Large Language Models (LLMs)
reflects significant advances in NLP. Initially, NLP systems were rule-based,
designed for applications like machine translation and speech recognition. These
approaches gradually gave way to statistical methods, such as Hidden Markov
Models and N-gram models [20]. While effective at capturing short-term word
dependencies, these models struggled with long-range context and semantic
understanding. Neural Networks (NNs), first conceptualized in the 1950s, were
not widely applied to NLP until computational resources became sufficient to
handle their demands [21].

A major breakthrough came in the 2010s with the advent of word embedding
techniques, notably Word2Vec and GloVe [22]. Word embeddings represent
words as continuous vectors within a semantic space, enabling models to capture
relationships and similarities between words. This innovation laid the groundwork
for the resurgence of deep learning approaches in NLP.

The next leap forward involved Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks, which allowed models to process
sequences of words in a more context-aware manner [23, 18, 19]. Unlike N-
gram models, which were limited to nearby words, RNNs and LSTMs could
theoretically capture dependencies across entire sequences. Nevertheless, these
models had their limitations: as sequences became longer, it became increasingly
difficult to retain relevant context, and parallelizing computations was not
feasible, creating bottlenecks in training [24].

The field underwent a transformative shift in 2017 with the introduction of
the Transformer architecture [25]. One of the key innovations of Transformers
was the attention mechanism, which allows models to evaluate the importance
of different parts of an input sequence in parallel. This approach resolved the
long-range dependency problem inherent in RNNs and LSTMs, enabling models
to capture relationships across entire sequences more effectively [25, 26, 23].

Building on the Transformer, 2018 saw the release of two landmark models.
Google introduced Bidirectional Encoder Representations from Transformers
(BERT) [27], while OpenAI launched its first Generative Pre-trained Transformer
(GPT) [9]. Together with the availability of massive text datasets and improved
computational power, these models established the foundation for modern LLMs
[23, 9, 27].

Although these models were already impressive, widespread public and
research interest surged with the launch of OpenAI’s ChatGPT in November
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2022. ChatGPT demonstrated the practical ability of LLMs to engage in
natural, conversational interactions, summarize documents, and support various
generative AI tasks [28].

2.2 Attention Mechanisms

The Transformer architecture represents a paradigm shift in NLP, relying solely
on attention mechanisms to process and understand text sequences [25]. Among
the most widely used are Self-Attention and Multi-Head Attention, which form
the backbone of modern LLMs.

Self-Attention enables a model to weigh the importance of different positions
within a single sequence, generating a context-aware representation. The input
is decomposed into linear query, key, and value vectors, allowing the model to
focus on the most relevant parts of the text.

Multi-Head Attention (MHA) extends this idea by computing multiple self-
attention operations in parallel, with each “head” attending to different aspects
of the input sequence. While MHA provides richer contextual understanding, it
can be computationally demanding and may strain memory resources.

To address this, Multi-Query Attention (MQA) was proposed. MQA reduces
memory usage by sharing a single key and value across multiple query heads,
which allows for larger batch sizes and faster computation. The trade-off is a
potential reduction in attention detail, as fewer key-value pairs may overlook
subtle aspects of the input.

Grouped-Query Attention (GQA) offers a middle ground between MHA and
MQA. In GQA, queries are grouped and assigned to corresponding key-value
pairs, preserving more detail than MQA while being faster than MHA. This
design allows models to process longer sequences efficiently without significant
loss of context or performance [29, 30, 31].

3 Proprietary vs. Open Source LLMs

In 2023, research and development in the field of large language models continued
at a rapid pace, with major technology companies like OpenAI and Google
striving to create the most advanced models. Historically, it was assumed that
larger LLMs would provide a competitive edge. However, building such models
required significant financial investment, often ranging from €1 million to over
€100 million, due to the immense datasets and GPU resources needed. The
release of Meta’s open-source LLaMA marked a turning point, reflecting the
belief that freely available models could stimulate innovation, enhance safety,
and encourage responsible AI practices [32]. Today, several open-source LLMs,
such as Meta’s LLaMA-2 and Google’s PaLM 2, can be accessed without charge,
whereas proprietary models like OpenAI’s GPT or Google’s BARD typically
impose usage-based fees for enterprise access [33, 34].

Even Google has acknowledged the inherent limitations of proprietary mod-
els, recognizing that open-source alternatives could quickly match or surpass
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their own LLMs. Open-source communities have already tackled challenges that
proprietary developers had struggled with, accelerating innovation outside of
corporate constraints [35, 50]. Open-source LLMs offer clear advantages for
researchers and entrepreneurs. They are cost-effective in the long term and pro-
vide transparency into the model architecture, training data, and methodologies,
which facilitates auditing and ensures compliance with ethical and legal stan-
dards. This is especially relevant in light of regulatory frameworks such as the
European Union AI Act, expected in 2025, which will require openness regarding
model training data for commercial deployment in the EU [37]. Open-source
LLMs also give researchers complete control over the data used for fine-tuning,
minimizing the risk of sensitive information leaks. Additionally, optimizing
open-source models can improve computational efficiency, reduce latency, and
enhance performance for specific applications.

