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ABSTRACT

Hilbert-Pólya conjecture is proved by constructing Hilbert-Pólya operator, the self-adjoint operator
where its eigenvalues are exactly the imaginary parts of zeros of Riemann zeta function on the critical
line. Hence, the Riemann hypothesis is true.
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1 Introduction

At the crossroads of number theory and spectral theory lies one of the most creative ideas in modern mathematics: the
Pólya–Hilbert Conjecture, an alternative approach to prove the Riemann hypothesis. Inspired by David Hilbert and
George Pólya, this conjecture suggests that the imaginary parts of non-trivial zeros on the critical line of the Riemann
zeta function can be taken as the eigenvalues of a self-adjoint operator known as Hilbert-Pólya operator, acting on
some Hilbert space [1]. Therefore, offering a potential pathway to proving the long-standing and enigmatic Riemann
Hypothesis, this is an unsolved problem in mathematics and much effort has been expended using various approaches
to prove or disprove such conjecture.

In this paper, we prove Hilbert-Pólya conjecture by constructing Hilbert-Pólya operator, a self-adjoint operator denoted
by L in L2(R)× L2(R), where the eigenvalues are exactly the imaginary parts of zeros of Riemann zeta function on
the critical line. As a starting point, we construct an operator denoted by H in L2(R), we force the eigenvalues to be
the positive imaginary parts of zeros of Riemann zeta function on the critical line by creating some kind of parameters
called "Algorithmic parameter", such that we apply supersymmetric quantum mechanics for shape invariance potentials
besides to invoking the notion of multivalued operator and selections, in order to establish the associated spectrum
and the associated eigenfunctions of the operator H . The operator H is proved essentially self-adjoint hence the
existence of a self-adjoint extension denoted by H , that is used to construct the Hilbert-Pólya operator L which is
a matrix of operators starting from H . The paper is organized as follows: in section 2 we present the main tools to
construct the eigenvalues and the eigenfunctions of the operator H , namely, the one dimensional supersymmetric
quantum mechanics with its application for the case of shape invariance potentials, the notion of multivalued operator
and selection. In section 3 we prove the existence of a self-adjoint operator denoted by H where the eigenvalues are
exactly the positive imaginary parts of zeros of Riemann zeta function on the critical line. In section 4, we prove the
existence of Hilbert-Pólya operator L, by constructing a matrix of operators starting from the extension of the essentially
self-adjoint operator H , and we show that the eigenvalues of L coincide exactly with the imaginary parts of zeros of
Riemann zeta function on the critical line.
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2 Methods

2.1 The one dimensional supersymmetric quantum mechanics (SUSYQM)

We consider the following one dimensional Hamiltonian H− [2, 3]

H− = K†K = − d2

dx2
+ v−(x), (1)

in which the operators K and K† are defined by

K =
d

dx
+W (x), K† = − d

dx
+W (x), (2)

where W is a real function, it is known as the superpotential.

W generates the first partner potential v− as

v−(x) =W 2(x)−W ′(x). (3)

The supersymmetric partner H+ of (1) is constructed by changing the order of the operators in (2) to have

H+ = KK† = − d

dx2
+ v+(x). (4)

W generates the second partner potential associated to H+ as

v+(x, s) =W 2(x) +W ′(x). (5)

Assuming the existence of an eigenvalue Ei and an eigenfunction ψi such that H− satisfies [4]

H− ψi = K†K ψi = Eiψi, (6)

clearly, we can have

H+K ψi = (KK†)K ψi = K(K†K) ψi = EiKψi, (7)

From Eq. (7), by putting ψ+
i = Kψi, the pair (Ei, ψ

+
i ) is an eigensolution to H+ψ

+
i = Eiψ

+
i .

On the other hand, if there is an eigenvalue Ej and an eigenfunction ψj in which we have

H+ ψj = KK† ψj = Ejψj . (8)

Then, we obtain
H−K

† ψj = (K†K)K† ψj = K†(KK†) ψj = EjK
†ψj . (9)

From Eq. (9), by putting ψ−
j = K†ψj , the pair (Ej , ψ

−
j ) is an eigensolution to H−ψ

−
j = Ejψ

−
j .

