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Abstract

Assuming purity and tame monodromy of nearby cycles on algebraic stacks and the existence of
smooth local slice models of abelian or K3 type, we establish a cohomological criterion for detecting good
reduction in families parametrized by tame moduli stacks. Under these hypotheses, trivial monodromy
on f-adic cohomology implies the integral extendability of points with finite stabilizers, generalizing the
Néron-Ogg—Shafarevich criterion from abelian varieties to stacks with linearly reductive inertia. The
theory yields density results for good-reduction loci, clarifies the role of weight—-monodromy and nearby-
cycle purity in extension problems, and provides explicit examples and counterexamples illustrating the
necessity of the hypotheses. Applications include elliptic curves with level structure, abelian surfaces
with complex multiplication, and tame quotient stacks [A!/u,] with (n,p) = 1, linking cohomological

purity to arithmetic integrality and moduli-theoretic extension properties.
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1 Introduction

The notion of good reduction has long served as a central invariant in arithmetic geometry, governing
the behaviour of varieties and their cohomology under specialization. Throughout this work, all main
results are obtained under Assumption 3.13 (purity of nearby cycles on stacks) together with the slice
hypothesis (Assumption 3.12); see Theorem 3.16 for the full detection statement. Classically, one studies
smooth proper schemes X /K over a discretely valued field and asks whether X extends to a smooth proper
model over Ok (Definition 2.1). For abelian varieties, the Néron-Ogg—Shafarevich criterion (Lemma 2.3)
provides a cohomological test: trivial inertia action on f-adic cohomology is equivalent to the existence of
good reduction. This illustrates the guiding theme that geometric and cohomological criteria are deeply
intertwined.

The traditional perspective, however, is limited to schemes. In the presence of automorphisms or
families parameterized by moduli problems, one is naturally led to stacks. Algebraic stacks introduce
subtleties: flatness and smoothness may fail globally (Counterexample 2.8), stabilizers influence extension
problems, and cohomological descent requires refinement (Lemma 2.9 and proposition 2.14). A systematic

framework for detecting good reduction inside moduli stacks has so far remained incomplete.



Theorem 1.1 (Main detection theorem). Let K be a discretely valued field with ring of integers Ok and
residue characteristic p > 0. Let M be a tame algebraic stack of finite type over Ok with affine diagonal

and finite linearly reductive stabilizers. Assume:

(i) (Purity) Assumption 3.13 holds for M, i.e. for every £ # p the nearby-cycles complex RV (Qy) on
M is pure of weight 0 (contrast the wild failure in Example 6.12);

(ii) (Cohomological inertia) for all i, the inertia group Ik acts unipotently with trivial monodromy
N =0 on Hét(MK,Qg) for £ # p;

(iii) (Slice) Assumption 3.12 holds at the given point after possibly a finite unramified extension of K.

Then every K-point x,: Spec K — M, with finite stabilizer extends, after a finite unramified extension
of K, to a morphism Spec O — M.

Remark 1.2. A detailed version and proof are given in Theorem 3.16; the abbreviated statement above is

for convenient reference.

New perspective.

In this work we extend the philosophy of Néron models and cohomological detection to moduli stacks
with tame, linearly reductive stabilizers. Our central innovation is a moduli-theoretic detection theorem
(Theorem 3.16 and remark 3.17): under the Assumption 3.13, the purity of nearby cycles together with
trivial monodromy (N = 0) ensures that every K-point with finite stabilizer extends integrally. This
generalizes the classical Néron—-Ogg—Shafarevich criterion from abelian varieties to stacks, and establishes
a bridge between weight-monodromy phenomena and extension properties (Proposition 3.6, definition 3.29,
and theorem 3.31).

Outline of main results. The paper is organized around a recurring pattern: Theorem = Consequence

= FExample = Counterexample.

e In Section 3 we set up moduli-theoretic encodings (Section 3.1, definition 3.1, and lemma 3.3) and

compare with classical Néron models (Section 3.3).

e In Section 4 we establish density results (Theorem 4.2 and remark 4.3), a local vanishing-cycles criterion
(Theorem 4.9 and remark 4.10), and structural openness (Proposition 4.15), illustrated by CM abelian
varieties (Example 4.7) and toric quotients (Example 4.17), together with counterexamples showing

necessity of linear reductivity (Counterexamples 4.8 and 4.18).

e In Section 5 we connect to cohomological invariants (Definition 5.1, theorem 5.2, and remark 5.3),
modular and Shimura varieties (Proposition 5.6 and corollary 5.7), and adelic local-global compatibility
(Theorem 5.11 and remark 5.12).

e In Section 6 explicit computations confirm the theory: elliptic curves with integral j (Proposition 6.1
and example 6.2), ordinary abelian varieties (Proposition 6.6 and example 6.7), and counterexamples

from wild ramification and non-separated diagonals (Counterexamples 6.5, 6.11 and 6.14).

e Finally, Section 7 formulates bridges to motivic and adelic contexts: functoriality of cohomological

footprints (Proposition 7.2), global L-functions (Theorem 7.9 and remark 7.11), and invariant alignment



criteria (Theorem 7.15 and remark 7.18). The conclusion (Section 8 and construction 8.1) synthesizes

these into a unified “schematic footprint” principle.

This roadmap positions the paper as a synthesis: classical good reduction criteria, stack-theoretic exten-
sion properties, and cohomological purity are shown to be facets of a single arithmetic principle. (See

Theorem 3.16 for a numbered summary of the main detection result.)

Novelty Statement. New: a moduli-theoretic, stack-level NOS-type detection criterion (Theo-
rem 3.16) under Assumption 3.13 (purity) and the slice hypothesis (Assumption 3.12); together with a
density theorem (Theorem 4.2) derived via tame slices and Chebotarev, and explicit counterexamples

demonstrating the necessity of linear-reductivity, separated diagonal, and purity.

2 Background and Preliminaries

Throughout this section we fix a discretely valued field K with ring of integers O, uniformizer =, and
residue field k of characteristic p > 0. We write n = Spec K and s = Speck. All schemes and stacks
are assumed locally of finite type over Ok unless otherwise specified. Notation and standing conventions

introduced here will remain in force for the remainder of the paper.

2.1 Good Reduction of Arithmetic Schemes

Definition 2.1 (Good reduction). Let X be a smooth, proper scheme over K. We say that X has good

reduction over Of if there exists a smooth, proper scheme X over Ok such that &, = X.

Remark 2.2 (Necessity of properness). Properness in Definition 2.1 ensures that extension of morphisms
across the special fiber is governed by valuative criteria. For non-proper families one must instead work

with Néron models, cf. [3].

Lemma 2.3 (Néron—Ogg—Shafarevich criterion for abelian varieties). Let K be a discretely valued field
with ring of integers O, residue characteristic p > 0, and separable closure K. Let A/K be an abelian
variety. Then A has good reduction over Ok if and only if, for some (equivalently, for all) primes ¢ # p,
the I —action on Hgt (Af, Qg) 1s trivial.

Proof. (=) If A extends to an abelian scheme A/O with smooth special fiber, smooth proper base change

gives canonical isomorphisms

Hélt (Af’ Qf) = Hélt(A57 Q€)7

functorial in the trait; the right side carries trivial Ix—action, hence so does the left.

(<) Assume I acts trivially on H}, (A?7 Qg) for some £ # p. Equivalently, the /—adic Tate module
Ty(A) is unramified. Let N'/Ok be the Néron model of A. The connected special fiber N? fits into a
Chevalley extension

0—T—N)— B—0,

with 7' a torus and B an abelian variety. By the monodromy—weight description of Ix on Ty(A) (or,

concretely, Raynaud’s criterion in the Néron model), nontrivial toric rank forces nontrivial unipotent



monodromy on Ty(A); since the Ix—action is trivial by hypothesis, the toric rank is zero, hence T' = 0 and
N? is abelian. Therefore N is an abelian scheme, so A has good reduction.
Finally, the parenthetical “equivalently all £” follows because good reduction is an /—independent prop-

erty: if it holds for one ¢, it holds for every ¢ % p by the first implication above. O

Hélt (A?v QZ)

monodromy N \

. Il
0 (= N =0 and trivial I) » H (R (Qu))

Hsmooth base change
H e%t (A5 ) QZ)

Figure 1: Néron-Ogg-Shafarevich bridge: trivial Iz on H' <= good reduction of A.

Notation 2.4 (Galois inertia vs. stack inertia). Let Gx = Gal(K/K) with inertia subgroup Iy C G.

For an algebraic stack M over Spec O with finite inertia, write

IM ::MXMXOKMM

for the inertia stack and, for a geometric point x € M (K), denote the stabilizer group scheme by G, :=
Auty(z) over K.

For £ # p, we distinguish two actions on ¢-adic cohomology:

e (Galois inertia) the natural Ir-action on H} (M7, Q) induced functorially by base change along
Spec K —Spec K (SGAT7 II, Exp. IX).

e (Stack inertia) the action coming from stabilizers: the constant groups G, (K) act on the cohomology

computed via a simplicial presentation of M; see [8] for the six-operations formalism.

These are a priori distinct. After a finite unramified extension of K that makes all residual stabilizers finite
étale and constant, the I-action and the stack-inertia action commute on H (M7, Q) (Lemma 2.11).

Throughout, “Ix acts on H ét(M i, Qp)” refers to Galois inertia unless explicitly stated otherwise.

2.2 Moduli Stacks: Definitions and Basic Properties

Definition 2.5 (Algebraic stack with good reduction). An algebraic stack M of finite type over O is

said to have good reduction if it is flat, its diagonal is affine, and its special fiber M is smooth over k.

Proposition 2.6 (Basic properties). Let M be an algebraic stack with affine stabilizers, locally of finite

presentation over Og. Then:
1. M admits a smooth cover by a scheme U — M with U of finite type over Ok .

2. If M has good reduction in the sense of Definition 2.5, then so does any smooth cover U.



3. Conversely, if some smooth cover U has good reduction, then M has good reduction.

Proof. This is standard; see e.g. [6] and the Stacks Project (Tags 06D0, 0BX4, 02L6) for smooth atlases
and the descent/ascend of flatness and smoothness.

(1) Smooth presentation by a scheme. By Artin’s criteria and algebraization, an algebraic stack locally
of finite presentation with affine stabilizers admits a smooth surjective morphism U — M from a scheme
U locally of finite type over Ok (see Laumon—Moret-Bailly and the Stacks Project for existence of smooth
atlases). After shrinking U if necessary, we may take U of finite type over O and with U — M smooth

and surjective.

(2) Descent of good reduction to smooth covers. Assume M has good reduction in the sense of Defini-
tion 2.5: it is flat over Ok with affine diagonal and smooth special fiber Mg/k. Let U — M be smooth

surjective with U a scheme of finite type over O
e Flatness: flatness is stable under base change, hence U is flat over O

e Smooth special fiber: the base change Us — M is smooth and surjective; since My is smooth over

k and composition of smooth morphisms is smooth, it follows that Uj is smooth over k.

Thus U has good reduction.

(8) Ascent of good reduction from one smooth cover. Suppose there exists a smooth surjective morphism
U — M with U a scheme of finite type over O and U has good reduction, i.e. U is flat over Ok and Us

is smooth over k.

e Flatness of M/Og: flatness is fpqc-local on the target and descends along smooth surjective mor-

phisms; hence M is flat over Og.

e Smoothness of the special fiber: smoothness is local on the target for the smooth topology and
ascends along smooth surjective morphisms. Since Us — M is smooth surjective and Uy is smooth

over k, it follows that M, is smooth over k.

By hypothesis M has affine stabilizers, hence affine diagonal; therefore M has good reduction in the sense
of Definition 2.5. O

smooth surj.
s

U M
| |
Spec(Ok) = Spec(Ok)

smooth surj.

Us/_NMs

smooth/k ,/’/
smooth/ et

1

Spec(k)

-

Figure 2: Good reduction is smooth-local on the source and target: U good <= M good via a smooth
cover.


https://stacks.math.columbia.edu/tag/06D0
https://stacks.math.columbia.edu/tag/0BX4
https://stacks.math.columbia.edu/tag/02L6

Example 2.7 (Moduli of elliptic curves). Let M ; denote the Deligne-Mumford stack of elliptic curves.
It is smooth over Z[1/6] (while ramification occurs at 2,3). In the sense of Definition 2.1—which is
relative to a DVR Og—this means: for any DVR Og with residue characteristic p > 5, the base-change
M1 Xspecz Spec Ok has good reduction (flat over Ox with smooth special fiber).

Equivalently, one may pass to a level structure that kills automorphisms: for N > 3 with p { N, the
stack M 1[N] is a scheme smooth over Z[1/N], so M 1[N] x Spec Ok has good reduction for p { N; hence

M 1 has good reduction after inverting 6 in the relative (traitwise) sense.

Counterexample 2.8 (Failure without flatness). Consider the stack quotient [Spec(Ox[z]/(7x))/Gm].
Its special fiber has embedded associated points and is not flat over O ; hence this stack fails to have good

reduction in the sense of Definition 2.5.

open immersion i i
M., P M closed immersion | M
n s

l | |

open immersion 1 i i
Spec | P IIEISON, g o0 O Hlosed immersion, g g

Figure 3: Specialization diagram of a moduli stack over a discrete valuation ring.

2.3 Cohomological Invariants and Their Arithmetic Interpretation

Lemma 2.9 (Smooth base change for stacks). Let M be an algebraic stack, locally of finite type and
smooth over Ok . For any prime £ # p and any field extension K C L (in particular L = K ), the natural

base—change map

HL((Mk) Xspec i Spec L, Q) — Hi(Mp, Q)

is an isomorphism, functorial in L/K and compatible with the action of Gp, (transported from G via
restriction). Equivalently, writing f : M — Spec O and n = Spec K, for any geometric generic point

7 — Spec Ok one has the canonical identification
Hi(M5, Qo) = (R [ Q) ..

Proof. Step 1: Reduction to a strict simplicial presentation. Choose a smooth surjection from a scheme
(or algebraic space) U — M and let U, be its Cech nerve. On the lisse-étale site, cohomological descent

gives a canonical quasi-isomorphism
RI'(M,;, Q) =~ RI(Tot(Us,y,ét),Qy),

functorial in (M — Spec Ok ) and compatible with the six operations (pullback, proper/smooth pushfor-
ward, tensor, internal Hom). We use that cohomological descent holds for strict simplicial hypercovers on
Artin stacks and is compatible with the six-functor formalism; (see [8]).

Step 2: Fiber—stalk and smooth base—change on the terms U,. For each n, the structural morphism
fn + Uy — Spec O is smooth (as a base change of f). For torsion coefficients, [7, Exp. XVI, Th. 1.2]



identifies the geometric fiber cohomology with the stalks of R fnnx and shows compatibility with smooth

base change; passing to f-adic coefficients via the usual limit formalism yields

Hét((Un)n XSpeCK SpeCLaQZ) _:_> Hét((Un)L7Q€)

for every field extension L/K (in particular L = K). Equivalently, H% (Un)i, Qr) 2 (R fr0:Q0) -
Step 3: Glueing along faces/degeneracies (descent). The isomorphisms in Step 2 are natural in n and
compatible with pullbacks along face/degeneracy maps. Totalizing over the simplicial object and invoking

Step 1 yields the desired base—change isomorphism on M:
HY(Myy Xspec i Spec L, Qp) — Hi(Myp, Q).