Despite these benefits, open-source LLMs also carry limitations. They often
lack formal service agreements, leaving developers without guaranteed support
or ongoing updates. The pace of innovation in open-source communities can be
unpredictable, while proprietary models may remain more stable and reliable
in certain contexts. Furthermore, not all open-source models are entirely unre-
stricted. For example, Meta’s LLaMA-2 enforces usage conditions through its
acceptable use policy [33, 34, 38].

4 Key Large Language Models

This section provides an overview of prominent LLMs, focusing primarily on
models designed for text generation. Some of these models have been adapted
to incorporate multi-modal capabilities post hoc.

4.1 GPT

The GPT family, developed by OpenAI, represents a lineage of LLMs beginning
with GPT-1. GPT stands for Generative Pre-trained Transformer, and the initial
model used a 12-layer decoder-only transformer with masked self-attention heads,
trained on a large, diverse text corpus. GPT-1 demonstrated improvements in
NLP benchmarks across several datasets [39].

Subsequent iterations, including GPT-2 and GPT-3, scaled up both in model
size and training data. GPT-2, with 1.5 billion parameters, showed that language
models could achieve strong performance in tasks such as text comprehension and
summarization without supervision. GPT-3 expanded this scale dramatically,
reaching 175 billion parameters, highlighting the advantages of larger model ca-
pacity [40, 39]. GPT-3.5, the engine behind ChatGPT, brought these capabilities
to the public in 2022, popularizing generative AI applications. GPT-4 further
enhanced this family by incorporating multi-modal capabilities, accepting both
text and images as input while producing text or image outputs. GPT-4 has
demonstrated substantial improvements on NLP benchmarks, including perfor-
mance on the bar exam at the 90th percentile, compared with GPT-3.5, which
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scored in the bottom decile. Nonetheless, GPT-4 shares limitations with its
predecessors, including hallucinations, limited context windows, and an inability
to learn incrementally. It is trained on a combination of public and licensed
datasets and fine-tuned using Reinforcement Learning from Human Feedback
(RLHF) [41].

4.2 Claude

Anthropic’s Claude models, first released as Claude 1 in March 2024, are designed
for NLP tasks such as summarization, question answering, and code generation.
Claude is notable for its emphasis on safety and controlled outputs, aiming
to reduce harmful or biased responses [42]. Claude 3, introduced in 2023,
comes in three variants—Opus, Sonnet, and Haiku—and includes multi-modal
functionality, allowing it to process visual inputs. It reportedly features an
extremely large context window of up to 200,000 tokens, enabling the model to
consider very long input sequences in a single pass. Claude 3 is trained on a mix
of public, private, and synthetic datasets, with public data sourced up to August
2023. While the architecture details remain largely undisclosed, Anthropic claims
that Claude 3 matches or exceeds the performance of other leading LLMs.

4.3 Gemini

Google’s Gemini family, introduced in 2023, represents a set of models capable
of handling text, images, audio, and video. Gemini has achieved state-of-the-art
results across multiple benchmarks, notably the Gemini Ultra variant, which
scored 64% on the MMMU benchmark involving multi-disciplinary image and
text tasks, surpassing previous models by over 5 percentage points [43]. The
Gemini family includes Ultra, Pro, and Nano versions, which vary in size. All
models employ the Transformer architecture with Multi-Query Attention (MQA)
and can process inputs up to 32,000 tokens. A key distinction between Gemini
and GPT-4 is Gemini’s ability to generate images as outputs, in addition to text.

4.4 LLaMA

Meta AI’s LLaMA series is an open-source collection of LLMs designed to
democratize access to large-scale language models for research and development.
The models range from 7 billion to 65 billion parameters and are optimized for
inference speed, even allowing operation on a single GPU [44, 46]. Contrary to
the “bigger is better” assumption, research by Hoffman et al. [45] suggests that
smaller models trained on larger datasets can outperform larger models given
the same computational budget. LLaMA models were trained exclusively on
publicly available datasets, avoiding proprietary data, with the goal of maximizing
performance per computational cost. LLaMA-13B has been shown to outperform
GPT-3 on multiple benchmarks, while LLaMA-65B remains competitive with
larger models such as Chinchilla or PaLM-540B [44, 46, 47].