Therefore, the partner Hamiltonians H− and H+ share the same set of eigenvalues and eigenfunctions.

From (1), the solution of the equation Kψ = 0 is given explicitly by

ψ−
0 (x) = e−

∫
W (τ) dτ , (10)

as a result, the pair (0 , ψ−
0 ) is always a solution to H−ψ

−
0 = 0 [2].

Briefly, all the spectrum of the Hamiltonian H+ (resp. H− ) can be obtained by knowing all the pairs (E,ψ) that satisfy
(6) (resp. (8)).
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2.2 The One dimensional SUSYQM for shape invariance potentials

In this part, we show that using SUSYQM, we can construct explicitly a set of solutions (E,ψ) for a special class
of potentials called Shape Invariance potentials, where the partner potentials have the same form but for different
parameters [2] .

For a given Hamiltonian H−(s0) where s0 stands for a set of parameters. If the partner potential satisfy an integrability
condition called Shape Invariance condition i.e. [5, 6, 7]

v+(x, s0) = v−(x, s1) +Q(s0), (11)

then, the original potential v−( · , s0) is called shape invariance potential.

The expression in (11) is equivalent to
H+(s0) = H−(s1) +Q(s0), (12)

where Q(s0) is a constant term.

From (10), the function
ψ(x) = e−

∫
W (τ,s1) dτ , (13)

satisfies the following equation
H−(s1)ψ(x) = 0. (14)

For (12) and (14) together, this equation is hold

H+(s0) e
−

∫
W (τ,s1) dτ = Q(s0) e

−
∫
W (τ,s1) dτ . (15)

Using Eqs. (8) and (9), we can have the function

ψ−
1 (x) = K†(x, s0)e

−
∫
W (τ,s1) dτ , (16)

and the scalar E−
1 = Q(s0) a solution to

H−(s0)ψ
−
1 (x) = E−

1 ψ−
1 (x). (17)

Again, we construct the partner of H−(s1) and if it satisfies the shape invariance condition (11) we write

H+(s1) = H−(s2) +Q(s1). (18)

According to (10), we have the equation

H−(s2)e
−

∫
W (τ,a2) dτ = 0, (19)

therefore, from Eqs. (18) and (19), we get

H+(s1)e
−

∫
W (τ,a2) dτ = Q(s1)e

−
∫
W (τ,a2) dτ . (20)

Applying Eqs. (8) and (9), gives the function

ψ−
2 (x) = K†(x, s0)K

†(x, s1)e
−

∫
W (τ,a2) dτ , (21)

as a solution for
H−(s0)ψ

−
2 (x) = E−

2 ψ−
2 (x), (22)

where E−
2 = Q(s0) +Q(s1).

By repeating the same process, we construct the nth partner Hamiltonian for n ≥ 1 in which all the partners satisfy the
shape invariance condition (11) where the nth Hamiltonian is written as

H+(sn−1) = H−(sn) +Q(sn−1), (23)
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then, using the expression (10) we have

H−(sn)e
−

∫
W (τ,an) dτ = 0. (24)

As a result, with the help of Eqs. (8) and (9), the pair (En, ψ
−
n ) satisfies [5]

H−(s0)ψ
−
n (x) = E−

n ψ−
n (x), (25)

such that

E−
n =

n∑
k=1

Q(sk), (26)

ψ−
n (x) = K†(x, s0)K

†(x, s1) · · ·K†(x, sn−2)K
†(x, sn−1)e

−
∫
W (τ,an) dτ . (27)

2.3 Definition of multivalued operator

Definition 1 Let E be a Banach space and P(E) is the set of all subset of E.

We call a multivalued operator A the operator defined by

A =


A1

A2

...
An

 : E → P(E),

where (Ai)
n
i=1 are single-valued operators that associates to every element x ∈ E a subset F (x) ⊂ E of at most n

element.

Definition 2 We call a domain of a multivalued operator A: Dom(A), the set of elements x ∈ E such that F (x) ̸= ∅.

Definition 3 We call a selection a single-valued operator Ai where i ∈ {1, 2, . . . , n} such that for an element x it
associates a single image Aix where Aix ∈ F (x).

