Синтетический Вариационный Анализ. Конструктивная Двойственность, Монотонные Операторы и Геометрия Оптимизации в Гладких Топосах

Автор: Чурилов Максим Вячеславович

Аффилиация: Центр Одаренных Детей "Гагарин", г.Оренбург

Email: churilovm1305@gmail.com

Дата: Ноябрь 2025 г.

Аннотация

Эта монография закладывает фундамент **Синтетического Вариационного Анализа (СВА)** — новой математической парадигмы, систематически развивающей теорию выпуклой оптимизации, двойственности, монотонных операторов и вариационных неравенств в рамках Синтетической Дифференциальной Геометрии (СДГ) и теории гладких топосов. Мы исследуем, как интуиционистская логика топоса и богатая структура синтетического континуума R, включающая нильпотентные инфинитезимали, предоставляют идеальную среду для конструктивного, геометрического и алгоритмически прозрачного подхода к оптимизации.

В работе демонстрируется, что стандартное определение субдифференциала тривиализуется в СДГ для конечнозначных функций, позиционируя СВА как теорию гладкой, но конструктивной оптимизации. Мы разрабатываем полную конструктивную теорию двойственности Фенхеля-Моро для конечномерных пространств \mathbb{R}^n , обходя необходимость использования неконструктивных принципов (Теорема Хана-Банаха), используя теорию локалей для пополнения \mathbb{R} до \mathbb{R} и строго доказывая конструктивные теоремы об отделимости.

Главными результатами являются: (**Теорема A**) инфинитезимальная характеризация выпуклости через положительность синтетического Гессиана, строго обоснованная через явные аксиомы достаточности инфинитезималей, и доказательство теоремы о соответствии, связывающей синтетическую и классическую выпуклость в хорошо адаптированных моделях; (**Теорема B**) доказательство Синтетической Теоремы Двойственности Фенхеля-Рокафеллара с использованием условий квалификации (sri-SQC), основанных на строгой относительной внутренности, включая строгое доказательство полунепрерывности снизу функции возмущений при этих условиях; (**Теорема C**) развитие синтетической теории максимальных монотонных операторов, включая полное внутреннее доказательство теоремы Минти о сюръективности резольвенты и теорию регуляризации Моро-Иосиды; и (**Теорема D**) доказательство

Синтетической Теоремы Хартмана-Штампаккьи. Также закладываются основы синтетической теории равновесий и строгий анализ сходимости градиентных потоков с использованием доказанного Синтетического Принципа Инвариантности ЛаСалля.

Часть **I.** Основания Синтетического Вариационного Анализа

Глава 1. Введение: Мотивация, Вызовы и Структура

Теория оптимизации, включающая выпуклый анализ, теорию двойственности, вариационные неравенства и теорию монотонных операторов, является одной из наиболее влиятельных областей современной математики. Её классическое развитие, основанное на работах Фенхеля, Моро, Рокафеллара, Минти и других [Rockafellar, 1970; Bauschke & Combettes, 2011], традиционно строится на фундаменте классического анализа в рамках теории множеств ZFC. Эта парадигма, несмотря на свою исключительную мощность, часто опирается на неконструктивные принципы, такие как Закон Исключенного Третьего (LEM) и Аксиома Выбора (АС). Это приводит к ряду методологических и практических ограничений: затрудняется извлечение явного алгоритмического содержания из доказательств, усложняется формальная верификация теории, и теряется прямая геометрическая интуиция, заменяемая сложными аналитическими аргументами.

Параллельно, начиная с работ Ловера, Кока и Рейеса, развивается Синтетическая Дифференциальная Геометрия (СДГ) [Косk, 1981; Moerdijk & Reyes, 1991]. СДГ предлагает альтернативный фундамент для анализа и геометрии, основанный на теории топосов Гротендика. СДГ предоставляет математическую вселенную — гладкий топосов Гротендика. СДГ предоставляет примитивным, а существование истинных нильпотентных инфинитезималей позволяет заменить предельные конструкции (такие как δ анализ) чисто алгебраическими операциями. Внутренняя логика такого топоса является интуиционистской, что естественным образом связывает СДГ с конструктивной математикой Бишопа [Bishop, 1967].

Настоящая монография направлена на создание фундаментального моста между этими двумя областями путем разработки **Синтетического Вариационного Анализа (СВА)** — теории оптимизации, построенной *изнутри* логического и геометрического каркаса гладких топосов.

1.1. Философия СВА: Геометрия, Логика и Вычисления

Цель CBA — переосмыслить базовые концепции оптимизации в синтетических терминах, обеспечивая максимальную логическую прозрачность, геометрическую интуицию и вычислительную интерпретируемость.

1. **Геометризация Анализа.** СВА использует инфинитезимальные методы СДГ для замены аналитических аргументов алгебраическими и геометрическими. Например,

- выпуклость функции характеризуется не через глобальные неравенства, а через локальные инфинитезимальные условия второго порядка (положительность синтетического Гессиана). Это возвращает анализу его геометрические корни.
- 2. Логическая Прозрачность и Конструктивность. Интуиционистская логика топоса требует, чтобы все доказательства были конструктивными. Это не ограничение, а преимущество: существование объекта (например, решения оптимизационной задачи) всегда сопровождается алгоритмом его построения. Мы явно указываем аксиоматические предпосылки для каждого утверждения, обеспечивая исключительную модульность теории.
- 3. **Алгоритмическая Интерпретация.** Конструктивный характер СВА позволяет напрямую интерпретировать теоремы как спецификации алгоритмов. Например, доказательства теорем о неподвижной точке (Банаха, Брауэра) в СВА содержат явные методы нахождения этих точек.

1.2. Фундаментальные Вызовы и Их Разрешение в СВА

Попытка синтеза СДГ и современного вариационного анализа сталкивается с тремя фундаментальными концептуальными вызовами, которые определяют структуру данной работы.

1.2.1. Парадокс Гладкости (The Smoothness Paradox)

Центральной особенностью гладкого топоса, удовлетворяющего аксиоме Кока-Ловера (K-L), является то, что любая внутренняя функция $f:R\to R$ (где R — объект синтетической прямой) является бесконечно дифференцируемой (). Это, казалось бы, делает невозможным развитие негладкого анализа, который является ядром современного вариационного анализа [Rockafellar & Wets, 1998], фокусирующегося на субдифференциалах и обобщенных производных.

Разрешение в СВА: Мы строго доказываем (Теорема 4.6.4), что стандартное определение субдифференциала (через глобальные опорные гиперплоскости) действительно тривиализуется до градиента в СДГ для конечнозначных функций. Это означает, что СВА, в его основной части (Главы 1-9), является теорией гладкой конструктивной оптимизации. Это не ограничение, а точная характеризация: СВА предоставляет исключительно ясные и мощные инструменты для анализа выпуклых структур, когда они интерпретируются в гладком топосе. Истинная негладкость требует более тонких инструментов, связанных с внутренней топологией (локали Пенона), которые мы обсуждаем в Главе 10.

1.2.2. Вызов Логики (The Logic Challenge)

Интуиционистская логика топоса (отказ от LEM и AC) делает недоступными многие стандартные инструменты классического анализа. В первую очередь, это Теорема Хана-Банаха (НВТ), которая является необходимым условием для доказательства

большинства теорем двойственности и отделимости в бесконечномерных пространствах.

Разрешение в СВА: Мы принимаем интуиционистскую логику как конструктивный ресурс. Мы демонстрируем, что для конечномерных пространств \mathbb{R}^n (которые являются основным объектом исследования в этой монографии) возможно разработать полную и строгую теорию двойственности (Главы 4 и 5) без использования НВТ. Мы достигаем этого путем строгого доказательства конструктивных теорем об отделимости (Лемма 4.4.2), основанных на явном построении проекций на выпуклые множества, и введения новых условий квалификации (sri-SQC, Глава 5), основанных на понятии строгой относительной внутренности.

1.2.3. Структура Континуума (The Continuum Structure)

Синтетическая прямая R не является полной по Дедекинду. Это делает невозможным стандартное определение сопряженных функций по Фенхелю, которое полагается на операцию взятия супремума.

Разрешение в CBA: Мы используем внутреннее пополнение Дедекинда-Мака-Нейла, R (Глава 4.1). R является локалем (Locale) [Johnstone, 1982] во внутренней логике топоса. Локали предоставляют конструктивную замену топологическим пространствам. R является полным локалем, что позволяет строго определить операции Sup и Inf, необходимые для теории сопряжения и определения полунепрерывности снизу (LSC).

1.3. Основные Вклады и Научная Новизна

Эта монография представляет собой первое систематическое, аксиоматически строгое и исчерпывающе подробное изложение теории оптимизации и монотонных операторов в контексте гладких топосов. Основные вклады заключаются в следующем:

- 1. Строгое Обоснование Инфинитезимальной Выпуклости (Теорема А) и Теорема о Соответствии. Мы доказываем эквивалентность глобальной выпуклости и положительности синтетического Гессиана (Глава 3.3). Критически важным вкладом является строгое обоснование необходимых аксиом (Принципы Достаточности Инфинитезималей). Мы также доказываем новую Теорему о Соответствии (Теорема 3.5.1), которая устанавливает точную связь между синтетической выпуклостью в топосе и классической выпуклостью в категории гладких многообразий для хорошо адаптированных моделей.
- 2. Конструктивная Теория Двойственности в Локалях и Конструктивная Отделимость. Мы разрабатываем теорию сопряжения, используя R как локаль. Ключевым техническим вкладом является полное, строгое конструктивное доказательство Теоремы Фенхеля-Моро (Глава 4.5), опирающееся на детальное доказательство конструктивной теоремы о строгой отделимости в R^n (Глава 4.4).
- 3. Синтетическая Сильная Двойственность (Теорема В) и Условия Квалификации (sri-SQC). Мы доказываем Теорему Двойственности Фенхеля-Рокафеллара (Глава

- 5.5). Центральным техническим результатом здесь является строгое доказательство полунепрерывности снизу (LSC) функции возмущений при условии sri-SQC (Теорема 5.4.4), основанное на анализе инфимальной конволюции в синтетическом контексте.
- 4. Синтетическая Теория Максимальных Монотонных Операторов (Теорема С) и Регуляризация Моро-Иосиды. Мы развиваем полную теорию максимальной монотонности в СДГ (Глава 7), включая детальное доказательство синтетической версии Теоремы Минти (Теорема 7.4.1). Мы также разрабатываем синтетическую теорию регуляризации Моро-Иосиды (Глава 7.3).
- 5. **Синтетические Вариационные Неравенства (Теорема D).** Мы доказываем Синтетическую Теорему Хартмана-Штампаккьи (Глава 6.4), опираясь на явную формулировку синтетической теоремы Брауэра.
- 6. Синтетический Принцип Инвариантности ЛаСалля и Сходимость Градиентных Потоков. Мы разрабатываем синтетическую версию Принципа Инвариантности ЛаСалля (Глава 9.2) и применяем её для строгого доказательства сходимости градиентных потоков в СДГ.

Глава 2. Аксиоматический Фундамент СВА

В этой главе мы устанавливаем точный математический фундамент для Синтетического Вариационного Анализа. Мы вводим понятие гладкого топоса, формулируем точный набор аксиом (А1-А8), на который опирается данная работа, и детально анализируем структуру синтетического континуума R, включая его порядок и инфинитезимальные свойства.

2.1. Гладкие Топосы и Внутренняя Логика

Мы работаем в категории \mathcal{E} , являющейся топосом Гротендика [Mac Lane & Moerdijk, 1992].

Определение 2.1.1. Гладкий топос — это топос \mathcal{E} , снабженный коммутативным кольцевым объектом R (синтетическая прямая), который служит моделью СДГ [Kock, 1981; Moerdijk & Reyes, 1991].

Внутренняя логика топоса ${\mathcal E}$ позволяет рассуждать об объектах и морфизмах ${\mathcal E}$ так, как если бы они были множествами и функциями.

Теорема 2.1.2 (Интуиционизм в СДГ). Внутренняя логика нетривиального гладкого топоса является интуиционистской. Закон Исключенного Третьего (LEM:) и Аксиома Выбора (AC) в общем случае не выполняются.

Следствие 2.1.3. Все доказательства в СВА должны быть конструктивными.

2.2. Аксиома Кока-Ловера и Алгебраическая Дифференцируемость

Фундаментом СДГ является аксиома Кока-Ловера, которая вводит нильпотентные инфинитезимали и алгебраизует дифференциальное исчисление.

Определение 2.2.1 (Инфинитезимальные Объекты).

- 1. Инфинитезимальный объект первого порядка: $D:=\{\,\in R\mid {}^2=0\}.$
- 2. Объект порядка k: $D_k := \{ \in R \mid {}^{k+1} = 0 \}$.

Аксиома 2.2.2 (Кок-Ловер, K-L, A1). Морфизм $:R \ R \to R^D$, определяемый как (a,)()=a+, является изоморфизмом.

Аксиома K-L позволяет определить производную алгебраически.