6



The architecture of LLaMA is grounded in the original Transformer framework
[25], with enhancements such as pre-normalization (as in GPT-3), the SwiGLU
activation function, and Rotary Positional Embeddings (RoPE) for efficient
positional encoding [48]. These modifications improve stability, reduce compu-
tational load, and preserve important positional information. Benchmarking
against other LLMs in tasks like zero-shot and few-shot learning, common-
sense reasoning, reading comprehension, and code generation demonstrates that
LLaMA achieves competitive or superior performance. Additionally, small-scale
fine-tuning improves results on multi-task benchmarks like MMLU. Evaluation
of LLaMA-65B also considers fairness and safety metrics, including truthfulness,
bias, and toxicity, using datasets such as RealToxicityPrompts, CrowS-Pairs,
WinoGender, and TruthfulQA [44, 46, 48].

4.5 LLaMA-2 and LLaMA-2 Chat

In July 2023, Meta AI released LLaMA-2 along with LLaMA-2 Chat, representing
a substantial update to the original LLaMA series. These models range in size
from 7 billion to 70 billion parameters and incorporate several key improvements.
One significant enhancement was the expansion of the pre-training corpus by
40%, alongside doubling the context window from 2,048 to 4,096 tokens. A major
distinction between LLaMA-2 (and its Chat variant) and the original LLaMA is
the adoption of Reinforcement Learning from Human Feedback (RLHF) during
fine-tuning, a method further discussed in Section 6.1.

While continuing to rely on publicly available datasets for training, LLaMA-2
integrates additional data and enhanced safety measures to reduce the risk
of generating unsafe outputs. Unlike its predecessor, which was limited to a
non-commercial open-source license, LLaMA-2 introduces a commercial license
to promote collaborations and broaden potential applications. Meta AI has also
released the model weights and initial code to support researchers and developers
in extending or customizing these models. Architecturally, LLaMA-2 follows the
same transformer-based framework as LLaMA but integrates the Grouped-Query
Attention (GQA) mechanism to improve efficiency and processing capability
[49, 50, 51].

Benchmark evaluations show that LLaMA-2 outperforms most other open-
source LLMs across a range of tasks, with the exception of coding-focused
challenges. When compared to proprietary models like GPT-4 or PaLM-2, its
performance is generally lower but aligns closely with GPT-3.5 and PaLM in
overall outcomes [49, 52, 39].

4.6 MedAlpaca

MedAlpaca, introduced in October 2023, represents a specialized adaptation
of LLaMA models for biomedical applications. Developed using open-source
biomedical datasets, its primary aim is to provide on-premises deployment
capabilities to protect sensitive patient data, a crucial requirement in healthcare
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settings. The model employs Low-Rank Adaptation (LoRA) and Supervised
Fine-Tuning (SFT) techniques, both of which are detailed in Section 6.1 [53, 54].

MedAlpaca’s performance was evaluated using the United States Medical
Licensing Examination (USMLE), a standard benchmark for medical competence.
Notably, MedAlpaca 13B demonstrated improved performance over the base
LLaMA 13B model in zero-shot evaluation, achieving 47.3%, 47.7%, and 60.2%
on Steps 1, 2, and 3, respectively. However, when LoRA fine-tuning was applied,
performance decreased significantly to 25.0%, 25.5%, and 25.5%, suggesting
that while LoRA is computationally efficient, it may not be the optimal choice
compared to SFT for certain biomedical tasks [55].

4.7 Mistral 7B

Mistral 7B is a 7-billion parameter language model designed to achieve high
efficiency and competitive performance despite its relatively smaller size. Ac-
cording to the developers, chat models built on Mistral 7B outperform the
LLaMA-2 13B Chat model. The model leverages the Grouped-Query Attention
(GQA) mechanism, similar to LLaMA-2, along with Sliding Window Attention
(SWA), which originates from the Longformer architecture [56]. SWA enables
more efficient handling of long sequences, with stacked transformers functioning
similarly to convolutional layers in CNNs, improving both performance and
computational efficiency.

4.8 Falcon-7B and Falcon-40B

In May 2023, the Technology Innovation Institute (TII) in Abu Dhabi launched
the Falcon series, including Falcon-7B, Falcon-40B, and their instruction-tuned
counterparts: Falcon-7B-Instruct and Falcon-40B-Instruct. Released under the
Apache 2.0 license, these models support unrestricted commercial use, encourag-
ing widespread adoption and fine-tuning for various applications. Falcon-Instruct
variants are specifically optimized for conversational and instruction-following
tasks [57, 58, 59].

