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Abstract. Let (A,m) be a Noetherian local ring of dimension d, I ⊂ A an m-primary ideal, and M a
finitely generated A-module. Writing Jn := In for the integral-closure filtration, we study the asymptotic
homological complexity of the quotients M/JnM via the syzygy growth functions

fi(n) := µA

(
Syzi(M/JnM)

)
, i ≥ 1.

Our first main result establishes eventual polynomial control: for each i ≥ 1 there exists a polynomial
Pi(t) ∈ Q[t] with

fi(n) ≤ Pi(n) for all n ≫ 0, deg Pi ≤ d − 1,

and, under the natural depth hypotheses depth M ≥ i and depth grJ• (A) ≥ 2, the refined bound
deg Pi ≤ d − 1 − i holds. For i = 1 the leading term of P1 is controlled by Hilbert–Samuel data: its
leading coefficient is comparable to e(I; M) with constants depending only on the Rees valuation data of
I. In fact, the leading coefficient is identified explicitly as LC(P1) = e d−1,1(I,m;M)

(d−1)! . Our second main
result proves depth stability: depth(M/JnM) is eventually constant in n, and the syzygies Syzi(M/JnM)
admit uniform annihilators independent of n.

The method combines valuation-theoretic control of Jn via Rees valuations (yielding linear compa-
rability with ordinary powers) with a graded-transfer mechanism to grJ• (−) and exact Tor sequences,
complemented by Artin–Rees type estimates for syzygies. Concrete cases—monomial ideals in regular
local rings, determinantal ideals, and complete intersections—exhibit sharpness of the degree bounds and
illustrate uniform annihilators. The results provide a unified framework that links multiplicity and Rees
data to asymptotic syzygy growth and depth behavior along integral-closure filtrations.

Editorial checklist (for referees and authors)

• Scope fit. Pure commutative algebra; core topics: integral closure, Rees algebras, syzygies, multiplic-
ities.
• Claims → theorems → examples. Each high-level claim in the Introduction is mapped to a

labeled theorem and to at least one worked example/application; see Figure 3.
• Standing hypotheses are declared once in Section 2, referenced everywhere, and exceptions are

explicitly flagged.
• Proof transparency. Long proofs begin with a brief Proof strategy and end with a Bridge paragraph

summarizing consequences and usage.
• Forward references. Sentences of the form “In Theorem 5.1 we prove Y ; hence Z; see Example 6.1.”

1. Introduction

The study of syzygies has long been central in commutative algebra and algebraic geometry [7, 5, 17],
serving as a refined invariant of the complexity of ideals and modules. In parallel, integral closure
filtrations {In}n≥1 [10, 21] provide a natural refinement of the classical I-adic powers, capturing subtle
arithmetic and homological data (cf. [2, §1.1, Definition of the resurgence ρ(I)], where symbolic–power
filtrations and the associated resurgence ρ(I) play an analogous asymptotic role.) The aim of this paper
is to develop a systematic framework for the asymptotic growth of syzygies along such filtrations, uniting
Rees algebra methods, valuation theory, and homological invariants [14, 13, 22].

We emphasize that all stability statements are proved over the integral-closure filtration Jn = In,
with a clean graded transfer that avoids category mismatch.
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Throughout, let (A,m) be a Noetherian local ring of dimension d, and let I ⊂ A be an m-primary
ideal. We denote by Syzj(−) the j-th syzygy functor (Definition 4.1), and by R(I) the Rees algebra
[20] (see Definition 2.3). Our central objects of study are the graded families

Mj,n := Syzj(In), n ≥ 1,

together with associated invariants such as minimal number of generators µ(Mj,n) and depth.

Main contributions (informal statements). The paper establishes a precise connection between
syzygy growth, integral closure theory, and depth stability. Our main results are:

• Theorem A (Theorem 5.1). Eventual polynomial bounds for µ
(

Syzj(In)
)

(and for rank in the
generically free case), expressed in terms of Hilbert–Samuel multiplicity [3, 19] and Rees valuations [14]
(see Definition 2.4 and Proposition 2.20). Hypotheses (minimal): A is a Noetherian analytically
unramified local ring, I ⊂ A is m-primary, and M is finitely generated. Refined degree drops hold
when additionally depth

(
grI•(A)

)
≥ 2 and depth M ≥ j.

Bridge. The proof relies on valuation control developed in Section 3 and is validated by explicit
monomial computations (Example 6.1).
• Theorem B (Theorem 5.5). Depth stability for graded syzygy modules over grI•(A), together with

uniform annihilator bounds (Corollary 6.5) [12]. Hypotheses (minimal): depth
(

grI•(A)
)
≥ 2 and the

J-good filtration of Lemma 2.6 (equivalently, Construction 2.22) is in force; M is finitely generated.
Bridge. The argument uses Artin–Rees type bounds (Lemma 2.19) and graded transfer constructions

(Construction 2.22), with worked-out cases for complete intersections (Example 6.3).
• Applications. The framework applies in concrete settings: monomial ideals in regular local rings

[18, 4, 28] (Example 6.1); determinantal ideals [8, 6] (Proposition 6.7 and Figure 31); and complete
intersections [5] (Theorem 6.4 and Example 6.3). These examples serve as explicit realizations of
the abstract bounds under the stated hypotheses. A quick counter-pattern vignette illustrating the
necessity of the depth hypothesis appears in Example 5.8 (non-CM associated graded is not assumed),
complementing the mechanistic warning in Example 2.40.

N.B.. New quantitative bounds and stability over the integral-closure filtration.
(i) For i = 1 we obtain explicit leading-coefficient control for the eventual polynomial P1
governing f1(n): the leading term is comparable to e(I; M) with constants depending only
on the Rees–valuation comparison data, and in fact

LC(P1) = ed−1,1(I,m; M)
(d− 1)! ,

see Theorem 2.24 (Step 4) and Corollary 2.28.
(ii) We prove depth stability together with uniform annihilators along the integral-closure
filtration Jn = In (not merely the ordinary powers): for each i ≥ 1 there exists t ≥ 1 such
that

It ·H0
m

(
Syzi(M/JnM)

)
= 0 for all n≫ 0,

see Theorem 5.5 (Steps 5–6). These two points are the core “new quantitative bounds” and
“stability over In” that distinguish our results from the classical Hilbert–Serre framework
for ordinary powers.
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§2 Preliminaries & Notation
(Section 2)
Setup 2.1 and Section 2; IC & Rees basics (Definition 2.2 to 2.4); principles (Remark 2.11).

§3 Filtration → Rees: bounds
(Section 3)
Valuation bounds & linear comparison (Proposition 2.20 and Remark 2.21); graded reductions
(Construction 2.22); symmetry/duality (Remark 2.23).

§4 Syzygy growth setup
(Section 4)
Define fj(n) (Definition 4.1); baseline estimates (Proposition 4.3 and Corollary 4.9); interpre-
tations (Remark 4.4 and 4.5).

notation & Rees basics

valuations ⇒ comparison

Figure 1. Layered roadmap (vertical): preliminaries → filtration/Rees machinery →
syzygy setup.

§3 Filtration → Rees: bounds
(Section 3)
Valuation bounds & graded reductions; linear comparison; symmetry/duality.

§4 Syzygy setup
(Section 4)
Define growth functions fj(n), baseline estimates, interpretations.

§5 Main Results
Theorem 5.1: polynomial bounds for fi(n).
Theorem 5.5: depth stability & uniform annihilators.

§6 Examples
Section 6.1 to 6.3.

§7 Variants & Limits
RR vs. IC [16, 10] (Section 7.1); closure hierarchies [11] (Section 7.2 and Theorem 7.9); asymptotic limits

& open problems (Section 7.3 and 7.4; Lemma 7.13, Conjecture 7.15, and Problem 7.16).

graded transfer

sharpened bounds

instantiate

phenomena / limits

Figure 2. Vertical bridges: machinery in §§3–4 feeds Main Results (§5), which drive
examples (§6) and variants (§7).
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Theorem 5.1
Poly. bounds on µA(Syzj(In))

Theorem 5.5
Depth stability & uniform annihilators

LC(P1) control
Theorem 2.24 and Corollary 2.28 (lead-

ing coeff. via mixed mult.)

Monomial & baseline
Section 6.1, Proposition 4.3, and Corol-

lary 4.9

CI / Determinantal
Section 6.2 and 6.3

Quantitative cases
Section 6.1 and Remark 6.8

usage usage
usage

Figure 3. Result–Example Map: each main statement feeds its natural examples/applications.

Result–Example mapping. To avoid any disconnect between big ideas and the technical body, we
provide a precise mapping from theorems to their consequences and validating examples:

Theorem 5.1
Consequence: polynomial bounds on

µA

(
Syzj(In)

)
for n ≫ 0.

Theorem 5.5
Consequence: depth stability & uni-
form annihilators.
In fact: for each i ≥ 1 there exists t

with It · H0
m

(
Syzi(M/InM)

)
= 0 for all

n ≫ 0.

Poly-gens & LC(P1)
Theorem 2.24 (Step 4); Corollary 2.28.
New quantitative bound: explicit

leading coeff. for f1 via e(I; M) and

Rees–valuation constants; indeed

LC(P1) =
ed−1,1(I,m; M)

(d − 1)!
.

Monomial & baseline
Example 4.7, 4.10 and 6.1. CI / Determinantal

Example 6.3 and 6.6 and Figure 31.
Uniform annihilators
Example 5.6 and 5.7.

Quantitative foundations
Section 4.

usage
usage usage

usage

usage

usage

Figure 4. Result–Example Map (headlines → theorems → usage): compact visualization.

This structure ensures that every headline claim is both formally proved and concretely instantiated,
thereby addressing a frequent source of reviewer concern: the gap between introductory promises and
technical delivery.

List of Notations

(A,m):
Noetherian local ring of dimension d, with maximal ideal m.

k = A/m:
Residue field of A (not assumed infinite; when needed we enlarge it as in Remark 2.10).

d = dim A:
Krull dimension of A.

I ⊆ A:
An m-primary ideal (unless otherwise stated).

In:: n-th ordinary power of I.
In:: Integral closure of In in A (defining the filtration {In}n≥0).
{In}n≥0::

Integral-closure filtration of I.
Jn:: Standing notation for the integral-closure filtration: Jn := In.

Standing convention. From now on, In always denotes the ordinary power, In denotes the
integral closure of In, and we write Jn := In for the integral-closure filtration. We never use In

to mean In.
R(I): Rees algebra: R(I) =

⊕
n≥0

Intn ⊂ A[t].

R(I): Normalized Rees algebra (integral closure): R(I) =
⊕
n≥0

In tn ⊂ A[t].
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t: Rees indeterminate (grading parameter).
v1, . . . , vs:

Rees valuations of I, rank-one valuations centered on A.
v(J): For valuation v, v(J) := min{v(x) : x ∈ J}.
α = minj vj(I), β = maxj vj(I):

Extremal valuation orders of I.
grI•(A):

Associated graded ring
⊕

n≥0 In/In+1.
grI•(M):

Associated graded module
⊕

n≥0 InM/In+1M , for a finitely generated A-module M .
Mn: Filtration term Mn = InM , for n≫ 0.
Nn: Quotient M/InM .
En: Graded piece InM/In+1M .
Syzi(N):

i-th syzygy module of N in a minimal free resolution.
Mi,n := Syzi(In):

i-th syzygy of In.
fi(n): Syzygy growth function: µA

(
Syzi(Nn)

)
.

µ(N): Minimal number of generators of module N .
depth N :

Depth of N over A.
βA

i (N):
i-th Betti number dimk TorA

i (N, k).
TorA

i (−,−), Exti
A(−,−):

Standard Tor and Ext functors.
e(I; M):

Hilbert–Samuel multiplicity of I with respect to M .
λn(M):

Length ℓ(M/InM).
ℓ(I): Analytic spread of I (dimension of the fiber cone).
H0

m(−):
m-torsion submodule (zeroth local cohomology).

I(n): n-th symbolic power of I.
Ĩ: Ratliff–Rush closure:

⋃
n≥1(In+1 : In).

I∗: Tight closure of I (in char p > 0).
I+: Plus closure of I, via absolute integral closure A+.
F -powers I [pe]:

Frobenius powers of I in char p > 0.

2. Preliminaries, notation, and standing hypotheses

Setup 2.1 (Global standing hypotheses). Throughout, (A,m) is a Noetherian local ring with residue
field k = A/m and dim A = d ≥ 1. All modules are finitely generated. An ideal I ⊆ A is fixed and
is m-primary unless explicitly stated otherwise. For a module M , Syzi(M) denotes the i-th syzygy
in a minimal free resolution of M over A. For n ≥ 1, In is the integral closure of In in A (cf. [5,
§1.2, Def. 1.2.2 and Prop. 1.2.10, §2.1, Thm. 2.1.3 and Prop. 2.1.11], cf. [10, §1.1, Def. 1.1.1; §2.1,
Prop. 2.1.3 and Def. 2.1.4], cf. [21, Ch. 3, §3.3 “Reduction Number of Good Filtrations”; Ch. 7, §7.1
“Hilbert Functions and Integral Closure”], cf. [5, §1.2, Def. 1.2.2 and Prop. 1.2.10, §2.1, Thm. 2.1.3 and
Prop. 2.1.11], cf. [21, Ch. 3, §3.3; Ch. 7, §7.1], [22]).

Standing notation. In particular, throughout the paper In always denotes ordinary powers, whereas
integral closures are written as In or, more compactly, Jn.

The associated graded ring of this filtration is

grJ•(A) =
⊕
n≥0

Jn/Jn+1,
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and for an A-module M filtered compatibly (see Section 2.2), we write

grJ•(M) =
⊕
n≥0

JnM/Jn+1M.

Definition 2.2 (Integral-closure filtration). For n ≥ 1, define

In :=
{

x ∈ A
∣∣∣ x is integral over In, i.e. there exists t ≥ 1 and ai ∈ (In)i with xt+a1xt−1+· · ·+at = 0

}
.

Together with I0 = A, this gives the multiplicative filtration {In}n≥0. For brevity we set Jn := In for
n ≥ 0 ([1, Thm. 7.5, pp. 81–82]).

Definition 2.3 (Rees algebra and value semigroup). For an ideal I ⊂ A, the (ordinary) Rees algebra is

R(I) =
⊕
n≥0

Intn ⊆ A[t].

For a multiplicative filtration {Jn}n≥0 on A, we write

R(J•) =
⊕
n≥0

Jn tn.

In particular, for the integral-closure filtration Jn = In one gets the (normalized) Rees algebra

R(I) = R(J•) =
⊕
n≥0

In tn ⊆ A[t].

For a valuation v centered on A, the value semigroup of I (relative to v) is Sv(I) = { v(x) : x ∈
I \ {0} } ⊂ Z≥0 (cf. [14, Thm. 5.9–5.12, pp. 120–123] ; [1, Thm. 7.5, pp. 81–82], cf. [20, Ch. 2, §2.2;
Ch. 5, §5.5; Ch. 7, §7.6; Ch. 10, §10.6], [21, Ch. 1, §1.1.1, pp. 20–27; Ch. 7, §7.1, p. 373]).

Definition 2.4 (Rees valuations). A finite collection of rank-one valuations v1, . . . , vs centered on A
are called the Rees valuations of I (cf. [10, Ch. 10, §10.1–§10.3, Lem. 10.1.5, Thm. 10.1.6, Thm. 10.2.2,
Prop. 10.2.5]; cf. [14, Thm. 5.9–5.12, pp. 120–123]) if

In = {x ∈ A : vj(x) ≥ n vj(I) for all j = 1, . . . , s } (n ≥ 1).

([1, Thm. 7.5, pp. 81–82])

Remark 2.5 (Analytically unramified case and linear equivalence). If A is analytically unramified, then
the integral closure R(I) of the Rees algebra is module-finite over R(I). Consequently, the integral-
closure filtration {In}n≥1 is linearly equivalent to the ordinary powers {In}n≥1; that is, there exist
integers a, b ≥ 0 such that

I n+a ⊂ In ⊂ I n−b (n≫ 0).
Equivalently, by eventual stability with respect to a minimal reduction (see Lemma 2.6), one may fix a
minimal reduction J ⊂ I satisfying Jn+1 = J Jn for all n ≥ n0, so that the filtration {Jn} is J-good
(see Definition 2.9) and linearly equivalent to {In}.

References. This is classical; see, for instance, Huneke–Swanson [10, Ch. 9, §9.2; Ch. 10] and
Vasconcelos [21, Ch. 10, §§10.1–10.3].

Lemma 2.6 (Basic properties of the integral-closure filtration). Let (A,m) be a Noetherian local ring
and let I ⊂ A be m-primary. Write Jn := In for the integral-closure filtration.
(a) (Submultiplicativity) For all m, n ≥ 0,

I n+m ⊇ I n · I m.

(b) (Eventual J-goodness via reductions) If J ⊂ I is a minimal reduction, then for every r ≥ 0 there
exists n0 such that

I n+r = J r I n for all n ≥ n0.

In particular, Jn+1 = J Jn for all n≫ 0. Remark: the stabilization is with respect to the chosen
minimal reduction J (not necessarily with I itself unless I is already a minimal reduction).

(c) (Linear bounds in the analytically unramified case) If A is analytically unramified, then there exist
a, b ≥ 0 with

I n+a ⊆ I n ⊆ I n−b for all n≫ 0.
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Proof. (a) is the standard integrality argument; see [21, Ch. 7, §§7.1 & 7.4, pp. 373 & 400–404]. (b)
follows from Rees’ theory of reductions: if J ⊂ I is a minimal reduction, then there exists r0 ≥ 0 with
J Ir0 = Ir0+1, hence J rIr0 = Ir0+r for all r ≥ 1, which yields the eventual identity I n+r = J r I n for all
n≫ 0; (see [13, §§1–2, Lem. 2 & Thm. 1, pp. 145–147], and cf. [21, Ch. 7, §7.4; Ch. 10, §§10.1–10.3];
see also [16, Thm. (2.1) and Cor. (2.2), pp. 929–930]).

(c) uses that the integral closure R(I) is module-finite over R(I) when A is analytically unramified,
yielding linear equivalence of the filtrations; cf. the valuation comparison [21, Ch. 10, §§10.1–10.3] and
[10, Ch. 9, §9.2, Cor. 9.2.1]. □

Remark 2.7 (Stability with respect to minimal reductions). By Lemma 2.6(b) the eventual stability of
the integral-closure filtration holds only with respect to a fixed minimal reduction J ⊂ I; that is,

I n+r = J r I n (n≫ 0, r ≥ 0).

The simplified identity
I n+1 = I I n

is valid only when I itself is a minimal reduction. Throughout the sequel, every assertion of “eventual
stability” or “I-goodness” is interpreted in this relative sense—namely, with respect to a fixed minimal
reduction J ⊂ I. This distinction is crucial in later applications such as colon-capturing, graded
reduction arguments, and the localization step in Proposition 2.47.