The fiber—stalk identification follows from the same argument with L = (7).

Step 4: Galois and stabilizers. Functoriality in L/K gives compatibility with the natural restriction
G — Gg. Under the hypothesis of Lemma 2.11 (finite linearly reductive inertia made constant after
a finite unramified extension), the Ix—action on Hét(Mﬁ,Qg) commutes with residual stabilizers; this

compatibility is preserved termwise on U, and hence after descent. ]

Sj
T R —
Unp ——— Un | Um,L

I
Spec L ——— Spec K <——— Spec L
Figure 4: Termwise base change along L/K on the Cech nerve U, — M. Each square is cartesian; smooth

base change on every U, and descent along faces/degeneracies glue to give the canonical comparison

Hi (Mg, Q) = Hi (M, Q).

Remark 2.10 (Scope and role in the paper). (1) No properness is used: we only need smoothness of
M/Ok, descent on the lisse-étale site, and the smooth base-change formalism on each U,. (2) This
lemma is invoked wherever you transfer Ix—(un)ramifiedness from slices or atlases to the stack (e.g. in
Section 2.3 and the proofs feeding into Theorem 3.16 and Theorem 4.9). (3) Together with Lemma 2.11
and the weight—-monodromy formalism (Proposition 2.14), it justifies checking N =0 and specialization

isomorphisms on quotient charts/slices without loss of information.

Lemma 2.11 (Galois vs. stack inertia commute). Let K be a complete discretely valued field with ring
of integers Ok and residue field k; fir a separable closure K and inertia subgroup Ix C Gal(K/K). Let
M/ Spec Ok be an Artin stack, locally of finite type with affine diagonal, whose inertia is finite and linearly

reductive. Then, after a finite unramified extension K'/K there exists an étale cover by a quotient stack

Mg

v = U/G]

with U an algebraic space over K' and G a finite constant group. For any i > 0 and any ¢ # char(k), the
natural actions of I (Galois inertia) and of G (stack inertia) on H (Mg, Q) commute.



Explicit use: we first pass to a finite unramified extension K'/K so that the finite linearly reductive
stabilizer becomes a constant finite group scheme; see [19, Main Thm.]. All subsequent functorialities are
taken over K' and descend back to K.

Proof. (1) Unramified base change makes stabilizers constant. By the local structure theorems for stacks
with finite linearly reductive inertia, étale locally on the coarse space and after a finite unramified extension

K'/K, there is an atlas on which Mg

Main Thm.| (tame stacks are étale locally quotients by linearly reductive finite group schemes).

. [U/G] with G a finite constant group scheme over K'; see [19,
1

(2) Cech nerve / descent setup on the lisse—étale site. Choose a smooth presentation U — Mg and
write U, for its Cech nerve. For A = Qy, the lisse-étale derived category on stacks satisfies cohomological
descent for strict simplicial hypercovers by unbounded complexes; see [8, Prop. 2.3.11]. Hence

RI(Mg, A) = RT(Tot(U, ). A) |
functorially in the morphism M — Spec O ; compare [8, §4.3].

(3) Define the two actions and functoriality. The Ix—action on RV (and hence on HY (M, A)) is the
standard monodromy action from [13, Exp. XIII, §1.3] via the vanishing/nearby topoi. On the other hand,
the stack inertia action is induced by the G—action on U, when M =~ [U/G]|; the six—operations on stacks
are G—equivariant and compatible with descent by [8, §4.3].

(4) Commutation after K'/K unramified. Over K’ the group G is constant, hence acts trivially on the
trait and therefore on the complex computing RI'. The Ix—action factors through the nearby/vanishing
topos and is functorial in morphisms of traits; by [13, Exp. XIII, (1.3) and §2] it commutes with pullbacks
and proper pushforwards. Pushing this along the descent equivalence in (2) gives that the two actions
commute on RI' and hence on H'. For the precise diagrammatic compatibilities needed in (2)-(4), see [3,
Props. 5.3.2-5.3.3].

Therefore I and G commute on H:, (M7, A), as claimed. O

Remark 2.12 (Scope and hypotheses). The commutation uses that after an unramified base change the
stabilizer group is constant and hence acts independently of the trait; this follows from the local-structure
theorems for tame stacks ([19, Main Thm.], [21, Thm. 12.1]). Consequently, the Galois inertia action on
RV ([13, Exp. XIII, §1.3]) and the stack inertia action (via the G—action on a quotient chart) pass through
cohomological descent and base—change compatibilities ([8, Prop. 2.3.11, Props. 5.3.2-5.3.3]). Without the
“constant after unramified base change” hypothesis, commutation may fail in positive characteristic for

non-constant stabilizers.

Lemma 2.13 (Proper hypercover reduction for stacks). Let M be a proper algebraic stack over Spec O,
smooth over K, with finite inertia. Then there exists a strict simplicial proper hypercover Uy, — M by

schemes (or algebraic spaces) over Ok such that, for any £ # p and A = Qy,
RT (M, A) ~ RI(Tot(Usy, ét), A), R (A) ~ Tot(RVy,(A))

in the derived category on My, and the siz operations (fi, fx, *, f', @, Hom) as well as nearby and vanishing

cycles are compatible with descent along Us,.

!Any of [21, Thm. 12.1] or [6, Th. 10.1] would also suffice.



Proof. Step 1: Construction of a proper hypercover. Choose a smooth presentation Uy — M by a scheme
proper over O (possible since M is proper and has finite inertia, hence admits such atlases by the results

of Laumon-Moret-Bailly). Form its Cech nerve
Ue = Up = Uy xmUp = Up xpm Up xmy Ug — -+,

which is a strict simplicial object in proper Og-schemes. By replacing it with a proper hypercover re-
finement if necessary (using cohomological descent for hypercovers of Artin stacks), we obtain the desired
Ue — M that is termwise proper and smooth over O.

Step 2: Cohomological descent on the lisse—€étale site. The complex RI'(M,,A) is computed by the
totalization of the cosimplicial complex RI'(U, y, A). Indeed, Laszlo-Olsson [8, Prop. 2.3.11, §4.3] prove
that for a strict simplicial hypercover of an Artin stack by algebraic spaces (resp. schemes), the natu-
ral augmentation morphism RI'(M,, A) — RI'(Tot(U, ), A) is a quasi-isomorphism, functorial in M and

compatible with the six-functor formalism. Hence
RT(M,,A) ~ RI(Tot(U,y,ét),A).

Step 3: Nearby cycles and totalization. For each n, U, is proper over Ok, so R¥y, (A) is defined and
carries its canonical G g-action. The descent formalism yields an equivalence in the derived category on
M

R (A) ~ Tot(RYy,(A)),

where the totalization is taken with respect to the simplicial structure maps. This follows again from [8,
Props. 5.3.2-5.3.3|, which guarantee compatibility of nearby/vanishing cycles with simplicial descent and
with the six operations.

Step 4: Compatibility of the six operations. Each functor in the six-operations formalism commutes with
strict simplicial descent: if f: M — Spec Og and f,,:U,, — Spec Ok, then f,R¥ s (A)~Tot(fn . R¥Yy, (A)),
and similarly for fi, f*, f',®, Hom. This is crucial in later sections when weight-monodromy and vanishing-
cycle functorialities are traced through U,.

Step 5: Functoriality and independence of choices. Any two proper hypercovers dominate a common

refinement; cohomological descent is invariant under such refinement, so the resulting complexes and

identifications are canonical in the derived category of M. O
o
%
81 8O
> > fo
Us U Uy ——m— M

(92 81
Spec O =———= Spec O =———= Spec Og =——— Spec Ok

Figure 5: Strict simplicial proper hypercover U, — M: Cohomological descent and nearby-cycle totalization
commute with the face and degeneracy maps.
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N.B. Lemma 2.13 is the technical hinge between the geometric input (properness, finite inertia) and
the cohomological machinery used in Proposition 3.26 and Theorem 3.16. It legitimizes transferring all
weight—monodromy, purity, and specialization arguments from a stack M to a simplicial diagram of proper

schemes U,, where classical SGA-style results apply. This reduction is repeatedly invoked:
e in Proposition 2.14 to build the weight—monodromy spectral sequence;
e in Theorem 3.16 to compare RV ), with the termwise RV ;
e and in Section 4 when passing to slices and proving Theorem 4.9.

Hence the lemma provides the “cohomological descent bridge” cementing the six-operations formalism on

stacks with classical proper-scheme theorems.

Proposition 2.14 (Weight—-monodromy spectral sequence). Let M be a proper algebraic stack over O,

smooth over K. Then for each £ # p, the spectral sequence
EP = H (G RU(Q)) = H*™ (Mg, Q)

is functorial in M and compatible with the action of Gk .

Proof. Pick a strict simplicial proper hypercover Uy — M by schemes as in Lemma 2.13. By cohomological

descent on the lisse—étale site and compatibility of the six operations with descent,

RF(MnaQE) = RF(TOt(UO,mét)an)a RV (Qe) =~ TOt(R\IIU.(QK))a

and these identifications are functorial in M; see [8, Prop. 2.3.11, §4.3] for cohomological descent and
functoriality, and [8, Props. 5.3.2-5.3.3] for the compatibilities of nearby/vanishing cycles with simplicial
descent and the six functor formalism.

For each n, the scheme U, is proper and smooth over K, so the classical weight—-monodromy spectral
sequence of [13, Exp. IX, Th. 4.3.5] holds levelwise:

EYY(U,) = HYGHY, RUp, (Qr)) = H*™(Upy, Qu),

and it is Gg—equivariant [13, Exp. IX, §5.1]. Passing to the total complex along the simplicial object
and using the compatibilities from [8, §4.3; Props. 5.3.2-5.3.3] yields the stated spectral sequence for M,
functorial in M and compatible with the G g—action. O

Definition 2.15 (Cohomological good reduction). A stack M has cohomological good reduction at p if
the Galois inertia I acts unipotently with trivial monodromy N = 0 on HY (Mg, Q) for all ¢ and all

L p.

Remark 2.16 (Terminology warning). Unless stated otherwise, “inertia action” in §§2-5 refers to the local
Galois inertia Ix C G, not to the stack inertia Zp;. Where stabilizers intervene, we work after the

unramified base change of Lemma 2.11, so the two actions commute.

11



Remark 2.17 (Comparison with geometric good reduction). Geometric good reduction (Definition 2.5)
implies cohomological good reduction by smooth base change, but the converse may fail without further

hypotheses ([4]). This tension motivates our later theorems connecting the two notions.

Example 2.18 (Abelian varieties in moduli). If M is the moduli stack of principally polarized abelian
varieties, then by Faltings’ theorem [10] cohomological good reduction for the universal abelian scheme

implies the existence of smooth integral models with good reduction after finite unramified base change.

Counterexample 2.19 (Wild ramification). Consider X/K a curve of genus g > 2 with potentially good,
but not semistable, reduction at p. Then the inertia action on H élt (X%, Q) has nontrivial unipotent part,
so X fails to have cohomological good reduction, even though it attains stable reduction after ramified

extension.

3 Foundational Constructions

This section encodes geometric good reduction (Definitions 2.1 and 2.5) in a moduli-theoretic language, sets
up the cohomological functors that will be used later (Definition 2.15, lemma 2.9, and proposition 2.14),
and compares the stack-theoretic framework with the classical Néron perspective (Lemma 2.3). We retain
the standing hypotheses and notation of Section 2, in particular K, Ok, k, and the inertia group Ix from
Notation 2.4.

3.1 Moduli-Theoretic Encoding of Good Reduction

Definition 3.1 (Good-reduction locus in a moduli stack). Let M be an algebraic stack locally of finite
type over Ok with affine diagonal. Define the good-reduction locus M& C M to be the full substack of
objects X — Spec R for which the structural morphism M — Spec Ok is smooth at the image of the

closed point of Spec R and whose automorphism group scheme over the closed fiber is linearly reductive.

Remark 3.2 (Link to Definition 2.5). If M is flat over O with smooth special fiber (i.e. M has good
reduction in the sense of Definition 2.5), then M8 = M. Conversely, M8" describes the locus where
geometric good reduction holds objectwise; this distinction is essential for stacks with mixed reduction

behavior.

Lemma 3.3 (Openness of M® in the tame case). Let M be an algebraic stack locally of finite type
over O with finite linearly reductive inertia and affine diagonal. Then the good—reduction locus M®" of
Definition 2.5 is an open substack of M.

Proof. We argue in two layers corresponding to the geometric and stack—inertial components.
(1) Smoothness locus.— For any morphism f: M — Spec O, the set of points where f is smooth
is open and stable under smooth base change. In particular, if U — M is a smooth presentation by a

scheme, the smoothness locus

U™ := {u e U| fowuis smooth over O}
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is open in U, and the image of U™ in M is open since smooth morphisms are universally open. This
part is purely geometric and uses only Artin’s representability and standard openness of the smooth locus
(EGA 1Vy, Th. 11.12).

(2) Linear-reductivity locus.— The second condition in Definition 2.5 concerns the stabilizer

groups. For algebraic stacks with finite linearly reductive inertia, the property that
x — G, is linearly reductive over the residue field of z

is an open condition on the underlying topological space. This follows from the local-structure theorem
for tame stacks ([19, 11, 6, 9]): étale-locally on M there exists a chart

U/G] — M

with G a finite flat linearly reductive group scheme. Linear reductivity of fibers of G is open in flat families
by standard deformation theory—indeed, it amounts to the vanishing of Ext};(V, W) for all simple G-
modules (V, W), a property stable under specialization since the relevant cohomology sheaves are coherent
and upper-semicontinuous.

(3) Descent to the stack.— Intersecting the two open loci in U and descending along the smooth

surjection U — M gives an open substack
ME = M AMY C M.

Because the intersection of open substacks is open, M#" is open in M. O

Remark 3.4. This lemma is used to transfer the verification of purity and vanishing-monodromy from local
slices to the global moduli stack. It ensures that the locus of geometric good reduction is open, permitting
Zariski-local propagation of integral models.

It ensures that once purity of nearby cycles and the vanishing of monodromy (Theorem 3.16) are verified
locally, the locus of good-reduction points propagates openly through the moduli stack (note that such a
tame slice may not exist for wild stabilizers; cf. Example 6.12). Consequently, the cohomological conditions
(purity + N = 0) yield not only existence but also Zariski-local persistence of integral models—crucial
when passing from a local slice to global density arguments (Theorems 4.2 and 4.9).

Geometrically, the lemma identifies the following factorization diagram that recurs throughout Sec-

tions 3 and 4:

e closed immersion U s M
|
gr . closed immersion f
ME" < > M s Spec Ok

Figure 6: Good-reduction square: the closed immersion M® — M and its pullback along a smooth

presentation U — M. Each vertical map ¢ is a smooth surjection, and both squares are cartesian.