TII also provided a high-quality pre-training dataset, RefinedWeb, which
includes 600 billion tokens derived from CommonCrawl. The dataset underwent
large-scale deduplication and strict filtering to ensure quality. Architecturally,
Falcon models are transformer-based, utilizing MQA for memory-efficient pro-
cessing and RoPE for positional encoding. Additionally, Falcon employs Flash
Attention, which optimizes speed and memory usage through tiling and recom-
putation strategies, enabling faster training and longer context windows. Unlike
LLaMA, Falcon does not implement the SwiGLU activation function, prioritizing
memory efficiency over incremental performance gains [60, 58, 59].

Falcon models have been trained on 1.5 trillion tokens, and the curated
pre-training data is considered a significant factor in their performance. The
emphasis on data quality demonstrates the importance of high-fidelity datasets
in building effective LLMs [60, 59, 61].
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4.9 Falcon-180B

In September 2023, TII expanded the Falcon series with Falcon-180B, a 180-
billion parameter model trained on 3.5 trillion tokens from the RefinedWeb
dataset—more than double the amount used for previous Falcon models. A
variant, Falcon-180B-chat, was fine-tuned for instruction and conversational
tasks. This model achieves competitive results relative to leading models such
as GPT-4, GPT-3.5, and PaLM 2-Large [60, 62].

However, the model’s large scale comes with substantial hardware require-
ments: Falcon-180B demands at least 320GB of memory for optimal operation,
compared to 40GB for Falcon-40B and 15GB for Falcon-7B. This significant
memory requirement reduces accessibility for researchers with limited hardware,
which is otherwise an advantage of open-source LLMs [60, 62].

Benchmark evaluations for the Falcon series include common-sense reasoning
tasks such as HellaSwag, Winogrande, AI2 Reasoning Challenge (ARC), MMLU,
and OpenBookQA, along with PIQA and BoolQ. These tasks are discussed
further in Section 7 [60, 62].

4.10 Grok-1

Grok-1, released in March 2024 by xAI under OpenAI, is a cutting-edge LLM with
314 billion parameters. Its architecture is autoregressive and Transformer-based,
featuring a mixture of eight experts. On the HumanEval coding benchmark,
Grok-1 achieves 63.2% and scores 73% on MMLU. While it does not outperform
models trained on larger datasets, such as GPT-4 or Claude 2, it exceeds the
performance of other models trained on comparable dataset sizes.

Table 1: A comparative summary of the reviewed LLMs
Model Parameters Commercial Use License Attention Pre-training Token Length VRAM / RAM Required Open Source Fine-tuneable
LLaMA 7B No LLaMA License MHA 1T 6GB VRAM Yes Yes
LLaMA 13B No LLaMA License MHA 1.5T 10GB VRAM Yes Yes
LLaMA 65B No LLaMA License MHA 1.5T 40GB VRAM Yes Yes
LLaMA-2 7B Yes LLaMA-2 License GQA 2T 6GB VRAM Yes Yes
LLaMA-2 13B Yes LLaMA-2 License GQA 2T 10GB VRAM Yes Yes
LLaMA-2 70B Yes LLaMA-2 License GQA 2T 40GB VRAM Yes Yes
Mistral 7B Yes Apache 2.0 GQA - 6GB VRAM Yes Yes
Falcon 7B Yes Apache 2.0 MQA 1.5T 15GB RAM Yes Yes
Falcon 40B Yes Apache 2.0 MQA 1T 40GB RAM Yes Yes
Falcon 180B Yes Apache 2.0 MQA 3.5T 320GB RAM Yes Yes
GPT-3 175B Yes OpenAI License MHA 300B Via API No Limited
GPT-3.5 turbo 175B Yes OpenAI License Not disclosed Not disclosed Via API No Yes
GPT-4 Not disclosed Yes OpenAI License Not disclosed Not disclosed Via API No No
Gemini 137B Yes Gemini Pro License MQA Not disclosed Via API No No
Claude 93B Yes Claude Pro License Unknown Unknown Via API No No
Claude 2 137B Yes Claude Pro License Unknown Unknown Via API No No
Claude 3 Unknown Yes Claude Pro License Unknown Unknown Via API No No
Grok-1 314B Yes Apache 2.0 for code and Grok-1 weights 48 attention heads for queries, 8 for keys/values Unspecified Unspecified Yes No

5 Vision Models and Multi-Modal Large Lan-
guage Models

Up to this point, we have reviewed prominent Large Language Models (LLMs)
that originated primarily in the text domain, some of which later incorporated
multi-modal functionalities. In this section, we shift focus to models created
specifically to bridge vision and language. Vision models are engineered to
produce joint representations of images and text, enabling tighter integration of

9



visual and linguistic information than retrofitted multi-modal variants. These
models underpin tasks such as automatic image captioning, cross-modal retrieval,
and text-driven image generation.