3 The existence of an operator with eigenvalues that are exactly the positive imaginary parts
of zeros of Riemann zeta function on the critical line

Let be (ηi)i≥1 the positive imaginary parts of Riemann zeta function zeros on the critical line where
0 < η1 < η2 < . . . < ηn < . . . [8].

We consider the following operator acting on L2(R) as

H = H0 + η1I, (28)

such that the operator H0 is defined as follows

H0 = − d2

dx2
+A2 − B +

(
AB −A

)
x+

(
A2

2
+ B2 − 3C

)
x2+

(
AC +AB

)
x3 +

(
A2

4
+ 2BC

)
x4 + 2ACx5 + C2x6 (29)

where A is a real number and C is a positive number, while B behaves as an algorithm inside the operator, where the
outcome is a real number, it change its values according to the following algorithm

4
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

initialization the outcome is B and it is initialized to take a real value and k = 1.

if the sign in front of the parameter A of the coefficient of "x" which is (AB −
↑
A) is

minus (-), then, the value of the outcome of B and k are unchanged.

else

if the sign in front of the parameter A of the coefficient of "x" which is (AB +
↑
A) is

plus (+), then B updates its outcome according to the value of k, where

if k=1 then the following changes in the coefficients happen:
•The new outcome of the algorithm in the coefficient of x becomes
B ← η2 − η1 − B, and k increases by +1 (i.e. k ← k + 1).
•The sign in front of the parameter A of the coefficient of "x" which is (AB +

↑
A)

is changed to (-).
•The outcome of the B that appears in the other coefficients
of the non-constants term updates the outcome by the new outcome of B
in the coefficient of x besides to increase k by +1 for this coefficients.

else

if k ≥ 2 then the following changes in the coefficients happen:
•The new outcome of the algorithm in the coefficient of x becomes
B ← ηk+1 − η1 − 2

∑k−1
i=1 Bi − B0,

where
∑k−1

i=1 Bi refers to the sum of the successive previous
outcomes from 1 to k − 1 and B0 is the value of the first outcome .
with k increases by +1 (i.e. k ← k + 1)
•The sign in front of the parameter A of the coefficient of "x" which is (AB +

↑
A)

is changed to (-).
•The outcome of B that appears in the other coefficients
of the non-constant terms updates the outcome by the new outcome of B
in the coefficient of x and besides to increase k by +1 for this coefficients.

then, according to the nature of the parameter B, the outcomes are indexed by integers, such that we can write

H0 = − d2

dx2
+A2 − B0 +

(
AB0 −A

)
x+

(
A2

2
+ B20 − 3C

)
x2+

(
AC +AB0

)
x3 +

(
A2

4
+ 2B0C

)
x4 + 2ACx5 + C2x6, (30)

such that B0 is the initialization.

3.1 The eigenvalues and the eigenfunctions of H0

The aim of this part is to establish the the eigenvalues of H0 with the associated eigenfunctions, by combining between
supersymmetric quantum mechanics, the notion of multivalued operator and selection.

3.1.1 The first eigenpairs of H0 :

Using the following first order operators that are the hermitian conjugate of each other

Y =
d

dx
+W (x), Y † = − d

dx
+W (x), (31)

5
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where
W (x) = A+ B0x+

A
2
x2 + Cx3, (32)

we can write
H0 = Y †(A,B0, C)Y (A,B0, C), (33)

then, H0 is a positive operator on his domain then its eigenvalues are positive, hence, the operator H is a definite
positive operator and his eigenvalues are strictly positive, and since the function q defined below tends to +∞ when
|x| → +∞ then the spectrum of H0 is purely discrete [9]

q(x) = A2 − B0 +
(
AB0 −A

)
x+

(
A2

2
+ B20 − 3C

)
x2+

(
AC +AB0

)
x3 +

(
A2

4
+ 2B0C

)
x4 + 2ACx5 + C2x6. (34)

As a result from the expression (10), the following function

ψ1(x) = e−
∫
W (τ,A,B0,C)dτ = e−Ax−B0

2 x2−A
6 x3− C

4 x
4

∈ L2(R), (35)
is the first eigenfunction of H0 which is associated to the first eigenvalue E1 = 0, where B0 represents the initialization
of the algorithm.