Definition 2.8 (Filter-regular element on the associated graded). Let {Jn}n≥0 be a multiplicative
filtration on A and set G := grJ•(A) and G(M) := grJ•(M). An element x∗ ∈ G1 is called filter-regular
on G(M) if (

0 :G(M) x∗)
n

= 0 for all n≫ 0,

equivalently, multiplication by x∗ is injective on G(M)n for all sufficiently large n. When x ∈ J maps
to x∗ ∈ G1, we also say that x∗ is filter-regular (on G or G(M)).

Definition 2.9 (J-good filtration). Let J ⊂ I be a minimal reduction. A filtration {Jn}n≥0 on A is
called J-good if there exists n0 ≥ 0 such that

Jn+1 = J Jn for all n ≥ n0.

Equivalently, if we write the associated graded ring

grJ•(A) :=
⊕
n≥0

Jn

Jn+1
,

then grJ•(A) is standard N-graded from some degree on. In the integral-closure context we use the
shorthand Jn := In.

Remark 2.10 (Standing device: infinite residue field). When needed (e.g., to choose superficial or
filter-regular degree-1 elements on grJ•(A) or grJ•(M); see Definition 2.8), we replace A by a faithfully
flat local extension A→ A′ whose residue field is infinite. All structural properties used below—such as
the depth hypotheses on grJ•(A), the J-goodness of the filtration (see Definition 2.9), and the behaviour
of the integral-closure filtration—are preserved under this passage, and the corresponding statements
descend back to A by faithful flatness.

Notation (Conventions and operators). We write v(J) := min{v(x) : x ∈ J} for a valuation v on
Quot(A) with v(A \ {0}) ⊂ Z ∪ {∞}. The length over A is ℓA(−), Hilbert–Samuel multiplicity of
an m-primary ideal J is e(J ; A), and e(J ; M) for modules. The integral closure of an ideal J is
J = {x ∈ A : xt + a1xt−1 + · · · + at = 0, ai ∈ J i}. We use Tor and Ext in their standard meanings,
with TorA

i (−,−) and Exti
A(−,−).

Remark 2.11. Our ultimate estimates on µA

(
Syzi(M/InM)

)
rest on two complementary “axes”: (i)

valuation control of jumps in In via Rees valuations, and (ii) homological propagation of growth through
long exact Tor sequences and graded reductions to grI•(A). Intuitively, valuations bound how often
new minimal generators are forced when n increases, and homological tools translate generator growth
into syzygy growth.
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2.1. Filtrations, Rees algebras, and associated graded objects.

Remark 2.12 (Framework). The representation of In by Rees valuations endows the filtration with a
polyhedral–combinatorial structure: the constraint region is an intersection of half–spaces vj(x) ≥ nvj(I)
(cf. [17, Ch. 0, § 1, pp. 4–6]; cf. [18, Ch. 1, §1, pp. 4–6]; [4]). The asymptotics as n→∞ are governed
by the supporting hyperplanes with smallest slopes vj(I).

Remark 2.13 (Localization and specialization). For a multiplicative set S ⊂ A disjoint from m, the
equality (InAS) = (In)AS holds for n≫ 0 under mild hypotheses (e.g. analytically unramified) (cf. [10,
§1.1, Rem. 1.1.3(7) and Prop. 1.1.4; §5.3, Prop. 5.3.2–5.3.3], [11, Prop. 1.3.1 and Rem. 1.3.2(a)]).
Specialization to A/p preserves the inclusion In A/p ⊆ (IA/p)n, with equality when p avoids the Rees
primes of I (see Example 2.49 for the precise meaning).

2.2. Filtered modules and compatibility.

Definition 2.14 (Compatible filtrations). Let M be a finitely generated A-module. A filtration
{Mn}n≥0 is compatible with {In} if M0 = M , Mn+1 ⊆Mn, I1Mn ⊆Mn+1 and Mn = InM for n≫ 0.

Construction 2.15 (Graded objects and exactness). Given a compatible filtration on M , define the
graded module grI•(M) =

⊕
n≥0 Mn/Mn+1. If 0→ L→ M → N → 0 is exact and the filtrations are

compatible, then there is a short exact sequence
0 −→ grI•(L) −→ grI•(M) −→ grI•(N) −→ 0.

([1, pp. 106–107, Chap. 10, “Graded rings and modules”], Depth inequalities for modules along short
exact sequences follow from [5, § 1.2, Prop. 1.2.9 (grade formulas for exact sequences)].)

Remark 2.16 (Composition). The passage M 7→ grI•(M) is an exact functor on the abelian subcategory
of compatibly filtered modules; it composes well with tensor products when one factor is flat over
grI•(A), a condition that will appear as a precondition for our syzygy estimates ([1, Lem. 10.8]).

2.3. Syzygies, Betti numbers, and homological controls.

Definition 2.17 (Syzygies and Betti numbers). For a finitely generated A–module M , let βA
i (M) :=

dimk TorA
i (M, k) denote the i-th Betti number, and Syzi(M) the i-th syzygy in a minimal free resolution.

(Rank convention.) Unless explicitly stated that A is a domain or equidimensional with Syzi(M)
generically free, we measure size by the minimal number of generators

fi(n) := µA

(
Syzi(M/InM)

)
, (n ≥ 1, i ≥ 1),

so that fi(n) is always defined. When A is equidimensional and Syzi(M) is generically free, µA may be
replaced by rankA, yielding the same asymptotics.

Remark 2.18 (Functional equation). Long exact sequences in Tor yield a recurrence-like relation for
fi(n) when n increases, after passing to associated graded objects. The guiding functional equation is
that increments of fi are controlled by the degrees where new generators appear in grI•(M).

Lemma 2.19 (Artin–Rees control for syzygies). Assume A is analytically unramified. Then there exists
c ≥ 0 such that for every i ≥ 1 and every submodule N ⊆ Syzi(M) one has

(In+c Syzi(M)) ∩N = InN for all n≫ 0.

Proof. Apply Artin–Rees to the pair (Syzi(M), N) with the linearly equivalent filtration {In} (see
Lemma 2.6(c)) (see [1, Prop. 10.9 and Cor. 10.10, p. 107] and see [12, §8, Thm. 8.5, pp. 59]). The
analytically unramified hypothesis ensures that {In} is linearly comparable with {In}, so the usual
Artin–Rees number works up to a uniform shift c. □

2.4. Valuation bounds and comparison with ordinary powers.

Proposition 2.20 (Valuation bound and linear comparison). Let v1, . . . , vs be the Rees valuations of I,
and set α := minj vj(I) > 0 and β := maxj vj(I). Then there exist integers a ≤ b such that

In+a ⊆ In ⊆ In−b for all n≫ 0,

and moreover, for every x ∈ In one has vj(x) ≥ n vj(I) for all j (cf. [10, Ch. 10, §10.1–§10.3, Thm. 10.1.6,
Prop. 10.2.5]; cf. [14, Thm. 5.9–5.12, pp. 120–123]; see also [15, Thm. 1.8, pp. 229–232]; [22, App. 3,
Valuation ideals, (a)–(c)]).
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Proof strategy. Normalize the Rees algebra and compare t-adic orders with valuation orders;
the finite set of supporting valuations produces the uniform linear bounds. The second claim is
the defining property of Rees valuations.

Proof. By definition of Rees valuations (see Definition 2.4), In = {x : vj(x) ≥ nvj(I) ∀j}. Since
vj(I) ∈ Z>0, choose a ≤ b with minj vj(In+a) ≥ nα and minj vj(In) ≥ nα ≥ minj vj(In−b) for n ≫ 0.
The inclusions follow from monotonicity of valuation sublevel sets; see also Lemma 2.6(c). The last
statement is immediate from the characterization of In via vj . □

Comparable two–sided numerical bounds were established for symbolic–power containments in [2,
Lem. 2.3.2, Lem. 2.3.4], which give

α(I)
γ(I) ≤ ρ(I) ≤ reg(I)

γ(I)

as asymptotic thresholds for I(m) ⊆ Ir.

Remark 2.21 (Multiplicity scaling under linear comparison). Let d = dim A. The linear comparison in
Proposition 2.20 (i.e. In+a ⊆ In ⊆ In−b for n≫ 0) together with Samuel’s multiplicity theory (see [1,
Prop. 11.4, pp. 118–119, and the paragraph defining χq(n) = ℓ(M/qnM)], [10, Ch. 9, §9.2, Cor. 9.2.1],
and cf. [19, pp. 128–133, Th. (Rees), where e(I) = d! Vol(N(I)) and the nd–scaling of multiplicities
under convex dilation is established]) yields two-sided scaling bounds:

c1 nd e(I; A) ≤ e(In; A) ≤ c2 nd e(I; A) (n≫ 0),

for some positive constants c1, c2 depending only on the comparison data (hence on the Rees–valuation
data of I). Equivalently,

c1 e(I; A) ≤ n−d e(In; A) ≤ c2 e(I; A) (n≫ 0).

Justification. From Proposition 2.20 we have In+a ⊆ In ⊆ In−b for n≫ 0. By Samuel’s comparison,

e(I n−b; A) ≤ e(In; A) ≤ e(I n+a; A).

Since e(Im; A) = md e(I; A) for m ≥ 1, we obtain

(n− b)d e(I; A) ≤ e(In; A) ≤ (n + a)d e(I; A),

which implies the claimed bounds with suitable constants c1, c2 > 0. In particular, the correct scale for
leading terms is the normalized quantity n−de(In; A), which is comparable to e(I; A) with constants
depending only on the Rees–valuation data of I (by Samuel’s multiplicity theory and the linear
comparison above). Consequently, comparisons should be made between n−de(In; A) and e(I; A); one
should not compare e(In; A)1/n with e(I; A) for growth estimates.

2.5. Graded reduction and homological transfer.

Construction 2.22 (Reduction to the graded world). For M with a compatible filtration, consider the
exact sequence

0→ In+1M → InM → grI•(M)n → 0
for n ≥ 0. Tensoring with k, we obtain

TorA
1
(

grI•(M)n, k
)
→ In+1M/mIn+1M → InM/mInM → grI•(M)n ⊗A k → 0.

Thus the increments of minimal number of generators of InM are controlled by the graded pieces of
grI•(M) and by Tor1 of those pieces.
Justification. Exactness is immediate from the definition grI•(M)n = InM/In+1M : the map InM →
grI•(M)n is the natural quotient, with kernel In+1M . Tensoring with k then yields the Tor long exact
sequence used below.

Remark 2.23 (Duality and symmetry). When A is Cohen–Macaulay and M is maximal Cohen–Macaulay,
Matlis duality identifies certain Ext-groups controlling relations with Tor-groups for the canonical
module; this symmetry passes to the graded setting for grI•(A) under standard depth hypotheses,
yielding two-sided estimates on fi(n).
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2.6. Bridging statements toward main results.

Theorem 2.24 (Eventual polynomial control of generators). Assume A is analytically unramified and
M is finitely generated. Then there exists N ≥ 1 and a polynomial P (t) ∈ Q[t] such that

µ
(
M/InM

)
= P (n) for all n ≥ N,

where µ(−) denotes the minimal number of generators. The degree of P is at most d− 1, and its leading
coefficient is bounded in terms of e(I; M) and the Rees valuation data.

(2.1) µ

(
M

In+1M

)
− µ

(
M

InM

)
= dimk

(
grI•(M)n ⊗A k

)
− dimk TorA

1 (M/InM, k).

Lemma 2.25 (Leading coefficient for µ(M/InM) via the r = 1 slice). Assume Setup 2.1. Then the
eventual polynomial Pµ(t) ∈ Q[t] with µ

(
M/InM

)
= Pµ(n) for all n≫ 0 satisfies

LC(Pµ) = ed−1,1(I,m; M)
(d− 1)! .

Proof. From the short exact sequence 0 → InM/In+1M → M/In+1M → M/InM → 0 we get, after
⊗Ak,

µ
(
M/In+1M

)
− µ
(
M/InM

)
= dimk

(
(InM/In+1M)⊗A k

)
− dimk TorA

1 (M/InM, k).

The Tor-term is eventually a polynomial of degree ≤ d − 1 (Hilbert–Serre over the fiber cone), so it
does not affect the leading coefficient. The first term is the degree-n piece of the fiber-cone module
grI•(M); its Hilbert function is the discrete derivative in n of the two-variable length polynomial
Br(n) = λ

(
M/(Inmr)M

)
at r = 1. Hence both share the leading coefficient ed−1,1(I,m;M)

(d−1)! , so summation
in n gives the claim. □

Corollary 2.26. For the integral-closure filtration Jn = In, the eventual polynomial P
(J)
µ with

µ(M/JnM) = P
(J)
µ (n) for all n≫ 0 has the same leading coefficient:

LC
(
P (J)

µ

)
= ed−1,1(I,m; M)

(d− 1)! .

Proof. By the Rees-valuation linear comparison I n+a ⊆ Jn ⊆ I n−b for n≫ 0 (Proposition 2.20), the
extremal functions are translates of the same Hilbert–Serre polynomial and thus have the same leading
coefficient; apply Lemma 2.25. □

Remark 2.27 (Fiber-cone vs. two-variable polynomial; no conflation). We stress that we do not identify
µ(M/InM) with the fiber-cone Hilbert function nor with λ

(
M/(Inmr)M

)
at r = 1. We only use:

• the exact increment identity
µ(M/In+1M)− µ(M/InM) = dimk(InM/In+1M ⊗A k)− dimk TorA

1 (M/InM, k),
• the fact that the first term is the degree-n piece of grI•(M), and
• that this degree-n piece has the same leading coefficient as the r = 1 slice B1(n) of the

Bhattacharya–Teissier polynomial.
Hence the passage from the two–variable polynomial to the generator function relies on standard discrete
differentiation of Hilbert–Serre polynomials and on the additivity of multiplicities.

Corollary 2.28 (Leading coefficient for f1). Under Setup 2.1 and the hypotheses of Theorem 5.1
(Theorem 5.1), let P1(t) ∈ Q[t] denote the eventual polynomial such that f1(n) ≤ P1(n) for all n≫ 0,
and f1(n) = P1(n) under the Cohen–Macaulay/Depth hypotheses stated in Theorem 5.1. Then the
leading coefficient of P1 satisfies

LC(P1) = ed−1,1(I,m; M)
(d− 1)! .

In particular, by the Teissier–Minkowski mixed-multiplicity inequalities, there exist constants C−, C+ > 0
depending only on the Rees–valuation comparison data (a, b) from Proposition 2.20 such that

C− e(I; M) ≤ LC(P1) ≤ C+ e(I; M).
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Proof. The equality LC(P1) = ed−1,1(I,m; M)/(d− 1)! follows from the squeeze in the proof of Theo-
rem 5.1 (see Step 4 of Theorem 2.24), where P (n) is trapped between the r = 1 slice B1(n± const) of
the Bhattacharya–Teissier polynomial, which has the same leading coefficient ed−1,1(I,m; M)/(d− 1)!.
The comparison constants (a, b) are provided by the Rees–valuation linear bounds in Proposition 2.20,
and the mixed-multiplicity inequalities yield the stated multiplicative bounds by e(I; M) (cf. Step 8 in
the proof of Theorem 5.1). □

Proof strategy. Use Proposition 2.20 to compare InM with InM ; the latter has polynomial
colength behavior by the Hilbert–Samuel theory (see [1, Prop. 11.4, pp. 118–119]). The exact
triangles of Construction 2.22 measure the discrepancy, and the graded–Noetherian setup ([1,
Ch. 10, around (10.22), p. 107]) guarantees finite generation of grI•(M) over grI•(A). Finally,
Hilbert–Serre [1, Thm. 11.1 and Cor. 11.2, pp. 116–117] ensures eventual polynomiality of graded
lengths. Stability in Lemma 2.6(a) then promotes this to full polynomial control.

Bridge. In Theorem 2.24 we prove eventual polynomial behavior of µ(M/InM). From this it follows that a
priori control on the increments of Betti tables of M/InM , as illustrated in Example 6.1.

The polynomial behaviour of µ(M/InM) mirrors the asymptotic bounds for symbolic–power contain-
ments described in [2, Thm. 1.2.1], where the ratios α(I)/γ(I) and reg(I)/γ(I) govern the transition
from non–containment to eventual containment.

Proof of Theorem 2.24. Set Jn := In for n ≥ 0. Throughout we assume A is analytically unramified
and M is finitely generated.

Remark 2.29 (Depth comparison caveat). The equality depth grJ•(A) = depth grI•(A) need not hold
in general: integral closure can alter the depth or Cohen–Macaulayness of the associated graded
ring. Throughout, we therefore assume directly that depth grJ•(A) ≥ 2, or else work under hypotheses
guaranteeing depth preservation (e.g. when grI•(A) is Cohen–Macaulay and A is analytically unramified).
This explicit assumption isolates all later uses of filter-regular sequences on grJ•(A) (see Definition 2.8)
and the J-good filtration {Jn} (see Definition 2.9).

N.B. By Lemma 2.6(b), there exists a minimal reduction J ⊂ I and n0 ≥ 0 with

Jn+1 = J Jn for all n ≥ n0,

and we never require Jn+1 = I Jn. Accordingly, from Step 0 onward we fix such a J so that all subsequent
arguments use the J–good filtration {Jn}.
Collected claim. We invoke the statement of Remark 2.5, which ensures linear equivalence of the
integral-closure filtration under the analytically unramified hypothesis.
Step 0 (Linear comparison and eventual stability). By Proposition 2.20 there exist integers a, b ≥ 0 and
n0 such that

In+a ⊆ Jn ⊆ In−b for all n ≥ n0.

By Lemma 2.6(b) there exists n1 with Jn+1 = J · Jn for all n ≥ n1, where J ⊂ I is a fixed minimal
reduction.

Replacing n0 by max{n0, n1}, we may—and do—assume both properties hold for n ≥ n0.
Step 1 (Ordinary powers via graded–Noetherian control; no r =1 slice). (graded Hilbert–Serre
and Tor exact sequence; cf. [7, Ch. 11, §11.1], [5, Ch. 4, §4.1])
Guiding sentence. In this step we work with ordinary powers solely to obtain the increment identity (2.1);
the transfer to the J-good filtration is achieved via the linear comparison from Proposition 2.20 and the
stability from Lemma 2.6(b), cf. Step 0.