5.1 Vision Models

5.1.1 BLIP-2

Introduced by Salesforce in 2023, BLIP-2 proposes a two-stage pretraining
approach that leverages strong off-the-shelf image encoders and language models
to strengthen vision–language alignment [63, 64]. A central innovation is the
Querying Transformer (Q-Former), which functions as an adapter between the
frozen image encoder and the language model. During the first pretraining stage,
the Q-Former learns to extract a compact set of visual tokens that are most
relevant to textual descriptions. In the second stage, those learned visual queries
feed into a frozen language model, effectively acting as soft visual prompts
that guide generation. By freezing large foundation components and training
only the bridging layer, BLIP-2 achieves efficient cross-modal integration while
capitalizing on the representational power of pretrained vision and language
backbones.

5.1.2 Vision Transformer (ViT)

The Vision Transformer (ViT) demonstrated that transformer architectures,
originally conceived for sequential text, can be repurposed effectively for image
tasks [65]. ViT divides each image into a grid of patches, flattens these patches
into a sequence, and feeds that sequence into a standard transformer encoder.
When pretrained on large datasets, ViT models can match or exceed the per-
formance of many convolutional neural networks while simplifying architectural
choices and enabling straightforward scaling. Unlike many NLP transformers,
ViT commonly routes the encoder output into an MLP classification head rather
than an attention-based decoder. The concept of patch embedding was pivotal
in establishing the transformer’s ability to generalize to visual data.

5.1.3 Contrastive Language–Image Pretraining (CLIP)

CLIP (Contrastive Language–Image Pretraining) quickly became a foundational
method for building multi-modal systems [67]. Trained contrastively on hundreds
of millions of image–text pairs, CLIP jointly learns an image encoder and a
text encoder so that corresponding images and captions are close in a shared
embedding space. This training paradigm confers strong zero-shot classification
abilities—allowing CLIP to map natural language labels to images without
task-specific supervised examples. However, CLIP’s large, web-scale training
corpus also exposes it to dataset bias and undesirable correlations; early analyses
found problematic misclassifications that disproportionately affected certain de-
mographic groups. Later advancements such as RA-CLIP (Retrieval-Augmented
CLIP) sought to mitigate data and retrieval limitations by augmenting the
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training process with an external retrieval mechanism, yielding substantial gains
in zero-shot classification performance [69].

5.2 Early Approaches to Multi-Modal Processing

Initial attempts to combine vision and language followed an encoder–decoder
template inspired by machine translation: a CNN encoder would extract vi-
sual features, and an RNN decoder would produce captions from that fixed
representation [70]. While intuitive, these models often struggled to capture
fine-grained semantics and required costly recurrent computation. Later work
showed that web-scale image–text pairs could enable zero-shot annotation and
more flexible multimodal behavior, shifting emphasis away from tightly coupled
encoder–decoder pipelines toward contrastive and transformer-based approaches
[68].

5.3 Multi-Modal Large Language Models (MM-LLMs)

Modern image-grounded MM-LLMs typically consist of three components: a
vision encoder that produces visual embeddings, a language model that handles
text, and an alignment or cross-modal module that connects the two. These
systems aim to provide unified multimodal reasoning and generation rather than
simply appending visual inputs to a text model. Below we review representative
MM-LLMs and how they achieve cross-modal competence.

5.3.1 LLaVA (Large Language and Vision Assistant)

LLaVA couples an image encoder (often CLIP-based) with a strong LLM, such
as Vicuna, and fine-tunes the combined system on vision-language instruction
data [71, 72, 73]. In the original LLaVA pipeline, the visual encoder remained
frozen while the language model was adapted using approximately 158k im-
age–instruction examples drawn from MS-COCO and related sources. Practical
training techniques—such as gradient checkpointing and data sharding—were
employed to reduce GPU memory footprint during fine-tuning. Subsequent
LLaVA variants, such as LLaVA-1.5, incorporate larger CLIP ViT backbones
and add a small MLP projection layer, improving model capacity with modest
adjustments to hyperparameters while maintaining single-image input constraints
[74].

5.3.2 Kosmos-1 and Kosmos-2

Kosmos-1 introduced a unified architecture in which multiple input modalities
are embedded and directly fed into a causal transformer, enabling the language
model to accept both text and image embeddings as native inputs [75, 76].
Training combined large text corpora such as The Pile and Common Crawl
with interleaved image–text examples, allowing the model to ground language
understanding in visual context. Kosmos-2 extends this approach by incorpo-
rating explicitly grounded image–text pairs, enhancing referring and grounding
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capabilities without relying solely on a two-stage encoder–decoder pipeline. As
with many MM-LLMs, CLIP-style image representations serve as the foundation
for visual embeddings [77].