Here ¢ is a smooth presentation, and the open immersion of good-reduction loci is preserved both on

the presentation and on the stack. This diagram embodies the principle that good reduction descends
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and ascends through smooth covers, bridging the scheme-level and stack-level geometries that underlie the

six-functor descent in Lemma 2.13.

Construction 3.5 (Trait test and extension). Let 7" = Spec R be a trait with fraction field L and residue
field a finite extension of k. Given a morphism x,: Spec L — M with finite automorphism group, choose a
smooth presentation U — M and lift x,, to Ur. Properness (if available) or the valuative criterion relative
to inertia (tame, linearly reductive) provides an extension z: T'— M if and only if the obstruction in the

inertia cohomology vanishes; cf. [3, 9]. This criterion will be coupled with cohomology in Section 3.2.

Proposition 3.6 (Stacky Néron mapping property: uniqueness; existence under a smooth proper atlas).
Assume M is an algebraic stack locally of finite type over Ok with finite linearly reductive inertia and
separated diagonal. Let S be a smooth Ok -scheme with generic fiber Sy, and let f, : S, — M, have image
in Mgy .

(Uniqueness) There is at most one extension f : S — M up to unique 2-isomorphism.

(Existence under a smooth proper atlas) If, in addition, there erists a smooth and proper surjective
atlas q : U — M with U a scheme, then such an extension f exists.

(Traitwise existence) Without the atlas hypothesis, for every height-one point t € S with DVR Ogy, the
restriction fy| Spec K(S); extends uniquely to Spec Ogy — M.

Proof. Step 1. Reduction via smooth presentation. Choose a smooth surjective atlas ¢: U — M by a
scheme, with Cech nerve U,. By the openness of the good reduction locus (Lemma 3.3), U := U x 5 M8"

is open in U, and this construction is compatible with the simplicial structure on U,.

Step 2. Uniqueness (valuative criterion for separated diagonal). Let fi, fo: S — M be two putative

extensions of f,. Since A4 is representable and separated, the stack of isomorphisms

Isom v (f1, f2) == S X(f1,fo), MxM, Ap M

is represented by a separated algebraic space over S. The given identification of fi, and fs, provides a
section over S,. Because S is smooth (hence normal) over Ok and the target is separated, this section
extends uniquely over S by the valuative criterion for separated morphisms of algebraic stacks. Therefore

f1 and fo are uniquely 2-isomorphic, and any automorphism of an extension is trivial.

Step 3 (Existence under a smooth proper atlas). Assume there exists a smooth and proper atlas ¢ : U — M.
Lifting f, to u, : S, — U, and using properness of U/Of, the valuative criterion yields a unique u : S — U
with image in Ug,. Since U Xy U = U is proper and smooth over S, the two pullbacks of u agree by
proper descent, so u descends to the desired f: .S — M.

Step 4. Vanishing of obstructions in the tame case. In the tame case (finite linearly reductive inertia),
obstruction classes to effectivity of compatible formal liftings lie in H? of the inertia group, which vanish
for linearly reductive groups. Hence the extension process is unobstructed, and descent along U, is homo-
topically effective in degrees > 2. This recovers the classical unobstructedness familiar from Néron models,

now in the stacky setting.

Step 5. Compatibility with the good-reduction locus. Because M8 is open and smooth base change

preserves it, the extended morphism f lands in M®" automatically after possibly shrinking S along its

14



open smooth locus. No new singularities appear in codimension one when extending across DVRs in the

proper case. Thus the extension respects the good-reduction condition.

This completes the proof of uniqueness (always) and existence (in the proper case). O

Remark 3.7 (Necessity of hypotheses; failure already for P!). Even for a proper target, global existence over
S can fail without a smooth proper atlas or properness of S: take M = IP’IOK and S a smooth (non-proper)
Ofk-scheme; a rational map S, --» IP)}( with indeterminacy along a vertical divisor does not extend to
S — IP’loK. This shows the original “existence for proper M” claim is too strong without extra hypotheses,

while the traitwise extension holds by the valuative criterion.

Remark 3.8 (Conceptual and structural role). This proposition provides the geometric counterpart of
the cohomological detection theorem (Theorem 3.16), converting cohomological conditions into integral
extensions via the stacky Néron mapping property.

The latter identifies the good-reduction locus cohomologically (via R¥ and N = 0), while Proposi-
tion 3.6 furnishes the mapping property that converts that detection into an actual integral extension of
morphisms. Together with the openness of M?8", this ensures that cohomological good reduction extends

Zariski-open in moduli, bridging local inertia criteria and global Néron-type phenomena.

Sy I M,

Figure 7: Uniqueness of the extension. Any two extensions f1, fo of f, coincide up to a unique 2-

isomorphism, by the valuative criterion applied to the separated diagonal A .

Remark 3.9 (Cross-checks with earlier constructions). 1. The traitwise extension and descent mecha-

nism here is the higher-dimensional reformulation of the trait test (Construction 3.5).

2. The openness of M®&" (Lemma 3.3) ensures local effectivity of extensions and compatibility with

smooth atlases.
3. This proposition underlies the “stacky Néron envelope” construction in later sections, ensuring its
uniqueness and functoriality once the stabilizers are tame.

Remark 3.10 (Compatibility with Proposition 2.6). When M admits a smooth proper cover U — M by a
scheme, Proposition 3.6 reduces to the scheme-theoretic Néron mapping property on U and descent along
UxpmU=U.

Lemma 3.11 (Quotient-chart purity lemma). Let M = [X/G] where |G| is prime to p and X/Ok is proper

and smooth in a neighbourhood of the given point. Then for every £ # p there is a canonical isomorphism
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of complexes on the special fibre

RU(Qo) ~ (RUx(Q),
and this complex is pure of weight 0.

Proof. Since |G| is invertible on O, the quotient morphism 7 : X — [X/G] is finite and the six-operations
formalism for stacks ([8, Props. 5.3.2-5.3.3 in Parts I-1I]) yields

RYx/c(Qe) ~ (RmRTUx(Q)) ~ (RUx(Q))Y.

Taking G-invariants is an idempotent direct summand when |G| is invertible, so purity of R¥ x (Qy) (coming

from smoothness of X/Of) implies purity of RW;(Qy) of weight 0. O

Assumption 3.12 (Slice of abelian/K3-type near a point). Let M be an algebraic stack over Spec O
and x, : Spec K — M, a K-point with finite automorphism group. After a finite unramified extension
of K, there exists an étale slice V' through x, with V' an algebraic space and a proper smooth morphism

g: Y — V with geometrically connected fibers such that one of the following holds:

(A) Abelian type.
g is an abelian scheme (e.g. the universal abelian family on the slice), and the cohomology used in
Item (2) of Theorem 3.16 is the direct summand of ngn*Qg discussed in Section 5.1. In this case,

unramified (equivalently, trivial inertia with N = 0) action on H}, implies (potential) good reduction
by the Néron—Ogg-Shafarevich criterion ([15, Ch. VII], [3, Ch. 1-3]).

(B) K3 type.
The geometric fibers of g are K3 surfaces and the relevant cohomology is R?g,.Qq (cf. Section 5.1).

For p > 5, unramified or crystalline Hgt implies (potential) good reduction by the known K3 criteria
([16, Th. 1.1], [17, Th. 1.1]).

More generally, it suffices that there exists a proper smooth morphism g 'Y — V for which the

implication
“unramified I —action on Rign*Qg = (potential) good reduction of the fiber”

1s established in the literature.

New result (moduli-theoretic Néron—-Ogg—Shafarevich). The following theorem is the central mech-
anism that turns cohomological constraints into geometric extension on stacks. It is not a formal corollary

of Lemma 2.3 because stabilizers need not be trivial and one works on a stack rather than a scheme.

Assumption 3.13. Standing Assumption (Purity of nearby cycles on stacks). Throughout Sections 3-5,
for an algebraic stack M/ Spec Ox with affine diagonal and finite linearly reductive inertia, and for each
¢ # p, we assume that the nearby-cycles compler RY(Qy) on the special fiber My is pure of weight 0.
This is known in standard settings (e.g. strict semistability/tame monodromy for schemes, and along
étale charts) via the siz-operations formalism for stacks and weight/monodromy theory [8, 13, 1/]; see also

Saito’s work on weight spectral sequences [18].
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In full generality for stacks with arbitrary finite linearly reductive stabilizers, this remains conjectural;

we use it here as a hypothesis.

Remark 3.14 (Verifiability of Assumption 3.13). In the situations actually used in Section 3—-Section 5, the
purity requirement on RW(Qy) is verified by standard results:

(i) Smooth reduction. If M/ Spec Ok is smooth near the point under consideration (equivalently R®(Qy) =
0), then RU(Qy) ~ Qy and is pure of weight 0 by the nearby—vanishing formalism ([13, Exp. XIII]) together
with the six—operations on stacks ([8]); stability of purity under the operations used here follows from [14,
Th. 1.6.1].

(ii) Tame quotients of smooth families. If M = [X/G] with |G| prime to p and X /O proper and smooth
in a neighbourhood of the point, then

RUp(Qp) ~ (RUx(Qp)“

by functoriality and finite pushforward in the stack formalism ([8, I-III]); since taking G-invariants
is a direct summand when |G| is invertible, purity of weight 0 is preserved (cf. [14, Cor. 1.3.9]; [13,
Exp. XIII-XIV]) for the functoriality of monodromy) (failure in the wild «, setting is illustrated in Exam-
ple 6.12).

(iii) Slice models of abelian/K3 type. In the slice setting of Assumption 3.12 and Lemma 3.18, when there
exists a proper smooth morphism ¢g: Y — V on the slice (as in the abelian and K3 cases used below), the
complex R¥y (Qy) is pure of weight 0 ([13, Exp. XIII]); functoriality and strict simplicial descent transfer
purity from V back to M ([8, I §4, IT §5, III §4]). For the semistable framework and the associated weight

filtration on RV, see Saito’s weight spectral sequence [18].

These are precisely the instances invoked later (e.g. Theorems 3.16 and 4.2), so Assumption 3.13 is

verifiable in our applications.

Lemma 3.15 (Tame slice existence after unramified base change). After a finite unramified base change
on K, there exists a tame étale slice V. — M passing through the given point, such that the stabilizer on
V is a constant finite linearly reductive group scheme. Purity of nearby cycles and the condition N = (

descend to V', and specialization/base change commute.

Proof. By the local-structure theorem for tame stacks with linearly reductive inertia ([19, Main Thm.]),
after a finite unramified extension of K one obtains an étale neighbourhood V' — M in which the stabilizer
becomes constant and finite. The six-functor formalism on stacks ensures that purity of nearby cycles and
vanishing of monodromy are stable under such base change ([8, Props. 5.3.2-5.3.3 LII]); hence R¥(Qy)
and the condition N = 0 descend to V, and specialization/base change commute. This slice is precisely

the one used implicitly in the proof of Theorem 3.16. O

Theorem 3.16 (Cohomological detection of good reduction on a moduli stack; under Assumption 3.13).
Let M be an algebraic stack of finite type over O with affine diagonal and finite linearly reductive stabi-

lizers. Suppose:

1. (Purity) Assumption 3.13 holds for M; equivalently, for every { # p, the nearby-cycles complex
RY(Qy) on My is pure of weight 0;
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2. for all i, the Ix-action on Hét(MK, Q¢) is unipotent with trivial monodromy N = 0;
3. (Slice hypothesis) Assumption 3.12 holds at the given K-point x, : Spec K — M,,.

Then x, extends, after a finite unramified extension of K, to a section over Spec Ok . Equivalently, x,

lands in My" and admits integral extension.

Remark 3.17. For schemes, the criterion reduces to Lemma 2.3. For stacks, existing literature gives
deformation/extension under tame hypotheses, and weight-monodromy for cohomology on stacks, but an
explicit equivalence as in the theorem—Ilinking purity of nearby cycles plus N = 0 to the existence of
integral extensions for all finite-stabilizer points—does not appear to be formulated in this generality; the
proof couples weight—-monodromy on stacks with a stacky Néron mapping argument (Proposition 3.6) and

a reduction to an algebraic space near the point via linear reductivity.

Proof of Theorem 3.16. Choose a smooth cover U — M with U a scheme and let x,: Spec K — M, be
given with finite automorphism group. After a finite unramified extension of K, the stabilizer becomes
constant linearly reductive, hence étale, and one may replace a neighborhood of x, by an étale slice which
is an algebraic space (cf. the tame slice theorem for stacks with linearly reductive inertia [19, Thm. 2.5];
see also [20, Thm. 12.1] for the existence of étale slices after finite unramified base change).

By Lemma 2.11, after this unramified base change the [x—action on Hgt commutes with the residual
stabilizer action on the slice. Hence the unipotence and N = 0 condition in (2) can be checked on the slice

independently of stabilizers and is compatible with nearby cycles.

Lemma 3.18 (Slice invariance of nearby cycles and monodromy). Let M/ Spec Ok be as in Theorem 3.16
and let z, : Spec K — M,, have finite stabilizer. After a finite unramified extension K'/K, there exists a
tame étale slice V.— M with V an algebraic space. Then:

1. The formation of nearby cycles is preserved on the slice:

RUn(Qe)ly, ~ RTv(Qy),

functorially in a neighbourhood of x,,.

2. The Ix:—action on HY (Mg, Qy) restricts to the I —action on H'(Vk:, Qq), and this action com-
mutes with the residual (constant) stabilizer on the slice. In particular, “Ix unipotent with N = 0”
on H' (Mg, Q) holds near z,, if and only if it holds on H',(Vi, Qy).

Proof. By Lemma 2.11, after an unramified extension K’/K the residual stabilizer becomes a constant
finite group and the Igs—action on cohomology commutes with the stack—inertia action. Choose a strict

simplicial proper hypercover adapted to the slice. Cohomological descent on the lisse—¢étale site identifies

RT' (Mg, Qe) ~ RI(Tot(Us k7, ét), Q). R (Qe) = Tot( Ry, (Qy)),

and these identifications are functorial and compatible with the six operations; see [8, Prop. 2.3.11, §4.3;
Props. 5.3.2-5.3.3]. The monodromy action of I is defined via the nearby /vanishing topos and commutes
with pullbacks and proper pushforwards ([13, Exp. XIII, §1.3 and §2]). Restricting along the tame étale
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slice V. — M gives the asserted equivalences and the commutation with residual stabilizers. Hence the

N = 0 and purity conditions are equivalent on M near x, and on V. O

Assumptions (1)—(2) descend to the slice, since RV and inertia actions are invariant under such local

equivalences ([8]). By (2) and smooth base change, the weight-monodromy spectral sequence (Proposi-
tion 2.14) degenerates with N = 0, so the G g-action on the cohomology is unramified.
Clarification. Recall that Proposition 2.14 requires the target stack to be proper over Og. Accordingly,
the reference to the weight—monodromy spectral sequence here is made only in the situations where the
local slice or atlas is proper, so that Lemma 2.13 applies and the spectral sequence of [4, Exp. IX] is valid.
For nonproper stacks, the argument uses this step merely formally, reducing to proper neighborhoods or
slices when needed.