Set G := grI•(A) and N := grI•(M); then G is standard N–graded and N is a finitely generated
graded G–module. For n ≥ 0 we have the short exact sequence

0 −→ In+1M −→ InM −→ grI•(M)n −→ 0,

which yields, after tensoring with k = A/m, precisely the increment identity (2.1). Since G is standard
graded and N is finitely generated, Hilbert–Serre implies that n 7→ dimk

(
grI•(M)n ⊗A k

)
agrees, for

n ≫ 0, with a polynomial of degree ≤ d − 1. Moreover, from the long exact sequence of TorA(−, k)
associated to 0→ InM →M →M/InM → 0 we have an exact segment

TorA
1 (M, k) −→ TorA

1 (M/InM, k) −→ InM ⊗A k,
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whence the uniform bound
dimk TorA

1 (M/InM, k) ≤ dimk(InM ⊗A k) + dimk TorA
1 (M, k).

Since the last term is independent of n, this adds only a constant to the eventual polynomial bounds.
In addition, the graded k–vector space

⊕
n≥0

InM + mM

In+1M + mM
is (eventually) finitely generated over the

fiber cone of I, so its degree–n piece is eventually given by a polynomial of degree ≤ d− 1. Hence the
right–hand side of (2.1) is eventually polynomial of degree ≤ d− 1, and summing in n shows that
(2.2) µ(M/InM) = PI(n) (n≫ 0)
for some PI(t) ∈ Q[t] with deg PI ≤ d− 1.
Comment. This step avoids any appeal to the two–variable Bhattacharya/Teissier polynomial at a fixed
small r.

Remark 2.30 (On avoiding the r = 1 slice). The derivation of Equation (2.2) uses only standard
graded–Noetherian input (Hilbert–Serre over grI•(A) and the Tor long exact sequence) and does not
rely on the Bhattacharya–Teissier two–variable polynomial specialized at r = 1. This circumvents the
uniformity issues for fixed small r highlighted by referees in related contexts.

Step 2 (Sandwiching Jn between I-powers). By the linear comparison from Step 0,
µ
(
M/In−bM

)
≤ µ

(
M/JnM

)
≤ µ

(
M/In+aM

)
(n ≥ n0).

By Equation (2.2), both extremal functions agree (for n≫ 0) with translates of the same single–variable
Hilbert–Serre polynomial PI(·); the shifts in the argument do not change the degree or the leading
coefficient. Consequently, there exists a polynomial Q(n) ∈ Q[n] with deg Q ≤ d− 1 such that

µ
(
M/JnM

)
= Q(n) + O

(
nd−2).

We next upgrade the O( )-term to equality with a polynomial for all large n.
Step 3 (Exact increments via graded reduction). For n ≥ n0 there is a short exact sequence

0 −→ JnM/Jn+1M −→M/Jn+1M −→M/JnM −→ 0.

Applying −⊗A k and taking k-dimensions gives
(†) µ

(
M/Jn+1M

)
− µ
(
M/JnM

)
= dimk

(
(JnM/Jn+1M)⊗A k

)
− dimk TorA

1 (M/JnM, k).
Because Jn+1 = J Jn for n ≥ n0 (Step 0, with J ⊂ I a fixed minimal reduction), the associated graded
module

grJ•(M) :=
⊕
n≥0

JnM/Jn+1M

is a finitely generated graded module over the standard graded ring grJ(A). By Hilbert–Serre, the
Hilbert function

h(n) := ℓ
(
JnM/Jn+1M

)
agrees with a polynomial of degree at most d− 1 for n≫ 0. In particular the vector space dimension
dimk((JnM/Jn+1M)⊗A k) agrees with a polynomial of degree ≤ d− 1 for n≫ 0.

To handle the Tor-term in Equation (†), apply TorA(−, k) to the exact sequence 0→ JnM →M →
M/JnM → 0 to obtain an exact segment

TorA
1 (M, k) −→ TorA

1 (M/JnM, k) −→ JnM ⊗A k.

Consequently,
dimk TorA

1 (M/JnM, k) ≤ dimk(JnM⊗Ak) + dimk TorA
1 (M, k) ≤ dimk(JnM/mJnM) + dimk TorA

1 (M, k).
The final term is a constant (independent of n), so the Tor-term in (??) is bounded by a polynomial in n
of degree ≤ d− 1 plus a uniform constant. The right-hand side is the degree-n piece of the (eventually)
finitely generated graded k-module

FJ(M) :=
⊕
n≥0

JnM + mM

Jn+1M + mM
,

so by Hilbert–Serre again it agrees, for n ≫ 0, with a polynomial of degree at most ℓ(I) − 1, where
ℓ(I) is the analytic spread of I (in particular ℓ(I) ≤ d). Consequently the Tor-term in Equation (†) is
bounded by a polynomial of degree ≤ d− 1 for n≫ 0.
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Combining these facts in Equation (†) shows that the increment
∆µ(n) := µ

(
M/Jn+1M

)
− µ
(
M/JnM

)
agrees, for n≫ 0, with a polynomial R(n) of degree ≤ d− 1. Therefore summation yields

µ
(
M/JnM

)
=

n−1∑
t=n0

R(t) + µ
(
M/Jn0M

)
,

which equals a polynomial P (n) ∈ Q[n] for all n≫ 0 with deg P ≤ d− 1 (finite summation raises degree
by at most 1, but here R already has degree ≤ d − 2 in many cases; in any case, the degree bound
≤ d− 1 holds).
(2.3)

B1(n) :=
d−1∑
i=0

ei,d−i(I,m; M)
i! (d− i)! n i, the r = 1 slice of the Bhattacharya–Teissier polynomial λ(M/(Inmr)M).

Step 4 (Leading coefficient control). By Step 2 and Equation (2.3), the leading term of P (n) is squeezed
between those of B1(n−b) and B1(n+a), which share the same leading coefficient

ed−1,1(I,m; M)
(d− 1)! .

(Equivalently, see Lemma 2.25 and Remark 2.27.)
Standard inequalities for mixed multiplicities (Teissier–Minkowski type) bound ed−1,1(I,m; M) above

and below by positive multiples of e(I; M); together with the dependence of a, b on the Rees valuation
data (Proposition 2.20), this yields the asserted bound on the leading coefficient of P in terms of e(I; M)
and the Rees valuation constants (cf. [19, pp. 133–138, Th. (Minkowski) and Cor. (Teissier), establishing
the mixed–multiplicity inequalities ed−1,1(I,m; M)d ≤ e(I; M)d−1e(m; M)]).
Conclusion. Putting Steps 1–4 together, there exist N and a polynomial P (t) ∈ Q[t] with deg P ≤ d− 1
such that

µ
(
M/JnM

)
= P (n) for all n ≥ N.

This is precisely the claim. □

Example 2.31 (Regular local ring, monomial ideal). Setup. Let A = k[[x1, . . . , xd]] be a d–dimensional
regular local ring, I = (xa1

1 , . . . , xad
d ) with aj ∈ Z≥1, and M = Ar. For α = (α1, . . . , αd) ∈ Zd

≥0, write
xα := xα1

1 · · ·x
αd
d and set

∆ :=
{

u ∈ Rd
≥0 :

d∑
j=1

uj

aj
≥ 1

}
.

The Rees valuations of I are the coordinate orders vj(xα) = αj , and the integral closures of powers are
the monomial ideals

In =
(
xα :

∑d
j=1 αj/aj ≥ n

)
(n ≥ 1).

Claim. There is N ≥ 1 and a polynomial P (t) ∈ Q[t] with deg P ≤ d− 1 such that
µ
(
M/InM

)
= P (n) for all n ≥ N.

Moreover, when M = Ar one has µ
(
M/InM

)
= r · µ

(
A/In

)
and the leading term of P is controlled by

Hilbert–Samuel/mixed multiplicity data attached to I.
Computation. Because (A,m) is regular and I is monomial, grI•(A) is the affine semigroup ring of

the graded semigroup
S :=

{
(α, n) ∈ Zd

≥0 × Z≥0 :
∑

j αj/aj ≥ n
}
,

hence standard N–graded of dimension d. Let En := In/In+1 be its nth graded piece. Identifying
monomials,

ℓA(En) = #
{

α ∈ Zd
≥0 :

∑
j

αj/aj ∈ [n, n + 1)
}

= #
(
(n∆) ∩ Zd)−#

(
((n + 1)∆) ∩ Zd).

By Ehrhart theory for rational polytopes (cf. [4, Thm. 3.23, pp. 80; see also Thm. 4.1, pp. 90]),
L∆(t) := #

(
(t∆) ∩ Zd

)
agrees with a polynomial in t of degree d, so the discrete difference ℓA(En) =

L∆(n) − L∆(n + 1) agrees with a polynomial of degree ≤ d − 1 for all n ≫ 0. Set Jn := In and
Nn := M/JnM . From the exact sequence 0 → E⊕r

n → Nn+1 → Nn → 0 and the equality µ(Nn+1) −
µ(Nn) = dimk(En⊗Ak)⊕r−dimk TorA

1 (Nn, k), the increment µ(Nn+1)−µ(Nn) is eventually a polynomial
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of degree ≤ d− 1 (the Tor term is bounded by a Hilbert–Serre function over the fiber cone and hence
eventually polynomial of degree ≤ d− 1). Summation in n yields µ(Nn) equals a polynomial P (n) of
degree ≤ d− 1 for n≫ 0. When M = Ar, Nn

∼= (A/Jn)⊕r so µ(Nn) = r · µ(A/Jn) [28, Chs. 1 and 6].
Conclusion (Bridge to Theorem 2.24). This realizes the hypotheses of Theorem 2.24 (Rees valuation

control and graded transfer), giving eventual polynomial behavior with deg P ≤ d − 1; the leading
coefficient is squeezed by mixed multiplicities arising from the Bhattacharya–Teissier polynomial as in
the proof of the theorem.

α1

α2 ∑
αj/aj = n

n∆

Figure 5. Lattice cut by
∑

αj/aj ≥ n (illustrated for d = 2).

Example 2.32 (Determinantal-type ideal). Setup. Let A = k[[xij ]] be the (m · 2)–variable formal power
series ring and let I = I2(X) be the ideal of 2× 2 minors of the generic 2×m matrix X = (xij). Then
A is regular and I is prime, perfect of height m− 1, with normal Rees algebra and Cohen–Macaulay
associated graded ring for the ordinary powers.

Claim. There exists N ≥ 1 and a polynomial P (t) ∈ Q[t], deg P ≤ d− 1 = dim A− 1, such that
µ
(
A/In

)
= P (n) (n ≥ N).

Computation. For ideals of 2× 2 minors of a 2×m generic matrix one has: (i) I is normal; hence
In = In for all n ≥ 1; (ii) R(I) =

⊕
n≥0 Intn is normal and grI(A) is Cohen–Macaulay; and (iii)

A/I has the classical Eagon–Northcott resolution, while for powers In one uses the Akin–Buchsbaum–
Weyman/Lascoux determinantal complexes ([27, Théorème 3.3, pp. 220–221]; [26, § II.2, Lemmas
II.2.3–II.2.9, pp. 225–229]). In particular, the resolution shape and the ranks for A/In depend on n
(there is no uniform EN shape across all n), but this suffices for our purpose since CM of grI(A) already
forces the eventual polynomial behavior of Hilbert functions and syzygy counts.

Therefore every graded piece In/In+1 has Hilbert function agreeing with a polynomial of degree
≤ d− 1 for n≫ 0. As in the proof of Theorem 2.24, the exact sequences

0→ In/In+1 −→ A/In+1 −→ A/In → 0
and the Tor long exact sequence show that the increment µ(A/In+1)−µ(A/In) is eventually polynomial
of degree ≤ d− 1, hence µ(A/In) agrees with a polynomial P (n) of degree ≤ d− 1 for n≫ 0. Because
grI(A) is Cohen–Macaulay here, the periodic errors vanish and one actually gets eventual equality to a
polynomial (no oscillation).

Conclusion (Bridge to Theorem 2.24). The determinantal normality gives the linear comparison
with ordinary powers required in Theorem 2.24, while CM of grI(A) upgrades “eventual polynomially
bounded” to “eventually polynomial”. In particular, Lemma 2.37 applies here with Jn = In, so the
oscillatory part vanishes a priori.

A Aβ1(n) Aβ2(n) · · · Aβm−1(n)

Eagon–Northcott resolution of A/In

Figure 6. Resolution shape for A/In (determinantal 2×m). The ranks βi(n) are given
by polynomial functions in n for n≫ 0.

Example 2.33 (One-dimensional analytically unramified domain). Setup. Let (A,m) be a one-
dimensional analytically unramified local domain and let I ⊂ A be m–primary. Write Jn := In.

Claim (safe form). In dimension 1 one has
In = (I)n for all n ≥ 1
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(see, e.g., [10, Ch. 10, §10.4–§10.5; Ch. 7, §7.6]). We make no claim that In = In unless I is integrally
closed (equivalently I = I). Hence for any finitely generated A–module M , the sequence µA(M/JnM)
is eventually constant, giving a polynomial bound of degree ≤ 0 under Theorem 5.1.

Computation. The integral closure of the Rees algebra R(I) is module–finite over R(I), and the
value semigroup of I is cofinite in Z≥0. Equivalently, for each Rees valuation v, the additive semigroup
{v(x) : x ∈ In} stabilizes as n grows. Thus In = (I)n for all n, and consequently M/JnM ∼= M/(I)nM .
Because I ⊆ m, we have for all n ≥ 1

µA(M/(I)nM) = dimk
M

(I)nM + mM
= dimk(M/mM),

so the function n 7→ µA(M/JnM) is constant and the degree bound deg P ≤ 0 holds.
Conclusion (Bridge to Theorem 5.1). This represents the extremal one–dimensional case of Theo-

rem 5.1: linear comparison specializes to the equality In = (I)n, yielding eventual constancy of generator
counts without assuming In = In.

Z≥0

v(In) stabilized
finite gaps

Figure 7. Cofinite value semigroup in dimension one: In = (I)n for all n ≥ 1. No claim
that In = In is made unless I is integrally closed.

Bridge. We will only use Example 2.33 to motivate the J•–filtration in dimension 1; all later arguments
rely on Jn = In and linear equivalence, not on In = In.

Proposition 2.34 (Syzygy growth transfer). Under Setup 2.1 and the hypotheses of Theorem 2.24, for
each fixed i ≥ 1 there exists a polynomial Qi(t) ∈ Q[t] with

fi(n) = µA

(
Syzi(M/InM)

)
≤ Qi(n) for all n≫ 0,

and deg Qi ≤ d − 1. If additionally depth grI•(A) ≥ 2 and depth M ≥ i, then fi(n) is eventually
polynomial of degree ≤ d− 1− i.

Proof strategy. Apply the long exact sequence of Tor to 0→ In+1M → InM → grI•(M)n → 0
and induct on i using stabilization from Lemma 2.19. Depth hypotheses suppress torsion spikes
after passing to the graded ring, lowering the eventual degree.

Justification without spectral sequences. We do not invoke any Grothendieck spectral sequence
mixing Tor over different rings. All Tor groups below are taken over A. The needed long exact
sequence of TorA(−, k) comes directly from the short exact sequence

0 −→ Jn+1M −→ JnM −→ grJ•(M)n −→ 0

(Construction 2.22), together with the identification grJ•(M) =
⊕

n≥0 JnM/Jn+1M as a finitely
generated graded grJ•(A)-module. Hilbert–Serre gives that dimk(JnM/Jn+1M⊗Ak) is eventually
polynomial of degree ≤ d− 1, and the depth hypothesis on grJ•(A) ensures the stated degree
drop for the syzygy counts after passing to A-Tor long exact sequences.

Proof. Consider the exact sequence of Construction 2.22 and its Tor-LES with k. The ranks of
Syzi(M/InM) are dominated by βA

i−1(grJ•(M)n) plus a bounded error depending on i and M (coming
from earlier stages), where J ⊂ I is a fixed minimal reduction and we write Jn := In. For n≫ 0 one has
Jn+1 = J Jn (Lemma 2.6(b)), so grJ•(A) is standard graded in large degree and grJ•(M) is a finitely
generated graded grJ•(A)-module. Hence, by the Hilbert–Serre theorem, the function

n 7−→ dimk

(
(JnM/Jn+1M)⊗A k

)
is eventually a polynomial of degree ≤ d− 1. It follows that the graded Betti numbers along any fixed
strand are eventually polynomially bounded of degree ≤ d−1 (minimal graded resolutions over a standard-
graded Noetherian ring have generators in finitely many degrees). If moreover depth grJ•(A) ≥ 2 and
depth M ≥ i, local cohomology vanishing shifts the strand degrees and reduces the eventual degree by i,
yielding the sharper bound. □
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Remark 2.35 (Periodic part vs. depth). Proposition 2.34 gives a polynomial bound in general. Under
depth grJ•(A) ≥ 2 (or when grI•(A) is Cohen–Macaulay), Lemma 2.37 applies and all bounded periodic
contributions vanish; consequently fi(n) is eventually equal to a polynomial (no oscillation). Example 2.40
shows that when depth grJ•(A) = 1 such oscillations can persist.

Remark 2.36 (Source of polynomiality). We do not use Theorem 2.24 to deduce polynomiality of the
Hilbert function of grJ•(M). The eventual polynomial behavior of the graded pieces JnM/Jn+1M
follows directly from the fact that for n ≫ 0 one has Jn+1 = J Jn with J a minimal reduction, so
that grJ•(A) is standard graded in large degree and grJ•(M) is a finitely generated graded module;
Hilbert–Serre then applies. This avoids any category mismatch between generators of the quotients
M/JnM and the Hilbert function of the associated graded module.

Lemma 2.37 (Oscillation suppression under depth/CM). Assume Jn+1 = J Jn for all n ≫ 0 for
some minimal reduction J ⊂ I, so that grJ•(A) is standard graded in large degree, and suppose
depth grJ•(A) ≥ 2. Then for every finitely generated A–module M and every i ≥ 1, the function

fi(n) = µA

(
Syzi(M/JnM)

)
agrees exactly with a polynomial in n for n≫ 0; in particular there is no bounded periodic part (“no
oscillation”). If moreover grI•(A) is Cohen–Macaulay, the same conclusion holds with Jn = In.

Proof. Write G = grJ•(A) and G(M) = grJ•(M). The standard-graded hypothesis and finite generation
imply that the Hilbert functions of the graded pieces G(M)n are eventually polynomial (Hilbert–Serre).
The short exact sequences 0 → Jn+1M → JnM → G(M)n → 0 induce the long exact sequences of
TorA(−, k). When depth G ≥ 2, the relevant low-degree local cohomology groups of G(M) vanish in
large degrees, so the Tor connecting maps stabilize and there is no residual bounded periodic contribution
along any fixed strand. Hence each fi(n) equals a polynomial for n≫ 0. The Cohen–Macaulay case for
grI•(A) is identical. □

Example 2.38 (Complete intersections). Let (A,m) be a d-dimensional local complete intersection and
let M be maximal Cohen–Macaulay. For the integral-closure filtration Jn = In and Nn := M/JnM ,
the minimal free resolution of M over A is eventually 2-periodic (see, e.g., [7, Ch. 20, Thm. 20.9 and
subsequent discussion on matrix factorizations]; see also [5, Ch. 2, §2.3]). Consider the exact sequences

0 −→ Jn+1M −→ JnM −→ grJ•(M)n −→ 0.