5.3.3 MiniGPT-4

MiniGPT-4, released as an open alternative to closed MM-LLMs, demonstrates
how a frozen, powerful LLM and a frozen visual encoder can be bridged with a
lightweight projection layer to produce robust multimodal behavior [78]. The
design keeps both the vision encoder and LLM unchanged during pretraining,
training only the projection layer that aligns visual and textual features. A
two-stage fine-tuning strategy—first using millions of noisy image–caption pairs,
followed by refinement on high-quality image–description samples—significantly
improves the generated outputs’ coherence and descriptiveness. Empirical studies
show MiniGPT-4 outperforming BLIP-2 on creative vision–language tasks such
as meme explanation and recipe generation. However, hallucination remains a
challenge, particularly for long-form captioning tasks, underscoring the need for
balance between model capacity and overfitting control.

5.3.4 mPLUG-OWL

In April 2023, researchers at the Alibaba DAMO Academy introduced mPLUG-
OWL, an open-source multimodal large language model (MM-LLM) designed to
address key shortcomings in existing two-stage training strategies. Previous MM-
LLMs typically relied on fully frozen visual backbones during both pretraining and
instruction-tuning phases, which limited the flexibility of cross-modal alignment.
To overcome this, mPLUG-OWL proposed a more adaptive approach—retaining
trainable visual components in the first stage and freezing them only during the
second phase of training [64].

The model architecture integrates the LLaMA-7B language model (developed
in alignment with Vicuna [63]) as the text decoder and a ViT-L/14 vision
transformer as the visual encoder [65]. This combination allows mPLUG-OWL to
extract detailed visual representations and encode them efficiently as visual tokens.
However, integrating such visual features directly into a large language model
introduces significant computational challenges due to long input sequences. To
address this, the authors introduced a visual abstractor module, which compresses
visual embeddings into a compact set of learnable tokens. These condensed
visual tokens are then concatenated with the word embeddings of the textual
input, ensuring seamless multimodal fusion while maintaining computational
efficiency.

The ViT encoder is initialized from CLIP’s ViT-L/14 model, leveraging its
pretrained weights for faster convergence. During the first stage, the visual
encoder and abstractor modules are trained on diverse image–caption datasets,
while the language model remains frozen. In the second stage, the focus shifts:
the pretrained LLaMA model undergoes LoRA-based fine-tuning (Low-Rank
Adaptation) to enhance its ability to interpret text instructions from multiple
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sources, while the visual modules are frozen. This two-phase structure enables
the model to learn effective visual–textual associations and improves generative
reasoning across modalities. The LoRA fine-tuning approach is discussed further
in Section ??.

To evaluate mPLUG-OWL’s performance, the researchers introduced Owl-
Eva, a custom evaluation benchmark containing 82 instruction-based questions
across 50 images. Results showed that mPLUG-OWL performed competitively
against other leading MM-LLMs, including LLaVA, BLIP-2, and MiniGPT-4.
Both MiniGPT-4 and mPLUG-OWL demonstrated strong multimodal reasoning
and visual comprehension, though mPLUG-OWL exhibited occasional halluci-
nation errors, particularly in associating unrelated visual features with textual
outputs.

5.3.5 Summary and Comparison of Selected MM-LLMs

A comparative analysis of the reviewed MM-LLMs highlights their distinct
strategies for integrating visual and textual modalities. MiniGPT-4 employs
frozen vision and language models across both training stages, aligning the
modalities through a projection layer that bridges visual and textual features.
In contrast, LLaVA maintains frozen vision and language encoders during the
initial phase but fine-tunes the language model in the second stage while keeping
the vision encoder static.

The mPLUG-OWL framework adopts an inverse training order—its first
stage trains the visual encoder and abstractor modules while the language model
remains frozen; in the second phase, it fine-tunes the language model (via LoRA)
with the vision modules frozen. Meanwhile, Kosmos-1 and Kosmos-2 pursue
a single-stage training setup that jointly processes multimodal inputs, using a
trainable LLM alongside frozen visual encoders.

Taken together, these approaches illustrate that there is currently no consen-
sus on the optimal strategy for co-training textual and visual representations in
MM-LLMs. Each architecture balances trade-offs between efficiency, generaliza-
tion, and alignment accuracy. Figure ?? provides an overview of the respective
training paradigms, while Table 2 summarizes their structural and functional
characteristics.

Table 2: A comparative summary of selected MM-LLMs
Model Open Source Fine-Tuneable LLM Used Vision Model Used
LLaVA Yes Yes Vicuna CLIP ViT-L/14
Kosmos-1 and -2 Yes Yes Grounded image–text pairs to train an integrated model –
MiniGPT-4 Yes Yes Vicuna Q-Former and CLIP ViT-G/14
mPLUG-OWL Yes Yes LLaMA-7B CLIP ViT-L/14

6 Model Tuning

Pre-trained Large Language Models (LLMs) and Multimodal Large Language
Models (MM-LLMs) hold immense potential across diverse domains. However,
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their foundational training may not always align perfectly with the specific
requirements or contextual nuances of every target application. Certain scenarios
may demand more domain-adapted reasoning or task-specific responses that go
beyond what is covered during initial pre-training.