3.1.2 The second eigenpairs of H0 :

To construct the second eigenfunction and eigenvalue, we alter the order of the operators Y †(x,A,B0, C) and
Y (x,A,B0, C) in (33), and by taking into account the nature of B, we get

Y (A,B0, C)Y †(A,B0, C) = −
d2

dx2
+A2 + B0 +

(
AB1 −A

)
x+

(
A2

2
+ B21

+ 3C
)
x2 +

(
AC +AB1

)
x3 +

(
A2

4
+ 2B1C

)
x4 + 2ACx5 + C2x6, (36)

such that B1 = η2 − η1 − B0.

By comparing between (30) and (36) one can obtain that this supersymmetric partners are similar in their non-constant
terms with some transformations that manifest, where the following transformations are appearing

B0 → B1, (37)
C → C, (38)
C → −C. (39)

The transformation (39) is rejected, hence to create the supersymmetric partner of (30) that respects the shape invariance
condition, then, The supersymmetric partner (36) is set as multivalued operator with respects to translations (37) and
(38) as follows

Y(A,B0,C)Y
†
(A,B0,C) =


• − d2

dx2 +A2 + B0 +
(
AB1 −A

)
x+

(
A2

2 + B21 + 3C
)
x2+(

AC +AB1
)
x3 +

(
A2

4 + 2B1C
)
x4 + 2ACx5 + C2x6,

• Y †
(A,B1,C)Y(A,B1,C) + B1 + B0.

(40)

At this stage to establish the second eigenfunction associated to H0, we make a selection, where we select the factorized
operator with the shape invariance condition (12) : Y †

(A,B1,C)Y(A,B1,C) + B1 + B0 from (40), where

Q1 = B1 + B0 = η2 − η1, (41)
then, according to supersymmetric quantum mechanics and the formulas (26) and (27), the expression of the second
eigenfunction of H0 is given by

ψ2(x) = Y †
(A,B0,C)e

−
∫
W (τ,A,B1,C)dτ , (42)

for the second eigenvalue E2 = Q1 = η2 − η1, and after some calculations, we get

ψ2(x) =

(
2A+ (B0 + B1)x+Ax2 + 2Cx3

)
e−Ax−B1

2 x2−A
6 x3− C

4 x
4

∈ L2(R). (43)
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3.1.3 The third eigenpairs of H0 :

Here, to establish the third eigenfunction associated to H0, we construct the supersymmetric partner of the selected
factorized operator with the shape invariance condition (12) : Y †

(A,B1,C)Y(A,B1,C) + B1 + B0 from the multivalued

operator (40), so, by altering the order of the operators Y †
(A,B1,C) and Y(A,B1,C) we get

Y(A,B1,C)Y
†
(A,B1,C) = −

d2

dx2
+A2 + B1 +

(
AB2 −A

)
x+

(
A2

2
+ B22 + 3C

)
x2+

(
AC +AB2

)
x3 +

(
A2

4
+ 2B2C

)
x4 + 2ACx5 + C2x6, (44)

such that B2 = η3 − η1 − 2B1 − B0.

Another time, one can obtain this transformations that manifest between Y(A,B1,C)Y
†
(A,B1,C) and Y †

(A,B1,C)Y(A,B1,C) as
follows

B1 → B2, (45)

C → C, (46)

C → −C. (47)

The transformation (47) is rejected. Hence, to create the supersymmetric partner that satisfies the shape invariance
condition, the operator (44) is set as a multivalued operator that respects the transformations (45) and (46) as follows

Y(A,B1,C)Y
†
(A,B1,C) =


• − d2

dx2 +A2 + B1 +
(
AB2 −A

)
x+

(
A2

2 + B22 + 3C
)
x2+(

AC +AB2
)
x3 +

(
A2

4 + 2B2C
)
x4 + 2ACx5 + C2x6,

• Y †
(A,B2,C)Y(A,B2,C) + B2 + B1.