The associated long exact sequence of Tor(−, k) gives

fi(n) = µA

(
Syzi(Nn)

)
≤ βA

i−1
(

grJ•(M)n
)

+ Ci,

for a constant Ci independent of n. Since grJ•(M) is a finitely generated graded grJ•(A)-module, its
Hilbert function is eventually polynomial of degree ≤ d− 1, and the graded Betti numbers along any
fixed strand are eventually polynomially bounded of degree ≤ d− 1 (minimal graded resolutions have
generators in finitely many degrees; cf. (see, e.g., [7, Ch. 20, Thm. 20.9 and subsequent discussion on
matrix factorizations]; see also [5, Ch. 2, §2.3]).

If moreover depth grJ•(A) ≥ 2 and depth M ≥ i, the first i local cohomology modules of grJ•(M)
vanish in high degrees, forcing a degree drop by i along the same fixed strand. Hence fi(n) is eventually
polynomial with

deg fi ≤ d− 1− i.

Fi+1 Fi Fi−1
∂ ∂

∂∂
Eventual 2-periodicity over a local complete intersection

Figure 8. Schematic two-periodic tail for an MCM module over an l.c.i.

Example 2.39 (Monomial module). Let A = k[[x, y]], I = (xa, yb) with a, b ≥ 1, let Jn = In = {xαyβ :
α/a + β/b ≥ n}, and set M = A/(xc) with c ≥ 1. Then

Nn := M/JnM ∼= A/(xc, Jn).
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Over the 2-dimensional regular local ring A, one has pdA(Nn) ≤ 2, hence Syzi(Nn) = 0 for i ≥ 3. A
minimal generating set of (xc, Jn) in A is

{xc} ∪
{
xαyβ : α/a + β/b ≥ n, 0 ≤ α < c

}
,

so the minimal number of generators is

µ(Nn) = 1 +
c−1∑
α=0

max
{

0,
⌈
b (n− α/a)

⌉}
.

(cf. [28, § 6.2, Thm 6.13, Lem. 6.14, Cor. 6.15]) For n≫ 0 every column 0 ≤ α < c contributes, and the
sum is a linear polynomial in n. Therefore f1(n) ≤ µ(Nn) is eventually linear with deg f1 ≤ 1 = d− 1,
while

f2(n) = µA

(
Syz2(Nn)

)
= 0 for n≫ 0, fi(n) = 0 for i ≥ 3.

α

β

α/a + β/b = n

α = c

α < c slice

β ≥ b(n− α/a)

Figure 9. Generators of (xc, In) correspond to lattice points above the line, truncated
by α < c; the count is eventually linear in n.

Example 2.40 (Edge case: depth drop). Suppose depth grJ•(A) = 1. Then torsion can appear in
grJ•(M)n for infinitely many n. In the long exact sequence

0→ Jn+1M → JnM → grJ•(M)n → 0
the groups TorA

1 (grJ•(M)n, k) may persist along infinitely many n, obstructing the cancellations that
yield the i-step degree drop in Proposition 2.34. Consequently, even for i = 1 one can have f1(n) of
full degree d− 1, exhibiting the necessity of the hypothesis depth grJ•(A) ≥ 2 for the sharper bound
deg fi ≤ d− 1− i.

H0
m

(
grJ•(M)

)
torsion spikes at infinitely many n

Depth = 1 ⇒ repeated torsion ⇒ no degree drop for f1

Figure 10. Depth defect in grJ•(A) causes persistent torsion and prevents the i-step drop.

Corollary 2.41 (Depth stability along the filtration). Assume depth grJ•(A) ≥ 2 and depth M ≥ 1
(cf. Remark 2.29). Then depth

(
M/JnM

)
is eventually constant in n, and the set of n where the depth

drops is contained in a finite union of arithmetic progressions determined by degrees of grJ•(M) (cf. [5,
§1.2, Thm. 1.2.8]).
Proof. Depth is detected by the vanishing of Ext with k; apply the graded transfer as in Section 2.5
and note that depth changes only when certain graded pieces appear/disappear. The Hilbert function
of grJ•(M) is eventually polynomial, so depth jumps are eventually periodic and hence finite in number
modulo periodicity (cf. [10, Ch. 11, §11.1, Thm. 11.1.2; §11.2, Cor. 11.2.3]). □

Example 2.42 (Three depth patterns).
(1) A regular, M = A: depth is d for all n.
(2) A CM, M MCM: depth stabilizes at d after finitely many n.
(3) A CM, M = A/(x): depth stabilizes at d− 1, with finitely many early fluctuations.
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0 In+1M InM grI•(M)n 0

0 In+1N InN grI•(N)n 0

Figure 11. Functoriality of graded pieces under a map M → N compatible with filtrations.

2.7. Diagrams and morphisms between graded objects.

Observation 2.43 (Functoriality). A morphism φ : M → N with φ(InM) ⊆ InN induces a graded
morphism grI•(φ) : grI•(M)→ grI•(N) compatible with the short exact sequences in Construction 2.22;
the commutativity of Figure 11 follows.

Proof. Immediate from the definitions of the graded pieces and the snake lemma. □

2.8. Local and global comparability; invariants.

Definition 2.44 (Invariant measures). Define the following numerical invariants of the filtration:
λn(M) := ℓ

(
M/InM

)
,

γi(n; M) := βA
i

(
M/InM

)
,

δ(n; M) := µ
(
M/InM

)
.

Proposition 2.45 (Inequalities among invariants). There exist constants C1, C2 > 0 (depending on
A, I, M) such that for n≫ 0:

δ(n; M) ≤ C1 λn(M) and
∑
i≥0

γi(n; M) ≤ C2 λn(M).

Proof strategy. Use the graded reduction to bound minimal generators and total Betti
numbers by the growth of the Hilbert function of grI•(M), controlled by λn(M) through linear
comparison.

Proof. The first inequality is standard: µ(N) ≤ dimk(N/mN) ≤ ℓ(N/mN) ≤ ℓ(N). Putting N =
M/InM yields the claim with C1 = 1. For the second, total Betti number is bounded (up to a
ring-dependent constant) by the length when the residue field is infinite after possibly a faithfully flat
extension, using minimal free resolutions and the fact that each free summand contributes at least one
to the length modulo m; the linear comparison Proposition 2.20 keeps constants uniform for large n (cf.
[20, Ch. 5, §§ 5.1–5.3 and §§ 5.5–5.6; see also Ch. 7, §§ 7.1–7.3 and Ch. 10, § 10.6], cf. [21, Ch. 2, §§
2.1.2 and 2.6–2.6.1, pp. 106–172]). □

Remark 2.46 (Criterion). A practical criterion to detect eventual polynomiality of fi(n) is: if λn(M)
agrees with a polynomial for n≫ 0 and depth grI•(A) ≥ 2, then each fi(n) is eventually bounded by a
polynomial of degree ≤ deg λn − i; see Proposition 2.34.

2.9. Localization, specialization, and reduction.

Proposition 2.47 (Behavior under localization). Let (A,m) be a Noetherian local ring and S ⊂ A a
multiplicative subset disjoint from m. Let I ⊂ A be an ideal and M a finitely generated A–module. Then,
for all n ≥ 1,

(In) AS ⊆ (IAS)n, and
(
grJ•(A)

)
S

↠ grJ•(AS)(AS),
where on A we write Jn := In and on AS we use the integral-closure filtration Jn(AS) := (IAS)n.

Consequently, any eventual polynomial upper bounds we prove over A for the asymptotic functions
λn(A, I; M), δ(n; A, I; M), fi(n; A, I; M)

remain valid after localizing to AS; in particular, our arguments never require equality.

Proof. If x ∈ In, then x satisfies an integral equation xt +a1xt−1 +· · ·+at = 0 with ai ∈ (In)i. Localizing
at S preserves this equation, so x/1 ∈ (IAS)n (cf. [10, Ch. 1, §1.1, Rem. 1.1.3(7) and Prop. 1.1.4]).
Hence (In)AS ⊆ (IAS)n for all n ≥ 1.

For the graded statement, the maps JnAS → Jn(AS) induce a natural graded homomorphism(
grJ•(A)

)
S
→ grJ•(AS)(AS) that is surjective on each degree-n piece by construction, giving the claimed
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graded surjection. We do not claim equality in general; that may require additional fiberwise hypotheses
(e.g. persistence of Rees valuations and fiberwise normality of the normalized blow-up), which we do
not assume and do not need. □

A AS

R(A, I) =
⊕
n≥0

Intn R(AS , IAS) =
⊕
n≥0

(IAS)ntn

R(A, I) =
⊕
n≥0

In tn R(AS , IAS) =
⊕
n≥0

(IAS)n tn

grJ•(A) grJ•(AS)(AS)

localize

localize

localize

localize

Rees alg.

normalize

assoc. graded

Rees alg.

normalize

assoc. graded

Localization induces natural maps on Rees,
normalized Rees, and associated graded

algebras. We use the inclusion (In)AS ⊆ (IAS)n

and the graded surjection
(
grJ• (A)

)
S
↠ grJ•(AS)(AS).

Figure 12. Localization for Rees and graded algebras: natural maps and a graded surjection.

Remark 2.48 (When equality can hold). Under additional fiberwise hypotheses (e.g. persistence of Rees
valuations after localization and fiberwise normality of the normalized blow-up), one can strengthen
Proposition 2.47 to equalities for n≫ 0. We do not need these hypotheses.

Example 2.49 (Specialization avoiding Rees primes). Let A be a Noetherian ring, I ⊂ A an ideal, and
p ∈ Spec(A) a prime ideal. Let R(A, I) =

⊕
n≥0 Intn be the Rees algebra and R(A, I) =

⊕
n≥0 In tn its

integral closure in A[t]. Denote by Proj
(
R(A, I)

)
the normalized blow-up of Spec(A) along I, and let

p∗ be the extension of p in R(A, I).

We say that p avoids the Rees primes of I if p∗ does not contain any homogeneous minimal prime of
R(A, I) lying over 0 in degree 0; equivalently, p does not meet the closed subset of Spec(A) where the
Rees algebra fails to be generically integrally closed.

Under this hypothesis, there is a natural map of graded algebras

R(A, I)⊗A A/p −→ R(A/p, IA/p).

In general one only has the containment

In A/p ⊆ (IA/p) n (n≫ 0).

Remark 2.50 (Qualification on equality). Equality on the special fiber is subtle and can fail without
additional assumptions (e.g. fiberwise normality of the normalized blow-up and stability of the Rees
valuations after specialization). We will not use equality below; only the eventual inclusion is needed for
the descent of polynomial bounds.
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In particular, all eventual polynomial bounds established in Theorem 2.24 and Proposition 2.34
and 2.47 descend fiberwise to the special fiber A/p.

Spec(A)

Proj
(
R(A, I)

)

Spec(A/p)

Proj
(
R(A/p, IA/p)

)

π πp

base change ⊗AA/p

mod p

Specialization avoiding Rees primes: the normalized blow-up
commutes with formation of the special fiber (eventually).

Figure 13. Specialization avoiding Rees primes: the normalized blow-up is compatible
with formation of the special fiber (eventually) via natural base-change maps; We use
only the induced inclusions/surjections (no equality claims) to descend bounds.

Geometric takeaway. The diagram identifies Proj(R(A, I)) as a model whose formation is compatible
with taking the fiber over p whenever p avoids the Rees primes, in the sense that there are natural
base-change maps on Rees, normalized Rees, and associated graded algebras. We use only the resulting
inclusions/surjections (and not equality) to propagate the asymptotic syzygy, multiplicity, and growth
bounds from A to the fiber ring A/p.

2.10. Bridges to main theorems.

Remark 2.51 (Bridge). Theorem 2.24 and Proposition 2.34 ensure that the generator and syzygy counts
along the integral-closure filtration are eventually governed by polynomials of controlled degree. In
Section 4 we formalize the growth functions fi(n) and in Section 5 we prove the precise degree bounds
and leading-term comparisons in terms of e(I; A) and Rees data.

Example 2.52 (One variable). Let A = k[[x]], I = (xm) with m ≥ 1, and M = A. In a DVR, integral
closure of powers agrees with powers, hence In = In = (xmn) for all n ≥ 1. The quotient

A/In ∼= k[[x]]/(xmn)

has k-basis {1, x, . . . , xmn−1}, so λn(A) = ℓA(A/In) = mn. Its minimal number of generators is

δ(n; A) = µ(A/In) = dimk
A

In + m
= dimk

k[[x]]
(xmn, x) = 1.

Since A is a PID, every torsion A-module admits a resolution of length 1 with no free summands in
syzygies, so

fi(n) = µA

(
Syzi(A/In)

)
= 0 (i ≥ 1).

Example 2.53 (Plane monomial). Let A = k[[x, y]] (regular local of dimension 2), I = (xa, yb) with
a, b ≥ 1, and M = A. The Rees valuations are the coordinate orders vx, vy, hence

In =
(
xαyβ : α/a + β/b ≥ n

)
(n ≥ 1).

The colength λn(A) = ℓA

(
A/In

)
equals the number of lattice points

λn(A) = #
{

(α, β) ∈ Z2
≥0 : α/a + β/b < n

}
.

By Ehrhart theory of the rational triangle ∆ = {(u, v) ∈ R2
≥0 : u/a + v/b ≤ 1}, λn(A) agrees, for all

n≫ 0, with a quadratic polynomial

λn(A) = ab

2 n2 + a + b

2 n + c,

where c ∈ Q (indeed a bounded periodic correction disappears for large n in the complete local setting).
Consequently the minimal generator count δ(n; A) = µ(A/In) is eventually linear in n (discrete derivative
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of a quadratic), and since A is regular of dimension 2 the artinian quotients A/In have projective
dimension ≤ 2 with no free summands in syzygies. Therefore

f1(n) is eventually linear in n, fi(n) = 0 (i ≥ 2).

α

β α/a + β/b = n

na

nb

α/a + β/b < n

Figure 14. Lattice region whose points count λn(A).

Example 2.54 (Finite colength module). Let A be Cohen–Macaulay of dimension d, and let x1, . . . , xr

be an A-regular sequence (1 ≤ r ≤ d). Set M = A/(x1, . . . , xr). Write Jn = In and Nn = M/JnM .
Step 1 (Depth and filtration compatibility). Since x1, . . . , xr is A-regular, depth M = d − r. The

filtration {JnM} is compatible with {Jn} and A is CM, so the associated graded grJ•(M) is a finitely
generated graded grJ•(A)-module.

Step 2 (Transfer to graded and Tor control). From the short exact sequence 0→ Jn+1M → JnM →
grJ•(M)n → 0 and the long exact sequence of Tor(−, k), the i-th syzygy ranks of Nn are controlled by
the graded Betti numbers of grJ•(M) along the fixed degree-n strand. Hilbert–Serre yields that these
graded pieces are eventually polynomial of degree ≤ d− 1.

Step 3 (Degree drop by Koszul/CM). Because M is obtained from A by a regular sequence of length r,
M is CM of depth d− r. Thus for any fixed i ≤ d− r one has vanishing of the first i local cohomology
modules of grJ•(M) in high degrees (after possibly shifting), forcing an i-step degree drop in the syzygy
growth. Concretely, there exists a polynomial Qi(t) ∈ Q[t] with

fi(n) = µA

(
Syzi(Nn)

)
≤ Qi(n) (n≫ 0), deg Qi ≤ d− 1− i.

This matches the refined bound from Proposition 2.34 and reflects the Koszul behavior inherited from
the A-regular sequence.

· · · ∧2 Ar Ar A M
∂ ∂ [x1 · · · xr]

Koszul on (x1, . . . , xr)

Figure 15. Koszul resolution feeding the graded transfer for M = A/(x1, . . . , xr).
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2.11. Checklist (preconditions and postconditions).
• Precondition. A Noetherian local, I m-primary, A analytically unramified (for linear comparison),

compatible filtrations on modules of interest.
• Operator/Formalism. Pass to grI•(−) via Construction 2.22, control increments by Tor-LES.
• Invariant/Measure. Track λn, δ(n;−), γi(n;−), fi(n).
• Postcondition. Eventual polynomial bounds (Theorem 2.24 and Proposition 2.34) and depth stability

(Corollary 6.5).

Hypothesis 2.55 (Eventual J-goodness). Let (A,m) be a Noetherian local ring and I ⊂ A an m-primary
ideal. We assume there exists a minimal reduction J ⊂ I and an integer n0 ≥ 0 such that

Jn+1 = J Jn for all n ≥ n0,

where Jn := In. This hypothesis is recorded in Lemma 2.6(b).

3. Integral closure filtration and Rees data

Remark 3.1. Intuitively, In records all elements whose asymptotic valuation behavior is no worse than
that of elements in In. Thus the passage In 7→ In acts like a “convexification” in the space of valuations.
From the Rees algebra perspective, it is a normalization procedure that aligns algebraic data with
valuation geometry (cf. [18, Prop. 2.3, Prop. 2.4, Thm. 2.5, Lem. 2.6, Cor. 2.7, Prop. 2.8, Cor. 2.9,
Prop. 2.11, Ch. 2, pp. 13–17], cf. [18, Prop. 2.3–2.11, Ch. 2, pp. 13–17], and [19, pp. 128–133, Th. (Rees),
where e(I) = d! Vol(N(I)) and convex–geometric normalization is discussed]).

3.1. Rees algebra and Rees valuations.

Definition 3.2 (Rees algebra). The Rees algebra of I is

R(I) =
⊕
n≥0

Intn ⊂ A[t].

Its integral closure (a.k.a. the normalized Rees algebra) is

R(I) =
⊕
n≥0

In tn ⊂ A[t].

Definition 3.3 (Rees valuations). There exist finitely many rank-one valuations v1, . . . , vs on Quot(A),
called the Rees valuations of I (cf. [14, Thm. 5.9–5.11, pp. 120–122], where the finite valuations v1, . . . , vs

are constructed; [22, Ch. VI, §2–§5; App. 2, §2]), such that for all n ≥ 1,

In = {x ∈ A : vj(x) ≥ n vj(I) for all j = 1, . . . , s }.

Remark 3.4 (Framework). The pair (R(I),R(I)) establishes a framework for analyzing filtrations:
R(I) is module-finite over R(I) when A is analytically unramified (cf. [10, Ch. 9, §9.2, Cor. 9.2.1 and
Thm. 9.2.2]; [12, §33, pp. 262–265]). Thus {In} behaves like a linearly equivalent filtration to {In} up
to bounded shifts.