To maximise the utility of these foundational models in real-world applica-
tions, model tuning techniques are employed. Model tuning enables adaptation
of the model’s learned parameters or interaction patterns to meet particular
goals or contexts. Broadly, model tuning methods can be grouped into four
categories: full fine-tuning, parameter-efficient fine-tuning (PEFT), prompt en-
gineering, and reinforcement learning with human feedback (RLHF). Each of
these techniques serves a distinct purpose, balancing efficiency, adaptability, and
resource constraints.

6.1 Full Fine-Tuning

Full fine-tuning involves retraining all parameters of a pre-trained foundational
model on a smaller, domain-specific dataset. This process tailors the model’s
generalised knowledge to a specific task, enabling it to better capture the linguistic
or multimodal subtleties of that domain.

The key advantage of full fine-tuning lies in its flexibility—it allows the model
to comprehensively adjust to new data and objectives, resulting in highly task-
aligned outputs. However, the method is computationally demanding and often
requires substantial amounts of domain-specific labelled data. Consequently,
while it achieves strong performance in specialised tasks, its resource intensity
can be a limiting factor [66, 67].

6.2 Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) offers a more practical alternative to
full fine-tuning by optimising only a small subset of parameters rather than the
entire model. This approach reduces computational cost, memory requirements,
and training time while retaining most of the performance benefits.

Since LLMs and MM-LLMs are already trained on large, diverse datasets,
they often contain much of the general knowledge necessary for downstream
tasks. PEFT capitalises on this by updating only those components relevant to a
new objective. Different PEFT methods exist to suit varying needs—some adjust
specific sections of the model’s parameters, while others introduce lightweight
adapter modules that can be trained without altering the base architecture
[66, 67].

Below, we review key PEFT techniques.

6.2.1 Low-Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA) fine-tunes LLMs or MM-LLMs by freezing the pre-
trained model’s original weights and inserting small, trainable matrices—known
as rank decomposition matrices—into each Transformer layer. This design
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reduces the number of trainable parameters and memory usage while maintaining
strong adaptation capabilities. Once trained, these LoRA adapters can be merged
with the original model for inference.

The advantage of LoRA lies in its modularity—multiple LoRA adapters can
share the same base model, allowing developers to efficiently manage several
task-specific configurations without retraining the entire network [?].

6.2.2 Quantised Low-Rank Adaptation (QLoRA)

Quantised Low-Rank Adaptation (QLoRA) extends LoRA by introducing quan-
tisation, a process that lowers numerical precision to further reduce memory
consumption. While LoRA focuses on training compact rank-decomposition
matrices, QLoRA additionally applies quantisation to compress model weights,
drastically reducing GPU and storage requirements.

This enables the fine-tuning of very large models—up to 65 billion parame-
ters—on a single 48GB GPU while maintaining competitive performance [?]. By
combining quantisation with low-rank adaptation, QLoRA represents a major
step forward in making large-scale fine-tuning more accessible and resource-
efficient.

6.2.3 Supervised Fine-Tuning (SFT)

Supervised Fine-Tuning (SFT) uses labelled domain-specific datasets to adapt pre-
trained models to specific downstream tasks. Unlike unsupervised pre-training,
SFT allows the model to directly learn from human-annotated examples, aligning
its outputs with task-specific objectives.

This method enables strong performance with less data and computational
demand than training from scratch. However, SFT must be applied care-
fully—biases present in the pre-trained or fine-tuning data can become amplified
during adaptation. Hence, bias detection and evaluation are essential steps in
the SFT pipeline [69, 70].

6.3 Prompt Engineering

Prompt engineering involves crafting natural language instruc-
tions—prompts—that guide a model to perform a task without modifying its
parameters. By designing effective prompts, models can exhibit in-context
learning, where they adapt to new problems simply by interpreting textual cues
rather than undergoing further training . This approach mitigates the heavy
data and computational requirements of traditional fine-tuning.

Prompting can be categorised into three main types:

• Few-shot prompting, where multiple examples are provided;

• One-shot prompting, where only one example is given;

• Zero-shot prompting, where only the task description is supplied.
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Studies suggest that few-shot examples often serve not to teach new tasks,
but to help the model locate relevant pre-learned tasks within its latent space [?].
Interestingly, zero-shot performance can sometimes surpass few-shot outcomes.
Nevertheless, emphasise that domain-specific prompts—tailored and refined
using internal model knowledge—can bridge performance gaps, especially for
specialised applications.