Определение 2.2.3 (Синтетическая Производная). Для $f:R\to R$ и $x\in R$, существует единственное значение $f(x)\in R$ такое, что для всех $\in D$:

$$f(x+) = f(x) + f(x)$$

Следствие 2.2.4 (Внутренняя Гладкость). Все морфизмы $f: \mathbb{R}^n \to \mathbb{R}$ в \mathcal{E} являются бесконечно дифференцируемыми ().

Для работы с многомерным анализом и высшими производными требуется обобщение K-L.

Аксиома 2.2.5 (Микролинейность, ML, A2). Мы предполагаем, что конечномерные пространства $V=R^n$ являются *микролинейными объектами*.

Микролинейность гарантирует существование и симметрию частных производных высших порядков и позволяет сформулировать формулу Тейлора.

Теорема 2.2.6 (Синтетическая Формула Тейлора). (Использует А1, А2). Для f:R o R и $\delta\in D_k$:

$$f(x+\delta)=f(x)+f(x)\delta+rac{f(x)}{2}\delta^2+\cdots+rac{f^{(k)}(x)}{k}\delta^k$$

2.3. Структуры Позитивности и Конструктивный Порядок

Для вариационного анализа критически важна структура порядка на R. В интуиционистской логике классическая трихотомия не выполняется. Мы используем аксиоматический подход конструктивного анализа Бишопа [Bishop & Bridges, 1985].

Аксиома 2.3.1 (Структуры Позитивности, , $_0$, **А3).** Мы предполагаем, что R снабжен двумя совместимыми структурами порядка:

1. **Нестрогий Порядок ():** Конус неотрицательных элементов R, определяющий отношение предпорядка x. Он удовлетворяет замкнутости относительно сложения и умножения, и слабой антисимметрии (Постулат Архимеда для R):

$$(x \ 0) (x \ 0) x = 0.$$

2. **Строгий Порядок (_0):** Конус строго положительных элементов $_0$ R, определяющий отношение строгого порядка x < . Он удовлетворяет транзитивности и Свойству Бишопа (расщепления): x + 0 $(x \ 0)$ (0).

Утверждение 2.3.2 (Локальное Кольцо и Обратимость). R является локальным кольцом. Элемент $x \in R$ обратим ($x \in R$) тогда и только тогда, когда он строго отделим от нуля:

$$x \in R \ (x \in \ 0) \ (x \in \ 0)$$

Следствие 2.3.3. Нильпотентные инфинитезимали не обратимы и не являются строго положительными или строго отрицательными.

2.4. Принципы Интегрирования

Для связи локальных свойств с глобальными необходим механизм интегрирования.

Аксиома 2.4.1 (Принцип Интегрирования, PI, A4). Для любой функции $f:0,1_R\to R$ существует единственная первообразная такая, что (t)=f(t) и (0)=0. Мы обозначаем $(1)=\int_{10}f(t)t.$

Аксиома 2.4.2 (Совместимость Порядка и Интегрирования, O-Int, A5). Интеграл сохраняет нестрогий порядок. Если f(t) 0 для всех $t \in 0, 1_R$, то $\int_{10} f(t) t$ 0.

Эти аксиомы позволяют сформулировать Синтетическую Фундаментальную Теорему Анализа (FTA).

Теорема 2.4.3 (FTA). (Использует A4). Для любой f:R o R:

$$f() \ f(x) = \int_{10}^{10} f(x+t(x)) \ (x)t$$

2.5. Принципы Достаточности Инфинитезималей

Мы требуем, чтобы инфинитезималей было достаточно для определения свойств линейных и билинейных форм.

Аксиома 2.5.1 (Достаточность Первого Порядка, Suff-D, A6).

Пусть $V=R^n$. Для линейного функционала $\in V$:

$$(\in D(V) \langle, \rangle = 0) = 0$$

Аксиома 2.5.2 (Достаточность Второго Порядка для PSD, Suff- D_2 , A7).

Пусть H — симметричная билинейная форма на V. Мы требуем, чтобы инфинитезимальная положительная полуопределенность (PSD) влекла глобальную PSD.

$$(\delta \in D_2(V) \, H(\delta, \delta) \, \, \, 0) \, \, \, (x \in V \, H(x, x) \, \, \, 0)$$

Эта аксиома является ключевой для доказательства Теоремы А (Лемма 3.3.2).

2.6. Хорошо Адаптированные Модели и Топологические Свойства

Многие результаты вариационного анализа опираются на топологические свойства пространства. Они обеспечиваются предположением о том, что наш топос является "хорошо адаптированной моделью".

Аксиома 2.6.1 (Хорошая Адаптированность, WA, A8). Топос \mathcal{E} является хорошо адаптированной моделью СДГ. (Т.е. существует полное и точное вложение категории гладких многообразий \mathcal{E}).

Теорема 2.6.2 (Следствия WA, A8). В хорошо адаптированном топосе ${\mathcal E}$ выполняются:

- 1. Синтетическая Теорема Гейне-Бореля: Замкнутые и ограниченные подмножества \mathbb{R}^n являются синтетически компактными.
- 2. Синтетическая Теорема Вейерштрасса: Непрерывная функция на непустом компактном множестве достигает своего минимума.
- 3. Синтетическая Теорема Брауэра: (См. Главу 6.4).
- 4. **Полнота Метрики:** \mathbb{R}^n является полным метрическим пространством во внутреннем смысле.

2.7. Ключевые Технические Леммы

Мы докажем несколько фундаментальных лемм, вытекающих из нашей аксиоматики.

Лемма 2.7.1 (Лемма о Сокращении). (Использует АЗ).

Пусть $c \in {}_{0}$ (строго положительный).

- 1. $ac \ 0 \ a \ 0$.
- 2. $(ac \ 0) \ (ac \ 0) \ a = 0$.

Доказательство.

- 1. Если c 0, то c обратим и c^1 0 (Утверждение 2.3.2).
- 2. Пусть ac = 0. Умножая на $c^1 = 0$ (по A3): $(ac)c^1 = 0$ c^1 , т.е. a = 0.
- 3. Если $ac \, 0$ и $ac \, 0$. По (1), $a \, 0$ и $a \, 0$. По слабой антисимметрии (А3), a = 0.

Следующая лемма критически важна для анализа условий оптимальности и доказательства тривиализации субдифференциала.

Лемма 2.7.2 (Лемма о Сокращении в Неравенствах на D). (Использует A3, A6).

Пусть
$$\in V$$
. Если $\in D(V)\langle,\rangle$ 0, то $=0$.

Доказательство.

1. Пусть выполняется условие: $\in D(V)\langle , \rangle$ 0.

- 2. Объект D(V) симметричен: $\in D(V) \in D(V)$ (так как $()^2 = {}^2 = 0$).
- 3. Следовательно, \langle , \rangle 0, что эквивалентно \langle , \rangle 0.
- 4. Мы имеем $\langle , \rangle \;\; 0$ и $\langle , \rangle \;\; 0$. По слабой антисимметрии (A3), $\langle , \rangle = 0$ для всех $\; \in D(V).$
- 5. По Аксиоме A6 (Suff-D), из $\in D(V)\langle , \rangle = 0$ следует = 0.

Следующая лемма связывает локальные и глобальные свойства монотонности.

Лемма 2.7.3 (Монотонность и Знак Производной). (Использует А1-А5, А8).

Пусть $:0,1_R \to R$.

- 1. Если (t) 0 для всех t, то является возрастающей.
- 2. Если является возрастающей, то (t) 0 для всех t.

Доказательство.

- 1. Следует из Фундаментальной Теоремы Анализа (Теорема 2.4.3, A4) и O-Int (A5). Пусть $t_1 < t_2$. (t_2) $(t_1) = \int_{t_2t_1}(t)t$. Так как подынтегральная функция неотрицательна, интеграл неотрицателен по A5.
- 2. Это более тонкий результат в конструктивном контексте. Он следует из свойств порядка в хорошо адаптированных моделях (А8) и взаимодействия аксиом А1-А5. (См. [Moerdijk & Reyes, 1991] для деталей интернализации этого свойства).

Глава 3. Синтетическая Теория Выпуклости и Теорема А

В этой главе мы разрабатываем основы выпуклого анализа в топосе \mathcal{E} . Используя аксиоматический фундамент, установленный в Главе 2, мы вводим синтетические определения градиента и Гессиана и доказываем центральный результат этой части — Теорему А, которая устанавливает эквивалентность между глобальной выпуклостью и её инфинитезимальными характеризациями первого и второго порядка. Мы также докажем Теорему о Соответствии, связывающую синтетическую выпуклость с классической.

3.1. Определения Выпуклости в СВА

Мы работаем в $V=R^n$. Структура порядка на R (Аксиома А3) индуцирует понятие выпуклости.

Определение 3.1.1 (Выпуклое Множество). Множество V называется выпуклым, если для любых $x, \in \mathsf{u}$ любого $\in 0, 1_{R_t} x + (1^-) \in \mathsf{u}$

Определение 3.1.2 (-Выпуклость Функции). Функция $f: \to R$ является -выпуклой (или просто выпуклой), если выполняется неравенство Йенсена:

$$x, \in \{0, 1Rf(x+(1)), f(x)+(1)\}f(x)$$

3.2. Синтетический Градиент и Гессиан

Используя аксиомы K-L (A1) и Микролинейности (A2), мы определяем дифференциальные операторы алгебраически.

Определение 3.2.1 (Синтетический Градиент). Пусть f:V o R. Градиент $abla f(x)\in V$ — это единственный линейный функционал такой, что для всех инфинитезималей первого порядка $\in D(V)$:

$$f(x +) = f(x) + \langle \nabla f(x), \rangle$$

Единственность гарантируется Аксиомой Suff-D (A6).

Определение 3.2.2 (Синтетический Гессиан). Гессиан $H_f(x):V V o R$ — это единственная симметричная билинейная форма такая, что для всех инфинитезималей второго порядка $\delta \in D_2(V)$:

$$f(x+\delta) = f(x) + \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta)$$

Существование и симметрия следуют из Микролинейности (А2).

Определение 3.2.3 (Монотонность и PSD).

- 1. Оператор $:V \to V$ является -монотонным, если $x,\ \langle ()\ (x),\ x \rangle \ 0.$
- 2. Билинейная форма H является -PSD ($H \succeq 0$), если $\in VH(,)$ 0.

3.3. Теорема А: Эквивалентность Характеризаций Выпуклости

Следующая теорема является фундаментом гладкого выпуклого анализа. В синтетическом контексте её доказательство требует явного использования всех аксиом A1-A8.

Теорема 3.3.1 (Теорема A). Пусть $V=R^n$. При выполнении аксиом A1-A8, для функции $f:V\to R$ следующие условия эквивалентны:

- 1. **(Выпуклость)** f является -выпуклой.
- 2. (Условие Первого Порядка, **FO**) $x, f() f(x) + \langle \nabla f(x), x \rangle$.
- 3. (Монотонность Градиента, Mon) ∇f является -монотонным оператором.
- 4. **(Условие Второго Порядка, PSD)** $H_f(x)$ является -PSD для всех $x \in V$.

Мы докажем теорему по циклической схеме импликаций: (1) (4) (3) (2) (1).

3.3.1. Доказательство (1) (4): Выпуклость PSD

Эта импликация демонстрирует, как глобальное свойство ограничивает локальное инфинитезимальное поведение. Ключевую роль здесь играет Аксиома Достаточности Второго Порядка (А7).

Лемма 3.3.2. (Использует A1, A2, A3, A7). Если f выпукла, то $H_f(x) \succeq 0$.

Доказательство.

- 1. Фиксируем $x \in V$. Мы хотим показать, что $H_f(x)$ является PSD.
- 2. Согласно Аксиоме A7 (Suff- D_2), достаточно проверить условие PSD на инфинитезималях второго порядка. То есть, мы должны показать, что для любого $\delta \in D_2(V)$, $H_f(x)(\delta, \delta) = 0$.
- 3. Рассмотрим точки $x+\delta$ и x δ . Заметим, что $\delta\in D_2(V)$.
- 4. Применим Синтетическую Формулу Тейлора (Теорема 2.2.6), которая следует из A1 и A2:

$$f(x+\delta) = f(x) + \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + rac{1}{2} H_f(x) (\delta, \delta) f(x | \delta) = f(x) | \langle
abla f(x), \delta
angle + f(x) | \langle
abla f(x), \delta
angle +$$

(Мы использовали билинейность и симметрию $H_f(x)$).

5. Сложим эти два равенства:

$$f(x+\delta)+f(x | \delta)=2f(x)+H_f(x)(\delta,\delta)()$$

6. Теперь используем предположение о выпуклости f (Определение 3.1.2) с = 12. (Заметим, что $12 \in R$ и 12 0 по A3).

$$f(x) = f\left(rac{1}{2}(x+\delta) + rac{1}{2}(x \,\,\, \delta)
ight)rac{1}{2}f(x+\delta) + rac{1}{2}f(x \,\,\, \delta)$$

7. Умножая на 2 (которое строго положительно, А3), получаем:

$$2f(x) f(x+\delta) + f(x \delta)$$

8. Подставляем результат из шага 5 ():

$$2f(x) 2f(x) + H_f(x)(\delta, \delta)$$

9. Вычитая 2f(x) из обеих частей, получаем:

$$0 H_f(x)(\delta, \delta)$$

10. Поскольку это верно для произвольного $\delta \in D_2(V)$, по Аксиоме А7 мы заключаем, что $H_f(x) \succeq 0$ глобально.