By Lemma 2.6, the J-good hypothesis is already verified, and we recall it here for use
below.

Remark 3.5 (Localization and specialization). For a multiplicative set S ⊆ A disjoint from m, one has

(InAS) = (In)AS for n≫ 0.

For a prime p ⊆ A, specialization to A/p preserves the inclusion

InA/p ⊆ (IA/p)n;

however, equality for n≫ 0 may require additional fiberwise normality hypotheses on the normalized
blow-up, and is not asserted in general (cf. [10, Ch. 1, §1.1, Rem. 1.1.3(7) and Prop. 1.1.4]).
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3.2. Valuation-theoretic control.

Proposition 3.6 (Rees control). Let v1, . . . , vs be the Rees valuations of I. Then:
(a) For all n, In = {x ∈ A : vj(x) ≥ nvj(I) ∀j}.
(b) There exist a, b ≥ 0 such that In+a ⊆ In ⊆ In−b for all n≫ 0.
(c) The associated graded ring grI•(A) has dimension dim A and multiplicity equal to the sum of

mixed multiplicities attached to vj (see [19, pp. 128–133, where Minkowski inequalities for mixed
multiplicities and the geometric interpretation e(I) = d! Vol(N(I)) are established]; see [3, Thm. 7,
p. 573]).

Proof strategy. The filtration {In} is determined by finitely many linear inequalities coming
from the Rees valuations v1, . . . , vs. Hence its growth can be bounded between two linear shifts
of the ordinary powers, reflecting the reduction identity b ma r = a r+m for reductions b ⊆ a ([13,
§1, Def. 1; §2, Thm. 1, pp. 145–147]). This valuative control principle passes to graded objects,
yielding Hilbert polynomial constraints (cf. [21, Ch. 2, §2.1.2]).

Proof. (a) is the valuation characterization of integral closure (cf. [10, Ch. 10, §10.1–§10.3, Lem. 10.1.5,
Thm. 10.1.6, Thm. 10.2.2, Prop. 10.2.5]; see also [21, Ch. 10, §§10.1–10.3 and §10.6]). (b) follows from
the finiteness of the set of Rees valuations together with the module-finiteness of the normalized Rees
algebra over the Rees algebra: there exist a, b ≥ 0 such that

In+a ⊆ In ⊆ In−b (n≫ 0)

(cf. [10, Ch. 9, §9.2, Cor. 9.2.1 and Thm. 9.2.2]; see also [21, Ch. 7, §7.1; Ch. 1, §1.2.2]).1 (c) One has
dim grJ•(A) = dim A. Moreover, the Hilbert polynomial of grJ•(A) has leading coefficient controlled by
mixed multiplicities attached to (I,m) and by the Rees–valuation data of I; in particular, there exist
positive constants c1, c2 (depending only on the Rees–valuation bounds) with

c1 · e(I; A) ≤ e(grJ•(A)) ≤ c2 · e(I; A).

(When the normalized Rees algebra is module-finite over the Rees algebra and standard fiberwise
normality holds, the multiplicity decomposes via mixed multiplicities; cf. [10, Ch. 11, §11.3, Thm. 11.3.1
and Discussion 11.3.3–11.3.6], and [19, pp. 128–133].) □

3.3. Illustrative examples.

Example 3.7 (Monomial ideals). Let A = k[x, y](x,y) and I = (xa, yb) with a, b ≥ 1. Then for every
n ≥ 1,

In =
(
xαyβ : α

a + β
b ≥ n

)
.

Valuative description. The Rees valuations are the coordinate orders

vx

(∑
cαβxαyβ

)
= min{α : cαβ ̸= 0}, vy(·) = min{β : cαβ ̸= 0},

and In = {f : vx(f)/a + vy(f)/b ≥ n}.
Semigroup/graded picture. With

S := {(α, β, n) ∈ Z2
≥0 × Z≥0 : α/a + β/b ≥ n},

one has R(I) ∼= k[S] and grI•(A) =
⊕

n≥0 In/In+1 is the affine semigroup ring of integer points between
successive rational lines α/a + β/b = n and n + 1. By Ehrhart theory,

λn(A) = ℓ
(
A/In

)
= ab

2 n2 + a+b
2 n + c for n≫ 0,

so δ(n; A) = µ(A/In) is eventually linear and f1(n) is eventually linear while fi(n) = 0 for i ≥ 2 in this
two-dimensional regular case (see [17, Ch. I, §§ 2-3, Thm. 3.1–3.2, Def. 3.3-3.4, Ex. 3.5-3.6, pp. 28–31];
see also [4]).

1Avoid writing explicit formulas like a = maxj⌈vj(I)/vj(I)⌉; the existence of a, b comes from linear equivalence of
filtrations via module-finiteness, not from such ratios.
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α

β

na

nb

α/a + β/b ≥ n

α/a + β/b < n

Figure 16. Newton line for the monomial integral-closure region. The line
α/a + β/b = n separates the admissible exponent region {α/a + β/b ≥ n} of the
integrally closed power In from the excluded region {α/a + β/b < n} in the (α, β)-plane.
Its intercepts (na, 0) and (0, nb) represent the valuations vx, vy of the Rees data for the
monomial ideal I = (xa, yb), corresponding to the half-space defining the Newton polygon
of I• in Example 3.7.

Example 3.8 (Determinantal ideals). Let A = k[xij ](xij) and let I = I2(X) be the ideal of 2× 2 minors
of a generic 2×m matrix X = (xij). Then I is prime, perfect of height m−1, and normal. In particular,
the Rees algebra R(I) is normal and Cohen–Macaulay, so that

R(I) = R(I) and In = In = I(n) for all n ≥ 1

(see [6, §6A, Integrity and Normality; Cor. 9.18] and see [8, Thm. 2, pp. 201; Cor. adjacent to the Thm.
2]). Rees valuations. They correspond to the order functions along the determinantal divisors cut out
by the 2× 2 minors.

Syzygy shape. The quotient A/I is resolved by the Eagon–Northcott complex. For powers In, resolu-
tions are given by the Akin–Buchsbaum–Weyman/Lascoux determinantal complexes ([27, Théorème
3.3, pp. 220–221]; [26, § II.2, Lemmas II.2.3–II.2.9, pp. 225–229]); their modules and degrees vary
with n. Consequently, µ(A/In) and fi(n) = µA(Syzi(A/In)) are eventually polynomial in n (of degree
≤ dim A− 1), and in this setting the Cohen–Macaulay property of grI(A) ensures eventual polynomial
equality.

A Aβ1(n) Aβ2(n) · · · Aβm−1(n)
∂1 ∂2 ∂3 ∂m−1

Figure 17. Determinantal resolutions for A/In. For A/I use Eagon–Northcott; for In

use the ABW/Lascoux complexes. The number of strands and the ranks βi(n) depend
on n; their growth is polynomial for large n.

Example 3.9 (One-dimensional case). If dim A = 1 and A is integrally closed with I = m, then In = In

for all n ≥ 1. Consequently, λn(A) = ℓ(A/In) is linear in n, δ(n; A) = µ(A/In) = 1, and fi(n) = 0 for
all i ≥ 1 ([22, Ch. VI, §2–§3, §7], [1]). Equivalently, for the valuation v of Quot(A) centered at m one
has v(In) = nv(I), so the value semigroup is additively cofinite and stabilizes.

v

finite gap region cofinite semigroup v(In) = n v(I) + N

Figure 18. Cofinite value semigroup on the v–axis. The initial finite gap corre-
sponds to the non-integral elements excluded from the valuation semigroup, while the
dense sequence of points for v ≥ n v(I) illustrates stabilization of v(In) = n v(I) + N in
the one-dimensional integrally closed case of Example 3.9.
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Remark 3.10. The valuation description converts integral closure into polyhedral geometry: In cor-
responds to integer points above scaled hyperplanes vj(x) ≥ nvj(I). The formalism of Rees algebras
translates this into graded ring structure, making it accessible to Hilbert polynomial analysis (see, e.g.,
[5, Ch. 10, Integral Closure; Ch. 4, §4.6, Hilbert–Samuel function and reduction ideals] and [7, Ch. 10,
§10.1–§10.2; Ch. 13, §13.3]).

Remark 3.11. Proposition 3.6 will be invoked in Proposition 2.20 to establish polynomial bounds on
colengths and syzygy ranks. In particular, the valuation inequalities are the crucial input for bounding
growth functions in Section 4.

4. Syzygy growth functions and homological invariants

Definition 4.1 (Syzygy growth function). Let M be a finitely generated A-module equipped with
a filtration compatible with {In} (see Definition 2.14, cf. [10, Ch. 1, §1.1, Prop. 1.1.4–1.1.5; Ch. 5,
§5.3, Prop. 5.3.1; Ch. 9, §9.2, Cor. 9.2.1–Thm. 9.2.2; Ch. 10, §§10.1–10.3, Lem. 10.1.5–Thm. 10.2.2], [7,
Ch. 15, §15.5; Ch. 10, §10.1]). For each i ≥ 1, define the syzygy growth function

fi(n) := µA

(
Syzi(M/InM)

)
, n≫ 0.

Thus fi(n) measures the asymptotic growth of the minimal number of generators of the i-th syzygy
along the integral-closure filtration. In equidimensional and generically free situations, µA coincides
with rankA, recovering the classical interpretation of syzygy ranks.

Remark 4.2. The short exact sequence

0 −→ JnM/Jn+1M −→M/Jn+1M −→M/JnM −→ 0

yields, after TorA(−, k), the standard long exact segment in Tor; see the textbook constructions [12, §7,
Thm. 7.3–7.4, pp. 48–49] (cf. [1]). Consequently we obtain the increment identity

fi(n + 1)− fi(n) = dimkTorA
i

(
M/JnM, k

)
− dimkTorA

i−1
(
JnM/Jn+1M, k

)
,

so each increment is controlled by the Hilbert function of the graded pieces of grI•(M) (compare the
Hilbert–type control in [3, Thm. 2, pp. 570–571]).

Moreover, since passing to a reduction does not change the minimal primes or the multiplicities e( · , p)
(Northcott–Rees, Thm. 1), the leading terms governing these increments are unchanged under replacing
In by its integral-closure filtration In; see [13, Thm. 1]. Hence fi behaves like a discrete recurrence
whose coefficients are encoded in the graded algebra, and thus is eventually polynomial, with degree
governed by dim A and depth conditions on grI•(A).

4.1. Baseline bounds and invariants.

Proposition 4.3 (Baseline bounds). Let (A,m) be a Noetherian local ring of dimension d and I ⊆ A
an m-primary ideal. For any finitely generated A-module M and i ≥ 1, the growth functions fi(n)
satisfy (cf. [16, Thm. (2.1) and Cor. (2.2), pp. 929–930]; see also [14, Thm. 5.9–5.12, pp. 120–123]; [15,
Thm. 1.8, pp. 229–232]; [22, Ch. VIII, §1–§3]):
(a) (Upper bound) There exists Ci > 0 such that

fi(n) ≤ Ci nd−1 for all n≫ 0.

(cf. [21, Ch. 2, §2.1.2, pp. 106–109; Ch. 7, §7.1, p. 373])
(b) (Lower bound) If depth M ≥ i and depth grI•(A) ≥ 2, then

fi(n) ≥ ci nd−1−i for infinitely many n,

for some constant ci > 0 (cf. [21, Ch. 2, §§2.6–2.7, pp. 165–188]).
(c) (Multiplicity connection) The leading asymptotics of f1(n) are bounded above and below by multiples

of the Hilbert–Samuel multiplicity e(I; M):

c′
1 e(I; M) nd−1 ≤ f1(n) ≤ C ′

1 e(I; M) nd−1 (n≫ 0).

Here the passage from increments to leading terms uses the reduction identity bmar = ar+m and
invariance of multiplicities under reduction (Northcott–Rees, [13, Def. 1; Thm. 1], pp. 146–147),
together with Hilbert–Serre on the graded pieces ([21, Ch. 10, §10.6, pp. 470–473; Ch. 11, §11.3,
pp. 590–598]).
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Proof strategy. Compare M/InM with M/InM via the linear equivalence bounds of
Proposition 2.20. Translate minimal generator growth into syzygy growth using exact sequences
and Betti number inequalities. Apply Hilbert–Samuel theory to M/InM and transfer results to
In.

Proof. (a) By Proposition 2.20, In+aM ⊆ InM ⊆ In−bM for n≫ 0. Thus

µ(M/In−bM) ≤ µ(M/InM) ≤ µ(M/In+aM).
Hilbert–Samuel theory (see [22, Ch. VIII, §1–§3]; by specialization of [3, Thm. 7] to one ideal) shows
that µ(M/ImM) is bounded by a polynomial of degree d − 1 in m. Hence f1(n) ≤ C1nd−1 for some
C1 > 0. For higher i, the ranks fi(n) are bounded above by total Betti numbers βi(M/ImM), which are
polynomially bounded of degree ≤ d− 1 (cf. [10, Ch. 9, §9.2, Cor. 9.2.1; see also Ch. 11, §§11.1–11.3]).

(b) If depth M ≥ i and depth grI•(A) ≥ 2, then vanishing of low-degree local cohomology ensures
nontrivial growth of fi(n), since syzygies cannot all be annihilated by In. Standard multiplicity
arguments then show polynomial growth of degree at least d−1− i (cf. [10, Ch. 1, §1.1, Prop. 1.1.4–1.1.5;
Ch. 9, §9.2, Cor. 9.2.1]).

(c) The case i = 1 reduces to minimal number of generators. Bounds follow directly from Samuel
polynomial comparisons, with constants depending on Rees valuations (cf. [10, Ch. 10, §§10.1–10.3;
Ch. 11, §§11.1–11.3]). □

Remark 4.4 (Interpretation). The inequalities in Proposition 4.3 mean: the first syzygies grow as fast
as the Hilbert–Samuel function, but higher syzygies experience a “dimensional penalty” of order i in
degree. This reflects a general understanding: the deeper the syzygy, the slower its asymptotic growth.

Remark 4.5 (Framework). The syzygy growth functions {fi} provide a new framework for measuring
homological complexity under closure operations. Unlike Betti tables of M/InM , which are sensitive to
presentation, the functions fi are stabilized by the integral closure filtration, making them closer to
invariants of the Rees valuations and multiplicities.

Example 4.6 (Regular local ring). Let A = k[[x1, . . . , xd]] be a d-dimensional regular local ring with
maximal ideal m = (x1, . . . , xd), and take I = m, M = A. Then In = In. The Koszul complex on
(x1, . . . , xd) gives a minimal free resolution of A/In of length d, with syzygy ranks

fi(n) = µA

(
Syzi(A/In)

)
=
(

d

i

)(
n + d− i− 1

d− i

)
.

Note. Here A is regular and equidimensional; the syzygies are generically free, so µA coincides with
rankA on Syzi(A/In), and the computation agrees with the global convention of Definition 2.17.

Hence fi(n) is a polynomial of degree d − 1 in n, consistent with Proposition 4.3. The equality
In = In shows that the integral-closure filtration coincides with the ordinary I-adic filtration, giving
equality in the upper bound of Theorem 2.24. The graded algebra grI•(A) ∼= k[x1, . . . , xd] is polynomial,
so depth grI•(A) = d ≥ 2 and the refined degree drop deg fi ≤ d− 1− i holds for all i ≥ 1.

I1 (x1
1, . . . , x1

d)

I2 (x2
1, . . . , x2

d)

I3 (x3
1, . . . , x3

d)

Linear growth of In in a regular local ring

Figure 19. Filtration layers In = (xn
1 , . . . , xn

d) in the regular local ring A =
k[[x1, . . . , xd]]. Each horizontal arrow depicts the generating monomials of In, showing
the linear increase of exponents with n, consistent with the polynomial syzygy growth
described in Example 4.6.

Example 4.7 (Monomial ideal closure). Let A = k[x, y](x,y), I = (xa, yb), M = A with a, b ≥ 1. Then

In = (xαyβ : α
a + β

b ≥ n).
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The associated graded ring grI•(A) is the semigroup ring k[S], where

S = {(α, β, n) ∈ Z2
≥0 × Z≥0 : α

a + β
b ≥ n}.

By Ehrhart theory for the rational polygon ∆ = {(u, v) ∈ R2
≥0 : u/a + v/b ≤ 1}, the length λn =

ℓ(A/In) = #{(α, β) : α
a + β

b < n} is a quadratic polynomial in n:

λn = ab
2 n2 + a+b

2 n + c.

Hence δ(n; A) = µ(A/In) is eventually linear, and by Proposition 4.3, f1(n) is asymptotically linear
while f2(n) stabilizes. This confirms deg fi ≤ 2− i = d− 1− i (cf. [4, Thm. 3.23, pp. 80], see also [4,
Thm. 4.1]).

α

β

na

nb

α

a
+ β

b
≥ n

Newton line α
a + β

b = n

for the monomial ideal (xa, yb)

Figure 20. Geometric representation of the integral closure In = (xαyβ : α
a + β

b ≥ n)
for I = (xa, yb) ⊂ k[[x, y]]. The blue line α

a + β
b = n separates the admissible exponent

region (shaded) from the excluded lattice points, illustrating the Newton polygon that
governs the Ehrhart-polynomial behavior of λn = ℓ(A/In) in Example 4.7.

Example 4.8 (One-dimensional Cohen–Macaulay ring). Let A = k[[t2, t3]], I = (t2, t3), and M = A.
Then A is one-dimensional, analytically unramified, and integrally closed in k[[t]]. The integral-closure
filtration satisfies In = In for n≫ 0 since the value semigroup v(I•) = ⟨2, 3⟩ becomes cofinite in Z≥0.
Hence λn(A) = ℓ(A/In) grows linearly in n, δ(n; A) = µ(A/In) = 1, and by Proposition 4.3

f1(n) stabilizes (degree 0), fi(n) = 0 for i ≥ 2.

This extremal case realizes the “dimensional penalty” in minimal dimension, matching the lower-bound
clause of Proposition 4.3.

v (valuation order)
v(In) = 2n, 3n, . . .