Passing to an étale slice V' near x,, (available by linear reductivity), assumptions (1)—(2) descend to V;
see Lemma 3.24. Now invoke Assumption 3.12:

Case (A) (abelian type). On the slice we have a proper smooth abelian scheme g : Y — V. Unramified-
ness of H}, for the fiber over x,, implies potential good reduction by the Néron-Ogg-Shafarevich criterion
(Lemma 2.3). Hence the point extends over Ok on V, and therefore on M by Proposition 3.6.

Case (B) (K3 type). On the slice we have a proper smooth family of K3 surfaces g: Y — V. For p > 5
(and under the standard hypotheses in the cited K3 good reduction criteria), unramifiedness (equivalently,
crystallinity) of the G g—representation on H, é?t of the fiber over z,, implies potential good reduction; applying
this to Y/V yields the integral extension on the slice, and then on M by Proposition 3.6.

This completes the proof. ]

Corollary 3.19 (Potential good reduction under finite monodromy). Under the hypotheses of Theo-
rem 3.16 for every K-point with finite stabilizer (in particular, Assumption 3.12), if I acts through
a finite quotient on H} (Mg, Qg), then any K-point with finite automorphism group attains good reduction
after a finite (tamely) ramified extension of K.

Scope. Applications of this corollary occur only in contexts where Assumption 3.13 (purity of nearby cycles)

and the slice hypothesis (Assumption 3.12) hold. See Remark 3.20 for the precise limitations.

Proof (expanded). Step 1: From finite monodromy to N = 0 and trivial wild inertia. By Grothendieck’s
monodromy theorem, the I —action on H} (Mg, Q) is quasi-unipotent. If the image is finite, the unipotent
part must be trivial; hence the logarithm of monodromy N vanishes and the wild inertia subgroup (pro-p)
acts trivially. Thus only a finite tame (prime-to-p) part of I may remain.

Step 2: Killing the residual tame action by a finite tame extension. Because the residual Ix—image is
finite of order prime to p, there exists a finite tamely ramified extension K'/K such that Iy acts trivially
on H (Mg, Qq).

Step 3: Compatibility with stabilizers and passage to a slice. Let x, : Spec K — M, be a K-point with
finite automorphism group. After a finite unramified extension (which we absorb into K'), the residual
stabilizer becomes a constant finite linearly reductive group, and the Galois inertia action commutes with
the stack-inertia action on cohomology (cf. the “Galois vs. stack inertia commute” lemma used earlier).
Consequently, the triviality of the Ixs—action on Hg (Mg, Qy) is reflected on any tame étale slice V- — M
through the image of z, (available by Assumption 3.12).
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Step 4: Invoke the detection theorem on the slice (abelian/K3 type). By Assumption 3.13, nearby cycles
on the special fiber are pure of weight 0, and by Step 2 the Ix/—action on cohomology is trivial, hence
unipotent with N = 0. The hypotheses of Theorem 3.16 are therefore satisfied on the slice V' (abelian or
K3 type by Assumption 3.12). Applying Theorem 3.16 yields integral extendability of z,/ : Spec K/ — M,
across Spec O (potential good reduction).

Step 5: Return to M. The extension on the slice lifts to M by the stacky Néron mapping property
(uniqueness up to unique 2-isomorphism follows from separated/affine diagonal as used earlier) (unique-
ness relies on separated/affine diagonal; cf. Counterexample 3.33). Thus, after the finite tamely ramified

extension K'/K, the given K-point with finite automorphism group has good reduction. ]

Spec K L RN M,

Spec K’ — M,

n

Spec Ok R M

/

Figure 8: Finite monodromy and integral extension. Finite monodromy implies N = 0 and trivial
wild inertia. A finite tame extension K’/K annihilates the residual tame action, and Theorem 3.16 provides

the integral extension z’: Spec O — M.

Remark 3.20 (Bridge, Scope, and Limitations). This corollary and its proof rest on three interlocking
pillars—group-theoretic, cohomological, and geometric—which together linking the algebraic and arith-

metic components of the argument.

(1) Group-theoretic input. The only additional group-theoretic ingredient beyond Theorem 3.16 is the
implication

finite Ix—image = N =0, wild inertia acts trivially,

so that the residual finite image is of order prime to p and hence killed by a finite tame extension.
This explains the parenthetical “tamely” in Corollary 3.19 and ensures compatibility with the unipo-

tent—semisimple decomposition in the monodromy theorem.

(2) Purity and slice hypotheses. Purity of nearby cycles (Assumption 3.13) and the slice condition (As-
sumption 3.12) guarantee that the cohomological criterion of Theorem 3.16 applies on a neighbourhood of
the point and descends to M via the stacky Néron mapping property. The purity assumption is established
for strictly semistable or tame morphisms of schemes and along étale charts (cf. [13, 8]), and is ezpected
more generally for stacks with finite linearly reductive inertia. In practice, all applications below occur
in settings where this purity is known or verifiable slice-wise—see Example 3.28 (tame quotient stacks
satisfying Assumption 3.13) and Section 6.1-Section 6.2 (elliptic and abelian loci, cf. Proposition 6.1,
Proposition 6.6).

(3) Bridge to arithmetic. When M carries a universal family—such as the moduli of abelian varieties

or K3 surfaces—Theorem 3.16 identifies the local ¢-adic Galois representations on the cohomology of the
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geometric fibers as unramified at p. This provides the expected arithmetic consequence: the local Euler
factors of the associated L-function coincide with the characteristic polynomials of Frobenius on HY,

establishing the link between geometric good reduction and arithmetic unramifiedness.

(4) Scope and limitations. Outside the abelian/K3 slice hypothesis, the implication
“unramified cohomology with N =07 = (potential) good reduction

fails even for smooth schemes: one can have unramified cohomology while the fiber lacks good reduction
(cf. Proposition 2.14 and section 6.3). All uses of Theorem 3.16 and corollary 3.19 below are confined to

loci satisfying Assumption 3.12; ensuring that the argument remains valid without unproven generalities.

Finally, the uniqueness of the integral extension up to unique 2-isomorphism follows from the sepa-

rated/affine diagonal arguments already established; no new hypotheses are introduced here.

Example 3.21 (Explicit instance on My ;). Let M = M, over Z[1/6] (Example 2.7). Here R¥(Qy)
is pure of weight 0 on the good fibers and inertia acts trivially on HE (M, Q;) away from 2,3 (cf. [12]).
Thus any elliptic curve E/K with j(E) integral at p > 5 lies in M#" and extends to a smooth model; this

recovers the classical criterion but through the stack.

Counterexample 3.22 (Necessity of linear reductivity: explicit small-p models). Work in equal charac-
teristic p > 0 with K = k((t)) and Ox = k[t], and fix ¢ # p.

(a) An ap—quotient that destroys étale slices. Set
X = Spec(Oklz]/(z" —t)) 1, Spec O.

There is an ap-action on X by translation z — z + ¢ (coaction z — 2 ® 1 + 1 ® € with e? = 0), which

preserves the equation since
(z4+e)f —t = 2P —t+eP =0 in Oklz]/(ZF —t) @ k[e]/(P).

On the special fiber Xy = Spec k[z]/(2P) the closed point has stabilizer cy; hence the quotient stack [X/oy)
is not tame. In particular, Luna—type étale slices fail (linear reductivity of the stabilizer is required for
such slices), so one cannot reduce to an algebraic—space chart near this point. Moreover f is not smooth
(Jacobian criterion: (2 —t)/0z = 0 in char. p), hence R®x 0, (Q¢) # 0; consequently the purity+N = 0
detection mechanism cannot apply in this non-linearly-reductive setting. This makes the use of linear
reductivity indispensable in Theorem 3.16.

(b) Artin—Schreier with non-linearly reductive inertia (Z/p). Let C/K be the affine Artin—Schreier
curve y? —y =t~ and let G ~ Z/p act by y — y + 1. After compactification C — Spec O, there is a
unique wild branch at ¢ = 0 with positive Swan conductor, so N # 0 on H}, (éf, Qy). The quotient stack
[C/G] has inertia of order p (hence not linearly reductive in char. p), and the hypotheses of Theorem 3.16
fail. This gives a second concrete instance where dropping linear reductivity breaks the extension argument

(cf. §6.3, Ex. 6.8).

21



3.2 Cohomology of Associated Stacks

Definition 3.23 (Nearby cycles and specialization triangle). For M — Spec Ok and ¢ # p, write R¥(Qy)
and R®(Qy) for nearby and vanishing cycles on My constructed via the formalism of [4, 8]. There is a

distinguished triangle

Q¢ — RU(Qy) — RB(Qy)

compatible with G .

Lemma 3.24 (Functoriality and base change). Let f: N' — M be a morphism of algebraic stacks over

Ok with finite inertia. Then there is a canonical isomorphism

fERIM(Q) — RUN(Q) fy,

functorial in f, and compatible with composition, tensor products, and all six operations.

Proof. Step 1: Descent to simplicial presentations. Choose smooth presentations U — M and
V — N by schemes of finite type over O, and let U, and V, be their Cech nerves. The morphism f
induces a simplicial morphism V, — U,. By cohomological descent on the lisse—étale site of Artin stacks

([8, Prop. 2.3.11, §4.3]), we have quasi-isomorphisms
RT'(M,,, A) ~ RI'(Tot(U,y,ét),A), RYU p(A) ~ Tot(RYy,(A)),

and similarly for /. Thus all assertions can be checked termwise on the simplicial levels.

Step 2: Scheme-level functoriality of nearby cycles. For each level n, we have a commutative square

of Ox-schemes

[

v, ————— U,
gnl lhn
Spec O === Spec O

Figure 9: Base change square for simplicial levels. Fach f,, g,, and h, denotes the structural

morphisms appearing in the descent diagram for U, and V, over Spec Ok.

and the classical functoriality of nearby cycles for morphisms of finite-type Ox-schemes ([13, Exp. XIII, §1.3])

yields a canonical isomorphism of complexes on V;, s:

frs B0, () = RUy, (A) f7

These morphisms are compatible with proper/smooth pushforward, tensor product, and internal Hom.

Step 3: Descent and totalization. Because the construction in Step 2 is natural in n and compatible
with faces and degeneracies, it descends through the simplicial system. Taking the totalization over U,

and V, and invoking the descent equivalences above gives a canonical isomorphism on N
JSRUM(A) =~ RUN(A) [y

22



Functoriality in f follows by construction, and compatibility with composition is inherited from the same
property on schemes. The identification commutes with the [x-action, since the nearby-cycle functor and

pullback on the generic fiber are both defined in the category of Ix-equivariant sheaves.

Step 4: Compatibility with the six operations. By [8, Props. 5.3.2-5.3.3], nearby and vanishing cycles
commute with all six operations (fi, fx, f*, f',®, Hom) and with simplicial descent. Thus the isomorphism

of Step 3 is stable under these functorial constructions, ensuring the claimed compatibilities.

Step 5: Independence of presentation. Any two choices of simplicial presentations admit a common
refinement. Cohomological descent is invariant under such refinement, so the induced morphism is canonical
in the derived category D%(N, A).

Conclusion. Combining the steps yields a canonical isomorphism [ Ry~ RWy f7, functorial in f and

compatible with base change, descent, and the six-functor formalism. ]

Ny —I s m,

I

Figure 10: Functoriality of nearby cycles. For a morphism of algebraic stacks f: N'— M, pullback on
the special fiber and pullback on the generic fiber interchange through the nearby-cycles functor RW.

Remark 3.25 (Bridge: cohomological descent and purity). Lemma 3.24 is the categorical hinge linking the
functorial purity assumption (Assumption 3.13) with the geometric extension mechanism (Theorem 3.16).
It ensures that the purity and monodromy conditions verified on a local slice propagate along morphisms
of stacks, ensuring the compatibility of cohomological good reduction with morphisms of moduli problems

and enabling the slice-wise arguments in Theorem 3.16 and corollary 3.19.

Proposition 3.26 (Weight filtration and monodromy on stacks). Assume M is proper and generically
smooth over O . Then the weight filtration on H},(M7, Q) is defined and the weight-monodromy spectral

sequence of Proposition 2.1/ is G i -equivariant.

Proof. Step 0 (Set-up). Fix ¢ # p and write f: M — Spec Ok, n = Spec K, s = Speck. Properness of
M /Ok ensures that the nearby/vanishing cycle formalism applies on the lisse—étale site of stacks ([13,
Exp. XIIIJ; [8]).

Step 1 (Reduction to schemes via a strict simplicial proper hypercover). By Lemma 2.13 there exists a

strict simplicial proper hypercover Uy, — M by schemes (or algebraic spaces) over Ok such that

RF(MTN Qf) = RF(TOt(UO,n7 ét)a Qf)v R\I/M (Qﬁ) = TOt(R\IjU. (Qﬁ))v

and the six operations and nearby/vanishing cycles are compatible with descent along U, ([8, I §4.3,

Props. 5.3.2-5.3.3]; see also [9] for the descent formalism).
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Step 2 (Levelwise weight-monodromy). For each n, the object U, is proper over O and smooth over

K, so the classical weight—-monodromy spectral sequence of [13, Exp. IX, Th. 4.3.5 and §5.1] applies:
EYY(U,) = HOYGrY, RUy, (Q) = H (U, Qu),

G g—equivariantly. The construction and functoriality of this filtration are clarified in [18].
Step 3 (Totalization and independence of choices). Compatibility of the six operations and of nearby

cycles with strict simplicial descent gives
Tot(Ey*(Us)) = H*(Tot(Usy), Q) ~ H*(M,, Q).

Any two proper hypercovers admit a common refinement; since descent is invariant under refinement ([8,
I-111]), the induced spectral sequence on M is canonical in D?(My, Qy).

Step 4 (G g —equivariance). The G g—action on RW¥ arises from the nearby/vanishing topos and is functo-
rial in morphisms of traits ([13, Exp. XIII, §1.3]). Since all morphisms used in Steps 1-3 (faces/degeneracies,
totalization, and all maps appearing in the six—operations formalism) are compatible with this functoriality
([8, T §4.3, Props. 5.3.2-5.3.3]), the resulting spectral sequence on M is G g—equivariant.

Step 5 (Existence of the weight filtration on H*). By construction, the filtration on R¥(Qy) induces
the usual increasing weight filtration Wy on H*(M, Q) via the convergent spectral sequence. This agrees
with the filtration obtained by descending the levelwise weight filtrations on R¥y;, (Qg). For the existence
and properties of the weight filtration in the semistable case, see [18].

This completes the proof. ]

Figure 11: Descent for nearby cycles and cohomology. For a strict simplicial proper hypercover
Us — M, nearby cycles descend via totalization: Tot: R¥y, (Qy) — RYA(Qy), and the induced map
on cohomology RT(Tot(Us ), Q) — RT(M,, Q) is an isomorphism; the Gx-actions commute with

totalization and the six operations.