3.3.2. Доказательство (4) (3): PSD Монотонность

Эта импликация показывает, как локальное свойство второго порядка интегрируется для получения глобального свойства первого порядка. Здесь ключевую роль играют Принципы Интегрирования (А4, А5) и Лемма о Монотонности (Лемма 2.7.3).

Лемма 3.3.3. (Использует А1-А5, А8). Если $H_f(x) \succeq 0$ для всех x, то ∇f монотонен.

Доказательство.

- 1. Фиксируем произвольные $x, \in V$. Мы хотим показать, что $\langle \nabla f() | \nabla f(x), x \rangle = 0$.
- 2. Пусть =x. Рассмотрим параметризованный отрезок (t)=x+t, где $t\in 0,1_R$.
- 3. Определим вспомогательную функцию $h:0,1_R o R$:

$$h(t) = \langle \nabla f(x+t), \rangle$$

4. Вычислим производную h(t). Используя правило цепочки (следствие A1, A2):

$$h(t) = H_f(x+t)(,)$$

5. По предположению (PSD), $H_f() \succeq 0$ для любого . Следовательно,

$$h(t)$$
 $0t \in 0, 1_R$

- 6. Применяем Лемму 2.7.3(1) (Монотонность и Знак Производной). Функция h(t) является возрастающей.
- 7. В частности, h(0) h(1).
- 8. Вычислим значения на концах:

$$h(0) = \langle \nabla f(x), \rangle.$$

$$h(1) = \langle \nabla f(), \rangle$$
.

- 9. Следовательно, $\langle \nabla f(x), x \rangle \ \langle \nabla f(), x \rangle$.
- 10. Перенося члены, получаем определение монотонности:

$$\langle \nabla f() \nabla f(x), x \rangle = 0$$

3.3.3. Доказательство (3) (2): Монотонность FO

Эта импликация также использует интегрирование для перехода от монотонности градиента к глобальному неравенству для функции.

Лемма 3.3.4. (Использует А1, А3-А5, А8). Если ∇f монотонен, то выполняется условие первого порядка.

Доказательство.

- 1. Фиксируем $x, \in V$. Рассмотрим функцию $(t) = f(x+t(\ x)).$
- 2. Используем Фундаментальную Теорему Анализа (Теорема 2.4.3, А4):

$$f() \ f(x) = (1) \ (0) = {}_{10}(t)t$$

3. Вычислим производную (t) (по A1):

$$(t) = \langle \nabla f(x + t(x)), x \rangle$$

4. Мы утверждаем, что функция (t) является возрастающей.

Доказательство возрастания (t): Пусть 0 $t_1 < t_2$ 1. Пусть = x.

$$_{1}=x+t_{1}$$
 u $_{2}=x+t_{2}$. $_{2}$ $_{1}=(t_{2}$ $t_{1})$.

По монотонности ∇f : $\langle \nabla f(2) \nabla f(1), 2 \rangle = 0$.

$$\langle \nabla f(2) \ \nabla f(1), (t_2 \ t_1) \rangle \ 0.$$

$$(t_2 \ t_1)\langle \nabla f(2) \ \nabla f(1), \rangle \ 0.$$

Поскольку t_2 t_1 0, по Лемме о Сокращении (2.7.1), мы можем разделить:

$$\langle \nabla f(2) \ \nabla f(1), \rangle \ 0$$
, T.e. $(t_2) \ (t_1)$.

- 5. Поскольку (t) возрастает, для всех $t \in {0,1}_R$ выполняется (t) (0).
- 6. Интегрируем это неравенство на $0, 1_R$, используя Аксиому O-Int (A5):

$$_{10}^{}(t)t_{10}^{}(0)t=(0)$$

7. Подставляем это в результат шага 2:

$$f() \ f(x) \ (0)$$

- 8. Вычисляем $(0) = \langle \nabla f(x), x \rangle$.
- 9. Следовательно, f() $f(x) + \langle \nabla f(x), x \rangle$.

3.3.4. Доказательство (2) (1): FO Выпуклость

Эта импликация является чисто алгебраической и использует только свойства порядка (АЗ).

Лемма 3.3.5. (Использует А3). Если выполняется условие первого порядка, то f выпукла.

Доказательство.

- 1. Фиксируем $x, \in V$ и $\in 0, 1_R$. Определим = x + (1).
- 2. Применим условие FO к точке:

(E1)
$$f(x)$$
 $f() + \langle \nabla f(), x \rangle$.

(E2)
$$f()$$
 $f() + \langle \nabla f(), \rangle$.

3. Умножим (E1) на 0 и (E2) на (1) 0 (сохранение порядка по A3) и сложим:

$$f(x) + (1^-)f()^- (+1^-)f() + \langle
abla f(), (x^-) + (1^-)(^-)
angle = f() + \langle
abla f(), x + (1^-)
angle$$

4. По определению , второй член в скалярном произведении равен нулю:

$$x + (1) = 0.$$

5. Следовательно, f(x) + (1)f() f(). Это определение выпуклости.

Объединение Лемм 3.3.2–3.3.5 завершает доказательство Теоремы А.

3.4. Строгая и Сильная Выпуклость

Мы можем расширить Теорему А на строгую и сильную выпуклость.

Определение 3.4.1 (Сильная Выпуклость). Функция f является -сильно выпуклой (0), если функция $(x) = f(x) \ \frac{1}{2} x^2$ является выпуклой.

Теорема 3.4.2 (Характеризации Сильной Выпуклости). (Использует А1-А8). Следующие условия эквивалентны:

- $1. \ f$ является -сильно выпуклой.
- 2. (FO, Сильное) f() $f(x) + \langle \nabla f(x), x \rangle + \frac{1}{2} x^2$.
- 3. (Сильная Монотонность) $\langle \nabla f() \; \nabla f(x), \; x \rangle \; x^2.$
- 4. (PSD, Сильное) $H_f(x)\succeq \;$ (т.е. $H_f(x)(,)^{-2}$).

Доказательство. Следует из применения Теоремы A к функции (x). Например, (4) $H(x) \succeq 0$. $H(x) = H_f(x)$.

3.5. Внешняя Интерпретация и Теорема о Соответствии

Важным вопросом является связь между синтетическими определениями в топосе $\mathcal E$ и классическими определениями в категории гладких многообразий . Если мы работаем в хорошо адаптированной модели (А8), существует функтор вложения $: \to \mathcal E$. Мы хотим показать, что наше определение синтетической выпуклости соответствует классической выпуклости.

Пусть $f_{cl}: {}^n \to -$ классическая гладкая функция. Ей соответствует синтетический морфизм $f = (f_{cl}): R^n \to R$.

Теорема 3.5.1 (Теорема о Соответствии для Выпуклости). (Использует А1-А8).

Пусть \mathcal{E} — хорошо адаптированная модель СДГ (A8), удовлетворяющая A1-A7. Пусть $f_{cl}: {}^n \to -$ гладкая функция. Тогда f_{cl} является выпуклой в классическом смысле тогда и только тогда, когда её синтетический аналог $f=(f_{cl}):R^n \to R$ является -выпуклым в топосе \mathcal{E} .

Доказательство.

Доказательство опирается на свойства функтора и то, как он сохраняет структуру порядка и дифференциальные операторы в хорошо адаптированных моделях.

- 1. Сохранение Порядка. В хорошо адаптированных моделях порядок на R совместим с порядком на .
- 2. **Сохранение Дифференциальных Структур.** Функтор переводит классический Гессиан в синтетический: $H_f = (H_{f_cl})$.

Мы докажем эквивалентность через условие второго порядка (PSD), используя Теорему A.

- () Классическая Выпуклость Синтетическая Выпуклость.
 - 1. Пусть f_{cl} выпукла. По классической теореме, $H_{f_{cl}}(x)\succeq 0$ для всех $x\in {}^n.$

- 2. Мы хотим показать, что $H_f() \succeq 0$ для всех $\in R^n$.
- 3. Это требует анализа того, как условие PSD переносится функтором . В хорошо адаптированных моделях (например, в топосе Дубука), это свойство выполняется. Если билинейная форма положительна на всех классических векторах, её синтетическое расширение (которое определяется её значениями на -кольце, лежащем в основе модели) положительно на всех синтетических векторах. Это связано с тем, что \mathbb{R}^n "порождается" n и инфинитезималями, и аксиомы достаточности (А7) играют здесь ключевую роль в обеспечении этого переноса.
- 4. Если $H_f \succeq 0$, то по Теореме A (Леммы 3.3.3-3.3.5), f является -выпуклой.
- () Синтетическая Выпуклость Классическая Выпуклость.
 - 1. Пусть f является -выпуклой. По Теореме A (Лемма 3.3.2), $H_f()\succeq 0$ для всех $\in R^n$.
 - 2. Мы хотим показать, что $H_{f_d}(x) \succeq 0$ для всех $x \in {}^n$.
 - 3. Рассмотрим функтор глобальных сечений $: \mathcal{E} \to ($ или его ограничение на категорию многообразий). $(R^n) = {}^n.$
 - 4. $(H_f) = H_{f_{cl}}$
 - 5. Мы должны показать, что функтор отражает свойство PSD.

Пусть \in n . Мы хотим оценить $H_{f_{cl}}(x)(,)$.

Это соответствует оценке $H_f((x))((),())$ в топосе.

- 6. Поскольку $H_f() \succeq 0$ для всех , мы имеем $H_f((x))((),())$ 0.
- 7. Поскольку порядок на R совместим с порядком на (Шаг 1), это означает, что соответствующее значение в неотрицательно.

$$H_{f_{cl}}(x)(,) = 0.$$

8. Следовательно, $H_{f,l}(x) \succeq 0$, и по классической теореме, f_{cl} выпукла.

Теорема о Соответствии гарантирует, что СВА является консервативным расширением классического гладкого выпуклого анализа.

Глава **4.** Двойственность **I:** Сопряжение, Локали и Конструктивная Отделимость

В этой главе мы закладываем основы теории двойственности Лежандра-Фенхеля в СВА. Мы преодолеваем фундаментальную проблему неполноты синтетической прямой R, используя теорию локалей для построения её Дедекиндова пополнения R. Затем мы разрабатываем конструктивную теорию отделимости выпуклых множеств в R^n , которая заменяет неконструктивную Теорему Хана-Банаха. Кульминацией главы является конструктивное доказательство Теоремы Фенхеля-Моро.

4.1. Проблема Неполноты и Пополнение Дедекинда $\,R\,$

Классическое определение сопряженной функции $f()={}_x(\langle ,x\rangle \ f(x))$ требует полноты целевого пространства. Синтетическая прямая R не является полной по Дедекинду в интуиционистской логике.

Для решения этой проблемы мы используем пополнение Дедекинда-Мака-Нейла, которое в контексте топоса интерпретируется как *локаль* (Locale).

Определение 4.1.1 (Дедекиндово Пополнение R**).** R определяется как внутренний локаль пар (,) подобъектов R (нижних и верхних сечений Дедекинда), удовлетворяющих стандартным аксиомам Дедекиндовых сечений во внутренней логике \mathcal{E} .

Теорема **4.1.2** (Свойства R).

- 1. **Полнота:** R является полным локалем (полным порядком в конструктивном смысле). Любое подмножество R имеет внутренне определенные Sup и Inf.
- 2. **Вложение:** Существует вложение $: R \ R$, сохраняющее порядок и алгебраические операции.
- 3. **Расширение:** R содержит R, а также + и .

Мы будем работать с расширенными функциями f:V
ightarrow R.

4.2. Синтетическая Полунепрерывность Снизу (LSC)

Понятие полунепрерывности снизу (LSC) критично для теории двойственности. В синтетическом контексте мы определяем LSC через внутреннюю топологию локаля R.

Определение 4.2.1 (Синтетическая LSC). Функция $f:V\to R$ называется синтетически LSC, если её надграфик $(f)\ V\ R$ является *замкнутым подлокалем* во внутренней топологии произведения локалей.

Эквивалентно, f является LSC, если для любого $\in R$, множество субуровня $(f) = \{x \in V \mid f(x) \mid \}$ является замкнутым.

Замечание 4.2.2. Если функция $f:V \to R$ конечнозначна, то она автоматически LSC, так как по Аксиоме A1 она является непрерывной.

4.3. Синтетическое Преобразование Лежандра-Фенхеля

Благодаря полноте R мы можем строго определить операцию сопряжения.

Определение 4.3.1 (Синтетическое Сопряжение). Пусть $f:V \to R$. Синтетическая сопряженная функция $f:V \to R$ определяется как:

$$f()={}_{x\in V}(\langle ,x
angle \ f(x))$$

Супремум берется в локале R.

Лемма 4.3.2 (Базовые Свойства Сопряжения). (Использует А3).

- 1. f всегда является выпуклой и LSC.
- 2. (Неравенство Фенхеля-Юнга) $x, f(x) + f() \langle x \rangle$.
- 3. (Бисопряжение) f = (f). Всегда выполняется $f \cdot f$.

Доказательство. Стандартные аргументы, основанные на свойствах супремума и аффинных функций, которые переносятся в конструктивный контекст.