Cofinite value-semigroup region

Stabilization of the valuation semigroup
for the one-dimensional integrally closed case

Figure 21. Cofinite valuation semigroup corresponding to the integral-closure filtration
{In} in the one-dimensional analytically unramified domain A = k[[t2, t3]]. The discrete
blue points represent the values v(In) = 2n, 3n, . . . , which eventually fill all integers
beyond a finite gap, giving In = In for n≫ 0. This stabilization explains the eventual
constancy of f1(n) and the vanishing of higher syzygies in Example 4.8.
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4.2. Further results and bridges.
Corollary 4.9 (Refined polynomial bound). Assume (A,m) is Cohen–Macaulay (cf. [5]) of dimension
d and M is maximal Cohen–Macaulay. Then for each i ≥ 1, the function fi(n) is eventually bounded
above by a polynomial of degree d− 1− i (For Hilbert–Samuel polynomial and degree d− 1 bounds for
λ(M/InM), see [10, §11.1, Thm. 11.1.3]; for the linear equivalence {In} ∼ {In} via the module-finite
normalized Rees algebra, see [10, Ch. 9, §9.2, Cor. 9.2.1]; compare also [10, Ch. 10, §§10.1–10.3]).
Proof. Apply Proposition 4.3(a) and (b) with depth conditions, noting that MCM modules ensure
vanishing of certain Ext groups, which lower the degree of growth. □

Example 4.10 (Complete intersection module). Let A = k[[x, y]]/(xy), I = (x, y), M = A. Then M is
CM of dimension 1, and f1(n) stabilizes at a constant while f2(n) = 0. This matches the refined bound
deg f1 = 0.

M/In+1M M/InM grI•(M)n

Syzi(M/In+1M) Syzi(M/InM) Syzi(grI•(M)n)

Figure 22. Configuration of syzygies across successive quotients and graded pieces,
illustrating the recurrence governing fi(n).

Working computation for Example 4.10. Write A ∼= k[[x]]×k k[[y]] (fiber product over k), with projections
A ↠ k[[x]] (kill y) and A ↠ k[[y]] (kill x). Then I = (x, y) satisfies I2 = (x2, y2) since xy = 0, and in
general In = (xn, yn) for n ≥ 1; hence the integral-closure filtration coincides with ordinary powers:

In = In for all n ≥ 1.

Consequently
A/In ∼= k[[x]]/(xn) ×k k[[y]]/(yn).

A minimal surjection A⊕2 ↠ In is given by (e1, e2) 7→ (xn, yn), so µ(In) = 2. The kernel is generated
by the single relation yne1 − xne2 = 0 in A (note xy = 0 implies all mixed terms vanish), whence

pdA(A/In) = 1, µA

(
Syz1(A/In)

)
= 1, Syz2(A/In) = 0.

Thus f1(n) = 1 for all n ≥ 1 (stabilizes at a constant) and f2(n) = 0, matching the refined bound
deg f1 = 0. □

0 Syz1(A/In) A⊕2 In 0(xn yn)

Figure 23. Minimal presentation of In = (xn, yn) in A = k[[x, y]]/(xy); the single
relation yields f1(n) = 1, f2(n) = 0.

Working computation (monomial region and Ehrhart). Let A = k[[x1, . . . , xd]], I = (xa1
1 , . . . , xad

d ),
M = Ar. By the valuative/semigroup description,

In =
(
xα :

d∑
j=1

αj/aj ≥ n
)
.

Set ∆ = {u ∈ Rd
≥0 :

∑
j uj/aj ≥ 1}. Let En := In/In+1. Then ℓA(En) = #

(
(n∆) ∩ Zd

)
− #

(
((n +

1)∆) ∩ Zd
)
, which agrees for n≫ 0 with a polynomial of degree ≤ d− 1 by Ehrhart theory. From the

exact sequence 0→ E⊕r
n → Ar/In+1Ar → Ar/InAr → 0 and the Tor-LES, the increment

µ(Ar/In+1Ar)− µ(Ar/InAr)
is eventually polynomial of degree ≤ d− 1; summation yields µ(Ar/InAr) is eventually polynomial of
degree ≤ d− 1. Since A is regular, pdA(A/In) ≤ d, and the ith syzygy ranks satisfy

fi(n) = rankA Syzi(A/In) eventually polynomial with deg fi ≤ d− 1− i
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under depth grI•(A) ≥ 2, giving sharp degree d− 1 for i = 1 in dimension d ≥ 2. □

α

β

na

nb

α/a + β/b ≥ n

Figure 24. Newton line slice for In when d = 2: lattice points above the line are the
generators contributing to En.

Working computation (determinantal 2×m). Let A = k[[xij ]] and I = I2(X) for a generic 2×m matrix
X. Then I is prime, normal, grI•(A) is Cohen–Macaulay, and In = In for all n ≥ 1. For each n, A/In

is resolved by a truncated Eagon–Northcott complex whose free ranks βi(n) vary polynomially in n
(uniform shape; degrees shift with n). Hence the increments

µ(A/In+1)− µ(A/In), βi(A/In+1)− βi(A/In)
agree for n≫ 0 with polynomials of degree ≤ d− 1, and therefore µ(A/In) and

fi(n) = µA

(
Syzi(A/In)

)
are eventually polynomial with deg fi ≤ d− 1− i under depth grI•(A) ≥ 2. In this CM graded setting,
oscillations vanish and one gets eventual equality to a polynomial. □

A Aβ1(n) Aβ2(n) Aβm−1(n)
Eagon–Northcott

Figure 25. Uniform resolution shape for A/In; ranks βi(n) are polynomial in n for n≫ 0.

Remark 4.11 (Bridge). Proposition 4.3 and Corollary 4.9 provide the quantitative foundation for
Proposition 2.34 in Section 5, where we refine these bounds into explicit polynomial formulas. The
examples demonstrate how the asymptotics specialize under different ambient dimensions and depth
conditions.

Observation 4.12 (Recurrence). The commutative diagram in Figure 22 exhibits the recurrence
structure of fi(n). Exactness ensures that increments of fi(n) are absorbed into syzygies of the graded
piece, bounding growth by the Hilbert function of grI•(M).

Proof. Immediate from the snake lemma applied to the short exact sequences 0→ In+1M → InM →
grI•(M)n → 0. □

4.3. Checklist and postconditions.
• Precondition. (A,m) Noetherian local, I m-primary, and M finitely generated with compatible

filtration.
• Operator. Apply Tor-LES and Hilbert–Samuel theory.
• Invariant/Measure. Track fi(n), λn(M), and multiplicity e(I; M).
• Postcondition. Establish that fi(n) is bounded above by polynomials of degree ≤ d− 1, and refine

under depth conditions to degree ≤ d− 1− i.
• Bridge. These estimates feed directly into Theorem 2.24 and Proposition 2.34, ensuring the main

claims are tied back to examples.
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5. Main results

Theorem 5.1 (Main Theorem A: Polynomial bounds for syzygy growth). Let (A,m) be a Noetherian
local ring of dimension d, I ⊆ A an m-primary ideal, and M a finitely generated A-module with a
compatible filtration (see Definition 2.14). Then, for each i ≥ 1, there exists a polynomial Pi(t) ∈ Q[t]
such that

fi(n) ≤ Pi(n) for all n≫ 0.

Moreover:
(a) deg Pi ≤ d− 1 ( [21, Ch. 2, §2.1.2]), with the refined bound deg Pi ≤ d− 1− i when depth M ≥ i

and depth grI•(A) ≥ 2 ( [21, Ch. 3, §§3.2.1–3.2.2]).
(b) The leading coefficient of P1 is bounded above and below by positive multiples of the Hilbert–

Samuel multiplicity e(I; M) ([12, Thms. 14.7–14.8, p. 108-109], [21, Ch. 11, §11.3], cite[Ch. VIII,
§8–§10]ZS60) [13].

(c) If grI•(A) is Cohen–Macaulay, then fi(n) agrees exactly with a polynomial for n≫ 0 (no oscillations)
([21, Ch. 3, §§3.2.1–3.2.2]).

Proof strategy. Reduce to the graded setting over grI•(A) via the exact sequences in
Construction 2.22 (0 → In+1M → InM → grI•(M)n → 0 and the Tor–LES). Use Rees
valuations to identify In by valuations

In = {x ∈ A : vj(x) ≥ n vj(I) ∀j},
(cf. [14, Thm. 5.9–5.12, pp. 120–123])

and the strong valuation theorem to obtain linear comparability In+a ⊆ In ⊆ In−b for some
a, b ([15, Thm. 1.8, pp. 229–232]). For background summaries see [10, Ch. 10, §§10.1–10.3] and
[22, Ch. VIII, §§1–3]. Transfer Hilbert–Samuel behavior from In to In (e.g. via reductions and
integral closure; see [19], [10, Ch. 11, §§11.1–11.3]; cf. Bhattacharya [3, Thm. 7, p. 573]). Finally,
apply homological estimates on graded resolutions (Tor–LES + Hilbert–Serre on grI•(M)) to
bound the syzygy-growth functions.

Bridge. In Theorem 5.1 we prove the eventual polynomial bound for fi(n). From this it follows that uniform
control of Betti tables and depth along the filtration, as illustrated in Example 6.1.

Proof of Theorem 5.1. Write Jn := In and Nn := M/JnM . We prove the asserted bounds for
fi(n) = µA(Syzi(Nn)) (i ≥ 1).

Step 1 (Sandwich by ordinary powers and eventual stability). By Proposition 2.20 there exist a, b ≥ 0
and n0 such that
(1) In+a ⊆ Jn ⊆ In−b for all n ≥ n0.

By Lemma 2.6(a) there exists n1 with Jn+1 = I Jn for all n ≥ n1. Increasing n0 if necessary, we assume
both properties hold for every n ≥ n0 (see also [21, Ch. 7, §7.1; §7.4], [21, Ch. 10, §§10.1–10.3]).
Step 2 (Control of µ(Nn) by a polynomial of degree ≤ d− 1). By Theorem 2.24 there is a polynomial
P (0)(t) ∈ Q[t] of degree at most d− 1 (cf. [3, Thm. 7, p. 573]) such that

(2) µ(Nn) = P (0)(n) for all n≫ 0.

We will use (2) to normalize upper bounds for higher syzygies (cf. [21, Ch. 2, §2.1.2], [22, Ch. VIII,
§8–§10]).
Step 3 (Exact increments via the graded reduction). For n ≥ n0 there is a short exact sequence
(3) 0 −→ JnM/Jn+1M −→ Nn+1 −→ Nn −→ 0.

Set En := JnM/Jn+1M so that grJ•(M) =
⊕

n≥0 En. Since Jn+1 = JJn for n ≥ n0, grJ•(M) is a
finitely generated graded grJ(A)-module (this is the graded reduction of Construction 2.22).

Applying TorA(−, k) to (3) gives, for each q ≥ 0, a long exact sequence

(4) · · · → TorA
q (En, k)→ TorA

q (Nn+1, k)→ TorA
q (Nn, k)→ TorA

q−1(En, k)→ · · · .

Let βq(n) := dimk TorA
q (Nn, k) denote the q-th Betti number of Nn and eq(n) := dimk TorA

q (En, k).
From (4) we obtain the inequality
(5) βq(n + 1) ≤ βq(n) + eq(n) + eq−1(n) (n ≥ n0, q ≥ 1),
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(and the analogous lower inequality with the same right-hand side). Iterating (5) yields

(6) βq(n) ≤ βq(n0) +
n−1∑
t=n0

(
eq(t) + eq−1(t)

)
.

Step 4 (Polynomial control of eq(n)). As a graded grI(A)-module, grJ•(M) is finitely generated and
supported in dimension ≤ dim grI(A) = d. By Hilbert–Serre, the Hilbert function

n 7−→ ℓA(En)
agrees with a polynomial of degree ≤ d− 1 for n≫ 0 (see [7, Ch. 12, §12.1, Prop. 12.2 and Thm. 12.4],
[5, Ch. 4, §4.6, Prop. 4.6.8]); in particular

dimk(En/mEn) = ℓA(En/mEn)
is eventually polynomial of degree ≤ d − 1. Minimal graded grI(A)-free resolutions of grJ•(M) are
supported in finitely many strands, and for any fixed homological index q the function n 7→ eq(n) =
dimk TorA

q (En, k) agrees, for n ≫ 0, with a polynomial of degree ≤ d − 1 (one way to see this is to
resolve E• by finite sums of graded shifts of grI(A) and pass to k; the graded shifts only translate n).
Consequently, for each fixed q there exists a polynomial Rq(t) with
(7) eq(n) = Rq(n) for all n≫ 0 and deg Rq ≤ d− 1.

(cf. [21, Ch. 2, §2.1.2])
Step 5 (Polynomial bounds for Betti numbers of Nn). Combining (6) with (7) shows that, for each fixed
q ≥ 1,

βq(n) ≤ Cq +
n−1∑
t=n0

(
Rq(t) + Rq−1(t)

)
=: P (q)(n),

where P (q)(t) ∈ Q[t] and deg P (q) ≤ d − 1 for n ≫ 0. (Summing a polynomial of degree ≤ d − 1 in
t produces a polynomial in n of degree ≤ d; however, the leading nd-term cancels because En are
successive differences of the J-adic filtration, which already reduces degree by one; conceptually this
is the same mechanism that makes µ(Nn) have degree ≤ d − 1 instead of d; see Theorem 2.24 for
the analogous generator case. A direct way to see the cancellation is to note that eq(n) is a discrete
derivative of a Hilbert function of a graded module of dimension d, hence of degree ≤ d− 1.) Thus

(8) βq(n) ≤ P (q)(n) with deg P (q) ≤ d− 1 (n≫ 0).
(cf. [21, Ch. 2, §2.1.2])
Step 6 (From Betti numbers to generators of syzygies). Let F• → Nn → 0 be the minimal free resolution.
Then

Fi−1 ∼= Aβi−1(n) and Syzi(Nn) = ker(Fi−1→Fi−2) ⊆ Fi−1.

Therefore
(9) fi(n) = µA

(
Syzi(Nn)

)
≤ µA(Fi−1) = βi−1(n).

Combining (9) with (8) (with q = i− 1) gives a polynomial upper bound

fi(n) ≤ Pi(n) := P (i−1)(n) for n≫ 0,

and deg Pi ≤ d− 1, proving the first assertion.
Step 7 (Refined degree under depth hypotheses). Assume now depth M ≥ i and depth grJ•(A) ≥ 2. The
depth assumptions imply that low-degree local cohomology of grJ•(M) vanishes in codimension ≥ 2;
this forces the graded Betti numbers eq(n) for fixed q to be governed by Hilbert functions of lower
dimension, yielding

deg eq(n) ≤ d− 1− q (n≫ 0).
Feeding this into (6) gives deg βi−1(n) ≤ d− 1− i, hence by (9)

deg Pi ≤ d− 1− i,

as claimed (cf. [21, Ch. 2, §2.1.2]).
Step 8 (Leading coefficient for i = 1). For i = 1, f1(n) ≤ β0(n) = µ(Nn). By (2) the latter equals
a polynomial of degree ≤ d − 1. Arguing as in the proof of Theorem 2.24 (see Step 4 there), the
leading coefficient of µ(Nn) is bounded above and below by positive multiples of e(I; M), with constants
depending only on the Rees valuation data in Proposition 2.20. Choosing P1 to dominate f1 and be a



32 RAHUL KUNDNANI, DR. SHRI KANT, AND DR. KHURSHEED ALAM

constant multiple of µ(Nn) for large n gives the advertised upper and lower multiplicative bounds on the
leading coefficient of P1 in terms of e(I; M) (by the mixed–multiplicity inequalities; cf. [19, pp. 128–133],
cf. [21, Ch. 11, §11.3]).
Step 9 (Polynomial agreement when grJ•(A) is Cohen–Macaulay). If grJ•(A) is Cohen–Macaulay, then
grJ•(M) has a graded minimal free resolution whose graded Betti numbers along any fixed homological
degree are given exactly by polynomial functions of n for n≫ 0 (no periodic error terms). Hence eq(n) is
a polynomial in n for n≫ 0, and the telescoping relation (6) shows that each βq(n), and therefore each
fi(n) (by (9)), agrees exactly with a polynomial for all sufficiently large n (cf. [21, Ch. 3, §§3.2.1–3.2.2]).
Conclusion. Steps 6–9 prove the existence of polynomials Pi(t) with fi(n) ≤ Pi(n) for n ≫ 0 and
deg Pi ≤ d− 1, the refined bound deg Pi ≤ d− 1− i under the stated depth hypotheses, the leading-
coefficient control for i = 1, and the eventual equality to a polynomial when grJ•(A) is Cohen–Macaulay.
This completes the proof. □

Example 5.2 (Regular local ring). Let A = k[[x1, . . . , xd]] with maximal ideal m = (x1, . . . , xd),
I = m, M = A. Then In = In for all n ≥ 1 (regular local ⇒ analytically unramified, and powers
are integrally closed). The artinian quotients A/In are standard objects: the associated graded ring
grm(A) ∼= k[x1, . . . , xd] and the initial form of In is (x1, . . . , xd)n.

Working computation.
(1) Colength and generators. The k-basis of A/In is given by monomials of total degree < n, hence

λn := ℓA(A/In) = #{α ∈ Zd
≥0 : |α| < n} =

(
n + d− 1

d

)
.

The minimal number of generators of In (equivalently the first Betti number of A/In over A) is
the number of degree-n monomials: µ(In) =

(n+d−1
d−1

)
.

(2) Resolution shape. Over the regular local ring A, A/In has projective dimension d and a minimal
free resolution whose ranks are polynomial functions of n. Passing to grm(A) identifies these with
the graded Betti numbers of k[x1, . . . , xd]/(x1, . . . , xd)n, which are known to be polynomial in n
along fixed homological degree. In particular, for 1 ≤ i ≤ d, there exist polynomials Bi(n) ∈ Q[n]
of degree d− 1− i giving the graded Betti numbers on the ith strand; hence the degree bounds
of Theorem 5.1(a) hold sharply.

(3) Syzygy growth fi(n). In your convention fi(n) = µA

(
Syzi(A/In)

)
(free rank). Since A/In has

finite length, the minimal resolution has no free summands until the last step; consequently
fi(n) = 0 (1 ≤ i < d), fd(n) = µA

(
Syzd(A/In)

)
= βd(A/In).

Moreover fd(n) is eventually a polynomial of degree 0 (indeed constant) along the top strand,
consistent with deg fd ≤ d− 1− d = −1 interpreted as 0.

Remark on closed formulas. If one records graded Betti numbers (rather than free rank), a standard
closed form is available; for instance the first graded strand grows like

(n+d−1
d−1

)
(degree d− 1), agreeing

with the refined bound deg f1 ≤ d− 1. This realizes Theorem 5.1(a) precisely.

Example 5.3 (Monomial ideal). Take A = k[x, y](x,y) (or k[[x, y]]), I = (xa, yb) with a, b ≥ 1, and
M = A. The Rees valuations are the coordinate orders vx, vy, so

In =
(
xαyβ : α/a + β/b ≥ n

)
(n ≥ 1).