Remark 3.27 (Practical criterion for N = 0). If R®(Q;) = 0, then N = 0 on H} (M4, Q). Indeed,
the distinguished triangle Q — RV (Q,) — R®(Qy) Ty identifies the specialization map on cohomology
with an isomorphism when R® = 0, and the variation morphism (hence the logarithm of monodromy N)
vanishes in this case; equivalently, the tame monodromy operator acts trivially, so N = log(7") = 0. In
applications below, one verifies R® = 0 (hence N = 0) on an étale slice near the point (where the relevant
family is proper and smooth), and then descends to M by functoriality of nearby cycles (Lemma 3.24) and

strict simplicial descent.

Example 3.28 (Quotients with cohomologically trivial inertia). Then M = [X/G] satisfies N = 0 on
H} (Mg, Qg) and—by the Standing Assumption 3.13, which holds here since G has order prime to p and
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X is strictly semistable over Ox—RY(Qg) on M, is pure of weight 0. Hence Theorem 3.16 applies to [X/G].

This covers modular stacks with tame level away from the residue characteristic; cf. [14].

N=0 (unramified) __.
— H’

H'(Mz, Q) (Mz,Qy)

sp cansp

H'(RY,Qy) H' (M, Q)

%
pure of weight 0

Figure 12: Specialization, monodromy, and weights for M /O (schematic). Here sp is specializa-
tion to nearby cycles, can is the canonical map to the special fiber, N = 0 denotes trivial monodromy
(unramified), and purity of weight 0 identifies the target weights on H*(Ms, Qy).

3.3 Comparison with Classical Néron Models

Definition 3.29 (Stacky Néron envelope). Let M be an algebraic stack over Ok with finite linearly
reductive inertia. A stacky Néron envelope for M, is an algebraic stack N, smooth over O, equipped
with a morphism ¢,: M, — N, such that for every smooth Og-scheme S and morphism S, — M, there

exists a unique (up to unique 2-isomorphism) extension S — N fitting in the evident diagram.

Proposition 3.30 (Existence in the proper tame case). If M is proper over Ok with finite linearly
reductive inertia and generically smooth, then a stacky Néron envelope exists and is unique up to unique

equivalence.

Proof. Let M be a proper algebraic stack, locally of finite presentation over O, whose generic fiber
M,, is smooth and whose inertia is finite and linearly reductive. By generic smoothness, there exists an
open substack A' C M which is smooth over O and whose generic fiber coincides with M,,. Denote by
j: N = M this inclusion.

We claim that A satisfies the stacky Néron mapping property relative to M:

HomoK(S,N) = HomK(Sn,Mn) (1)

for every smooth Of-scheme (or algebraic space) S.

To verify (1), choose a smooth presentation U — M by a scheme U proper over O; form the Cech
nerve Uy = U whose terms are proper over Og. Then, by Lemma 2.13, the derived functors RI', RV, and
the six operations descend compatibly along U,. Since inertia in M is linearly reductive, it acts trivially
on obstruction groups controlling smooth deformations, hence the locus where U, — Spec Ok is smooth
descends to a smooth substack N' C M by effective descent of open substacks.

Now for any smooth Og-scheme S with generic fiber S, every K-morphism S, — M,, factors uniquely
through N by smoothness of A/ and separatedness of M (cf. the valuative criterion for smooth morphisms
on stacks, [6, Th. 7.2]). This verifies the Néron property Equation (1).

Finally, uniqueness follows from the same argument as for the classical Néron model: if Ny, N5 are
two such smooth open substacks, then they both satisfy the universal property, and hence are canonically

equivalent over M by descent of isomorphisms along smooth test objects; cf. [9, 11].
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This establishes existence and uniqueness up to unique equivalence. O

In J;;
M ooz N

Figure 13: Diagrammatic realization of the Néron envelope. The open substack A' C M is the

smooth locus, providing the unique extension of M, that satisfies the stacky Néron mapping property.

Theorem 3.31 (Equivalence with Lemma 2.3 on abelian substacks). Let A C M be the (open and locally
closed) abelian—substack parameterizing principally polarized abelian fibers inside M, and let z,: Spec K —

A, be a K—point with finite stabilizer. Then the following are equivalent:
(i) xy extends to a morphism x: Spec O — A (hence, via the inclusion A — M, to M).

(ii) The local Galois inertia I acts trivially on H}, (A, Q) for (some/every) £ # p, where A/K is the

principally polarized abelian variety represented by .
Moreover, when an extension x exists it is unique up to a unique 2—isomorphism in A (hence in M).

Proof. (i)=(it). If z, extends to x: SpecOxg — A, pull back the universal object on A to obtain a
principally polarized abelian scheme A, /O whose generic fiber is A/K. Since A, is smooth and proper

over O, smooth proper base change identifies
Hi (A Qo) = Hj((As)s, Qo)

and the right-hand side carries trivial Ix—action. Thus Ix acts trivially on H} (A%, Q). (This is the
standard (<) direction in Lemma 2.3, transported along the moduli map.)

(ii)=(i). By Lemma 2.3 (Néron-Ogg-Shafarevich), trivial Ix—action on H}, (A%, Q) is equivalent to
A/K having good reduction. Hence there exists a principally polarized abelian scheme A, /O extending
(A, \) over the trait (the principal polarization extends uniquely after possibly shrinking the trait; for
abelian schemes the extension of a principal polarization is automatic and unique in this situation). This
extension produces a morphism z: Spec O — A lifting x,. Composing with the inclusion A — M yields

the desired extension into M.

Uniqueness. Uniqueness up to a unique 2-isomorphism follows from the stacky Néron mapping property
specialized to the abelian locus: Proposition 3.30 (applied to M and restricted to .A) (See also Counterex-
ample 3.33 for failure without separated diagonal.) gives that any two extensions of x, coincide up to
a unique 2-isomorphism because the diagonal is separated/affine and the valuative criterion applies. In
particular, the extension in 4 is unique up to unique 2—isomorphism, and hence so is its composite into
M (cf. Counterexample 3.33).

Remarks on hypotheses and functoriality. (1) No purity or weight-monodromy input is needed here

because we are on the abelian locus; the equivalence is the classical Lemma 2.3 coupled with the moduli
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interpretation. (2) If needed, one may first pass to a finite unramified extension of K so that stabilizers
become constant and linearly reductive; this does not affect either side of the equivalence. (3) The argument

is compatible with change of level /markings on the abelian substack and with pullback along smooth maps

by the functoriality recorded in the six—operations formalism used elsewhere in the paper. ]
Tn sp.
Spec K ——— A, H} (A%, Q) ————— H}((Az)s, Qr)
‘[val. J 1} ﬂ
Spec Ok B ;*% A Ik acts trivially smooth base change

Figure 14: Abelian locus test. Extension of x, across Spec O is equivalent to trivial Ix—action on H, élt
of the fiber, by Lemma 2.3; uniqueness follows from the stacky Néron mapping property (Proposition 3.30).

(contrast Counterexample 3.33)

Example 3.32 (Application to Ag). Let M = A, over Z[1/N] with N > 3 prime to p. The exis-
tence of a smooth integral toroidal compactification provides the proper tame framework; hence Proposi-
tion 3.30 and theorem 3.31 apply. For a principally polarized A/K with level N structure, trivial inertia
on H}, (Az, Q) yields extension to Ok.

Counterexample 3.33 (Non-separated diagonal). If M lacks separated diagonal (e.g. a poorly behaved
quotient with stacky self-identifications), the uniqueness part of the Néron mapping property fails in
general, even when N = 0 on cohomology. Thus the separatedness hypothesis in Proposition 3.6 is

necessary.

Remark 3.34 (Roadmap link to the next section). The constructions above supply two complementary en-
gines: (i) cohomological control via nearby cycles and weight—-monodromy, and (ii) extension/uniqueness
via a stacky Néron property. In the next section, these will be combined to produce quantitative and struc-
tural theorems about the good-reduction locus inside concrete moduli problems, together with arithmetic

applications and explicit examples.

4 Main Results

In what follows we globalize the inputs prepared in Section 3: (i) openness of the good-reduction locus M8"
(Lemma 3.3); (ii) the stacky Néron mapping property (existence/uniqueness) (Proposition 3.6); and (iii) the
cohomological detection principle under the purity hypothesis (Theorem 3.16 and assumption 3.13), with
descent along proper hypercovers as needed (Lemma 2.13). These ingredients are combined below to yield
the density, vanishing—cycles, and structural openness/constructibility results of this section (Theorems 4.2
and 4.9 and proposition 4.15).

All results in this section are stated under Assumption 3.13 (purity) and the slice hypothesis (Assump-
tion 3.12).
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4.1 Theorem Statements

Remark 4.1 (Sites/topologies and finiteness conventions for this section). Throughout this section, all
six—functor operations and nearby/vanishing cycles R¥, R® are taken on the lisse—étale site of Artin
stacks. Reductions to strict simplicial proper hypercovers by schemes are handled as in Laszlo—Olsson,

ensuring;:
e compatibility of R¥, R® with f., fi, f*, f', ®, Hom;
e constructibility and cohomological finiteness of R’ f,Q, for morphisms locally of finite type.

These properties follow from [8, 9] and [7, Exp. XVI] (smooth base change). All later uses of “by the

formalism of nearby cycles” refer to these results.

Technical conventions. All nearby and vanishing—cycle constructions below are taken on the lisse—étale site
of the algebraic stack under consideration. Representability, affine diagonal, and finite-inertia hypotheses
ensure that the six—functor formalism of Laszlo-Olsson [8] applies. Cohomological finiteness follows from

boundedness of R¥((Q,) under these assumptions.

Theorem 4.2 (Conditional density of good reduction; under Assumption 3.13). Let K be a number field
with ring of integers Ok and let M be an algebraic stack, finite type and separated over O, with affine
diagonal and finite linearly reductive stabilizers. Assume the following two hypotheses hold outside a finite
set S of finite places of K :

1. (Purity at v) For all but finitely many nonarchimedean places v of K with residue characteristic
Dy, the special fiber Mg, is smooth and the Assumption 3.13 holds over Ok, ; equivalently, for every
{ # py, the nearby-cycles complexr RV (Qy) on M, is pure of weight 0;

2. for each such v, the action of Ik, on Hle;t(MFv>Qf) is unipotent with N, = 0 for all i.

Fiz a morphism x : Spec K — M, with finite automorphism group such that Assumption 3.12 holds at x

after possibly a finite unramified extension of K. Then the set
Yer() = {v finite in K | x extends to Spec O, — M}

has natural (Dirichlet) density 1 in the set of all finite places of K.

Scope. The proof invokes Theorem 3.16; all applications occur in contexts where Assumption 3.13 (purity
of nearby cycles) holds outside a finite set of places, and the slice hypothesis (Assumption 3.12) is satisfied
for the fized point = after a finite unramified extension (These hypotheses fail in the wild o, case; see

Ezample 6.12). See also Remark 3.20 for further discussion of these assumptions.

Remark 4.3 (Novelty and conditional scope). Theorem 4.2 should be viewed as conditional on the purity
and monodromy hypotheses holding outside a finite set of places (Hypotheses (1)—(2) of the theorem).
Under these hypotheses, the set of good-reduction places has Dirichlet density 1. For schemes representing
principally polarized abelian varieties, such conditions are satisfied outside finitely many places by the
existence of smooth proper models, recovering the classical Chebotarev argument. The new contribution

here is that the same density phenomenon extends to stacks with finite linearly reductive stabilizers, where
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density is tied to the cohomological conditions of Definition 2.15 uniformly across places by coupling
Theorem 3.16 with a global equidistribution step on the cohomology of M, rather than on a fixed fiber.
To our knowledge, this formulation is absent in the literature in this generality for stacks.

In particular, Proposition 6.9 supplies a canonical tame-quotient instance where the purity+N =0
mechanism on stacks yields integral extension uniformly across places, a formulation that appears to be

absent in the literature even for global quotient stacks beyond schemes.

Proof. Let S be the finite set of places where either (1) fails or the stabilizers cease to be tame. For v ¢ S,
hypotheses (1)—(2) imply, by Theorem 3.16, that any K,-point with finite automorphism group extends
over Ok,. We have to relate the local extension of x to a global density statement. Consider the image
of z in a smooth presentation U — M; after shrinking to an étale slice near the image of = (possible by
linear reductivity), we may assume the slice is an algebraic space V finite type over O through which z

factors.

Slice reduction and transfer of hypotheses. Fix v ¢ S. By Assumption 3.12 (after a finite unramified
extension if necessary), there is a tame étale slice V-— M through the image of = with residual stabilizer
finite and constant. By Lemma 3.24 (functoriality of nearby cycles), the purity hypothesis (1) on M/Ok,
descends to V/Og,. Moreover, by Lemma 2.11 the local Galois inertia action commutes with the residual
stabilizer on the slice, hence hypothesis (2) (unramified with N, = 0 on HY (Mg, ,Q¢)) induces the same
condition on HY, (Vk,,Qs). When M /O, is proper, Remark 4.10 identifies the specialization morphism
used in Theorem 4.9, so (2) together with purity yields (3) there; by Theorem 4.9 this is equivalent to
R®|y = 0 and hence to the existence of an extension of x over Of,. In the separated (not necessarily
proper) case, extension on the slice follows from the scheme-theoretic criterion combined with smooth base
change and the weight-monodromy formalism (Lemma 2.9 and proposition 2.14), and the extension lifts

to M by the stacky Néron mapping property (Proposition 3.6).

For v ¢ S, unramified Ik, -action with N, = 0 on cohomology of the slice yields extension over Ok, by
the scheme-theoretic criterion (compare Lemma 2.3 and proposition 3.6).

Consequently, after possibly enlarging S to a finite set S’ O S that accounts for the slice and properness
reductions above, for all v ¢ S’ the purity and N, = 0 hypotheses descend to the slice and Theorem 4.9
(or the scheme case discussed above) applies, so = extends over Ok, . In particular, Y4 (z) has Dirichlet

density 1.

Equidistribution/Chebotarev step. Since the exceptional set S’ above is finite, the density claim follows.
Equivalently, this may be phrased by appealing to Chebotarev for the pure f-adic sheaves on the good
model of the tame étale slice V' — M constructed in the proof (cf. Bridge 4.5).

O

Corollary 4.4 (Projective-line sanity check: density under a smooth proper model). Let M admit a
smooth proper model over Ok outside a finite set S of finite places, and let x : Spec K — M, have finite

stabilizer and satisfy Assumption 3.12 after a finite unramified extension. Then the set

Yor(x) = {v finite | x extends to Spec Ok, — M }
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has Dirichlet density 1. In particular, for M = ]P’})K (trivial stabilizers, separated diagonal, and purity

automatic in the smooth-proper case) one has density (X (z)) = 1.

Proof. Over v ¢ S, smooth properness implies purity for R¥U(Q) and unramified inertia with N, = 0
by smooth base change. Hence Hypotheses (1)—(2) of Theorem 4.2 hold outside S, and the conclusion
follows. O

Bridge 4.5 (Good-slice openness and density). Theorem 4.2 links the geometric good-reduction locus of
a point x to the cohomological purity and monodromy conditions on the ambient stack, using the local
good-slice criterion of Theorem 3.16 and a global Chebotarev-type density argument. The bridge highlights

that openness of the good-slice locus implies density of good-reduction points under tame monodromy.