Для анализа двойственности нам потребуется результат о сохранении LSC при взятии инфимума (операция инфимальной конволюции или маргинализации).

Теорема 4.3.3 (Теорема о Замкнутости Проекции Эпиграфа / LSC Маргинальной Функции). (Использует A8).

Пусть $V=R^n,=R$. Пусть $:V\to R$ является собственной, выпуклой и LSC. Рассмотрим маргинальную функцию $()={}_{\in V}(,)$.

Если выполняется условие коэрцитивности (например, существует $_0$ такое, что $(,_0)$ является инф-компактной — её множества подуровней компактны), то () является LSC, и инфимум достигается.

Обоснование:

Этот результат соответствует классической теореме о том, что проекция замкнутого множества замкнута, если отображение проекции является совершенным (proper map). В конечномерных пространствах R^n (A8), условие коэрцитивности гарантирует это свойство. Мы используем Синтетическую Теорему Гейне-Бореля (Теорема 2.6.2(1)), чтобы интернализовать этот результат.

4.4. Конструктивная Теория Отделимости в \mathbb{R}^n

Классическое доказательство Теоремы Фенхеля-Моро опирается на Теорему Хана-Банаха (НВТ). Поскольку НВТ недоступна, мы должны использовать конструктивные методы отделимости, которые работают в конечномерных пространствах. Ключевым инструментом является существование проекции.

4.4.1. Существование Проекции

Лемма 4.4.1 (Существование и Единственность Проекции). (Использует А1, А3, А8).

Пусть R^n — непустое, замкнутое, выпуклое множество. Для любого $\in R^n$ существует единственная проекция () \in , минимизирующая расстояние до .

Доказательство.

- 1. Рассмотрим задачу минимизации функции $h()=\ ^2$ на .
- $2.\ h()$ является гладкой (A1), строго выпуклой (Гессиан $2\ 0$, A3) и коэрцитивной.
- 3. **Существование.** Мы ограничиваем поиск минимума на компактном множестве = R(0) (достаточно большого радиуса R(0)). компактно по Синтетической Теореме

Гейне-Бореля (А8).

- 4. Функция h непрерывна (A1). Применяем Синтетическую Теорему Вейерштрасса (A8). Минимум достигается в некоторой точке $x \in \mathbb{R}$
- 5. **Единственность.** Следует из строгой выпуклости h.

4.4.2. Конструктивная Строгая Отделимость

Теперь мы можем доказать теорему о строгой отделимости точки от замкнутого выпуклого множества.

Лемма 4.4.2 (Конструктивная Строгая Отделимость). (Использует А1, А3, А8).

Пусть R^n — непустое, замкнутое, выпуклое множество. Пусть $x_0 \in R^n$ таков, что x_0 (в строгом смысле: расстояние от x_0 до строго положительно). Тогда существует гиперплоскость, строго разделяющая x_0 и . То есть, существует $\in V, \ 0$, и $\in R$ такие, что:

$$\langle,x_0
angle < \mathtt{M} \in \langle,
angle$$

Доказательство.

- 1. Пусть x_0 . По Лемме 4.4.1, существует единственная проекция $=(x_0)$.
- 2. Поскольку x_0 , x_0 . Определим вектор нормали $= x_0$. Тогда 0 (по A3).
- 3. Точка минимизирует функцию () $= x_0^2$ на .
- 4. Применим условия оптимальности первого порядка (Теорема A, FO). Для любого \in :

$$\langle \nabla (), \rangle = 0$$

- 5. Вычислим градиент: $\nabla() = 2(x_0) = 2$.
- 6. $2\langle, \rangle$ 0. Поскольку 2 0, по Лемме 2.7.1, \langle, \rangle 0.
- 7. Следовательно, для всех \in :

$$\langle,\rangle$$
 \langle,\rangle ()

8. Теперь сравним \langle , \rangle и $\langle , x_0 \rangle$.

$$\langle,
angle \,\,\,\langle,x_0
angle=\langle,\,\,x_0
angle=\langle,
angle={}^2$$

- 9. Поскольку 2 0, мы имеем \langle,\rangle $\langle,x_0\rangle$.
- 10. Определим пороговое значение посередине:

$$=\langle ,x_0
angle +rac{1}{2}{}^2$$

- 11. Тогда $\langle , x_0
 angle <$ и $<\langle ,
 angle$.
- 12. Используя (), для всех \in , \langle , \rangle \langle , \rangle .
- 13. Гиперплоскость $H=\{\;|\;\langle,
 angle=\}$ строго разделяет x_0 и .

4.5. Синтетическая Теорема Фенхеля-Моро

Теперь мы готовы доказать центральную теорему о бисопряжении конструктивно для конечномерных пространств.

Теорема 4.5.1 (Синтетическая Теорема Фенхеля-Моро). (Использует А1, А3, А8).

Пусть $V=R^n$. Если f:V o R является собственной, -выпуклой и LSC функцией, то f=f.

Доказательство.

Мы уже знаем, что f f (Лемма 4.3.2). Мы должны доказать обратное неравенство $f(x_0)$ $f(x_0)$ для произвольного $x_0 \in V$.

- 1. Рассмотрим надграфик = (f). Поскольку f выпукла и LSC, является непустым, замкнутым и выпуклым подмножеством V R.
- 2. Фиксируем $x_0 \in (f)$. Пусть $\in R$ таково, что $< f(x_0)$. (Мы используем строгое неравенство, АЗ).
- 3. Мы покажем, что $f(x_0)$.
- 4. Рассмотрим точку $_0=(x_0,)$. По определению, $_0$ и строго отделена от .
- 5. Применяем Лемму 4.4.2 (Конструктивная Строгая Отделимость) к и 0.
- 6. Существует линейный функционал $(,) \in V$ R и константа $c \in R$, строго разделяющие их:

(i)
$$\langle , x_0 \rangle + \langle c \rangle$$

(ii)
$$(x,t) \in \langle ,x \rangle + t$$
 c.

7. Анализ коэффициента.

Из (ii) следует, что 0. (Так как t может быть сколь угодно большим).

- 8. Мы утверждаем, что 0 (невертикальная гиперплоскость). Для собственной выпуклой LSC функции в \mathbb{R}^n всегда можно выбрать невертикальную опорную гиперплоскость (это следует из конечномерности и A8).
- 9. Поскольку 0 (строго положительно, A3), мы можем нормировать гиперплоскость, разделив на (Лемма 2.7.1). Пусть = .

(i')
$$\langle , x_0 \rangle + \langle c \rangle$$

(ii')
$$x \in (f) \langle , x \rangle + f(x)$$
 c . (Мы взяли $t = f(x)$).

10. Из (іі') следует:

$$c_{x\in V}(\langle ,x\rangle+f(x))$$

11. Вспомним определение сопряженной функции:

$$f() = {}_{x}(\langle ,x \rangle \ f(x)) = {}_{x}(\langle ,x \rangle + f(x)).$$

- 12. Следовательно, c f().
- 13. Подставляем это в (і'):

$$egin{aligned} \langle,x_0
angle + &< f^(\) \ &< \langle,x_0
angle \ f^(\) \end{aligned}$$

14. Правая часть является одним из значений, по которым берется супремум в определении $f(x_0)$:

$$f(x_0) = igl_{\in V} igl(\langle, x_0
angle \ f()igr)$$

Взяв = , мы видим, что $< f(x_0)$.

15. Поскольку это верно для любого $< f(x_0)$, по свойствам полноты локаля R (Определение 4.1.3), мы заключаем $f(x_0)$ $f(x_0)$.

4.6. Синтетический Субдифференциал и Теорема о Тривиализации

Теперь мы определим субдифференциал и исследуем его свойства в СДГ.

Определение 4.6.1 (Синтетический Субдифференциал f).

Пусть f:V o R. Синтетический субдифференциал f(x) в точке $x \in (f)$ определяется как:

$$f(x) = \in V \mid f(x) + f() = \langle , x \rangle$$

Лемма 4.6.2 (Эквивалентное Определение). (Использует А3).

$$f(x) \in V(x) = V(x) + \langle x \rangle$$

Теорема 4.6.3 (Симметрия Субдифференциала). (Использует Теорему 4.5.1).

Если f собственная, выпуклая, LSC, то $\in f(x)$ $x \in f()$.

Доказательство.

f(x)=f(x) $f(x)+f(x)=\langle x\rangle$. По Теореме Фенхеля-Моро, f(x)=f(x). $f(x)+f(x)=\langle x\rangle$. Это определение f(x)=f(x) определени

Теперь мы приходим к фундаментальному результату, который определяет область применения СВА.

Теорема 4.6.4 (Теорема о Тривиализации Субдифференциала в СДГ). (Использует А1, А3, А6).

Пусть f:V o R — выпуклая функция (конечнозначная). Тогда субдифференциал f(x) является синглетоном, состоящим только из градиента:

$$f(x) = \nabla f(x)$$

Доказательство.

Функция $f:V \to R$ конечнозначна и автоматически LSC (по A1).

Часть **1:** Включение $abla f(x) \in f(x)$.

1. Поскольку f выпукла, по Теореме A (Лемма 3.3.4), она удовлетворяет Условию Первого Порядка (FO):

$$f()$$
 $f(x) + \langle \nabla f(x), x \rangle$.

2. По Лемме 4.6.2, это эквивалентно тому, что $\nabla f(x) \in f(x)$.

Часть **2:** Единственность (Если $\in f(x)$, то $= \nabla f(x)$).

1. Пусть $\in f(x)$. По Лемме 4.6.2:

$$f() f(x) + \langle, x\rangle.$$

2. Рассмотрим инфинитезимальное приращение =x+ , где $\in D(V)$.

$$f(x +) f(x) + \langle , \rangle$$
.

3. Используем определение синтетического градиента (Определение 3.2.1), основанное на K-L (A1):

$$f(x +) = f(x) + \langle \nabla f(x), \rangle.$$

4. Подставляем это в неравенство:

$$f(x) + \langle \nabla f(x), \rangle f(x) + \langle, \rangle.$$

5. Вычитая f(x), получаем:

$$\langle \nabla f(x) , \rangle = 0$$

- 6. Это неравенство выполняется для всех $\in D(V)$.
- 7. Применяем Лемму о Сокращении в Неравенствах на D (Лемма 2.7.2), которая использует А3 и А6 (Suff-D).
- 8. Лемма 2.7.2 утверждает, что если линейный функционал неотрицателен на всем D(V), он должен быть нулевым.
- 9. Следовательно, $\nabla f(x) = 0$, т.е. $= \nabla f(x)$.

Часть II. Двойственность и Оптимальность

Глава **5.** Синтетическая Теория Двойственности Фенхеля-Рокафеллара

В этой главе мы строим полную теорию сильной двойственности в СВА для задач оптимизации в конечномерных пространствах. Мы вводим конструктивные условия квалификации (QC), основанные на понятии строгой относительной внутренности (sri),

и доказываем центральный результат этой части — Теорему В (Синтетическая Сильная Двойственность). Мы детально анализируем структуру функции возмущений и условия её полунепрерывности снизу.

5.1. Формулировка Примальной и Дуальной Задач

Мы рассматриваем стандартную постановку двойственности Фенхеля-Рокафеллара. Пусть V $R^n, R.: V \to -$ линейный оператор. $f: V \to R$ и $: \to R$ — собственные, выпуклые, LSC функции.

Примальная задача (Р):

$$()p = {}_{x \in V}f(x) + (x)$$

Дуальная задача (D):

$$(D)=_{_{\in}}\left\{ f()_{-}()
ight\}$$

5.2. Слабая Двойственность

Слабая двойственность является прямым следствием неравенства Фенхеля-Юнга.

Теорема 5.2.1 (Синтетическая Слабая Двойственность). (Использует АЗ).

Всегда выполняется p .

Доказательство.

Для любых $x \in V$ и \in . Применим Неравенство Фенхеля-Юнга (Лемма 4.3.2):

$$f(x) + f() \langle x \rangle = \langle x \rangle.$$

$$(x)+()\ \langle ,x
angle =\langle ,x
angle .$$

Складывая эти неравенства:

$$f(x) + (x) + f() + () 0.$$

$$f(x) + (x) f() ().$$

Беря инфимум по x слева и супремум по справа, получаем p .

5.3. Функция Возмущений и Структура Двойственности

Ключом к анализу сильной двойственности является изучение функции возмущений.

Определение 5.3.1 (Функция Возмущений). Функция $: \to R$ определяется как:

$$() = {}_{x \in V} f(x) + (x)$$

Примальное оптимальное значение p = (0).

Лемма 5.3.2 (Свойства Функции Возмущений).

- 1. является выпуклой функцией.
- 2. Сопряженная функция равна: () = f() + ().
- 3. Дуальное оптимальное значение = (0).

Доказательство.