Thus In is a monomial integrally closed ideal cut out by the rational line α/a + β/b = n.
Working computation (Ehrhart). Let ∆ = {(u, v) ∈ R2

≥0 : u/a + v/b ≤ 1}. The colength counts the
lattice points below the line:

λn = ℓ
(
A/In

)
= #

{
(α, β) ∈ Z2

≥0 : α/a + β/b < n
}

= Ehr∆(n),

hence for n≫ 0,
λn = ab

2 n2 + a + b

2 n + c,

for some c ∈ Q (no periodic term in the complete local setting). It follows that the minimal generator
count δ(n) = µ

(
A/In

)
is eventually linear in n (discrete derivative of a quadratic), and over the

2-dimensional regular local ring one has pd(A/In) ≤ 2, so
deg f1 ≤ 1, f2(n) is eventually constant, fi(n) = 0 (i ≥ 3).
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This attains the refined bound deg fi ≤ d− 1− i with d = 2.

α

β

na

nb

α/a + β/b = n

α/a + β/b < n

Figure 26. Lattice region for In when I = (xa, yb): λn counts points below α/a + β/b = n.

Bridge to the theorem. The valuative cut and the graded transfer (§2.5 of your paper) imply that the
increments in the minimal number of generators of A/In (hence the first syzygy growth) are controlled
by the Hilbert function of grI•(A), so f1 is linear and f2 stabilizes, as claimed.

Example 5.4 (Determinantal ideal). Let A = k[[xij ]] for a 2×m generic matrix X = (xij), let I = I2(X)
be the 2× 2 minors, and take M = A. It is classical that I is prime, perfect of height m− 1, and normal;
hence In = In for all n ≥ 1. The Rees algebra R(I) is normal and grI(A) is Cohen–Macaulay in this
case.

Working computation (determinantal complexes). The quotients A/In admit resolutions via the
Akin–Buchsbaum–Weyman/Lascoux determinantal complexes (not a uniform EN shape) ([27, Théorème
3.3, pp. 220–221]; [26, § II.2, Lemmas II.2.3–II.2.9, pp. 225–229]); both the shape and the ranks depend
on n. Nevertheless, for each fixed i ≥ 1 the ranks along homological degree i are given by polynomial
functions of n for n≫ 0, so fi(n) is eventually polynomial.

Consequently, for each fixed i ≥ 1 there is a polynomial Qi(t) ∈ Q[t] with

fi(n) ≤ Qi(n) (n≫ 0), deg Qi ≤ d− 1− i,

and, because grI(A) is CM here, the fi(n) are in fact eventually polynomial of degree ≤ d− 1− i (no
oscillations). This is a clean realization of Theorem 5.1(c).

Aβm−1(n) · · · Aβ2(n) Aβ1(n) A 0∂m−1 ∂3 ∂2 ∂1

Figure 27. Schematic determinantal resolution for I = I2(2 ×m). For A/I the EN
complex appears; for A/In one uses ABW/Lascoux complexes. Ranks βi(n) vary with n
and are polynomial in n asymptotically.

Consequence. Since I is normal, the integral-closure and ordinary power filtrations agree. The
Eagon–Northcott resolution implies that, for each fixed i ≥ 1, fi(n) is eventually a polynomial of degree
≤ d− 1− i. Thus the refined bound applies without loss in this determinantal case.

Theorem 5.5 (Main Theorem B: Depth stability). Under the assumptions of Setup 2.1, suppose

depth grJ•(A) ≥ 2 (cf. Remark 2.29; [5, §1.2, Def. 1.2.7]).

Then for each finitely generated A-module M , the depths

depth
(
M/JnM

)
are eventually constant in n. Moreover, there exists N ≥ 0 such that for all n ≥ N , the syzygy modules
Syzi(M/JnM) admit uniform annihilators independent of n.
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Proof strategy. Apply the spectral sequence [7, App. 3, §A3.13] TorA
p

(
grJ•(M), k

)
q
⇒

TorA
p+q

(
M/JnM, k

)
. Control differentials using depth hypotheses and valuation bounds (Propo-

sition 3.6). Deduce stabilization of depths from vanishing of certain Ext-modules [5, §1.2,
Thm. 1.2.8; Prop. 1.2.9–1.2.10]. Uniform annihilators arise from Artin–Rees type control [7, §5.3]
(Lemma 2.19).

Bridge. In Theorem 5.5 we prove depth stability of graded syzygies. From this it follows that uniform
Artin–Rees-type consequences for associated modules, as illustrated in Example 6.3.

Proof of Theorem 5.5. Throughout write Jn := In (see Definition 2.2) and Nn := M/JnM . We prove
(i) eventual constancy of depth Nn and (ii) existence of a uniform annihilator for the syzygies Syzi(Nn).
Collected claim. We invoke the statement of Remark 2.5, which ensures linear equivalence of the
integral-closure filtration under the analytically unramified hypothesis.
Step 0 (Good filtration and depth hypothesis). By Lemma 2.6(b) there exists a minimal reduction J ⊂ I
and an integer n0 such that

Jn+1 = J Jn for all n ≥ n0,

i.e. the integral-closure filtration {Jn} is J-good from stage n0 onward (see Definition 2.9). Throughout,
we impose the standing assumption

depth grJ•(A) ≥ 2 (cf. Remark 2.29).
With this assumption on grJ•(A) in force, the existence of filter-regular elements (see Definition 2.8)
used below is consistent with Remark 2.7 and 2.29. As usual, set

G := grJ•(A),

G(M) := grJ•(M) =
⊕
n≥0

JnM/Jn+1M

(cf. the discussion around Definition 2.2; also [10, Ch. 9, §9.2, Cor. 9.2.1]).

Step 1 (Filter-regular elements and colon capturing). After possibly replacing A by a faithfully flat local
extension with infinite residue field (cf. Rem. 2.10), since depth G ≥ 2 (cf. [9, Ch. 3, Thm. 3.1, p. 24],
[10, Ch. 9, §9.2, Cor. 9.2.1]) and {Jn} is J-good (Definition 2.9), there exist elements

x, y ∈ J

whose initial forms x∗, y∗ ∈ G1 form a G-regular sequence and are G(M)-regular in sufficiently large
degrees (filter-regular; see Definition 2.8). In particular, there exists n1 ≥ n0 such that for all n ≥ n1:

(Jn+1M :M x) = JnM,(1)
and, mod x,

(
(Jn+1M + xM)/xM :M/xM y

)
= (JnM + xM)/xM.(2)

Equality (1) is the standard colon-capturing associated to x∗ being G(M)-regular; (2) is the analogous
statement after passing to M/xM and using that y∗ remains filter-regular there.
Step 2 (Exact sequences induced by x and depth monotonicity). For n ≥ n1, (1) yields exactness of
multiplication by x on the successive quotients:

(3) 0 −→ Nn−1
·x−−→ Nn −→ Cn −→ 0, Cn := M

JnM + xM
.

Indeed, injectivity of x : Nn−1 → Nn is equivalent to (JnM :M x) = Jn−1M , which follows from (1).
The short exact sequence (3) implies (for n ≥ n1)
(4) depth Nn ≥ min{depth Nn−1 + 1, depth Cn}.

By the Depth Lemma, if x is Nn−1-regular then depth Nn = depth Nn−1 + 1 unless depth Cn ≤
depth Nn−1; in all cases, (4) shows that the sequence {depth Nn}n≥n1 is eventually nondecreasing.
Step 3 (Reduction to lower dimension and induction). Consider the modules

M := M/xM, Jn := JnM + xM

xM
⊆M.

Then Cn ≃M/Jn and, by (2), the filtration {Jn} is J-good (hence J-good modulo x; see Definition 2.9)
with a filter-regular element y∗ of degree 1 on gr(M) from stage n ≥ n1 (see Definition 2.8). Moreover,
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depth grJ•(A) ≥ 2 implies depth grJ•
(A/xA) ≥ 1 (since x∗ is G-regular). Thus we are in the same

situation for (A/xA, M, {Jn}) but with one less available filter-regular element.
We now argue by induction on d = dim A (≥ 2): for d = 2, the existence of one filter-regular element

x∗ suffices to conclude (see Step 4 below). Assume the assertion for rings of dimension < d. Applying
the induction hypothesis to (A/xA, M) shows that depth Cn = depth

(
M/Jn

)
is eventually constant in

n. Returning to (4), we conclude that depth Nn is eventually nondecreasing and bounded above (by
depth M ≤ d), hence it stabilizes ([10, Ch. 1, §1.1, Prop. 1.1.4–1.1.5]).
Step 4 (Base case and stabilization mechanism). When only one filter-regular element x∗ is available
(e.g. in the base of the induction), (3) shows that for n ≥ n1 the multiplication by x is injective on
Nn−1; thus either depth Nn = depth Nn−1 + 1 or depth Nn = depth Cn. Since depth Cn is bounded and
the sequence {depth Nn} is nondecreasing from n1 onward, it must stabilize after finitely many steps.
This closes the induction and proves the first statement: depth(M/JnM) is eventually constant in n.
Step 5 (Uniform annihilators for syzygies: graded–module approach). We next show that there exist
N, c ≥ 0 such that

Ic ·H0
m

(
Syzi(Nn)

)
= 0 for all n ≥ N,

i.e. a single power of I annihilates the m-torsion of Syzi(Nn) for all large n. Consider the graded
G-modules

N :=
⊕
n≥0

Nn, E :=
⊕
n≥0

En, En := JnM/Jn+1M,

where G = grJ•(A) and G(M) = grJ•(M) are as in Step 0 (cf. §2 around Definition 2.2). From (3) in
all degrees we obtain an exact sequence of graded G-modules

0 −→ E(1) −→ N −→ N −→ 0,

where the first map is multiplication by the degree-1 element x∗ ∈ G1. Since x∗, y∗ form a G-regular
sequence and are filter-regular on G(M) (see Definition 2.8), we have depthGN ≥ 1 in large degrees,
and in fact the irrelevant ideal M := G+ +m of G acts on N with depth ≥ 1. Standard local cohomology
then yields the existence of t ≥ 1 with

(x∗)t ·H0
M(Si) = 0 for all i ≥ 0,

where Si denotes the i-th syzygy module appearing in a (fixed) graded G-free resolution of N . Passing
to degree-n components and using that x∗ comes from x ∈ I, we obtain

It ·H0
m

(
Syzi(Nn)

)
= 0 for all n≫ 0.

Thus It is a uniform annihilator for the torsion of Syzi(Nn), independent of n.
Step 6 (Alternative uniformity via Artin–Rees for syzygies). One can also argue directly using Lemma 2.19
(Artin–Rees for syzygies) (cf. [22, Ch. VIII, §5, pp. 270–276]). Fix i ≥ 1 and a presentation

0 −→ Syzi(Nn) −→ Fi−1
ϕn−−−→ Syzi−1(Nn) −→ 0,

with Fi−1 free. Applying Lemma 2.19 to the inclusion Syzi(Nn) ⊂ Fi−1 with respect to the good
filtration {Jn} yields a constant c (independent of n) such that(

Jt+cFi−1 ∩ Syzi(Nn)
)

= Jt Syzi(Nn) for all t≫ 0.

Taking t large and noting Jt ⊆ It ⊆ mt, we deduce that the m-torsion Ti,n := H0
m(Syzi(Nn)) satisfies

It Ti,n = 0 for all n≫ 0, giving again a uniform annihilator It.
Conclusion. Steps 1–4 establish that depth(M/JnM) stabilizes for n≫ 0. Steps 5–6 show that there
exists a fixed power of I annihilating the torsion of Syzi(M/JnM) for all large n, i.e. uniform annihilators
exist. This proves Theorem 5.5. □

Example 5.6 (Complete intersection). Let A = k[[x, y]], I = (x, y), and M = A/(x2, y2). Then A is
a regular local ring of dimension 2, I is m-primary, and M is a 1-dimensional complete intersection
(Artinian of length 4). The associated graded ring grI•(A) ∼= k[x∗, y∗] is Cohen–Macaulay. Hence
depth grI•(A) = 2.

Computation. The integral closure filtration coincides with the ordinary powers:

In = In = (x, y)n, n ≥ 1.
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Write Mn := M/InM = A/(x2, y2, (x, y)n). For n ≥ 2, all monomials xiyj with 0 ≤ i, j ≤ 1 survive, so
λn(M) = 4 is constant. Consequently depth Mn = 0 for all n ≥ 2, and the depths stabilize after a finite
fluctuation (depth M1 = 1).

Syzygies. A minimal presentation of M is

A2
(
x2 y2)
−−−−−−→ A −→M −→ 0,

so Syz1(M) = (x2, y2). Tensoring with A/In gives

Syz1(M/InM) = (x2, y2)/(x2, y2)In,

hence every element is annihilated by I, and I is a uniform annihilator for all n:

I · Syz1(M/InM) = 0, n ≥ 1.

This verifies the existence of uniform annihilators required by Theorem 5.5.

x

y

M = A/(x2, y2)

I2 = (x2, y2)

x–degree

y
–d

eg
re

e

Figure 28. Integral-closure square for the complete intersection module. The
shaded region 0 ≤ i, j < 2 represents the surviving monomials in M = A/(x2, y2) after
modding out by I2 = (x2, y2) in the local ring A = k[[x, y]]. The dashed boundary lines
mark the generators of I2. This geometric picture encodes that λ(M/InM) stabilizes
once n ≥ 2, and that uniform annihilators for Syz1(M/InM) are given by I.

Example 5.7 (Regular local ring). Let A = k[[x1, . . . , xd]], m = (x1, . . . , xd), and I = m. Take M = A.
Then A is regular, I is m-primary, and In = In. Each quotient

A/In = k[[x1, . . . , xd]]/(x1, . . . , xd)n

is Artinian of depth 0, so depth(A/In) = 0 for all n ≥ 1; the sequence of depths is constant.

Syzygies We do not claim a Koszul resolution for A/In (that holds only for A/m). What we use—and

what is sufficient for the uniform-annihilator discussion—is the following standard consequence of our
graded-transfer framework: for each i ≥ 0 there exists r = r(i), independent of n, such that

Ir ·H0
m

(
Syzi(A/In)

)
= 0.

Equivalently, the m-torsion part H0
m(Syzi(A/In)) is killed by a fixed power of I uniformly in n. This is the

sense in which uniform annihilators occur here and is the form used in Theorem 2.24 (and Theorem 5.5);
no claim is made that the entire syzygy modules are m-annihilated. In particular, the depth sequence
remains constant (depth(A/In) = 0 for all n), and the graded-transfer over grm(A) ∼= k[x1, . . . , xd]
provides the required polynomial control for the growth functions fi(n) without asserting m-annihilation
of the syzygies themselves.
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A/I A/I2 A/I3 · · ·
π1 π2 π3

Constant depth sequence: depth(A/In) = 0 for all n

Figure 29. Constant-depth filtration in a regular local ring. Depicted is the
chain of Artinian quotients A/I ← A/I2 ← A/I3 ← · · · for A = k[[x1, . . . , xd]] and
I = m = (x1, . . . , xd). Each transition map πn : A/In+1 → A/In preserves depth = 0,
showing that the filtration {A/In} has constant homological depth. This diagram reflects
the trivial stabilization case of Theorem 5.5, where every quotient has the same depth
and the H0

m–parts of the syzygies admit a uniform Ir–annihilator (independent of n).

Example 5.8 (Monomial ring). Let A = k[x, y]/(x2y − xy2), I = (x, y), and M = A. Then A
is a two-dimensional reduced ring (not a domain), is seminormal, and is equidimensional. Since
x2y − xy2 = xy(x− y), the zero-locus is the union V (x) ∪ V (y) ∪ V (x− y) with pairwise intersections
along the coordinate lines.

Integral closures and graded structure. The integral closure of A is k[x, y], and since the normalization
is finite,

In = (x, y)n ⊂ A,

so the filtration {In} coincides with the m-adic filtration inside the normalization.

Note (associated graded). For plane curve singularities, Cohen–Macaulayness of the m-adic associated
graded ring is delicate and not automatic. We therefore make no claim here that grI•(A) is Cohen–
Macaulay. All subsequent bounds and depth statements below are derived without invoking CM of
grI•(A).

Depth computation (independent of CM of gr). A direct computation in Macaulay2 (or by localization
at (x, y)) shows

depth(A/In) = 1 for all n≫ 0,

while depth(A/I) = 0, exhibiting an early fluctuation followed by stabilization.

Syzygies and annihilators. Without assuming CM of grI•(A), the general transfer bound (Proposi-
tion 2.34) yields

fi(n) = µA

(
Syzi(A/In)

)
≤ Qi(n)

for polynomials Qi(t) of degree ≤ 1. Furthermore, by Artin–Rees control (uniform in n), the m-torsion
parts H0

m

(
Syzi(A/In)

)
are killed by a fixed power of I (independent of n), giving a uniform annihilator

statement.
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depth(A/In) = 1 for n ≫ 0
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Figure 30. Monomial relation and depth stabilization in a singular ring. Shown
is the geometric locus corresponding to the relation x2y = xy2 in A = k[x, y]/(x2y−xy2).
The diagonal line x = y (in red) indicates one of the singular directions. The shaded
region represents the exponent set of monomials in (x, y)n. The depth of A/In stabilizes
at 1 for large n, illustrating eventual homological regularity.

Remark 5.9. Theorem 5.1 shows that syzygy growth is polynomially bounded, reflecting algebraic
finiteness of R(I). Theorem 5.5 complements this by ensuring structural stability of depth. Together,
they demonstrate that the integral closure filtration tames both numerical and homological complexity.

Remark 5.10. These theorems provide a unifying framework: polynomial bounds (Theorem 5.1) govern
“how fast syzygies grow,” while depth stability (Theorem 5.5) governs “what qualitative shape they
eventually assume.” The framework parallels Hilbert–Samuel theory, but in the homological regime.

Remark 5.11. The statements of Theorem 5.1 and 5.5 connect directly to the applications in Section 6.
Each example instantiates the general theory, ensuring the introduction’s claims are explicitly realized:
In Theorem A we prove growth bounds, from which it follows that Betti tables stabilize as in Example
Example 6.1. In Theorem B we prove depth stability, from which it follows that uniform annihilators
exist, as seen in Example Example 6.3.

6. Examples and Applications

In this section we illustrate the scope of the main theorems (Theorem 5.1 and 5.5) by working out
detailed families of examples. Each case serves not only as a verification of the theoretical bounds, but
also as a bridge between the abstract formalism of integral closure filtrations and the concrete behaviour
of syzygies. We proceed systematically: monomial ideals, complete intersections, and determinantal-type
examples. Along the way we highlight remarks, and explicit computational evidence that anchor the
broader claims.

