Теория Универсального Поля: Эволюционная космология и принцип предсказанной неоптимальности (Уровень 2)

Яковчиц В.О.

1 ноября 2025 г.

Аннотация

Настоящая работа завершает формализацию Теории Универсального Поля (Т.У.П.), представляя её как эволюционную мета-модель. Ввожу формализм Эволюционного Параметра (Λ_n), описывающего фундаментальные константы цикла n, и вероятностный закон перерождения ($F_{\text{пер}}$), минимизирующий Функцию Информации Сингулярности (Σ) — безразмерный функционал структурной нестабильности. Ключевым следствием является Принцип Предсказанной Неоптимальности: значения констант в Λ_n являются не идеальными, а исторически обусловленными. Теория предлагает единое объяснение Тёмной Материи (через статические решения поля $\bar{\phi}_u$) и Тёмной Энергии (как проявление фундаментального изъяна ρ_{vac}). Определена программа проверки, включающая поиск аномалий в реликтовом излучении и гравитационноволновом фоне.

1 Введение

Т.У.П. Уровня 1 [1] установила гравитацию и инерцию как следствие динамики дуплета скалярных полей $(\phi_u, \bar{\phi}_u)$. Для перехода к полной онтологии требуется ответить на вопросы:

- 1. Что определяет значения фундаментальных констант?
- 2. Какова природа космологической динамики?

Уровень 2 решает эти вопросы через три принципа:

- **Цикличность:** Вселенная последовательность циклов (Расширение \to Коллапс \to Перерождение)
- **Телеология:** Цель цикла минимизация фундаментального изъяна $ho_{\mathrm{vac}} = V(\langle \phi_u \rangle)|_{\mathrm{min}}$
- **Наследие:** Константы Λ_n несут информацию о нестабильности предыдущих никлов

Космологический синтез: Т.У.П. предлагает единое объяснение Тёмной Материи (гравитационные воронки поля $\bar{\phi}_u$) и Тёмной Энергии (проявление изъяна $\rho_{\rm vac}$).

2 Математический Аппарат

2.1 Формализм эволюционного параметра

Эволюционный параметр включает независимые константы Т.У.П. Уровня 1:

$$\Lambda_n = \{G_0, \hbar, c, \alpha, \beta, \mu^2, \lambda, \dots\}$$

 m_{eff} является следствием выбора μ^2 и λ в процессе спонтанного нарушения симметрии.

2.2 Функция Информации Сингулярности (Σ)

 Σ — безразмерный функционал, измеряющий интегральную нестабильность цикла:

$$\Sigma = \frac{1}{S_{\rm Pl}} \int_0^{t_{\rm cycle}} dt \int dV \left[\gamma_1 \mathcal{D}_{\bar{\phi}} + \gamma_2 \mathcal{S}_{\phi} + \gamma_3 \mathcal{T}_M \right]$$

где $S_{\rm Pl} = \hbar$, а веса $\gamma_1 \gg \gamma_2 \gg \gamma_3$.

2.2.1 Компоненты функционала Σ

• Динамическая стабильность $(\mathcal{D}_{\bar{\phi}})$:

$$\mathcal{D}_{\bar{\phi}} = \frac{1}{2} \cdot \frac{M_{\rm Pl}}{t_{\rm Pl}} \cdot \frac{(\nabla_{\beta} \bar{\phi}_u)(\nabla^{\beta} \bar{\phi}_u)}{\langle \bar{\phi}_u \rangle^2}$$

Физический смысл: Плотность мощности, затрачиваемой на поддержание стабильности гравитации

• Стабилизационная эффективность (S_{ϕ}) :

$$S_{\phi} = \frac{|\nabla_{\mu} T_{\mu}^{\mu}|}{\langle \phi_{u} \rangle} - V(\phi_{u}, \Lambda_{n})$$

где $V(\phi_u, \Lambda_n) = -\frac{1}{2}\mu^2\phi_u^2 + \frac{\lambda}{4}\phi_u^4$

Физический смысл: Плотность энергии, связанная со стабилизацией материи

• Структурное богатство (\mathcal{T}_M):

$$\mathcal{T}_{M} =
ho_{ ext{Pl}} \cdot \left(\frac{
ho_{ ext{VII}}}{
ho_{ ext{fapuohob}}} \right) \cdot \left(\frac{n_{ ext{galaxies}}}{n_{ ext{Pl}}} \right) \cdot \left\langle \frac{M_{ ext{bar}}}{M_{ ext{halo}}} \right
angle$$

Физический смысл: Плотность энергии, вложенная в создание структурной сложности

${f 2.2.2}$ Обоснование весов γ_i и онтология нестабильности

Иерархия $\gamma_1 \gg \gamma_2 \gg \gamma_3$ отражает фундаментальный приоритет **выживания цикла** над вторичными свойствами.