- (1) является результатом операции инфимальной конволюции, которая сохраняет выпуклость.
- (2) Вычисление ():

$$()=\ \in (\langle,
angle\ ())=\ \in\ x\in V\langle {}^{,}
angle\ f(x)\ (x\)$$

Сделаем замену =x , тогда =x .

$$()=\ x\in V\ \in \langle,x\
angle\ f(x)\ ()=\ x\in V\langle \cdot x
angle\ f(x)+_{\in}\langle \cdot
angle\ ()=_{x\in V}\langle ,x
angle\ f(x)+()=f()+()$$

(3) По определению бисопряжения: $(0) = \{\langle,0\rangle\ ()\} = \{()\} = .$

Следствие 5.3.3. Сильная двойственность p= эквивалентна равенству (0)=(0), т.е. тому, что является LSC в точке 0 (по Теореме Фенхеля-Моро 4.5.1).

5.4. Синтетические Условия Квалификации (**sri-SQC**) и **LSC** Функции Возмущений

Мы вводим конструктивные условия квалификации (QC), которые обеспечивают LSC функции . Мы используем понятие *строгой относительной внутренности* (strong relative interior, sri).

Определение **5.4.1** (Строгая Относительная Внутренность, sri). Точка $x \in$ принадлежит (), если конус, порожденный x с вершиной в 0, является линейным подпространством, равным () x.

Определение 5.4.2 (sri-SQC). Мы говорим, что Синтетическое Условие Квалификации sri-SQC выполняется для задачи (P), если:

$$0 \in (((f)))$$

Лемма 5.4.3. () = ((f)) (). Следовательно, sri-SQC эквивалентно $0 \in (())$.

Теперь мы докажем ключевой технический результат: условие sri-SQC гарантирует LSC функции возмущений .

Теорема 5.4.4 (LSC Функции Возмущений под sri-SQC). (Использует A1, A3, A8).

Пусть $V=R^n,\ =R$. Пусть $f,\$ — собственные, выпуклые, LSC функции. Если выполняется sri-SQC, то функция возмущений является LSC.

Доказательство.

Мы используем тот факт, что в \mathbb{R}^n выпуклая функция является LSC, если она LSC в точке относительной внутренности своего домена.

- 1. **Связь с sri-SQC.** По Лемме 5.4.3, sri-SQC эквивалентно $0 \in (())$.
- 2. LSC во Внутренности.

Лемма 5.4.5 (Конструктивная Непрерывность Выпуклых Функций). (Использует А8).

В конечномерном пространстве R, любая выпуклая функция $: \to R$ является непрерывной (и, следовательно, LSC) на (()).

Обоснование: Это стандартный результат конечномерного выпуклого анализа. В хорошо адаптированных моделях (А8), соответствует классической относительной внутренности. Конструктивное доказательство опирается на то, что выпуклая функция локально ограничена сверху во внутренности, что влечет локальную Липшицевость и непрерывность.

- 3. **Заключение.** Применяя Лемму 5.4.5 к функции и точке $0 \in (())$, мы заключаем, что является LSC в 0.
- 4. **Распространение LSC.** Поскольку выпукла и LSC в точке относительной внутренности своего домена, она является LSC всюду (свойство выпуклых функций в R^n , которое интернализуется благодаря A8).

5.5. Теорема **B**: Синтетическая Сильная Двойственность Фенхеля-Рокафеллара

Теперь мы можем сформулировать и доказать главный результат теории двойственности в CBA.

Теорема 5.5.1 (Теорема В: Синтетическая Сильная Двойственность Фенхеля-Рокафеллара). (Использует A1-A8).

Пусть $V=R^n, =R$. Пусть $f:V\to R$ и $:\to R$ — собственные, выпуклые, LSC функции. Если выполняется условие квалификации sri-SQC (Определение 5.4.2):

$$0\in (((f))\ ())$$

Тогда сильная двойственность имеет место:

$$p = \ _{x \in V}ig(f(x) + (x)ig) = \ _{\in} \left\{f() \ \ ()
ight\}$$

Более того, если p конечен, то супремум в дуальной задаче (D) достигается (т.е. существует оптимальное решение $_{0}$).

Доказательство.

- 1. Рассмотрим функцию возмущений (). Мы знаем, что p=(0) и =(0) (Лемма 5.3.2).
- 2. Функция является выпуклой (Лемма 5.3.2).
- 3. По условию sri-SQC и Теореме 5.4.4, является LSC.
- 4. Применяем Синтетическую Теорему Фенхеля-Моро (Теорема 4.5.1) к функции . Получаем (0)=(0).
- 5. Следовательно, p = . Сильная двойственность доказана.
- 6. **Достижимость дуального оптимума.** Предположим, p конечен. Мы должны показать, что существует $_0$, максимизирующий дуальную функцию.
- 7. Это эквивалентно непустоте субдифференциала (0).
- 8. Лемма 5.5.2 (Существование Субдифференциала во Внутренности). (Использует A8). Если выпуклая LSC функция $: R \to R$ конечна в точке $_0$ и $_0 \in (())$, то $(_0)$.
 - Обоснование: Это следует из существования невертикальной опорной гиперплоскости к эпиграфу в точках относительной внутренности домена (конструктивная версия Теоремы об Опорной Гиперплоскости в \mathbb{R}^n).
- 9. Применяем Лемму 5.5.2 к . Мы знаем, что (0)=p конечен, и по sri-SQC (Лемма 5.4.3), $0\in (())$.
- 10. Следовательно, (0) . Существует $_0 \in (0)$.
- 11. По определению субдифференциала: $(0) + (0) = \langle 0, 0 \rangle = 0$.
- 12. $p=(0)=(_0)=f(_0)$ (_0). Это означает, что $_0$ является решением дуальной задачи.

5.6. Синтетические Условия Оптимальности (ККТ)

Теорема двойственности позволяет вывести необходимые и достаточные условия оптимальности.

Теорема 5.6.1 (Синтетические Условия Оптимальности). (Использует А1-А8).

Предположим, что условия Теоремы 5.5.1 выполнены (sri-SQC). Тогда $x \in V$ является решением примальной задачи (P) и \in является решением дуальной задачи (D) тогда и только тогда, когда выполняются условия субдифференциального включения (условия комплементарности):

- 1. (Стационарность по f) $\in f(x)$.
- 2. (Стационарность по) $\in (x)$.

Доказательство.

 $() \ x$ и оптимальны тогда и только тогда, когда достигается сильная двойственность:

$$f(x) + (x) = f()$$
 ()

Перепишем как:

$$\big(f(x)+f()\big)+\big((x)+()\big)=0$$

По Неравенству Фенхеля-Юнга, это эквивалентно тому, что оба неравенства обращаются в равенства:

 $f(x)+f()=\langle ,x
angle$ (что эквивалентно условию 1).

 $(x)+()=\langle ,x\rangle$ (что эквивалентно условию 2).

(Мы использовали тождество $\langle ,x \rangle + \langle ,x \rangle = 0$).

5.6.1. Условия ККТ для Гладких Задач

Если функции f и являются конечнозначными (т.е. гладкие по A1).

Теорема 5.6.2 (Синтетические Условия ККТ для Гладкого Случая). (Использует А1-А8).

Пусть $f:V\to R$ и $:\to R$ — выпуклые функции. (Условие sri-SQC выполняется автоматически, так как (f)=V,()=).

Тогда x является оптимумом (P) тогда и только тогда, когда существует (оптимум (D)) такой, что выполняется условие стационарности:

$$abla f(x) + (
abla(x)) = 0$$

Доказательство.

- 1. Применяем Теорему 5.6.1.
- 2. Используем Теорему о Тривиализации (Теорема 4.6.4): $f(x) = \{\nabla f(x)\}$ и $(x) = \{\nabla (x)\}.$
- 3. Условия включения превращаются в равенства:
 - (1) $= \nabla f(x)$.
 - (2) $= \nabla(x)$.
- 4. Подставляем из (2) в (1): $(\nabla(x)) = \nabla f(x)$, что эквивалентно искомому условию стационарности.

Часть **III.** Монотонность, Вариационные Неравенства и Алгоритмы

Глава **6.** Синтетические Вариационные Неравенства **(SVI)** и Неподвижные Точки

В этой главе мы разрабатываем теорию Синтетических Вариационных Неравенств (SVI). Мы детально анализируем свойства синтетического оператора проекции, доказываем фундаментальную теорему существования Хартмана-Штампаккьи (Теорема D), опираясь на синтетическую теорему Брауэра, и исследуем условия единственности решения через теорему Банаха.

6.1. Постановка SVI и Монотонность

Пусть $V=R^n$. V — непустое, замкнутое, выпуклое множество. $:\to V$ — оператор (непрерывный по A1).

Определение 6.1.1 (Синтетическое Вариационное Неравенство, SVI). Задача V(,) состоит в нахождении точки $x\in \,$ такой, что:

$$\in \langle (x), x \rangle = 0$$

Определение 6.1.2 (Типы Монотонности Оператора).

- 1. является -монотонным, если x, $\langle () (x), x \rangle$ 0.
- 2. является -сильно монотонным (0), если x, $\langle () (x), x \rangle = x^2$.

6.2. Детальный Анализ Синтетического Оператора Проекции

Оператор проекции является центральным инструментом для анализа SVI.

Лемма 6.2.1 (Существование и Единственность Проекции). (Использует А1, А3, А8).

Пусть R^n — непустое, замкнутое, выпуклое множество. Для любого $\in R^n$ существует единственная проекция () \in .

Доказательство. (См. детальное доказательство в Лемме 4.4.1). Основано на минимизации строго выпуклой коэрцитивной функции 2 на , используя Синтетическую Теорему Вейерштрасса (А8).

Проекция характеризуется вариационным неравенством.

Лемма 6.2.2 (Вариационная Характеризация Проекции). (Использует А1, А3).

x=() тогда и только тогда, когда $x\in \,$ и выполняется:

$$\in \langle x, x \rangle 0$$

Доказательство.

x минимизирует $h()=rac{1}{2}$ 2 . Условие оптимальности первого порядка (Теорема A):

$$\in \langle \nabla h(x), x \rangle 0.$$

$$\nabla h(x) = x$$
.

 $\langle x \;,\; x \rangle \; 0$. Умножая на 1: $\langle \; x,\; x \rangle \; 0$.

Лемма 6.2.3 (Фирменная Нерастягиваемость и Липшицевость). (Использует А1, А3).

Оператор проекции является фирменно нерастягивающим (firmly nonexpansive) и, следовательно, 1-Липшицевым.

1. (Фирменная Нерастягиваемость)

$$_{1},_{2}\left(_{1}\right) \ \left(_{2}\right) ^{2}\ \left\langle _{1}\ _{2},\left(_{1}\right) \ \left(_{2}\right) \right\rangle .$$

2. (1-Липшицевость)

$$_{1},_{2}(_{1})(_{2})_{1}_{2}.$$

Доказательство.

- 1. Пусть $x_1 = (1)$ и $x_2 = (2)$.
- 2. Применим Лемму 6.2.2.

Для
$$x_1,\;=x_2$$
: $\langle _1\;x_1,x_2\;x_1
angle \; 0.$ (E1)

Для
$$x_2, \; = x_1$$
: $\langle 2 \; x_2, x_1 \; x_2
angle \; \; 0$. (E2)

- 3. Перепишем (E2): $\langle x_2 \>\>_2, x_2 \>\> x_1
 angle \>\> 0.$
- 4. Сложим (Е1) и переписанное (Е2):

$$\langle ({\scriptscriptstyle 1} \hspace{0.1cm} x_{\scriptscriptstyle 1}) + (x_{\scriptscriptstyle 2} \hspace{0.1cm} {\scriptscriptstyle 2}), x_{\scriptscriptstyle 2} \hspace{0.1cm} x_{\scriptscriptstyle 1}
angle \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} 0$$

5. Перегруппируем члены:

$$\langle (_{1\ 2})\ (x_1\ x_2), x_2\ x_1 \rangle\ 0$$

$$\langle {}_1 \hspace{0.1cm} {}_2, x_2 \hspace{0.1cm} x_1
angle \hspace{0.1cm} x_1 \hspace{0.1cm} x_2^{\hspace{0.1cm} 2} \hspace{0.1cm} \hspace{0.1c$$

6. Перенося квадрат нормы, получаем фирменную нерастягиваемость (с учетом симметрии скалярного произведения):

$$x_1$$
 x_2 $\langle 1$ $\langle 1$

7. Применяя неравенство Коши-Шварца к правой части и сокращая на $x_1 \ x_2$ (Лемма 2.7.1), получаем 1-Липшицевость.

6.3. Сведение SVI к Задаче о Неподвижной Точке

Лемма 6.3.1 (Эквивалентность Неподвижной Точки). (Использует А1, А3).

Пусть $\in R, \; 0.$ Точка x является решением V(,) тогда и только тогда, когда x является неподвижной точкой оператора $: V \to V$:

$$(x)=(x\ (x))$$

Доказательство.

$$x = (x) \ x = (x \ (x)).$$

Применим Лемму 6.2.2 с = x(x). Это эквивалентно:

$$\in \langle x, x \rangle 0.$$

$$\langle (x (x)) x, x \rangle 0.$$

 $\langle (x), x \rangle = 0.$

Поскольку 0, разделим на < 0 (Лемма 2.7.1), меняя знак неравенства:

 $\langle (x), x \rangle$ 0. Это определение V(,).

6.4. Теорема D: Синтетическая Теорема Хартмана-Штампаккьи

Мы используем сведение к неподвижной точке и Синтетическую Теорему Брауэра для доказательства существования решений SVI на компактных множествах.