Corollary 4.6 (Local L-factors at density-1 set). Under the hypotheses of Theorem 4.2, for any ¢ and for
density-1 many finite places v 1 £, the local Galois representations attached to the fiber classified by = are

unramified at v, and the local L-factor equals

Lo(T) = []det(1— T Frob, | Hi(fibers , @) """
i
Proof. For density-1 many v, Theorem 4.2 yields extension over Of,, hence unramified action on the
fiber’s cohomology by smooth base change (Lemma 2.9) and N, = 0; the formula follows from the
Grothendieck—Lefschetz trace formalism and purity (Proposition 2.14) (by smooth base change; [7, Exp. XVI]).
Equivalently, one can justify the density-1 set by Chebotarev applied to the pure ¢-adic cohomology

sheaves on the good slice (see Bridge 4.5).
O

Example 4.7 (CM abelian varieties inside Ay). Let M = A, with prime-to-p level as in Example 3.32.
Let x classify a CM abelian variety A/K with full CM by a field E. At all v split completely in E and
away from the bad level and the finite exceptional set S, the cohomology is unramified with the correct
weights; hence A has good reduction at such v and Corollary 4.6 applies. The set of completely split v has

positive density, and purity holds away from S, so Theorem 4.2 gives density 1 for good reduction.

Counterexample 4.8 (Failure without linear reductivity). If stabilizers are not linearly reductive (e.g.
wild «,), étale slices need not exist. One can construct Artin-Schreier families where the global cohomology
of the stack has NV = 0 while individual fibers exhibit wild monodromy at infinitely many v, preventing
extension of x at those places. Then Y, (x) can have density < 1. This shows the necessity of the stabilizer

hypothesis in Theorem 4.2; compare Counterexamples 2.19 and 3.22.

Theorem 4.9 (Local vanishing—cycles on a proper tame slice; under Assumption 3.13). Let z, be a
K —point of M, with finite stabilizer. Let M/ Spec Ok, be an algebraic stack with affine, separated diagonal
and finite linearly reductive (tame) stabilizers (separatedness is necessary for the uniqueness in (1); see
Counterexample 6.14).

Assume M is proper and generically smooth over O, . Let x, : Spec K, = My, have finite automor-
phism group. After a finite unramified extension, replace a neighbourhood of x, by an étale slice V.— M

with V' an algebraic space; then V/Of, is proper.
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Assume also Assumption 3.13 for M (invoked whenever purity/weights for RY(Qy) are used).
For any £ # p,, the following are equivalent:

(1) =, extends (uniquely up to 2-isomorphism, by separated diagonal; cf. Counterexample 6.14) to a

section Spec Ok, — M whose image lies in the good-reduction locus Mg, of Definition 3.1.

(3) The specialization morphism
Sp : Hét(VKU, Q) — Hi(R\I’(Qg))

is an isomorphism for all i, and the monodromy operator N on Hét(VKU, Qo) is 0.

Remark 4.10 (Proper slice and specialization). Properness of M/Ok, implies the étale slice V. — M
is proper over Ok, (proper is étale-local on the target). Consequently the specialization morphism
H! (Vk,,Q¢) — H(RY(Qy)) is canonically defined and functorial in the six-operations formalism for
Artin stacks (Laszlo-Olsson I-1II), and the equivalence (2) < (3) is the standard nearby/vanishing crite-
rion (SGAT II, Exp. XIII). Formulation (1) uses the good-reduction locus My, (Definition 3.1) to keep the
equivalence nontrivial in the proper case.

In particular, the properness of the slice is the precise hypothesis needed to define the specialization

morphism sp, so it is necessary for (2)<(3).

Proof. (1)=(2): If a section over Spec O, exists with image in Mg, then by smooth base change and
the nearby-vanishing triangle for stacks ([13, Exp. XIIIJ; [8, I-III]) the complex R®(Qg) vanishes in a
neighbourhood of the image; passing to an étale slice preserves this.

(2)=(3): If R®(Qy)|v = 0, the nearby—vanishing triangle gives that the specialization morphism is an
isomorphism and N = 0 on H, (Vk,, Q) ([13, Exp. XIIIJ; [8, I §4, II §5, I1I §4]).

(3)=-(2): Conversely, if sp is an isomorphism for all i and N = 0, then the triangle shows R®(Qy)|y =0
([13, Exp. XIIIJ).

(2)=(1): Since M/Ok, is proper, the valuative criterion gives an extension Z : Spec O, — M of
Zy. On the proper slice V, the condition R® = 0 forces smooth reduction along the image (again by
the nearby-vanishing triangle and smooth base change, [13, Exp. XIII]; [8, I-1II]). Hence Z lands in M,,.
Uniqueness up to unique 2—isomorphism follows from the separated diagonal. (See Counterexample 3.33

for a counterexample when the diagonal is not separated.) O

Bridge 4.11. Theorem 4.9 provides a practical test for good reduction at a fixed place: check vanishing

cycles or, equivalently, trivial monodromy and isomorphic specialization on a slice.

Corollary 4.12 (Numerical test via traces). Assume the hypotheses of Theorem 4.9. If for some £ # p,
and all m > 1 the trace identity

Tr(Froby | H(V,, Q) = Tr(Froby" | H*(Mg,, Qy))

holds (alternating sum over i), then x, extends integrally.
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Proof. The trace identity forces the specialization map to be an isomorphism on each weight slice (Deligne’s

theorem on weights), hence R® = 0 and N,, = 0; apply Theorem 4.9. ]

Example 4.13 (Level structures on elliptic curves). Let M = M 1[N] over Z[1/N], pt N. For E/K, with
full level-N structure and integral j—invariant, the vanishing-cycles complex on a slice at [E] is zero; thus
Theorem 4.9 gives extension and Corollary 4.12 identifies the local factor with the Frobenius characteristic

polynomial on the smooth special fiber.

Counterexample 4.14 (Non-separated diagonal obstructs uniqueness). If M has non-separated diagonal
(Counterexample 3.33), (2) and (3) can hold while uniqueness in (1) fails. Thus separatedness is necessary

for the full equivalence.

4.2 Further Structural Results

Proposition 4.15 (Openness and constructibility of the good-reduction locus). Under the hypotheses of
Theorem 4.2, the locus M®& C M of Definition 3.1 is open and its image in any finite type base S is

constructible. Moreover, if M is proper over S, the image is open in S.

Proof. Openness follows from Lemma 3.3 (openness of the smooth locus and openness of linearly reductive
stabilizers in tame families). Linear reductivity is essential; see Counterexample 4.18.
Constructibility of the image is Chevalley’s theorem applied to the open substack. Properness of M /S

upgrades constructibility to openness by upper semicontinuity of fiber dimension and generic smoothness.
O

Bridge 4.16. Proposition 4.15 connects the local criteria of Theorem 4.9 to a global geometric statement

about the variation of good reduction in families.

Example 4.17 (Toric quotients). For M = [X/T] with X smooth proper over Ox and T a split torus of
order prime to p, M® = M and the image in Spec Of is all of Spec Ok. This follows from Example 3.28
and Proposition 4.15.

Counterexample 4.18 (Wild quotient fails openness). For wild a,-quotients as in Counterexample 3.22,
the good-reduction locus need not be open: the failure of étale slices causes jumps in R® along the special

fiber, violating the openness conclusion of Proposition 4.15.

M M

J J

Spec O —— Spec O

Figure 15: Good-slice openness and density. The closed immersion M8 — M identifies the good-slice
locus of geometrically smooth fibers, while the vertical arrows denote the structural morphisms M8, M —

Spec Ok . Compare Bridge 4.5 for the corresponding cohomological density statement.

Remark 4.19 (Link forward). The next section applies Theorems 4.2 and 4.9 to concrete moduli (elliptic,
abelian, and selected K3 loci), giving explicit computations of local factors and verifying sharpness via

counterexamples engineered by wild ramification.
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5 Applications

The applications below propagate the engines of Section 3— Theorem 3.16, assumption 3.13, proposi-
tion 3.6, and lemmas 2.13 and 3.3—through the structural statements of Section 4 to concrete arithmetic
settings: cohomological footprints (Section 5.1), modular/Shimura realizations, and local-global compar-

isons.

5.1 Cohomological Interpretation of Good Reduction

Definition 5.1 (Cohomological footprint of good reduction). Let M be a finite-type algebraic stack over
Ok as in Definition 2.5. We define the cohomological footprint of good reduction to be the collection of

G g-modules

S(M) = {Hét(Mf7 QZ): 1> 07 4 ?é p}7
together with their weight filtrations and monodromy operators.

Theorem 5.2 (Cohomological characterization of the good reduction locus; under Assumption 3.13).
Under Assumption 3.13 (purity of nearby cycles on stacks). Let M be a moduli stack as above with tame,
linearly reductive stabilizers. Assume Assumption 8.12 holds at the points under consideration. Then the
locus of points in M(K) corresponding to families with good reduction is precisely the locus where F (M)
carries trivial inertia action and pure weight filtration.

Scope. This characterization uses Theorem 3.16 and is applied only under Assumption 3.13 (purity)

together with the slice hypothesis (Assumption 3.12) at the points under consideration; see Remark 3.20.

Proof. By Proposition 2.14 (weight-monodromy spectral sequence) together with Theorem 3.16, trivial
inertia forces unramified monodromy with N = 0, and purity holds by Assumption 3.13.

Triviality of inertia guarantees extension across Spec O, while purity (under the Standing Assump-
tion 3.13) excludes hidden degenerations in the special fiber. Thus the locus is exactly cohomologically
detected. O

Remark 5.3. This provides a moduli-theoretic analogue of the Néron—-Ogg—Shafarevich criterion Lemma 2.3,
but phrased entirely in terms of stacks and cohomology. The novelty lies in transferring detection from

abelian schemes to general moduli spaces with tame stabilizers.

Example 5.4 (Elliptic curves revisited). For M = M, 1, the footprint F(M) is generated by HJ, of
the universal elliptic curve. At primes p { 6, purity and trivial inertia coincide with smooth reduction,

recovering the classical criterion.

Counterexample 5.5 (Wild degeneration). Let X/K be a supersingular curve of genus g > 2 with
potentially good but wildly ramified reduction. Then F(X) has nontrivial unipotent inertia, hence X fails

the cohomological footprint condition, even though it attains semistable reduction after extension.

5.2 Connections with Modular Curves and Shimura Varieties

Proposition 5.6 (Cohomology of modular curves at good primes). Let Xo(N) denote the modular curve
over Q. At primes p { N, the good reduction locus in M coincides with the trivial inertia locus on
H;t(Xo(N)@, Q¢), and hence with integrality of the Hecke L-factor at p.
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N=0

H (Mg, Qp) 77~ > Weight filtration pure
I KJ \[purity condition
Good reduction locus ———— M(K)
inclusion

Figure 16: Cohomological detection of the good reduction locus inside M(K).

Proof. This is a direct application of Theorem 5.2 to M ; and the Eichler-Shimura relation for Hecke

operators. Unramifiedness of the local factor corresponds to trivial inertia action. O

Corollary 5.7 (Shimura varieties). Let S be a PEL-type Shimura variety with hyperspecial level at p.
Then the cohomological footprint §(S) is unramified at p, and the good reduction locus coincides with the

set of crystalline points in the sense of p-adic Hodge theory.

Example 5.8 (CM points). For CM points on S, the good reduction locus is dense by Theorem 4.2. This
gives unramifiedness of the Galois representation attached to CM motives at primes of good reduction,

providing a moduli-theoretic reproof of classical results of Serre-Tate [15].

Counterexample 5.9 (Non-hyperspecial level). For Shimura varieties with parahoric level at p, the special
fiber may have multiple strata, and the cohomological footprint may fail to detect good reduction. Indeed,
inertia acts nontrivially on intersection cohomology, so the locus of crystalline points is smaller than the

full rational point set.

5.3 Arithmetic Schemes over Local and Global Fields

Notation 5.10 (Local-to-global setup). Let F' be a number field, v a finite place with completion F,,. For
a moduli stack M/F, we denote by My, the base-change to F,.

Theorem 5.11 (Local-to-global compatibility of good reduction). Let M/F' be a proper, smooth moduli

stack with tame stabilizers. Then:

M(F)gr = ﬂ(M(Fv>coh—gr)a

where the right-hand side denotes the set of adelic points whose local components satisfy the cohomological

footprint condition of Definition 5.1.

Proof. (C): A global good reduction point restricts locally to good reduction points, hence satisfies the
cohomological footprint condition. (2): Suppose an adelic point lies in the intersection. By Chebotarev
and density of Frobenius conjugacy classes, the inertia action is trivial at almost all primes, hence globally

trivial. Purity then forces extension to Spec O, yielding a global good reduction model. O

Remark 5.12. This theorem extends the classical Néron-Ogg-Shafarevich criterion (Lemma 2.3) from
abelian varieties to arbitrary tame moduli stacks, and further upgrades it from a local criterion to a global

adelic equivalence.
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Example 5.13 (Siegel modular threefolds). For the Siegel moduli stack of principally polarized abelian
surfaces, Az, the adelic good reduction locus corresponds to points with crystalline Galois representations
at all finite places. This identifies Ay (F), with the global intersection locus predicted by p-adic Hodge
theory.

Counterexample 5.14 (Failure without properness). Consider the affine moduli stack of marked tori.
Local cohomological good reduction does not imply global good reduction, because non-properness allows

degeneration at infinity, violating the valuative criterion.

M(F)gr (% HM(Fv)coh—gr

globally j

M (F)adelic embeddingH M (FU)

Figure 17: Local-to-global compatibility of the good reduction locus. The global good reduction
locus M(F')g, embeds into the product of its local cohomological counterparts, compatibly with the adelic

inclusion M(F') — [[, M(Fy).

6 Explicit Examples and Computations

This section develops concrete instances and calculations illustrating the scope and sharpness of Theo-
rems 3.16, 4.2 and 4.9, corollaries 4.6 and 4.12, and proposition 4.15 and their arithmetic consequences
from Section 5. We emphasize explicit local tests via vanishing cycles and trace identities, and global

density consequences.

6.1 Case Study: Elliptic Curves with Good Reduction

Let K be a discretely valued field with ring of integers Op, residue characteristic p > 0, and let £ # p.
Write v = vk for the normalized valuation. Consider M = My 1[N] over Z[1/N] with N > 3 and p { N;
recall Examples 2.7, 3.32 and 4.13.

Proposition 6.1 (Local criterion via j and vanishing cycles). Let E/K be an elliptic curve with full
level-N structure, p { N. Assume v(j(E)) > 0 and p > 5. Then on an étale slice V' through the point
[E] € My 1[N]k one has R@(Qg)‘v =0 and N =0 on H (Vi Q) for all i. Consequently, [E] extends
uniquely to Spec O — M 1[N].

Hypotheses. Throughout this case study we assume the residue characteristic satisfies p > 5, the j-
invariant of E is integral, and that we work on a full level-N structure with N > 3 and (N,p) = 1.
These bounds ensure that the corresponding moduli stack M 1[N] is smooth over Spec Z[1/N]| and that the

stabilizers are finite linearly reductive, so that R® = 0 by tame smoothness.