(48)

From (12) and (48) we have
Q2 = B2 + B1. (49)

To establish the eigenfunction, we make selections, by selecting the factorized operators from (40) and from (48) that
satisfy the shape invariance condition, then, according to supersymmetric quantum mechanics and the expression (27)
the third eigenfunction of H0 is given by

ψ3(x) = Y †
(A,B0,C)Y

†
(A,B1,C)e

−
∫
W (τ,A,B2,C)dτ , (50)

then, adding (41) to (49), according to the expression (26), we get the third eigenvalue of H0 as follows

E3 = η3 − η1, (51)

and after calculations, we get

ψ3(x) =

(
2A2 +A− B1 − B2 +

(
A(B1 + 3B2 − 2) + B0

)
x+

(
B2(B1 + B2)

+A
(
2A+

1

2

)
− 6C

)
x2 +

(
A
2
(B1 + 3B2) + C(4A+ 1)

)
x3 +

(
A2

2
+

C(B1 + 3B2)
)
x4 + 2ACx5 + 2C2x6

)
e−Ax−B2

2 x2−A
6 − C

4 x
4

∈ L2(R). (52)

3.1.4 The nth eigenpair of H0 for n ≥ 4 :

By keeping repeating the same procedure of constructing a succession of multivalued operators, by altering the order of
the factorized operators that satisfy the shape invariance condition to get the supersymmetric partner, and to have the
shape invariance condition (11) from the new supersymmetric partner, this last is set as a multivalued operator. After
that, selections are made to establish the eigenfunction, through selecting the factorized operators that satisfy the shape

7
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invariance condition from this succession of multivalued operators, such that for the (n− 1)th time and according to
the nature of B, we get the (n− 1)th supersymmetric partner of H0 as

Y(A,Bn−2,C)Y
†
(A,Bn−2,C) =


• − d2

dx2 +A2 + Bn−2 +
(
ABn−1 −A

)
x+

(
A2

2 + B2n−1 + 3C
)

x2 +
(
AC +ABn−1

)
x3 +

(
A2

4 + 2Bn−1C
)
x4 + 2ACx5 + C2x6,

• Y †
(A,Bn−1,C)Y(A,Bn−1,C) + Bn−1 + Bn−2.

(53)

such that

Bn−2 = ηn−1 − η1 − 2

n−3∑
k=1

Bk − B0,

Bn−1 = ηn − η1 − 2

n−2∑
k=1

Bk − B0,

and from (12) with (53) we have
Qn−1 = Bn−1 + Bn−2, (54)

and this translations are going to appear
Bn−2 → Bn−1, (55)
C → C, (56)
C → −C, (57)

such that the transformation (57) is always rejected.

To establish the nth eigenfunction of H0, like previously, we make selections, such that we select the factorized
operators from every partner that is set already as a multivalued operator, then according to (27) the expression of the
eigenfunction is given by

ψn(x) = Y †
(A,B0,C)Y

†
(A,B1,C) . . . Y

†
(A,Bn−3,C)Y

†
(A,Bn−2,C)e

−
∫
W (τ,A,Bn−1,C)dτ , (58)

where
e−

∫
W (τ,A,Bn−1,C)dτ = e−Ax−Bn−1

2 x2−A
6 x3− C

4 x
4

(59)
and

Y † = − d

dx
+A+ Bix+

A
2
x2 + Cx3, i = 0, 1, 2, . . . , n− 2 (60)

such that B0 represents the initialization, with

B1 = η2 − η1 − B0, (61)

Bi = ηi+1 − η1 − 2

i−1∑
k=1

Bk − B0, i = 2, 3, . . . , n− 1. (62)

The expression (58) will produce a polynomial multiplied by the term e−Ax−Bn−1
2 x2−A

6 x3− C
4 x

4

, then the function
ψn ∈ L2(R).

According to the formula (26), the nth eigenvalue of H0 is given by

En =

n∑
k=1

Qk = ηn − η1. (63)

Finally, the eigenvalues of the operator H0 are given by

Ei = ηi − η1, i = 4, 5, 6, . . . (64)

with the associated eigenfunctions given in (58).

As a result, the operator H given in (28) and the operator H0 share the same set of eigenfunctions, and the spectrum of
the operator H is a translation of the spectrum of H0 by +η1, hence, the eigenvalues of H are given explicitly by

E′
i = ηi, i = 1, 2, 3, . . . (65)

such that ηi represents the ith positive imaginary parts of zeta function zeros on the critical line while the associated
eigenfunctions are given in (35), (43), (52) and (58).