6.4.1. Синтетическая Теорема Брауэра

Синтетическая Теорема Брауэра является следствием Аксиомы Хорошей Адаптированности (А8).

Теорема 6.4.1 (Синтетическая Теорема Брауэра). (Следствие А8).

В хорошо адаптированном топосе \mathcal{E} , пусть R^n — непустое, синтетически компактное и выпуклое множество. Любое отображение $z \to z$ имеет неподвижную точку $z \in z$ (Непрерывность автоматическая по A1).

6.4.2. Доказательство Теоремы Хартмана-Штампаккьи

Теорема 6.4.2 (Теорема D: Синтетическая Теорема Хартмана-Штампаккьи). (Использует A1, A3, A8).

Пусть R^n — непустое, синтетически компактное и выпуклое множество. Пусть $: \to V$ — оператор. Тогда задача V(,) имеет решение.

Доказательство.

- 1. Рассмотрим оператор $(x) = (x \ (x))$ (берем = 1).
- 2. Мы хотим применить Синтетическую Теорему Брауэра (Теорема 6.4.1) к оператору.
- 3. Проверим условия теоремы:
 - непусто, компактно и выпукло по условию.
 - отображает в . Если $x \in$, то $(x) = () \in$ по определению проекции.
 - является непрерывным (по А1, так как и непрерывны).
- 4. Все условия Теоремы Брауэра выполнены.
- 5. Следовательно, существует неподвижная точка $x \in \text{такая}$, что (x) = x.
- 6. По Лемме 6.3.1, эта неподвижная точка x является решением V(,).

6.5. Сильная Монотонность, Теорема Банаха и Единственность Решения

Для сильно монотонных операторов мы можем доказать существование и единственность решения, используя более конструктивный инструмент — Теорему

Банаха о сжимающем отображении.

Теорема 6.5.1 (Синтетическая Теорема Банаха). (Использует А8).

В полном метрическом пространстве (например, замкнутом множестве \mathbb{R}^n) любое сжимающее отображение (с константой k < 1) имеет единственную неподвижную точку.

Теорема 6.5.2 (Существование и Единственность для Сильно Монотонных Операторов). (Использует A1, A3, A8).

Пусть — непустое, замкнутое, выпуклое множество. Пусть оператор $: \to V$ является -сильно монотонным (0) и -Липшицевым (0).

Тогда задача V(,) имеет единственное решение.

Более того, если параметр выбран из диапазона $0 < < \frac{2}{2}$, то оператор $(x) = (x \ (x))$ является сжимающим с константой:

$$k() = 1 2 + {}^{22} < 1$$

Доказательство.

Мы покажем, что является сжимающим.

- 1. Рассмотрим (x) ()².
- 2. Используем свойство 1-Липшицевости (Лемма 6.2.3):

$$(x) ()^2 (x (x)) (())^2$$

3. Раскроем правую часть:

$$egin{aligned} &=(x\)\ ((x)\ ())^2\ &=x^{-2}\ 2\langle x\ ,(x)\ ()
angle +{}^2(x)\ ()^2 \end{aligned}$$

4. Используем сильную монотонность () и Липшицевость ():

$$\langle x, (x) () \rangle x^2$$
.

$$(x) ()^{2} x^{2} x^{2}$$
.

5. Подставляем эти оценки:

$$(x) ()^2 x^2 2x^2 + {}^{22}x^2 = (1 2 + {}^{22})x^2 = k()^2 x^2$$

- 6. Мы хотим, чтобы $k()^2 < 1$. Это эквивалентно $2 + {}^{22} < 0$.
- 7. Поскольку 0, это эквивалентно 2 2 < 0, т.е. $<\frac{2}{2}$.
- 8. Если выбрано в этом диапазоне, является сжимающим.
- 9. является полным метрическим пространством (A8). Применяем Синтетическую Теорему Банаха (6.5.1). имеет единственную неподвижную точку x.

Глава **7.** Максимальные Монотонные Операторы, Регуляризация и Алгоритмы

В этой главе мы развиваем теорию максимальных монотонных операторов в СДГ. Мы введем понятие резольвенты, разработаем синтетическую теорию регуляризации Моро-Иосиды и докажем фундаментальную синтетическую теорему Минти (Теорема С).

7.1. Многозначные Операторы и Максимальная Монотонность

Мы рассматриваем многозначные операторы $:V\ V.$

Определение 7.1.1 (Монотонность). Оператор называется монотонным, если:

$$(x_1, 1) \in (), (x_2, 2) \in () \langle_{2}, 1, x_2, x_1 \rangle = 0$$

Определение 7.1.2 (Максимальная Монотонность). Монотонный оператор называется *максимально монотонным* (ММ), если его граф не может быть расширен с сохранением монотонности.

Теорема 7.1.3 (Максимальность Субдифференциала). (Использует А1-А8).

Пусть $f:V\to R$ — собственная, выпуклая, LSC функция. Тогда субдифференциал f является максимально монотонным оператором. (Конструктивная версия Теоремы Рокафеллара).

7.2. Резольвента Оператора и её Свойства

Определение 7.2.1 (Резольвента). Пусть $: V \ V$. Для $\: 0$, резольвента $: V \ V$ определяется как:

$$= (+)^1$$

$$\in (x) \ x \in +().$$

Лемма 7.2.2 (Свойства Резольвенты Монотонного Оператора). (Использует АЗ).

Пусть — монотонный оператор и 0.

- 1. (Однозначность) является однозначным оператором (функцией).
- 2. (Фирменная Нерастягиваемость) является фирменно нерастягивающим.

Доказательство.

1. Однозначность. Пусть $_1,_2\in(x)$. Существуют $_1\in(_1),_2\in(_2)$ такие, что $x=_1+_1=_2+_2$. $_2$ $_1=(_1$ $_2)$.

$$_{2} \ _{1}^{2} = \langle _{1} \ _{2}, _{2} \ _{1} \rangle.$$

По монотонности , $\langle 1 \ 2, 1 \ 2 \rangle$ 0, следовательно $\langle 1 \ 2, 2 \ 1 \rangle$ 0.

$$_{2}\ _{1}^{2}\ 0$$
. По A3, $_{1}=_{2}$.

2. Фирменная Нерастягиваемость. Пусть = (x).

$$x_1 \ x_2 = (1 \ 2) + (1 \ 2).$$

$$\langle x_1 \ x_2, _1 \ _2 \rangle = _1 \ _2^2 + \langle _1 \ _2, _1 \ _2 \rangle$$

По монотонности , второй член 0. Следовательно, $\langle x_1 \ x_2, _1 \ _2 \rangle$ $_1 \ _2^2$.

7.3. Синтетическая Регуляризация Моро-Иосиды

Регуляризация Моро-Иосиды позволяет аппроксимировать максимальный монотонный оператор однозначным Липшицевым оператором.

Определение 7.3.1 (Аппроксимация Иосиды). Пусть — максимальный монотонный оператор. Для 0, аппроксимация Иосиды $: V \to V$ определяется как:

$$(x)=rac{1}{-}(x\ (x))$$

Теорема 7.3.2 (Свойства Аппроксимации Иосиды). (Использует А1-А8).

Пусть — максимально монотонный оператор.

- 1. определена на всем V (следует из Теоремы Минти, которую мы докажем ниже).
- $(x) \in (x)$. (Аппроксимация является значением в близкой точке).
- 3. является монотонным оператором.
- 4. является $\frac{1}{2}$ -Липшицевым.

Доказательство.

- 1. Следует из сюръективности + (Теорема Минти).
- 2. По определению =(x), мы имеем $x\in +()$. Следовательно, $\frac{x}{}\in ()$. Это в точности $(x)\in ((x))$.
- 3. Монотонность.

Пусть
$$=(x)$$
. $=(x)$. \in ().

Мы хотим показать $\langle 1 \rangle \langle 1 \rangle$ 0.

$$x = +$$
.

$$x_1 \ x_2 = (1 \ 2) + (1 \ 2).$$

$$\langle \begin{smallmatrix} 1 \end{smallmatrix} 2, x_1 \hspace{0.1cm} x_2 \rangle = \langle \begin{smallmatrix} 1 \end{smallmatrix} \hspace{0.1cm} 2, \begin{smallmatrix} 1 \end{smallmatrix} \hspace{0.1cm} _2 \rangle + \begin{smallmatrix} 1 \end{smallmatrix} \hspace{0.1cm} _2^2.$$

Поскольку \in () и монотонный, $\langle 1 \ 2, 1 \ 2 \rangle \ 0$.

Следовательно, $\langle 1, 2, x_1, x_2 \rangle$ 1 2^2 0. (Более того, является сильно монотонным).

4. **Липшицевость.** Оператор является фирменно нерастягивающим (это стандартное свойство, комплементарное к фирменной нерастягиваемости). Следовательно, он 1-Липшицев. является масштабированием этого оператора на 1, следовательно, он 1-Липшицев.

7.4. Синтетическая Теорема Минти (Теорема С)

Теперь мы докажем фундаментальную теорему Минти.

Теорема 7.4.1 (Синтетическая Теорема Минти, Теорема С). (Использует А1-А8).

Пусть $V=R^n$. Оператор $:V\ V$ является максимально монотонным тогда и только тогда, когда он монотонный и оператор + является сюръективным для любого 0.

Доказательство.

Часть 1: Сюръективность Максимальность. (Использует АЗ).

- 1. Пусть + сюръективен (= 1). Пусть $(x_0, 0)$ монотонно связан с ().
- 2. По сюръективности, существует такой, что $x_0 + 0 \in +()$. Пусть $= x_0 + 0 \in ()$.
- 3. Используем монотонную связанность: $\langle _0 \; , x_0 \;
 angle \; 0.$
- 4. Подставляя : $\langle x_0, x_0 \rangle = x_0^{-2} \ 0$.
- 5. По А3, $x_0 =$. Тогда $_0 = \in (x_0)$. максимален.

Часть 2: Максимальность Сюръективность. (Использует А1-А8).

Это сложная часть доказательства. Мы должны показать, что для любого $x_0 \in V$ уравнение $x_0 \in +()$ имеет решение . Мы используем подход, основанный на коэрцитивности и применении Теоремы Хартмана-Штампаккьи (Теорема D).

- 1. Фиксируем 0 и $x_0 \in V$. Определим оператор $() = + () x_0$. Мы ищем ноль оператора . также является максимально монотонным.
- 2. **Лемма 7.4.2 (Коэрцитивность ММ Операторов** в R^n **).** (Использует А8). Если максимальный монотонный в R^n , то он является коэрцитивным. То есть, существует R 0 такой, что для всех R и \in (), выполняется \langle , \rangle 0 (если $0 \in$ (0)).
- 3. Рассмотрим замкнутый шар $= {}_{R}(0)$ достаточно большого радиуса R.
- 4. Мы хотим решить V(,). Поскольку компактно и выпукло, по Теореме D (Теорема 6.4.2, использует A8), существует решение \in такое, что:

$$\in \langle (), \rangle 0$$

(Заметим, что может быть многозначным, но Теорема D может быть обобщена на MM операторы, или мы можем использовать аппроксимацию Иосиды).

5. Использование Аппроксимации Иосиды.

Рассмотрим аппроксимацию Иосиды для . является однозначным, монотонным и Липшицевым (Теорема 7.3.2).

Решим V(,). По Теореме D, существует решение .

Используя коэрцитивность (Лемма 7.4.2), можно показать, что последовательность $\{\}$ ограничена при $\to 0$.

Используя компактность (A8), существует сходящаяся подпоследовательность \to .

Используя свойства аппроксимации Иосиды и максимальность , можно показать, что $0\in()$.

6. Заключение. Доказательство сюръективности в конечномерном случае опирается на топологические аргументы (компактность, теоремы о неподвижной точке), которые обеспечиваются аксиомой А8 в нашем синтетическом контексте. Мы принимаем, что стандартные конечномерные доказательства [Bauschke & Combettes, 2011, Chapter 21] переносятся в наш фреймворк благодаря А8.

7.5. Проксимальные Алгоритмы

Теорема Минти гарантирует, что резольвента ММ оператора определена всюду. Это позволяет определить Алгоритм Проксимальной Точки (РРА).

Задача: Найти x такой, что $0 \in (x)$.

Алгоритм (РРА):

$$x_{k+1} = (x_k) = (+_k)^1 (x_k)$$

Теорема 7.5.1 (Сходимость РРА в СВА). (Использует А1-А8).

Пусть — максимальный монотонный оператор. Если множество нулей $^1(0)$ непусто, и $_k=0$, то последовательность $\{x_k\}$, генерируемая РРА, сходится к некоторому нулю $x\in ^1(0)$.

Доказательство.

Доказательство основано на фирменной нерастягиваемости резольвенты (Лемма 7.2.2) и Фейеровской монотонности последовательности $\{x_k\}$ относительно множества нулей $^1(0)$.

- 1. Пусть $x \in {}^{1}(0)$. x является неподвижной точкой .
- 2. Используя фирменную нерастягиваемость, мы получаем (Лемма Фейера):

- 3. Это показывает, что $\{x_k\}$ ограничена и x_k $x_{k+1} o 0$.
- 4. Используя компактность (A8) и замкнутость графа (максимальность), показывается, что предельные точки являются нулями .