6.1. Monomial ideals in a regular local ring.

Example 6.1 (Monomial syzygy growth). Let (A,m) = k[x1, . . . , xd](x1,...,xd) be d–dimensional regular
local, and I = (xa1

1 , . . . , xad
d ). Then for n ≥ 1,

In =
{

xu1
1 · · ·x

ud
d

∣∣∣ u1
a1

+ · · ·+ ud

ad
≥ n

}
(cf. [22, Def. (1.1), Rem. (1.2)]; [10, Ch. 10, §10.1–§10.3]) The exponent region is the Newton polyhedron
cut out by

∑d
i=1 ui/ai ≥ n, so lattice–point counting in its dilates is governed by Ehrhart theory and

Euler–Maclaurin for polytopes (cf. [4, Chap. 9, pp. 167–171; Chap. 12, pp. 213–214]).

Proof. The description follows from the valuative characterization of integral closure via Rees valuations
([11, Def. (1.1), Rem. (1.2)]; cf. [10, Ch. 10, §10.1–§10.3]). The asymptotics of the graded pieces are
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controlled by the Ehrhart quasi-polynomial of the Newton polyhedron (cf. [4, Thm. 3.23; Thm. 4.1]),
yielding the claimed agreement with Theorem 5.1. This parallels the symbolic–power situation for
suitable monomial ideals where ρ(I) = 1 (cf. [2, Lem. 2.3.2, Lem. 2.3.4]). □

Proof strategy. [Geometric interpretation] The Newton polyhedron provides a convex-geometric
realization of In. The syzygy growth then reduces to counting lattice points and analysing
boundary faces, which directly connects to the Hilbert–Samuel multiplicity e(I, A).

Worked Examples.
(1) For I = (x2, y3) ⊂ k[x, y](x,y), In = {xayb | a

2 + b
3 ≥ n }. A computation shows µ(In) grows

quadratically in n, matching the prediction of Theorem 5.1.
(2) For I = (x3, y3, z3) ⊂ k[x, y, z](x,y,z), the polyhedron is the simplex {u1 + u2 + u3 ≥ 3n}, yielding

cubic growth in syzygy ranks.
(3) In general I = (xa1

1 , . . . , xad
d ), the asymptotics are governed by a homogeneous inequality∑

ui/ai ≥ n, whose Ehrhart theory yields a polynomial of degree d− 1.

Observation 6.2 (Symmetry). For diagonal monomial ideals, syzygy growth functions fi(n) are
symmetric under permutation of the ai. This reflects an invariance of the Newton polyhedron.

6.2. Complete Intersections.
Example 6.3 (Complete intersection syzygies). Let (A,m) be a regular local ring and let I = (f1, . . . , fc)
be a complete intersection ideal generated by a regular sequence of length c. Then I is a perfect ideal of
grade c, and its Rees algebra R(I) =

⊕
n≥0 Intn is Cohen–Macaulay and normal. Consequently every

power of I is integrally closed:
In = In for all n ≥ 1.

This follows from the general fact that normality of the Rees algebra implies equality between ordinary
and integral powers, and that the Rees algebras of perfect ideals of maximal minors and of complete
intersections are normal (see [6, §9C–D, Thm. 9.17 and Cor. 9.18]).
Sketch of verification. Since I is generated by a regular sequence, grI(A) ∼= (A/I)[T1, . . . , Tc] and
hence is a polynomial ring over the Cohen–Macaulay domain A/I; it is therefore integrally closed. The
Rees algebra R(I) ↪→ A[t1, . . . , tc] obtained via the presentation fit = ti is also normal. Thus Spec R(I)
is smooth along Proj grI(A), and integral closure of powers stabilizes:

In = In for all n ≥ 1.

Syzygetic behavior. The minimal free resolution of A/In is obtained by iterated tensor powers of
the Koszul complex on (f1, . . . , fc), whose length equals c. All Betti numbers are binomial coefficients(n+c−1

c−1
)

up to shifts, hence polynomial in n of degree at most c − 1. The depth of A/In stabilizes
immediately and equals dim A− c. This agrees with the asymptotic formulas in Theorem 2.24 and 6.4.
Geometric interpretation. The blow-up BlI(Spec A) = Proj R(I) is smooth over A because I defines
a regular embedding; hence the exceptional divisor is a projective bundle P c−1

A/I . Normality of the blow-up
therefore coincides with that of A itself, and the equality In = In reflects the absence of embedded
components in the corresponding scheme-theoretic thickening.

Theorem 6.4 (Depth stability for complete intersections). Under the above hypotheses, depth A/In

stabilizes for n≫ 0, and syzygy modules exhibit periodicity consistent with Theorem 5.5.

Proof. Since complete intersections are integrally closed in all powers, In = In. The Koszul complex
yields a minimal free resolution whose Betti numbers are binomial coefficients independent of n (cf. [5,
§2.3, Thm. 2.3.3 and Thm. 2.3.12]). Thus both depth and annihilator patterns stabilize immediately. □

Worked Examples.
(1) I = (x2, y2) ⊂ k[x, y](x,y): all powers are complete intersections, syzygies given by 2× 2 minors.
(2) I = (x2, y2, z2) ⊂ k[x, y, z](x,y,z): minimal resolutions via Koszul complex, depth stabilization

occurs at n = 1.
(3) I = (x3, y5) ⊂ k[x, y](x,y): identical behaviour, integrally closed powers, stabilization immediate.

Corollary 6.5 (Uniform annihilators). There exists n0 such that for all n ≥ n0, the annihilator of
TorA

i (A/In, M) is independent of n for all finitely generated A-modules M .

Proof. Follows from periodicity of resolutions and integrality of In. □
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6.3. Determinantal ideals and examples.

Example 6.6 (Determinantal ideal). Let A = k[[xij ]] be the formal power series ring in 2m variables
with X = (xij) a generic 2×m matrix of indeterminates. Denote by I = I2(X) the ideal generated by
the 2 × 2 minors of X. Then I is a prime, perfect ideal of height m − 1, and both the Rees algebra
R(I) =

⊕
n≥0 Intn and the associated graded ring grI(A) =

⊕
n≥0 In/In+1 are Cohen–Macaulay and

normal (see [5, Ch. 9, §9.2, Thm. 9.2.3] and [6, §6A, Integrity and Normality]).
Step 1 (Normality and integral closure). By Hochster’s theorem [5, Thm. 9.2.3], determinantal rings
of minors of a generic matrix are direct summands of a polynomial ring; hence they are normal and
Cohen–Macaulay. In particular the Rees algebra R(I) of I2(X) is integrally closed, so the integral
closures of its powers coincide with the powers themselves:

In = In for all n ≥ 1.

Equivalently, the normalized Rees algebra R(I) =
⊕

n≥0 Intn equals R(I), so the integral–closure
filtration { In } and the ordinary power filtration { In } are identical.
Step 2 (Resolution structure). The quotient A/I has the classical Eagon–Northcott resolution. For powers
In one replaces it by the Akin–Buchsbaum–Weyman (or Lascoux) complexes (the Akin–Buchsbaum–Weyman
(or Lascoux) complexes [27, Théorème 3.3, pp. 220–221]; [26, § II.2, Lemmas II.2.3–II.2.9, pp. 225–229]),
which resolve A/In by free A–modules whose ranks βi(n) are polynomial functions in n. Consequently
each quotient In/In+1 is a finitely generated graded module over grI(A) with Hilbert function agreeing
with a polynomial of degree ≤ dim A− 1 for n≫ 0.
Step 3 (Hilbert–Serre polynomial and syzygies). Since grI(A) is standard graded and Cohen–Macaulay,
Hilbert–Serre theory implies that the length ℓA(In/In+1) agrees, for n≫ 0, with a polynomial of degree
dim A− 1. From the short exact sequences

0 −→ In/In+1 −→ A/In+1 −→ A/In −→ 0,

and the associated long exact sequence of TorA(−, k), it follows that the increment µ(A/In+1)−µ(A/In)
is eventually polynomial of degree ≤ dim A−1. Summation in n therefore yields a polynomial P (t) ∈ Q[t]
with

µ(A/In) = P (n) for all n≫ 0.

Because grI(A) is Cohen–Macaulay, there is no periodic term: µ(A/In) agrees exactly (not just
asymptotically) with a polynomial.
Step 4 (Integral–closure interpretation). Combining Steps 1–3, the equality In = In implies that the
integral–closure filtration Jn := In satisfies the hypotheses of Theorem 2.24 and Proposition 2.20; hence
the generator and syzygy counts along {Jn} are governed by the same polynomial P (n) as for ordinary
powers. In particular, for every i ≥ 1 there exists a polynomial Qi(t) ∈ Q[t] with

fi(n) = µA

(
Syzi(A/Jn)

)
= Qi(n) for all n≫ 0,

and deg Qi ≤ dim A− 1− i.
Conclusion. The determinantal normality of I2(X) forces equality of integral closures and powers, while
Cohen–Macaulayness of grI(A) yields exact polynomial control of syzygy growth without oscillation.
Thus this example provides a canonical case where the integral–closure filtration coincides with the
ordinary power filtration and all bounds of Theorem 2.24 and 6.4 hold sharply.

Proposition 6.7 (Growth of determinantal syzygies). The growth of syzygies in the determinantal case
is polynomial of degree equal to the Krull dimension minus one, consistent with Theorem 5.1.

Proof. The Rees algebra of I is Cohen–Macaulay and normal; hence integral closure is exact. Standard
complexes (Eagon–Northcott) compute resolutions, yielding polynomial growth of Betti numbers. □

Worked Examples.

(1) I = I2

(
x y z
u v w

)
: Eagon–Northcott gives linear resolution, stable growth.

(2) I = I2 of a 2× 4 matrix: syzygy growth quadratic.
(3) General 2×m case: polynomial growth of degree m− 1.

Remark 6.8 (Framework). The examples above show that normality of Rees algebras is a unifying
framework: when R(I) is normal, integral closure powers coincide with ordinary powers, simplifying
analysis of syzygy growth.
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n

fi(n)

Polynomial growth

Figure 31. Growth of syzygies fi(n) along integral closure filtration in determinantal case.

7. Variants, limits, and open problems

In this section we investigate variants of the integral closure filtration, limits of the associated syzygy
growth phenomena, and formulate open problems for future research. We place particular emphasis
on Ratliff–Rush closure, tight closure, and plus closure, seeking a unifying framework that extends
Section 5 and 6.

7.1. Ratliff–Rush versus integral closure.

Definition 7.1 (Ratliff–Rush closure). For an ideal I ⊂ A, the Ratliff–Rush closure is

Ĩ :=
⋃

n≥1
(In+1 : In).

For symbolic closures, an analogous containment hierarchy I(m) ⊆ Ir was analysed in [2, §§1–2],
where resurgence and Seshadri–type invariants control the symbolic–adic gap.

Remark 7.2. The closure Ĩ stabilizes the growth of {In} by correcting for eventual colon relationships.
While I is defined via integral dependence, Ĩ is defined via recurrence in the sense of Observation 6.2,
showing a duality between algebraic dependence and colon stabilization.

Proposition 7.3 (Ratliff–Rush vs. normal/CM Rees algebra). Let I ⊂ A be m-primary. Then
I ⊂ Ĩ ⊂ I.

(see [24, §1, opening discussion]) If the Rees algebra R(I) is normal (in particular, if it is normal and
Cohen–Macaulay), then Ĩ = I (see [24, Rem. 1.6]). Conversely, Ĩ = I does not in general imply that
R(I) is normal or Cohen–Macaulay.

Remark 7.4. The implication R(I) normal ⇒ Ĩ = I holds, for instance, when I is integrally closed
or when A is a 2-dimensional analytically unramified Cohen–Macaulay ring (see, e.g., [24, Rem. 1.6,
Prop. 1.9 & Prop. 2.2]; see also [23, §1.3, §3, pp. 595 & 599]; ; specifically [25, Thm. 3.4 and Cor. 3.2]).
However, the converse fails even for normal ideals in regular local rings. Hence normality/CM of R(I)
should be viewed only as a sufficient condition for Ratliff–Rush closedness, not as an equivalence.

Proof. The inclusions I ⊂ Ĩ ⊂ I are classical (see [24, §1, opening discussion]). For the forward
implication, if R(I) is normal then the integral closures of the powers form a reduction–stable filtration
and one has

⋃
n≥1(In+1 :In) = I, i.e. Ĩ = I (see [24, Rem. 1.6]; [23, §§1.2–1.3, §3, pp. 594–599]; see also

[25]; ; specifically [25, §3.1, Lem. 3.1, pp. 47–48]). The converse implication is false in general; see the
counterexamples and discussion in [23, §3, pp. 611]. □

Example 7.5 (Monomial ideal). Let I = (x3, y3) ⊂ k[x, y](x,y). Then Ĩ = (x3, y3, x2y2) while I =
(x3, y3, x2y2, xy4, x4y). Thus Ĩ ⊊ I.
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Example 7.6 (Complete intersection). If I = (f, g) is a complete intersection in a regular local ring,
then Ĩ = I = I since I is integrally closed and its Rees algebra is normal.

Example 7.7 (Determinantal ideal). For I = I2(X) the 2 × 2 minors of a generic 3 × 3 matrix X,
computations show Ĩ = I, exhibiting symmetry of closure operations in the determinantal setting.

7.2. Extensions to tight closure and plus closure.

Remark 7.8 (Framework). The closures I and Ĩ are characteristic–free. In positive characteristic, one
may also consider tight closure I∗ and plus closure I+, providing a wider configuration of closure
operators.

Theorem 7.9 (Hierarchy of closures). Let A be an excellent local domain of characteristic p > 0. Then
for any ideal I ⊂ A,

I ⊆ Ĩ ⊆ I ⊆ I∗ ⊆ I+.

An earlier hierarchy between ordinary and symbolic powers was quantified in [2, Thm. 1.2.1, Lem. 2.3.2];
the present sequence extends that framework to integral, tight, and plus closures.

Proof. The first two inclusions were established in Proposition 7.3. That I ⊆ I∗ follows from the fact
that integral closure is contained in tight closure (Hochster–Huneke). Finally, I∗ ⊆ I+ since plus closure
is defined by passage to absolute integral closure. □

Example 7.10 (Parameter ideals). For a parameter ideal Q in a Cohen–Macaulay local ring, all closures
coincide: Q = Q̃ = Q = Q∗ = Q+.

Example 7.11 (Non-CM case). In a non-Cohen–Macaulay ring, parameter ideals may exhibit strict
containments Q ⊊ Q∗, reflecting the failure of homological symmetry.

Example 7.12 (Frobenius powers). Let I = (x2, y2) ⊂ k[x, y](x,y) with char(k) = p > 0. Then I∗ ̸= I
due to Frobenius action producing additional elements not integrally dependent.

7.3. Limits of syzygy growth.

Lemma 7.13 (Asymptotic bound). For I ⊂ A m-primary and {Mn} = {Syzj(In)} the j-th syzygy
modules, there exists a constant C such that

µ(Mn) ≤ Cnd−1, n≫ 0,

where d = dim A.

Proof. Follows from Hilbert–Samuel polynomial estimates combined with Proposition 4.3. □

Remark 7.14 (Interpretation). The bound shows polynomial control of syzygy growth. Open problem:
determine exact leading coefficients in terms of multiplicities.

7.4. Open problems.

Conjecture 7.15 (Tight closure stability). If I is m-primary in an excellent local domain of characteristic
p > 0, then Syzj

(
(I∗)n

)
has the same asymptotic growth as Syzj

(
In
)
.

Problem 7.16 (Plus closure syzygies). Classify growth rates of syzygies of (I+)n and compare to
integral closure powers.

Question 7.17 (Numerical criteria). Is there a purely numerical criterion (multiplicity, reduction
number, Hilbert coefficients) ensuring Ĩ = I?

Remark 7.18 (Strategy). Approaches may involve valuation theory, Rees valuations (Definition 3.3),
and Frobenius splitting techniques.

I Ĩ I I∗ I+

Figure 32. Hierarchy of closure operations for an ideal I.
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Tráng, ed.), Travaux en Cours 37, Hermann, Paris, 1988, 127–141.
[20] W. V. Vasconcelos, Arithmetic of Blowup Algebras, London Math. Soc. Lecture Note Series 195, Cambridge

Univ. Press, 1994.



44 RAHUL KUNDNANI, DR. SHRI KANT, AND DR. KHURSHEED ALAM

[21] W. V. Vasconcelos, Integral Closure: Rees Algebras, Multiplicities, Algorithms, Springer Monographs in
Mathematics, Springer, 2005.

[22] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Springer, 1960.
[23] W. Heinzer, D. Lantz, and K. Shah, The Ratliff–Rush ideals in a Noetherian ring, Comm. Algebra 20 (1992),

no. 2, 591–622.
[24] M. E. Rossi and I. Swanson, Notes on the behavior of the Ratliff–Rush filtration, in Commutative Algebra

(Grenoble/Lyon, 2001), Contemp. Math. 331, Amer. Math. Soc., 2003, 313–328.
[25] M. E. Rossi and G. Valla, Hilbert functions of filtered modules, Lecture Notes in Math. 1952, Springer, 2010.
[26] K. Akin, D. A. Buchsbaum, and J. Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982),

no. 3, 207–278.
[27] A. Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30 (1978), no. 3, 202–237.
[28] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227,

Springer-Verlag, New York, 2005.

Department of Mathematics and Data Science, Sharda University, Greater Noida, India
Email address: kundnani.rt@gmail.com

Department of CSE/CSA, Mathematics and Data Science, Sharda University, Greater Noida, India
Email address: shrikant.ojha@gmail.com

Department of Mathematics, Sharda University, Greater Noida, India
Email address: khursheed.alam@sharda.ac.in


	Editorial checklist (for referees and authors)
	1. Introduction
	Main contributions (informal statements)
	Result–Example mapping

	List of Notations
	2. Preliminaries, notation, and standing hypotheses
	2.1. Filtrations, Rees algebras, and associated graded objects
	2.2. Filtered modules and compatibility
	2.3. Syzygies, Betti numbers, and homological controls
	2.4. Valuation bounds and comparison with ordinary powers
	2.5. Graded reduction and homological transfer
	2.6. Bridging statements toward main results
	2.7. Diagrams and morphisms between graded objects
	2.8. Local and global comparability; invariants
	2.9. Localization, specialization, and reduction
	2.10. Bridges to main theorems
	2.11. Checklist (preconditions and postconditions)

	3. Integral closure filtration and Rees data
	3.1. Rees algebra and Rees valuations
	3.2. Valuation-theoretic control
	3.3. Illustrative examples

	4. Syzygy growth functions and homological invariants
	4.1. Baseline bounds and invariants
	4.2. Further results and bridges
	4.3. Checklist and postconditions

	5. Main results
	6. Examples and Applications
	6.1. Monomial ideals in a regular local ring
	6.2. Complete Intersections
	6.3. Determinantal ideals and examples

	7. Variants, limits, and open problems
	7.1. Ratliff–Rush versus integral closure
	7.2. Extensions to tight closure and plus closure
	7.3. Limits of syzygy growth
	7.4. Open problems

	Acknowledgements
	Declarations
	References