8
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4 The existence of Hilbert-Pólya operator

4.1 The essentially self-adjointness of H

In this part we establish that the operator H is essentially self-adjoint on the space C∞
0 (R).

We denote the domain of H by Dom(H), we have also that

C∞
0 (R) ⊂ Dom(H) ⊂ L2(R) (66)

such that
C∞

0 (R) = L2(R), (67)
besides to the fact that potential function is a polynomial q defined in (34) is a polynomial of degree 6 which is bounded
from below, then, the operator H is essentially self-adjoint [10], therefore it exist only one self-adjoint extension of H
[11] which is its closure that we denote by H where it is equal to the adjoint of H .

Since the operators in (31) are the hermitian conjugate of each other, then the expression of H and H is the same,
then, depending on the formulation expanded in section 2 from the references [2, 3], it is a natural result that applying
supersymmetric quantum for shape invariance potentials will produce the whole discrete spectrum with the associated
eigenfunctions, i.e. the discrete spectrum is fully determined through supersymmetric quantum mechanics for shape
invariance potentials and since the set of functions (ψn)n≥0 are in L2(R), so that the eigenspace of each eigenvalue can
not be empty, as a result, the operators H and H will surely share the same eigenvalues i.e. the discrete spectrum of
both of them coincide.

4.2 The construction of an operator L, a matrix of operators

Let consider the following operator

L : L2(R)× L2(R)→ L2(R)× L2(R), (68)

L =

(
H 0
0 −H

)
(69)

such that for every element (
f
g

)
∈ L2(R)× L2(R), (70)

we have that

L

(
f
g

)
=

(
Hf
−Hg

)
. (71)

Since L2(R) is a Hilbert space, then, the space L2(R)× L2(R) is a Hilbert space and the inner product is defined for

every two elements
(
f1
g1

)
and

(
f2
g2

)
as

⟨
(
f1
g1

)
,

(
f2
g2

)
⟩L2(R)×L2(R) = ⟨f1, f2⟩L2(R) + ⟨g1, g2⟩L2(R) (72)

The operator −H is a self-adjoint operator on L2(R) since H is a self-adjoint on L2(R), as a result the operator L is
also a self-adjoint operator on L2(R)× L2(R).

4.3 The eigenpairs of L

According to part (3.1.1), then, the operator H is definite positive, hence the operator −H is definite negative at the
other side, as a result, the spectrum of H is strictly positive while the spectrum of −H is strictly negative, so that they
do not share an eigenvalue, besides to this, the value 0 can not be an eigenvalue for one of them.

Let ηn be an eigenvalue of H with the eigenfunction ψn from section 3, so one can write for n ∈ N∗

Hψn = ηnψn, (73)

then, from (73) one can have that
−Hψn = −ηnψn, (74)

9
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therefore, the spectrum of −H can be deduced starting from the spectrum of H , such that for every eigenvalue ηn of H ,
then −ηn is an eigenvalue for −H where they share the same eigenfunction ψn.

Since the operators H and −H do not share an eigenvalue, then there is no real value λ and a element
(
f
g

)
∈

L2(R)× L2(R) where
(
f
g

)
̸=

(
0
0

)
almost everywhere that verifies

L

(
f
g

)
=

(
Hf
−Hg

)
= λ

(
f
g

)
(75)

hence the eigenpairs of L must be written as

L

(
f
0

)
=

(
Hf
0

)
= λ

(
f
0

)
(76)

or

L

(
0
g

)
=

(
0
−Hg

)
= −λ

(
0
g

)
, (77)

where λ represents an eigenvalue of the operator H and f is the associated eigenfunction.

By returning then identification with section 3, the eigenpairs of the operator L are the following

L

(
ψn

0

)
=

(
Hψn

0

)
= ηn

(
ψn

0

)
(78)

and

L

(
0
ψn

)
=

(
0

−Hψn

)
= −ηn

(
0
ψn

)
, (79)

for n ∈ N∗ where the set (ηn)n≥1 represents the positive imaginary parts of zeta function zeros on the critical line and
the functions ψn are given in section (3). Hence, the set

{
(ηn)n≥1 ∪ (−ηn)n≥1

}
which is the set of imaginary parts of

the zeros of zeta function on the critical line, represents the eigenvalues of the operator L.
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