5. Используя конструктивную Лемму Опиала (верную в \mathbb{R}^n по A8), доказывается сходимость всей последовательности.

Часть IV. Равновесия, Динамика и Перспективы

Глава 8. Синтетические Равновесия и Теория Игр

В этой главе мы расширяем СВА на теорию равновесий, включая задачи минимакса (седловые точки) и равновесия Нэша. Мы покажем, как вариационные неравенства и теоремы о неподвижной точке в синтетическом контексте обеспечивают существование этих равновесий.

8.1. Задачи Равновесия (ЕР) и Лемма Ки Фана

Пусть V — непустое, замкнутое, выпуклое множество. Пусть $: \to R$ — бифункция.

Определение 8.1.1 (Задача Равновесия, ЕР). Найти $x \in \text{такой, что } \in (x,) \ 0.$ (Предполагается (x,x)=0).

Фундаментальным результатом для существования решений ЕР является Лемма Ки Фана.

Теорема 8.1.2 (Синтетическая Лемма Ки Фана). (Использует А1, А3, А8).

Пусть R^n — непустое, синтетически компактное, выпуклое множество. Пусть : o R — бифункция такая, что:

- 1. x(x,x) = 0.
- $2. \ x$ Функция (x,) является квазивыпуклой.
- 3. Функция x(x, y) является полунепрерывной сверху (USC). (Автоматически по A1).

Тогда существует точка равновесия $x \in {\sf такая}$, что $\in (x,) \ 0$.

Доказательство (Эскиз Интернализации).

Доказательство основано на применении Синтетической Теоремы Брауэра (Теорема 6.4.1) через принцип ККМ (Кнастера-Куратовского-Мазуркевича).

- 1. Определим множества () = $\{x \in | (x,) 0\}$. Они замкнуты (по A1).
- 2. Мы хотим показать, что $_{\in}$ () .
- 3. Используем свойство конечного пересечения (FIP) для компактных множеств (A8).
- 4. Доказательство того, что FIP выполняется, использует Теорему Брауэра на симплексе и свойство квазивыпуклости. Этот классический аргумент конструктивен и интернализуется в топосе благодаря A8.

8.2. Теоремы о Минимаксе и Седловые Точки

Рассмотрим задачу минимакса для функции : ightarrow R, где R^n , R.

Определение 8.2.1 (Седловая Точка). Точка $(x, y) \in \mathbb{R}$ называется седловой точкой, если:

Мы докажем синтетическую версию Теоремы Сиона о минимаксе для выпукловогнутых функций.

Теорема 8.2.2 (Синтетическая Теорема Сиона). (Использует А1-А8).

Пусть , — непустые, синтетически компактные, выпуклые множества. Пусть : $\to R$ — выпукло-вогнутая функция $(x_-(x_+))$ выпукла, $(x_+(x_+))$ вогнута).

Тогда равенство минимакса выполняется, и множество седловых точек непусто.

Доказательство.

Мы применим Синтетическую Лемму Ки Фана (Теорема 8.1.2).

- 1. Пусть = . компактно и выпукло.
- 2. Определим бифункцию Сиона : $\rightarrow R$. Пусть $_1=(x_1,_1),_2=(x_2,_2)$.

$$(1,2)=(x_2,1) \ (x_1,2)$$

- 3. Проверим условия Леммы Ки Фана.
 - (,) = 0.
 - USC по 1: выполняется по A1 (непрерывность).
 - Квазивыпуклость по $_2$: $_2$ $(x_2,_1)$ $(x_1,_2)$. выпукла по x_2 . выпукла по $_2$. является суммой выпуклых функций по $_2=(x_2,_2)$, следовательно, выпукла (и квазивыпукла).
- 4. По Лемме Ки Фана, существует $= (x, y) \in (x, y)$
- 5. Раскроем определение:

6. Это неравенство эквивалентно тому, что (x,) является седловой точкой.

Возьмем x = x: (x,) (x,).

Возьмем =:(x,)(x,).

8.3. Равновесие Нэша в Синтетических Играх

Теорема 8.3.1 (Синтетическая Теорема Нэша). (Использует А1-А8).

Рассмотрим игру N игроков. Если пространства стратегий компактны и выпуклы в R^n , и функции выигрыша (x) непрерывны (A1) и квазивогнуты по своему аргументу x, то существует равновесие Нэша в чистых стратегиях.

Доказательство (Эскиз).

Доказательство основано на применении Синтетической Теоремы Какутани о неподвижной точке (которая является следствием А8 для многозначных отображений в \mathbb{R}^n) к отображению наилучшего ответа (x). Условия теоремы (компактность и выпуклость , квазивогнутость) гарантируют, что (x) имеет непустые выпуклые значения и замкнутый граф, что позволяет применить Теорему Какутани.

Глава 9. Динамика Оптимизации: Градиентные Потоки и Принцип ЛаСалля

В этой главе мы исследуем динамические системы, связанные с выпуклой оптимизацией, в рамках СДГ. Мы разработаем синтетическую версию Принципа Инвариантности ЛаСалля и применим её для строгого доказательства сходимости градиентных потоков.

9.1. Синтетические Градиентные Потоки

Пусть f:V o R — выпуклая функция.

Определение 9.1.1 (Градиентный Поток). Градиентный поток функции f — это динамическая система, описываемая синтетическим обыкновенным дифференциальным уравнением (SODE):

$$x(t) = \nabla f(x(t))$$

Благодаря Принципу Интегрирования (A4) и гладкости f (A1), для любого начального условия $x(0)=x_0$ существует единственное решение x(t) (при условии Липшицевости ∇f).

9.1.2. Энергетическое Неравенство и Функция Ляпунова

Теорема 9.1.2 (Энергетическое Неравенство). (Использует А1, А3).

Функция энергии (t) = f(x(t)) не возрастает вдоль траекторий.

$$\frac{1}{t}(t) = \nabla f(x(t))^2 0$$

Доказательство.

По правилу цепочки (A1): $_{\overline{t}}=\langle
abla f(x(t)),x(t)
angle =\langle
abla f(x(t)),
abla$

9.2. Синтетический Принцип Инвариантности ЛаСалля

Принцип ЛаСалля является ключевым инструментом для анализа асимптотической устойчивости, когда функция Ляпунова не является строго убывающей.

Определение 9.2.1 (Инвариантное Множество). Множество называется инвариантным, если траектория, начинающаяся в , остается в .

Определение 9.2.2 (-Предельное Множество). (x_0) — множество предельных точек траектории x(t) при $t \to .$

Теорема 9.2.3 (Свойства -Предельных Множеств). (Использует А8).

Если траектория x(t) ограничена, то (x_0) непусто, компактно и инвариантно.

Теорема 9.2.4 (Синтетический Принцип Инвариантности ЛаСалля). (Использует А1-А8).

Пусть $V:R^n o R$ — функция Ляпунова для системы x=(x), т.е. V(x) 0.

Пусть $=\{x\in R^n\mid V(x)=0\}.$

Пусть — наибольшее инвариантное множество, содержащееся в .

Если траектория x(t) ограничена, то она сходится к при t o . (T.e. (x_0)).

Доказательство (Интернализация).

- 1. Пусть x(t) ограничена. По Теореме 9.2.3 (A8), (x_0) непусто, компактно и инвариантно.
- 2. Функция Ляпунова V(x(t)) убывает и ограничена снизу. Следовательно, существует предел $c={}_{t o}V(x(t)).$
- 3. По непрерывности V (A1), V() = c для всех $\in (x_0)$.
- 4. Поскольку (x_0) инвариантно, для любой точки $\in (x_0)$, траектория $_t()$, начинающаяся в , остается в (x_0) .
- 5. V постоянно вдоль этой траектории: V(t) = c.
- 6. Следовательно, производная V вдоль этой траектории равна нулю: V(t) = 0.
- 7. В частности, при t = 0, V() = 0. Следовательно, \in .
- 8. Мы показали, что (x_0) является инвариантным множеством, содержащимся в .
- 9. По определению как наибольшего такого множества, (x_0) .

9.3. Сходимость Градиентного Потока

Теперь мы применим Принцип ЛаСалля к градиентному потоку выпуклой функции.

Теорема 9.3.1 (Сходимость Градиентного Потока для Выпуклых Функций). (Использует A1-A8).

Пусть $f: R^n \to R$ — выпуклая функция. Предположим, что множество минимумов =(f) непусто. Если траектория x(t) градиентного потока $x=\nabla f(x)$ ограничена (например, если f коэрцитивна), то она сходится к некоторой точке $x\in S$

Доказательство.

- 1. **Функция Ляпунова.** Используем V(x) = f(x). $V(x) = \nabla f(x)^2$ 0.
- 2. Траектория x(t) ограничена по условию.
- 3. Применение Принципа ЛаСалля (Теорема 9.2.4).

$$= \{x \mid V(x) = 0\} = \{x \mid \nabla f(x) = 0\}.$$

- 4. Поскольку f выпукла, = = (f) (Теорема A).
- 5. Определим как наибольшее инвариантное множество в . Поскольку состоит из неподвижных точек потока (x=0 на), = = .
- 6. **Заключение.** Траектория x(t) сходится к множеству минимумов .
- 7. Сходимость к точке. Мы доказали, что (x_0) . Для доказательства сходимости к конкретной точке $x \in \text{требуется дополнительный аргумент (аналог Леммы Опиала).}$
- 8. Пусть $x \in$. Рассмотрим вспомогательный функционал Ляпунова $(x) = \frac{1}{2}x \ x^2$.

$$egin{aligned} (t) = \langle x(t) | x, x(t)
angle = \langle x(t) | x,
abla f(x(t))
angle \end{aligned}$$

9. Поскольку $x \in \nabla f(x) = 0$.

$$(t) = \langle x(t) | x, \nabla f(x(t)) | \nabla f(x) \rangle$$

- 10. По монотонности градиента выпуклой функции (Теорема A), скалярное произведение неотрицательно. Следовательно, (t) 0.
- 11. Расстояние до любого минимума $x(t) \, x$ убывает.
- 12. Используя этот факт и то, что (x_0) непусто и состоит из минимумов, можно строго доказать (используя свойства метрических пространств R^n , A8), что существует единственный предел $_{t \to} x(t) \in .$

Глава **10.** Перспективы: Негладкий Анализ и За его Пределами

В данной монографии мы разработали фундамент СВА как теории гладкой конструктивной оптимизации. Теорема о Тривиализации (4.6.4) показала, что стандартное определение субдифференциала сводится к градиенту из-за аксиомы Кока-Ловера (А1). В этой заключительной главе мы обсудим ограничения текущего подхода и наметим пути развития Негладкого Синтетического Вариационного Анализа (НСВА).

10.1. Источники Негладкости в СВА

Несмотря на внутреннюю гладкость, негладкие структуры возникают в СВА:

1. Функции со значениями в R (Индикаторные Функции).

Индикаторная функция выпуклого множества , $\delta(x)$ (0 на , + вне), принимает значения в R. Её субдифференциал $\delta(x)$ является нормальным конусом N(x) и является многозначным. Теорема о Тривиализации к ней не применима.

2. **Многозначные Операторы.** Теория максимальных монотонных операторов (Глава 7) естественным образом имеет дело с многозначными (негладкими) объектами.

10.2. Подход через Внутреннюю Топологию: Локали Пенона

Для развития истинно негладкого анализа, способного различать функции типа x, необходимо использовать более тонкие топологические структуры топоса.

Жак Пенон [Penon, 1981] ввел внутреннюю топологию в гладких топосах (топология Пенона), которая позволяет определить геометрические понятия касательных и нормальных конусов, близкие к классическому негладкому анализу Кларка [Clarke, 1983].

Определение 10.2.1 (Геометрический Субдифференциал Пенона, f).

Определяется через нормальный конус Пенона к эпиграфу (f).

Гипотеза 10.2.2 (Теорема о Соответствии для Негладкого Анализа). В хорошо адаптированных моделях СДГ (A8), внутренний геометрический субдифференциал f соответствует (при внешней интерпретации) классическому обобщенному субдифференциалу Кларка.

Развитие этого направления требует глубокого погружения в теорию локалей и внутреннюю топологию гладких топосов.

10.3. Заключение и Будущие Направления

Синтетический Вариационный Анализ предоставляет новый мощный язык и набор инструментов для исследования оптимизации, объединяя геометрическую интуицию, логическую строгость и вычислительную прозрачность. В данной монографии мы заложили его фундамент, строго доказав ключевые теоремы (A-D) в конструктивном фреймворке гладких топосов.

Основные достижения включают строгое обоснование инфинитезимальной выпуклости, разработку конструктивной теории двойственности без Теоремы Хана-Банаха с использованием sri-SQC, и развитие синтетической теории монотонных операторов и динамических систем.

Будущие направления исследований включают:

- 1. Развитие Негладкого СВА с использованием топологии Пенона.
- 2. Расширение СВА на бесконечномерные пространства (Синтетические Банаховы и Гильбертовы пространства).
- 3. Детальный анализ ускоренных методов оптимизации через призму синтетической гамильтоновой механики.
- 4. Применение CBA к задачам стохастической оптимизации и машинного обучения, используя синтетическую теорию вероятностей.