Proof. The integrality of j(E) and p > 5 place E in the smooth locus of the Weierstrass discriminant

model, so the universal curve is smooth over Ok in a neighborhood of [E]. By linear reductivity (level
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N > 3 kills nontrivial automorphisms) an étale slice V' exists with V' an algebraic space. Smoothness gives
R®(Qy)|y = 0 and hence N = 0 by Definition 3.23 and remark 3.27; apply Theorem 4.9. O

Example 6.2 (A concrete integral Weierstrass model). Let p > 5 and E/K be given by a minimal

Weierstrass equation

2
y = .fL'3+CL4CL'+a6, CL4,CL6€OK,

with discriminant A = —16(4aj + 27a2) satisfying v(A) = 0. Then v(j) = v(—1728 - 43a3/A) = v(a3) —
v(A) > 0, hence Proposition 6.1 applies. For vt £, Corollary 4.6 yields

Ly(T) = det(1 — T Frob, | H(Ez,, Q) ' =1 - auT + ¢, 1%,

where ¢, = #F, and a, = ¢, + 1 — #E(F,), recovering the classical formula from the moduli viewpoint.

Proposition 6.3 (Nearby cycles and weight filtration for the Tate curve). Let K be a discretely valued
field with uniformizer m and residue characteristic p > 5, and let £ # p. Fix ¢ € K* with |q| < 1 and let
E,/K be the Tate curve. Then E, has split multiplicative reduction and:

1. The special fiber is a nodal cubic; the vanishing cycles at the node are one-dimensional of Tate type.

2. The nearby-cycles complex on the special fiber satisfies
R (Q)) = Qy dim R'W(Qy) = 1 at the node with R*W(Qy) = Qu(—1),
and higher R*U vanish.
3. On H', the weight filtration is two-step with graded pieces
Gry H'(Eg, Qi) = Q, GrY H'(Fg, Q) = Q(-1),
and the logarithm of monodromy N induces an isomorphism
N: Gry’ H'(Eg, Q) = Gry H'(Eg, Qo)(-1).
Equivalently, there is a (non-split) short exact sequence
0 — Q — HY(RY(Q)) — Qu-1) — 0,
and N # 0 has rank 1 on H'.

Proof. This is the standard semistable (nodal) curve computation: the nodal special fiber contributes a
single Tate class in R'V, and the weight-monodromy formalism (Proposition 2.6-Proposition 3.6 context
and Proposition 2.6—Proposition 2.1} references) yields the two-step filtration with N an isomorphism
CGry — Gry'(-1).2

2Any of the classical references for semistable curves apply; in our stack formalism this is also a direct instance of Propo-
sition 3.26 and Remark 3.27.
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Gry HY(Eg, Q) —2— Grlf HY(Ew, Q) (-1)

Figure 18: Weight—monodromy for the Tate curve. Rank-one monodromy N # 0 exchanges the
weight-2 and weight-0 pieces up to (—1)-twist.

Example 6.4 (Numerical monodromy and local factor for split multiplicative reduction). Let K = Q,
with p > 5 and take the Tate curve E, with ¢ = p (so |¢| < 1). Then E; has split multiplicative reduction

and the local L-factor on H! is

1
(1-T)(1—pT)

Ly(T) = det(1—T-Frob, | H'(Ex, Q)" =

Consequently a, = 1 and the weight filtration from Proposition 6.3 is realized by the eigenvalues {1, p}
on the graded pieces Cr}/ ~ Q; and Gr¥ =~ Qu(—1), respectively. The extension is non-split and the

monodromy operator N has rank 1.

Counterexample 6.5 (Additive potentially good reduction; necessity of p > 5). Let p =2 or 3 and E/K
have v(A) > 0 with potentially good reduction but additive at p. Then the wild inertia acts nontrivially
on H},(Fz, Qy), so R® # 0 and N # 0 on a slice V. Thus Theorem 4.9 fails: [E] does not extend to a
smooth point of M 1[N] over Ok (compare Counterexamples 2.19 and 3.22).

good reduction at p

> M171[N](OK)

R® =0, N =0 = extension

Figure 19: Passing to an étale slice. An étale slice V' through [E] reduces the extension problem to

verifying R® = 0 and N = 0 on an algebraic space, yielding an integral extension in M ;[N](Ok).

6.2 Higher-Dimensional Abelian Varieties

Let M = A,[N] over Z[1/N] with N > 3 and p { N, cf. Example 3.32 and theorem 3.31. We illustrate how

Theorems 4.2 and 4.9 yield concrete tests and density statements.

Proposition 6.6 (Ordinary locus and crystalline test). Let A/K be a principally polarized abelian va-
riety of dimension g with full level-N structure, p + N. If the p-divisible group of A is ordinary and
the Hodge—Tate weights are (0, 1) with multiplicities (g,g) (equivalently, A is Hodge—Tate ordinary), then
R®(Q¢) =0 on a slice through [A] and [A] extends to Spec O — A4[N].

Proof. Ordinarity gives a slope filtration on the Dieudonné module with trivial monodromy on the f-adic
realization, so N = 0 on Hj (A7, Q). By functoriality of nearby cycles (Lemma 3.24) and purity on Ay[N]
away from finitely many primes, R® = 0 at [A]; conclude by Theorem 4.9. O

Example 6.7 (Product of CM elliptic curves). Let A = Ey x --- x E; where each E;/K has CM by a
field E; and integral j at p { N. Then A is ordinary at any v split in all E; and Proposition 6.6 applies.
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By Theorem 4.2, A has good reduction at a density-1 set of places and Corollary 4.6 expresses L, (1) as a

product of degree-2 Euler factors.

Example 6.8 (Worked CM abelian surface (explicit Frobenius weights and Ix—action).). Let A = E; X Es
be an abelian surface over K where each E;/K has complex multiplication by an imaginary quadratic field
K;. Fix a finite place v 1 pN of K with residue field F, of size ¢,, and assume v splits in both K; and Ks
and that each E; has good reduction at v (equivalently j(E;) is integral at v). Then Ik acts trivially on
Hgt(Eif,@g), and hence on Hé}t(AF, Q¢),so N =0on H'.

For each i = 1,2 there are algebraic integers o 4, @; , With
_ — 1/2
Ay Oy = (o, ‘ai,v} = ‘ai,v‘ qv/ )

such that on H}, (E; %, Q) the arithmetic Frobenius Frob, has eigenvalues «; ,,, @;, (Deligne purity). Thus

Hy(Ag, Qo) = Hy(By 7, Qo) © Hg (B, Qu),

with Frobenius eigenmultiset {cv y, @14, @24, a2, } (all of Weil weight 1 and with trivial Ix—action). Con-

sequently the local factor for H' at v is

1 _azv (1 _ai,vT)_l7 (T:qgs)'

:w

Ly(H'

=1

For H? one has

Hg(Az, Q) = /\ Hi(Az, Q) (dim = 6),

so the Frob,—eigenvalues are the pairwise products of the H'-eigenvalues, namely
Qv 102y, 1pQ2y, QAlyQ2y, 102y, Gy,
all of Weil weight 2 and again with trivial Ix—action. Hence
L(H*(A),T) = (1 — ¢,T) 2 (1 — 1900, T) " (1 — 10802, T) (1 — @1 pa0,T) " (1 — @02, T)

Bridge to L-factors. Combining the above with
Ly(A,T) = L,(H°) ' L,(HY) 'L (H*)"'L,(H3)"'L,(H*)~! and Kiinneth (noting H° and H* are Tate
of weights 0 and 4, and H3 = H!(1)), one recovers
2
Lo(A,T) = Ly(E,T) Lo(Es,T) = [[((1 - e T)(1 — @, T))
i=1

with all local factors unramified at such v and satisfying purity (weights i on H*). This explicitly realizes
the N = 0 and trivial inertia predicted by Section 4 in a concrete CM surface and matches the coarse-space

L-factor formalism used in Theorem 7.9.

Proposition 6.9 (Stacky refinement for tame global quotients). Let S = Spec(Ok) with residue charac-
teristic p > 0, and let n > 2 be an integer with (n,p) = 1. Let G = u,, act on a smooth S-scheme X with
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G-action extending over S (e.g. X = Ak with (-u = Cu). Set M = [X/G]. Then:
1. M has good reduction in the sense of Definition 2.1 (flat over S with smooth special fiber).

2. For every ¢ # p one has the canonical identification of nearby cycles

RUM(Q) =~ (RUx(Q)),

hence R®(Qg) = 0 and the Ix-action on Hét(MK,Qg) is unipotent with N = 0 whenever X/S is

smooth near the point.

3. Consequently, for any K-point x,, € M, (K) with finite stabilizer, x, extends (uniquely up to unique
2-isomorphism) to a section Spec O — M.

Proof. Because (n,p) = 1, G = pu, is finite linearly reductive over S. Good reduction is smooth-local on
source/target, so a smooth atlas X — M transfers good reduction between X and M (Proposition 2.6).
For nearby cycles, finiteness and linear reductivity imply the standard invariants formula RW(Qy) ~
(R\Il X (Qg))G in the six-operations formalism for stacks; since |G| is invertible on S, taking G-invariants
is a direct summand, preserving purity and vanishing of R® (Lemma 3.24 and the purity hypotheses
used in Theorem 3.16). Thus, when X/S is smooth near the image of the point, we have R®p = 0
and monodromy N = (0. The extension then follows from Theorem 3.16 and the stacky Néron mapping

property (Proposition 3.6). O

Example 6.10 ([A'/p,] with (n,p) =1). Let X = Al = Spec(Ok[u]) with u, acting by scaling u — Cu.

Then the invariant ring is Og[u"], hence the coarse moduli map
M = [Ag/pn] — A

is finite and flat, and the special fiber is smooth. Since X/S is smooth, we have R® x(Q) = 0 and purity
holds; therefore
R M(Qp) = (RUx(Q0))"" = Qy,

and N =0 on H}(Mg,Qy). In particular, every K-point of M,, with finite stabilizer extends integrally

over O.

Counterexample 6.11 (Supersingular locus). If A/K is supersingular at p, then N # 0 on H},(Az, Q)
and R® # 0 on any slice at [A]. Thus Proposition 6.6 fails and [A] need not extend to a point of the
good-reduction locus in A4[N] (contrast with Proposition 4.15).

ordinarity
_—

H (A, Qo) crystalline, slope (0,1)

s [

0 < > extension to Ok

Figure 20: Ordinarity and integral extension. For an abelian variety A/K, ordinarity ensures that
H elt(A?, Qp) is crystalline with slopes (0, 1), forcing N = 0 and R® = 0, hence extending A integrally over
Ok.
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6.3 Counterexamples Illustrating Necessity of Hypotheses
We now give explicit constructions showing that each structural hypothesis in our main results is needed.

Example 6.12 (Wild quotient by «ay). Let p > 0, X/Ok smooth and proper, and let o, act on X, with
nontrivial fixed locus. Form the quotient stack M = [X/a,]. Then R®(Qy) acquires contributions from
the wild fixed locus, producing nonzero N on Hf (M, Q). Thus Theorems 3.16 and 4.9 fail without

linear reductivity (compare Counterexample 3.22).

Concrete computation (translation by a, on A'). Let S = Spec Ok with residue characteristic
p > 0, and write a;, = Spec Ok [t]/(t?). Let oy, act on Af, = Spec Ok [u] by translation u — u+ ¢ (coaction
ur—u®1l+1®t). Set R = Oklu|. The invariants are

R ={f(u) e R| flu+t)=f(u) forall ¢, * =0}.

Reducing modulo the uniformizer shows f’(u) = 0 (mod =), hence f(u) = g(uP) (mod ) for some g € k[z].

Consequently,
R ®@p, k = k[u”] while R @0, K = Klu]

(the action is trivial on the generic fiber). Thus formation of invariants is not compatible with base change,
and Spec R* — S'is not flat. In particular, the quotient stack [A}q / ozp] — S is non-flat at the special fiber;
the wild fixed locus contributes to R® # 0 and forces nontrivial monodromy on H}, violating the purity
hypothesis Assumption 3.13 and preventing an étale slice of the form in Assumption 3.12. This makes the

linear-reductivity and purity assumptions in Theorem 3.16 indispensable in the wild case.

Example 6.13 (Artin—Schreier curves with wild monodromy). Fix p > 0 and consider the family of

projective curves over K obtained by compactifying
1 m
Y-y = n + Z;Citz, ¢i € Ok, v(e1) =0.
1=

At the special fiber, there is a wild branch at ¢ = 0 with Swan conductor > 0, hence N # 0 on H, élt. No

slice has R® = 0, so there is no integral extension to the smooth locus; cf. Counterexample 2.19.

Concrete computation (Swan conductor at ¢t = 0). Over the punctured trait 7> = Spec Ok [t,t 7],

consider the Artin—Schreier cover
1 m
Yy —y = Z+Zcit_z’ ¢i € Ok, v(c1) =0,
i=1

and let C'/K be the smooth projective curve obtained by compactification. At t = 0 the local extension
has upper ramification jump 1 and Swan,—g = 1. By the Grothendieck—Ogg—Shafarevich formula, this
positive Swan contribution forces nontrivial unipotent monodromy on Hélt(C’?, Qy), hence the logarithm
of monodromy N # 0 and R® # 0 at the image of t = 0 (cf. SGA 7 II, Exp. IX). Therefore no étale slice
through [C] has R® = 0, so Assumption 3.13 fails in this wild setting and the hypotheses of Theorem 3.16
cannot be dropped.
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Counterexample 6.14 (Non-separated diagonal destroys uniqueness). Let S = Spec Ok and form the
algebraic space U by gluing two copies Uy = Uy = A along the open A} \ {0} via the identity. Then
the diagonal Ay is not separated. Take M := U (or a stack admitting U as an atlas near the origin).
Choose a generic point x, : Spec K — U, mapping into the overlap A}, \ {0}. The valuative criterion
yields two extensions Z1,Zs : Spec O — U that pick the two distinct origins; these are not 2-isomorphic
over S. Hence even if N = 0 and R® = 0 on a slice, the uniqueness clause in the vanishing-cycles criterion

(Theorem 4.9) fails without separated diagonal. This makes separatedness of Ay necessary.

x
Spec K —— U,

\{ I \[
SpecOx 3 U
T2
Figure 21: Failure of uniqueness under a non-separated diagonal. Two distinct extensions

Z1,T2 : SpecOg — U of the same generic morphism x, witness that the valuative criterion does not

yield uniqueness when Ay is not separated.

Example 6.15 (Constructibility without openness). For the wild quotient in Example 6.12, the locus of
points with R® = 0 is constructible but not open (compare Proposition 4.15 and Counterexample 4.18).

Thus openness in Proposition 4.15 really uses linear reductivity.

Linear reductivity =——= étale slice V. =——= R® = 0 ——> extension / uniqueness

ﬂ

Separated diagonal uniqueness

Figure 22: Dependency of conclusions on structural hypotheses. Each implication requires the
preceding hypothesis: linear reductivity = existence of an étale slice = vanishing of R® = extension
and uniqueness; while separated diagonal = uniqueness. All arrows may fail without the corresponding

assumption.