6.4 Reinforcement Learning with Human Feedback
(RLHF)

Reinforcement Learning with Human Feedback (RLHF) enhances model align-
ment with human values and preferences. The process begins with human
evaluators ranking multiple model-generated outputs. These rankings are then
used to train a reward model that estimates the quality of future outputs.

The foundational model is subsequently fine-tuned using reinforcement learn-
ing, where the reward model guides it toward producing outputs more consistent
with human judgment. While RLHF greatly improves model safety, usability,
and alignment, it demands extensive human feedback, data collection, and
computational resources—making scalability a significant challenge

7 Model Evaluation and Benchmarking

Evaluating and benchmarking both pre-trained and fine-tuned models is essential
for measuring their capabilities, identifying weaknesses, and assessing the impact
of tuning strategies. Before fine-tuning, baseline benchmarks help establish
a reference point for performance comparison. After fine-tuning, evaluation
metrics assess whether domain adaptation or task specialisation has improved
model behaviour.

A notable example is MedAlpaca, a medically fine-tuned LLM evaluated using
the USMLE exam, a standardised test for medical practitioners. Its zero-shot
results were compared to other models to determine the efficacy of its fine-tuning
approach

Beyond accuracy, evaluation must also consider ethical and social dimensions,
including bias, toxicity, and reasoning capability. The RealToxicityPrompts
benchmark uses 100,000 prompts to measure a model’s likelihood of generat-
ing toxic or harmful text via the Perspective API . To detect demographic
biases—across gender, religion, race, and socioeconomic attributes—the CrowS-
Pairs benchmark compares model perplexity on stereotype versus anti-stereotype
sentences Similarly, WinoGender assesses gender bias through co-reference reso-
lution tasks, while Winogrande evaluates contextual comprehension by testing
pronoun resolution under varying contexts.

Several benchmarks test a model’s common-sense reasoning: ARC To evaluate
factual accuracy and detect hallucinations, benchmarks such as TruthfulQA and
M-HALDetect are employed. TruthfulQA challenges models with 817 diverse
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questions designed to expose misinformation, while M-HALDetect identifies
visual or object hallucinations in multimodal models .

Although these benchmarks provide valuable insights, they serve primarily
as indicators rather than guarantees of model safety or fairness. No evaluation
framework can conclusively eliminate all risks of bias, hallucination, or misinfor-
mation—but comprehensive benchmarking remains the most effective safeguard
for developing robust and trustworthy AI systems.

8 Conclusions

Recent advances in natural language processing have been transformative, par-
ticularly with the emergence of Transformer architectures and large language
models (LLMs). These models have enabled sophisticated conversational AI
systems capable of nuanced reasoning, problem-solving, and contextual under-
standing. This progress has naturally extended into computer vision, resulting
in the development of Multi-Modal Large Language Models (MM-LLMs) and
Large Vision-Language Models (LVLMs) such as LLaVA and mPLUG-OWL,
which integrate vision encoders with language-based LLMs. Through techniques
like fine-tuning and prompt engineering, these models have demonstrated adapt-
ability to a variety of domain-specific tasks. Nevertheless, they continue to face
persistent challenges, including hallucinations, which, while reducible through
strategies such as Visual Contrastive Decoding, cannot yet be entirely eliminated.

Open-source MM-LLMs provide distinct advantages in terms of transparency,
reproducibility, and control over training data—a critical factor when handling
sensitive or proprietary information. Current open-source implementations often
do not incorporate the largest or most recent LLMs; for example, MiniGPT-4
and mPLUG-OWL leverage LLaMA-7B and Vicuna-13B, respectively, rather
than newer models like LLaMA-2. This choice reflects computational trade-
offs associated with advanced techniques such as Reinforcement Learning with
Human Feedback (RLHF). The quality and curation of pre-training data are also
pivotal, as evidenced by models like Falcon, underscoring that careful dataset
selection remains essential for effective downstream performance.

The usability and performance of MM-LLMs are influenced by multiple factors.
Architectural design impacts computational efficiency and the retention of fine-
grained visual-linguistic details. Similarly, fine-tuning methods, while beneficial,
do not universally guarantee improvements. Comparative studies—such as
those between MedAlpaca-13B LoRA and MedAlpaca-13B—highlight that some
approaches are too resource-intensive for broad implementation despite their
potential performance gains.

While benchmarking provides essential insights into model capabilities and
potential risks, no evaluation framework can ensure complete safety, fairness,
or elimination of errors. The assessment of domain-specific MM-LLMs requires
careful selection of relevant testing procedures, such as the USMLE examination
employed to evaluate MedAlpaca’s medical reasoning capability. Overall, these
considerations are critical for the continued development and evaluation of high-

17



quality MM-LLMs tailored for specialized applications, balancing performance,
computational efficiency, and safety in real-world scenarios.
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