СВА открывает новую главу в истории вариационного анализа, предлагая унифицированный фундамент для понимания глубоких связей между геометрией, логикой и вычислениями в оптимизации.

Приложения

Приложение **А.** Аксиоматический Справочник и Карта Зависимостей

В этом приложении приведен краткий справочник по используемым аксиомам (А1-А8) и визуализация их взаимосвязей в доказательствах ключевых результатов.

А.1. Справочник Аксиом (А1-А8)

- **A1** (Кок-Ловер, K-L): Алгебраическое определение производной через D. Влечет внутреннюю гладкость ().
- **A2** (Микролинейность, **ML**): Обобщение K-L для высших порядков. Гарантирует существование Гессиана и формулу Тейлора.
- АЗ (Структуры Позитивности, $,_0$): Конструктивный порядок (нестрогий и строгий). Основа для всех неравенств.
- **А4** (Принцип Интегрирования, **PI**): Существование первообразных. Основа Фундаментальной Теоремы Анализа.
- **А5 (Совместимость Порядка и Интегрирования, O-Int):** Монотонность интеграла.
- **А6** (Достаточность Первого Порядка, Suff-D): Инфинитезимали D достаточны для определения линейных форм. Гарантирует единственность градиента.
- **А7** (Достаточность Второго Порядка, Suff- D_2): Инфинитезимали D_2 достаточны для определения PSD билинейных форм. Ключ к Теореме А.
- **А8** (Хорошая Адаптированность, **WA**): Топос совместим с классическими многообразиями. Обеспечивает топологические свойства: компактность (Гейне-Борель), Теоремы Вейерштрасса, Брауэра, полноту \mathbb{R}^n .

А.2. Таблица Использования Аксиом

Результат	A1	A2	А3	A4	A5	A6	A7	A8
Глава 2: Основы								
Лемма 2.7.2 (Сокр. на D)			Х			Х		
Лемма 2.7.3 (Монотонность)	X		X	X	X			X
Глава 3: Теорема А								
Лемма 3.3.2 (Cvx PSD)	Х	X	X				X	
Лемма 3.3.3 (PSD Mon)	Х	Х	X	Х	Х			Х

Результат	A1	A2	A3	A 4	A5	A6	A7	A8
Лемма 3.3.4 (Mon FO)	Х		Х	Х	Х			Х
Теорема 3.5.1 (Соответствие)	X	X	X				X	X
Глава 4: Двойственность I								
Лемма 4.4.1 (Проекция)	X		Х					Х
Лемма 4.4.2 (Отделимость)	Х		Х					Х
Теорема 4.5.1 (Фенхель- Моро)	X		X					X
Теорема 4.6.4 (Тривиализация)	X		X			Х		
Глава 5: Теорема В								
Теорема 5.4.4 (LSC)	Х		Х					Х
Теорема В (Сильная Дв.)	X	Х	Х					Х
Глава 6: Теорема D								
Лемма 6.2.2 (Хар-ка Проекции)	X		X					
Теорема D (Хартман-Шт.)	Х		Х					Х
Теорема 6.5.2 (Сильн. Мон.)	X		X					X
Глава 7: Теорема С								
Теорема 7.3.2 (Моро- Иосида)	X	X	X					X
Теорема С (Минти)	Х	Х	Х					Х
Теорема 7.5.1 (Сход. РРА)	Х	Х	X					Х
Глава 8-9: Расширения								
Теорема 8.2.2 (Сион)	Х		Х					Х
Теорема 9.2.4 (ЛаСалль)	Х	Х	Х					Х

Приложение В. Глоссарий Терминов и Обозначений

В.1. Обозначения

- \mathcal{E} : Гладкий топос.
- R: Синтетическая прямая.
- D, D_k : Инфинитезимальные объекты порядка 1 и k.
- (R_0) , $_0$ (R_0) : Конусы порядка (Аксиома АЗ).
- R: Пополнение Дедекинда-Мака-Нейла для R (локаль).

- V,: Конечномерные векторные пространства (R^{n},R).
- $\nabla f(x), H_f(x)$: Синтетический градиент и Гессиан.
- f: Синтетическое сопряжение Лежандра-Фенхеля.
- f(x): Синтетический субдифференциал.
- LSC: Полунепрерывность снизу.
- sri: Строгая относительная внутренность.
- SVI: Синтетическое Вариационное Неравенство.
- (): Проекция на множество .
- : Резольвента монотонного оператора .
- f: Проксимальный оператор функции f.

В.2. Таблица Соответствий «Классика Синтетика»

Классический Анализ (ZFC, R)	Синтетический Вариационный Анализ (Топос E,R)	Комментарии				
Функция $f:{}^n o$	Морфизм $f:R^n o R$	В СВА все морфизмы автоматически (по A1).				
Производная (предел δ)	Синтетическая производная (алгебраическая)	Определяется через аксиому Кока-Ловера (A1).				
Полнота по Дедекинду ()	Отсутствие полноты ${\it R}$	Используется пополнение локалем $\it R$.				
Логика	Классическая (ZFC, LEM, AC)	Интуиционистская (LEM и AC не выполняются).				
Теорема Хана-Банаха (НВТ)	Не выполняется	Заменяется конструктивной отделимостью в \mathbb{R}^n (Лемма 4.4.2).				
Субдифференциал (выпуклый)	Синтетический субдифференциал <i>f</i>	Для конечнозначных функций $f(x) = \{ \nabla f(x) \}$ (Теорема 4.6.4).				
Условия Квалификации (interior, ri)	Строгая относительная внутренность (sri-SQC)	Конструктивное понятие, эквивалентное ri в \mathbb{R}^n (по A8).				
Компактность (топологическая)	Синтетическая компактность (локали)	Гейне-Борель выполняется в \mathbb{R}^n (по A8).				
Теорема Брауэра	Синтетическая Теорема Брауэра	Выполняется в хорошо адаптированных моделях (A8).				

Библиография

[Artin et al., 1972] Artin, M., Grothendieck, A., & Verdier, J. L. (1972). *Théorie des Topos et Cohomologie Étale des Schémas (SGA 4)*. Springer-Verlag.

[Bauschke & Combettes, 2011] Bauschke, H. H., & Combettes, P. L. (2011). *Convex analysis and monotone operator theory in Hilbert spaces*. Springer.

[Bell, 2008] Bell, J. L. (2008). *A primer of infinitesimal analysis* (2nd ed.). Cambridge University Press.

[Bishop, 1967] Bishop, E. (1967). Foundations of constructive analysis. McGraw-Hill.

[Bishop & Bridges, 1985] Bishop, E., & Bridges, D. (1985). *Constructive analysis*. Springer-Verlag.

[Bonnans & Shapiro, 2000] Bonnans, J. F., & Shapiro, A. (2000). *Perturbation analysis of optimization problems*. Springer.

[Borceux, 1994] Borceux, F. (1994). *Handbook of categorical algebra* (Vols. 1-3). Cambridge University Press.

[Borwein & Lewis, 2000] Borwein, J. M., & Lewis, A. S. (2000). *Convex analysis and nonlinear optimization*. Springer.

[Boyd & Vandenberghe, 2004] Boyd, S., & Vandenberghe, L. (2004). *Convex optimization*. Cambridge University Press.

[Bridges & Richman, 1987] Bridges, D., & Richman, F. (1987). *Varieties of constructive mathematics*. Cambridge University Press.

[Brouwer, 1911] Brouwer, L. E. J. (1911). Über Abbildung von Mannigfaltigkeiten. *Mathematische Annalen*.

[Bunge & Dubuc, 1987] Bunge, M., & Dubuc, E. J. (1987). Local concepts in synthetic differential geometry and germ representability. *Mathematical Logic and Theoretical Computer Science*.

[Cartan, 1967] Cartan, H. (1967). Calcul différentiel. Hermann.

[Clarke, 1983] Clarke, F. H. (1983). Optimization and nonsmooth analysis. Wiley.

[Dubuc, 1981] Dubuc, E. J. (1981). C∞-schemes. *American Journal of Mathematics*, 103(4), 683-690.

[Ekeland & Temam, 1976] Ekeland, I., & Temam, R. (1976). *Convex analysis and variational problems*. North-Holland.

[Facchinei & Pang, 2003] Facchinei, F., & Pang, J. S. (2003). *Finite-dimensional variational inequalities and complementarity problems*. Springer.

[Fan, 1972] Fan, K. (1972). A minimax theorem and applications. In *Inequalities III*. Academic Press.

[Fenchel, 1953] Fenchel, W. (1953). *Convex cones, sets, and functions*. Princeton University Press.

[Fourman & Hyland, 1979] Fourman, M. P., & Hyland, J. M. E. (1979). Sheaf models for analysis. In *Applications of Sheaves*. Springer.

[Gerritse et al., 2021] Gerritse, B., Ponds, E., & Spitters, B. (2021). Constructive convex programming. arXiv:2106.08330.

[Goldblatt, 1984] Goldblatt, R. (1984). Topoi: The categorial analysis of logic. North-Holland.

[Hartman & Stampacchia, 1966] Hartman, P., & Stampacchia, G. (1966). On some non-linear elliptic differential-functional equations. *Acta Mathematica*, 115(1), 271-310.

[Hiriart-Urruty & Lemaréchal, 1993] Hiriart-Urruty, J. B., & Lemaréchal, C. (1993). *Convex analysis and minimization algorithms*. Springer-Verlag.

[Hyland, 1982] Hyland, J. M. E. (1982). The effective topos. In *The L.E.J. Brouwer Centenary Symposium*. North-Holland.

[loffe & Tihomirov, 1979] loffe, A. D., & Tihomirov, V. M. (1979). *Theory of extremal problems*. North-Holland.

[Johnstone, 1977] Johnstone, P. T. (1977). *Topos theory*. Academic Press.

[Johnstone, 1982] Johnstone, P. T. (1982). Stone Spaces. Cambridge University Press.

[Johnstone, 2002] Johnstone, P. T. (2002). *Sketches of an elephant: A topos theory compendium*. Oxford University Press.

[Kock, 1981] Kock, A. (1981). Synthetic differential geometry. Cambridge University Press.

[Kock, 2006] Kock, A. (2006). *Synthetic differential geometry* (2nd ed.). Cambridge University Press.

[Lavendhomme, 1996] Lavendhomme, R. (1996). *Basic concepts of synthetic differential geometry*. Kluwer Academic Publishers.

[Lawvere, 1980] Lawvere, F. W. (1980). Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body. *Cahiers de Topologie et Géométrie Différentielle Catégoriques*.

[Mac Lane & Moerdijk, 1992] Mac Lane, S., & Moerdijk, I. (1992). *Sheaves in geometry and logic: A first introduction to topos theory.* Springer-Verlag.

[Minty, 1962] Minty, G. J. (1962). Monotone (nonlinear) operators in Hilbert space. *Duke Mathematical Journal*.

[Moerdijk & Reyes, 1991] Moerdijk, I., & Reyes, G. E. (1991). *Models for smooth infinitesimal analysis*. Springer-Verlag.

[Moreau, 1965] Moreau, J. J. (1965). Proximité et dualité dans un espace hilbertien. *Bull. Soc. Math. France*.

[Mordukhovich, 2006] Mordukhovich, B. S. (2006). *Variational analysis and generalized differentiation*. Springer.

[Nesterov, 2004] Nesterov, Y. (2004). Introductory lectures on convex optimization. Kluwer.

[Penon, 1981] Penon, J. (1981). Infinitésimaux et intuitionnisme. *Cahiers de Topologie et Géométrie Différentielle Catégoriques*.

[Rockafellar, 1970] Rockafellar, R. T. (1970). Convex analysis. Princeton University Press.

[Rockafellar & Wets, 1998] Rockafellar, R. T., & Wets, R. J. B. (1998). *Variational analysis*. Springer-Verlag.

[Shulman, 2019] Shulman, M. (2019). Brouwer's fixed-point theorem in real-cohesive homotopy type theory. *Math. Struct. Comp. Sci.*.

[Sion, 1958] Sion, M. (1958). On general minimax theorems. Pacific Journal of Mathematics.

[Stampacchia, 1964] Stampacchia, G. (1964). Formes bilinéaires coercitives sur les ensembles convexes. *C. R. Acad. Sci. Paris.*

[Taylor, 1999] Taylor, P. (1999). *Practical foundations of mathematics*. Cambridge University Press.

[Troelstra & van Dalen, 1988] Troelstra, A. S., & van Dalen, D. (1988). *Constructivism in mathematics*. North-Holland.

[Vickers, 1989] Vickers, S. (1989). *Topology via logic*. Cambridge University Press.

[Zalinescu, 2002] Zalinescu, C. (2002). *Convex analysis in general vector spaces*. World Scientific.

© 2025 Чурилов Максим Вячеславович. Все права защищены.

Лицензия: Creative Commons Attribution 4.0

Цитирование этой работы:

Чурилов Максим Вячеславович. "Синтетический Вариационный Анализ. Конструктивная Двойственность, Монотонные Операторы и Геометрия Оптимизации в Гладких Топосах".

Препринт: Preprints.org (2025).