Remark 6.16 (Continuity and outlook). The explicit examples demonstrate the practical reach of Theo-
rems 3.16, 4.2 and 4.9 and corollaries 4.6 and 4.12 and the sharpness of assumptions (linear reductivity of
stabilizers, separated diagonal, properness in global statements). In the concluding section we return to
the global picture, isolating quantitative refinements and formulating open problems prompted by these

computations.

7 Global Perspective

The preceding sections developed structural criteria for good reduction in the language of stacks and
étale cohomology. We now isolate the bridges that connect these technical results to broader arithmetic
phenomena. This section functions as a transition between the explicit computations (Section 6) and
the global implications formulated later. In particular, we highlight three directions of interplay: from

cohomology to moduli, from local to global, and from good reduction to arithmetic invariants.

41



7.1 From Cohomology to Moduli

Definition 7.1 (Cohomological footprint of a moduli point). Let 2: Spec K — M be a K-point of a tame
Deligne-Mumford stack M, proper and smooth over Og. The cohomological footprint of x is the system

of /-adic representations
pl: G — Aut(Hl (Mg, Qp)), ¢ # char(k),

together with the weight filtration on the associated nearby-cycles complex.
Proposition 7.2 (Functoriality of footprints). If f: M — N is a morphism of tame Artin stacks over
Ok inducing fr: My — Ny, then the cohomological footprints satisfy
P}(;p) = filpy)
for each i, compatibly with the monodromy filtration on nearby cycles.

Proof. This follows from the functoriality of nearby-cycles in the formalism of Laszlo-Olsson [8], together
with the compatibility of weight and monodromy filtrations in SGA 7 [13]. The key point is that tame

stabilizers guarantee that Rf, preserves purity and unipotence of monodromy. O

Remark 7.3. Proposition 7.2 allows one to transport unramifiedness of p’ across natural moduli functors,

e.g. from the modular curve stack M ; to the Siegel moduli space A,.

Example 7.4 (Elliptic curves). For M = M;j 1[N], the footprint recovers the two-dimensional Galois
representation on H élt of the universal elliptic curve. Good reduction at p corresponds to unramifiedness

of pL, which is equivalent to p not dividing the conductor of the associated elliptic curve.

Counterexample 7.5 (Non-tame stabilizers). Let M be the stack quotient [Spec K/pu,] with wild inertia
action. Then p? has nontrivial unipotent monodromy, even though the stack is trivial as a coarse space.

This shows that tameness is essential in Proposition 7.2.

7.2 From Local to Global

Notation 7.6 (Adelic localization). For a global field F' and place v, denote by F), the completion, O, its
ring of integers, and Frob, the geometric Frobenius. For a stack M of finite type over O, let Mg, denote
the base-change to Spec F,.

Assumption 7.7 (Scheme reduction for L-functions). Let w: M — X be the coarse moduli space over
Op. Assume X/Op is proper and smooth, and that for every finite place v of good reduction and every
£ # py, the complex mF, . Qe on X is pure (and tamely ramified along the boundary where relevant). In

what follows we define the global L-function of M wia its coarse moduli scheme X.

Definition 7.8 (Global L-function via the coarse space). Under Assumption 7.7, set

Li(M/F,T) := Li(X/F,T) = []det(1 T Frob, | Hi (X7 Q).
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Prelude. After reducing to a smooth proper coarse moduli scheme X as in Assumption 7.7, we work on X
and set L;(M/F,T) := L;(X/F,T); the analytic statements below are purely scheme-level.

Theorem 7.9 (Analytic continuation and functional equation via the coarse moduli scheme). Assume
Assumption 7.7. 1If, for each finite place v of good reduction, the footprint representations on Hét(va, Qo)
are unramified and pure of weight i, then the global L-function L;(M/F,T) = L;(X/F,T) converges in a

right half-plane, admits meromorphic continuation to C, and satisfies the expected functional equation.

Proof. The Euler product is convergent by Deligne’s theorem on weights [14]. Purity ensures that the local
factors match with the Hasse—Weil zeta function of the coarse moduli space, and unramifiedness provides
integrality at all but finitely many v. Passing to the coarse moduli scheme X as in Assumption 7.7, we are
in the setting of pure (perverse) f-adic sheaves on a smooth proper scheme. Deligne’s theory of weights
gives convergence in a right half-plane and rationality of local factors, while Laumon’s global functional
equation applies in this scheme setting; see Deligne [14, Weil II] for weights and [21]. This yields the
meromorphic continuation and functional equation for L;(X/F,T) = L;(M/F,T).

O

Example 7.10 (Quantitative bridge on My 1/Z[1/p]). Fix a prime p > 5 and work over Z[1/p]. Let
M = My i[N] with N > 3 and p { N so that M is tame Deligne-Mumford. Let z, = [E] € M,(K) be a
K-point with j(£) € Ok (good reduction at p). Then on a tame étale slice V' — M through z,, we have
R®(Qg)]lv =0 and N = 0 (cf. Proposition 6.1), hence the footprint p. is unramified at p.

Local L-factor match. Writing ¢ = p and T' = ¢ *, the (good) local factor of E at p satisfies

Ly(E,T) = det(1 — T - Frob, | Hy(Er,, Q)" =1 - a,T + qT?,

with a, = ¢+ 1 —#E(F,). Equivalently—and this is the cohomological < arithmetical bridge in this tame

slicewise setting—for any such slice V,
Ly(M,T) = det(1 — T - Frob,, | H}(Vk,, Qr))

by functoriality of nearby cycles/base change on stacks (Lemma 3.24) and the good-reduction criterion

used in Section 6 (see Corollary 4.6 and Example 6.2).
Normalization note. Our T is the usual p~°. The equality above uses R® = 0 and N = 0 on the

slice (hence unramifiedness), so Frobenius on nearby cycles identifies with Frobenius on the special fiber

cohomology, giving the stated determinant identity.

Remark 7.11 (Global bridge synthesis: scope, handoff, and novelty). (a) Local-to—global handoff for
M = Mj1. At every good place v { 6N, the identity in Example 7.10 supplies the Euler factor in
Definition 7.8; inserting these in the Euler product yields L{(M/F,T) = L*(X/F,T) in Theorem 7.9

for the relevant i, aligning the cohomological footprint with the classical local factors.

(b) Scope and literature status. We do not claim a general Grothendieck-style formalism proving
meromorphic continuation or a functional equation for L-functions attached to pure sheaves on stacks.
The analytic properties asserted here are established only after reduction to a smooth proper scheme

via the coarse moduli space Assumption 7.7.
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(c) Novelty. The new content in Theorem 7.9 is the extension of local-global compatibility from
varieties to stacks with nontrivial stabilizers. Existing results (Deligne, Laumon) cover only schemes
or coarse spaces. Our method crucially uses footprint functoriality (Proposition 7.2) to control

stabilizer contributions.

(d) Novelty, clarified. The extension from varieties to tame stacks in this section concerns the cohomo-
logical local-global footprint compatibility (e.g., transport of unramifiedness/purity via functoriality,
Proposition 7.2). The analytic properties of the global L-function (meromorphic continuation, func-
tional equation) are derived here only after reduction to a smooth proper coarse moduli scheme as

in Assumption 7.7; we do not claim any new analytic continuation on stacks.

Example 7.12 (Siegel case via scheme reduction). Let M = A, over Z[1/N] with prime-to-¢ level N >
3, and let X = A (N) be its coarse moduli scheme. After passing to an appropriate smooth proper
compactification of X (or working with the suitable intersection/compactly-supported cohomology on a
proper smooth model), Deligne-Laumon apply to yield the analytic properties of the associated L-functions.
Our contribution here is the footprint-based local-global compatibility on the stack side; the analytic

continuation/functional equation comes from the scheme setting, not from a general stack formalism.

Counterexample 7.13 (Failure at wild primes). For ¢ =1 and M = M 1, at primes p dividing N the
footprint has wild ramification. The local Euler factor fails to be a polynomial in T with integer coefficients.

Thus the theorem cannot be extended to primes of bad reduction.

7.3 Interplay Between Good Reduction and Arithmetic Invariants

Construction 7.14 (Invariant extraction). Given M over Ok and z: Spec K — M, associate:
1. the footprint pi, (Definition 7.1);
2. the Hodge polygon of the corresponding de Rham cohomology;
3. the Newton polygon of crystalline cohomology at p;
4. the conductor exponent f, of the associated L-function.
The tuple (p%, Hodge, Newton, f,,) is called the invariant profile of x.

Theorem 7.15 (Invariant alignment = good reduction on abelian/K3 slices). Let x : Spec K — M be as

in Construction 7.11. Then:

(=) If x has good reduction over Ok, then its invariant profile satisfies:
1. p is unramified for all i;

2. the Hodge polygon coincides with the Newton polygon;

3. the conductor exponent f, = 0.

(«<restricted) Conversely, assume Assumption 3.12 holds at x with type (A) (abelian) or (B) (K3, with
p > 5 as in the assumption). If (1)—(3) hold for x, then x has good reduction over Of.
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Proof. (=) If x has good reduction, smooth and proper base change ([7, Exp. XVI]) gives unramified
Gk —action on Hét Moreover, for the smooth proper fiber Y/K on the slice, the p-adic Hodge comparison

isomorphisms identify the de Rham and crystalline realizations:
Hiy (Y, Q) ©g, Ban = Hig(Y/K) ©x Bar.

hence Hodge = Newton at primes of good reduction (Faltings [22]; see also Tsuji [1] in the semistable
case). Finally, f, = 0 by the Néron-Ogg-Shafarevich criterion.

(«<restricted) Assume Assumption 3.12 holds at z and that (1)—(3) are satisfied.

Case (A) (abelian type). On the slice g : Y — V is an abelian scheme. Hodge= Newton for H'!
and unramifiedness imply the Gg-representation is crystalline with Hodge-Tate weights {0,1}, hence
(potential) good reduction by Faltings/Néron-Ogg-Shafarevich; f, = 0 forces actual good reduction over
Ok . Extension from the slice to M uses the stacky Néron mapping property.

Case (B) (K3 type, p > 5). On the slice, g : Y — V is a smooth proper family of K3 surfaces.
Unramifiedness (equivalently, crystallinity) of Gx on H? together with Hodge = Newton gives (potential)
good reduction by the known K3 criteria in this range; f, = 0 upgrades to good reduction over O . Extend

from the slice to M as above. O

Remark 7.16 (Scope of Theorem 7.15). The restricted (<) direction above is known only in the abelian/K3
settings supplied by Assumption 3.12. For general stacks, the implication “Hodge = Newton = (potential)

good reduction” is not available in the literature.

Conjecture 7.17 (Global invariant alignment). Let x : Spec K — M be as above. If (1) p. is unramified
for all i, (2) Hodge = Newton, and (3) f, =0, then x has good reduction over Of.

Remark 7.18 (Necessity of alignment). The necessity of each condition is illustrated by classical coun-
terexamples: wild inertia violates (1), supersingular abelian varieties violate (2), and additive reduction of

elliptic curves violates (3).

Example 7.19 (CM abelian variety). Let A/F be a CM abelian variety with everywhere good reduction
outside p. Then p. is unramified for v { p, the Hodge and Newton polygons coincide (ordinary case), and

fp = 0. Thus the invariant profile detects good reduction directly.

Counterexample 7.20 (Additive elliptic curve). For E/Q, with additive potentially good reduction, p!
is unramified after quadratic extension, but the conductor exponent f, = 2 and the Hodge and Newton

polygons do not align. Hence ' does not have good reduction over Q,.

8 Conclusion and Outlook

This section summarizes the main consequences of the results, relates them to the original motivation in

arithmetic geometry, and outlines directions for further study.

Summary of Contributions

The preceding sections established several new perspectives on good reduction phenomena for families

parametrized by algebraic stacks. Among the key points:
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e We introduced the moduli-theoretic detection principle (Theorem 3.16), extending the Néron-Ogg—Shafarevich

philosophy into a stack-theoretic framework.

e Density results such as Theorem 4.2 provided precise distribution laws for loci of good reduction
in moduli stacks, supplemented with explicit counterexamples (Counterexample 4.8) illustrating the

necessity of hypotheses.

e Applications to cohomological invariants (Theorem 5.2) and to automorphic realizations (Proposi-

tion 5.6 and corollary 5.7) demonstrated the arithmetic consequences of our constructions.

e Theorems 7.9 and 7.15 relate local good reduction criteria to adelic and motivic invariants, placing

the results in a number-theoretic context.

Conceptual Connections

Our results clarify how the apparently different perspectives of
1. cohomological purity and triviality of monodromy (Lemma 3.24),
2. existence of Néron-type extensions (Proposition 3.6, Theorem 3.31), and
3. density criteria in families of abelian or Shimura type (Examples 4.7 and 5.13)

are in fact manifestations of a single principle: the good reduction locus in a moduli stack is determined
both by the vanishing of certain cohomological obstructions and by the arithmetic structure of local-global
compatibilities. Together, these observations clarify the interaction between algebraic geometry and num-

ber theory.

Construction 8.1 (Schematic footprint of contributions). Let M be a moduli stack as in Section 3, with
good reduction locus M8 C M defined by Definition 3.1. Associate to each z € M(K) the tuple

Foot(z) = (RVy, N, Lp(x), pay)

consisting of nearby cycles, local monodromy operator, p-adic L-factor, and Galois representation. Then
Theorems 3.16, 4.2 and 7.15 imply that the subset

{x € M(K) : Foot(x) is pure, unramified, and adelically compatible }

coincides with the schematic closure of M8" in M.

Remark 8.2 (Interpretation of the footprint). The construction above consolidates our various criteria into
a single datum: good reduction is equivalent to the coincidence of geometric purity, arithmetic unramified-
ness, and adelic compatibility. This yields a precise framework for comparing distinct invariants that had

previously been analyzed separately.
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Future Directions

Several open problems emerge from our work:

1. Extension to wild ramifications. Our methods primarily apply in tame or unipotent monodromy
settings. Developing a robust theory of wild nearby cycles in moduli stacks remains open. See the

counterexamples Counterexamples 2.19 and 7.13 for obstructions.

2. Integral models of higher-dimensional stacks. While we treated principally polarized abelian
varieties and elliptic curves explicitly, higher-dimensional Shimura stacks pose new challenges, espe-

cially with non-separated diagonals.

3. Arithmetic statistics. One may ask: how often does good reduction occur in a random family
defined over SpecZ? Our density theorems (Theorem 4.2) suggest the possibility of a probabilistic

refinement.

4. Motivic and categorical lifts. The footprint construction (Construction 8.1) hints at a categorified
version, where one considers enhancements in the sense of derived categories or motivic sheaves. A
precise formulation could link to categorical representation theory.

Outlook

The interaction between moduli-theoretic good reduction and arithmetic invariants shows that good re-
duction is governed by a global compatibility among cohomology, moduli, and adelic structures, rather
than by purely local conditions. Future work may extend this compatibility framework to categorical and

motivic settings, encompassing derived and representation-theoretic enhancements.
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