1. γ_1 (Стабильность гравитации): Абсолютный приоритет. Нестабильность G $(\mathcal{D}_{\bar{\phi}})$ делает невозможным существование каких-либо долгоживущих структур.

- 2. γ_2 (Эффективность конденсата): Вторичный приоритет. Без генерации инерционных масс (S_{ϕ}) не формируется стабильная материя субстрат для сложности.
- 3. γ_3 (Структурное богатство): Критически важный, но минимальный вклад. Здесь требуется важное концептуальное уточнение:

Высокое структурное богатство (\mathcal{T}_M) увеличивает нестабильность Σ . Это не ошибка, а ключевое положение теории. Создание и поддержание сложных структур (галактик, звёзд) является мощным источником энтропии и нестабильности для Универсального Поля. Идеально стабильная с точки зрения Σ Вселенная была бы однородным морем реликтового излучения — стабильной, но "мёртвой".

Таким образом, $F_{\text{пер}}$ стоит перед выбором:

- Минимизировать Σ полностью: получить стабильную, но пустую вселенную ($\mathcal{T}_M \to 0$)
- Допустить небольшую нестабильность: чтобы позволить возникнуть структурному богатству ($\mathcal{T}_M > 0$)

Конечное, ненулевое значение γ_3 является математическим выражением этого компромисса. Оно указывает, что в рамках телеологии Т.У.П. структурное богатство является желательным, но "дорогостоящим" свойством. Наша Вселенная, с её наблюдаемым структурным богатством, существует не вопреки принципу минимизации Σ , а как следствие точно настроенного баланса, найденного $F_{\text{пер}}$, где малая "переплата" в нестабильности ($\gamma_3 \mathcal{T}_M$) компенсируется выигрышем в способности порождать сложность.

Это позволяет теории естественным образом объяснить наблюдаемость Вселенной, не апеллируя к Антропному Принципу.

2.3 Вероятностный закон перерождения

Переход между циклами описывается распределением:

$$P(\Lambda_{n+1}|\Lambda_n) \propto \exp(-\kappa \Sigma[\Lambda_n])$$

где:

- $\Sigma[\Lambda_n]$ функционал нестабильности текущего цикла
- к коэффициент селективного давления
- P вероятность перехода к конфигурации Λ_{n+1}

Интерпретация:

- $\kappa \to 0$ слабый отбор, конфигурации почти случайны
- $\kappa \to \infty$ жёсткий отбор, реализуется только минимальная Σ
- $0 < \kappa < \infty$ реалистичный режим, допускающий неоптимальность

3 Предсказания и Верификация

3.1 Принцип Предсказанной Неоптимальности

Значения констант в Λ_n являются исторически оптимальными. **Пример:** $m_{\rm eff} \sim 10^{10}$ ГэВ представляет компромисс между стабильностью G и унаследованными ограничениями.

3.2 Дорожная Карта

- 1. **Приоритет 1:** Численное моделирование BBN с $m_{\rm eff} \geq 10^{10}~\Gamma$ эВ
- 2. Приоритет 2: Поиск космологических реликвий:
 - Аномальные моды в спектре и поляризации КМБ
 - Стохастический гравитационно-волновой фон от фазового перехода
- 3. Приоритет 3: Количественная проверка неоптимальности:
 - Оценка вкладов в Σ для текущего цикла
 - \bullet Определение значения κ из наблюдаемых констант

4 Заключение и Перспективы

Т.У.П. преобразована в расчётный каркас эволюционной космологии. Настоящая работа закладывает основу для **Уровня 3**, задачами которого являются:

- 1. Микроскопическая реализация $F_{\text{пер}}$ в рамках квантовой гравитации
- 2. Установление связи между Σ и $\rho_{\rm vac}$ следующего цикла
- 3. Разработка методов численного моделирования полного цикла

Проверка Принципа Предсказанной Неоптимальности станет решающим тестом для предложенной парадигмы.

Список литературы

[1] Яковчиц В.О. (2025). Теория Универсального Поля: Полная Скалярно-Тензорная Формализация и Программа Эмпирической Фальсификации. Уровень 1.

Ключевые слова: Теория Универсального Поля, цикличность вселенных, фундаментальные постоянные, принцип предсказанной неоптимальности, функция информации сингулярности.