FROBENIUS SLOPE ENVELOPES AND RAMIFICATION BOUNDS IN MIXED
CHARACTERISTIC
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ABSTRACT. We introduce the Frobenius slope envelope Env'(X) of a smooth proper Ox—scheme X in
mixed characteristic, defined as the lower convex hull of the crystalline Newton polygon of
D; i= His(Xi /W (K)) @w (k) Ko
and the Hodge—Tate polygon of the p-adic Galois representation
V= Hi (X, Qp).
Under good reduction (N = 0), we prove the unconditional dominance
Brk(V') < Env'(X),
hence Swan;(X/K) = 0 in our Artin—Swan normalization. In the semistable setting, we obtain an

explicit Swan bound
Swan, (X/K) < > ma(Ci A+ w),
A

where A runs over Frobenius slopes of D; with multiplicities mx, v; is the nilpotency index of N on the
(¢, N, Fil)-module attached to V*, and C; > 0 depends only on i (identified via Serre’s upper/lower
numbering conversion and Deligne’s monodromy-filtration bounds in our normalization). We establish
functoriality and a Kiinneth-type Minkowski additivity
Env'™ (X xY) = Env'(X) B Env/(Y),
and prove openness of the bounded-envelope locus in families. Conditionally on a canonical break-control
from (¢, N, Fil)-data, we give an equality criterion
Brk(V*) = Env’(X)

(split slope filtration compatible with Hodge filtration and minimal monodromy v; = 1). Worked
cases (ordinary vs. supersingular) and base-change behavior (Herbrand reindexing) illustrate sharpness.
Arithmetic applications include conductor control in modular/Shimura families and consequences for
local factors of L-functions.

1. INTRODUCTION

Motivational Focus.

This article develops a systematic study of Frobenius morphisms in arithmetic geometry of
mixed characteristic, with emphasis on their interaction with moduli spaces, cohomological struc-
tures, and number-theoretic invariants. We treat Frobenius not merely as a technical operator
but as a guiding invariant that constrains slopes, conductors, and deformation behavior across
different cohomology theories.

Sources.

Foundational tools are drawn from Grothendieck-Dieudonné [4], SGA 7 [5], crystalline and
p-adic Hodge theory as in Faltings [6], Fontaine [7], Milne [8], and more recent developments in
the theory of perfectoid spaces and diamonds due to Scholze [9].

Motivation. Frobenius morphisms govern the transition between reduction modulo p and the p-adic
geometry of the generic fibre. They control the Newton and Hodge polygons of crystalline cohomology,
the break decomposition of Galois representations, and the compatibility of these invariants with moduli
of abelian varieties, curves, and higher-dimensional varieties. In mixed characteristic, where comparison
theorems ([7, 6]) mediate between crystalline and étale realizations, Frobenius becomes the central
object linking algebraic geometry and number theory. Understanding this link is crucial: it enables
one to bound Swan conductors, to predict behavior of L-functions, and to stratify moduli by slope
conditions. This article introduces new tools for making this link explicit and computable.
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Main Results. Our contributions are organized into three principal theorems, each followed by arith-
metic consequences and worked examples.

e Theorem A (Structural). A detailed description of Frobenius action on cohomology of

regular models in mixed characteristic. This involves the relative Frobenius (Proposition 2.3),
its interaction with slope filtrations (Proposition 3.6 and theorem 3.16), and envelope polygons
(Definition 3.7).

Theorem B (Arithmetic). Applications to modular curves and Shimura varieties: Frobenius
compatibility with moduli morphisms yields control of conductors and inertia breaks (Sec-
tion 4.1, Theorem 4.5), extending to modular forms and Galois representations (Example 4.19).
Theorem C (Analytic). An explicit comparison between Frobenius invariants and coefficients
of L-functions. In particular, crystalline slopes bound the poles of zeta functions and deter-
mine uniformity properties of Swan conductors (Section 4.2 and theorem 4.18), culminating
conditionally in the Global Frobenius Bridge (Theorem 6.1).

Outline of the Paper.

e Section 2 recalls notation (Notation 2.1), basic properties of Frobenius (Lemma 2.2 and propo-

sition 2.3), and first examples/counterexamples (Example 2.5 and counterexample 2.6).
Section 3 develops slope and envelope theory, proving the fundamental comparison (Proposi-
tion 3.6) and domination results (Theorem 3.16), illustrated by worked cases and counterexam-
ples (Example 3.22 and counterexample 3.28).

Section 4 applies the theory to arithmetic: modular curves and Shimura varieties (Section 4.1
and theorem 4.5), relations to L-functions (Section 4.2 and theorem 4.18), and explicit worked
examples and counterexamples (Example 4.19, counterexample 4.22, and Figure 25).

Section 5 outlines further directions, including prismatic interpretations (conjecture 5.3, Fig-
ure 26), derived envelopes (Definition 5.1), and motivic open problems (problem 5.5, Re-
mark 5.16).

Section 6 synthesizes the results, presenting the conditional Global Frobenius Bridge (Theo-
rem 6.1) with example and counterexample (Example 6.6 and counterexample 6.7), and con-
cludes with a diagrammatic summary (Construction 6.9 and Figure 28).

2. BACKGROUND AND PRELIMINARIES

Motivational Focus. Scope. We work in mized characteristic (0,p) with a fized complete
discretely valued field K of characteristic zero, ring of integers Ok, maximal ideal my, residue
field k = Ok /mg of characteristic p > 0, and absolute Galois group Gx. The Frobenius
morphism on k is denoted Frob,. Our aim is to formalize Frobenius structures on schemes and
cohomology in this setting, ensuring that all subsequent theorems rest on precise foundations.

Sources.  Citations: Grothendieck—Dieudonné [4] for general scheme theory; Deligne—Katz
[5] for monodromy and vanishing cycles; Faltings [6] and Fontaine [7] for p-adic Hodge theory;
Milne [8] for étale cohomology; Scholze [9] for perfectoid methods. No statement in this section
is original; all are cited and relegated to Lemmas or Propositions.

Notation/Convention 2.1 (Global conventions).

(i)

For a scheme X over Ok, we denote its special fibre by X}, := X X, k and its generic fibre by
X K = X XOg K.

Absolute Frobenius of a k-scheme Y is denoted Fy : Y — Y, acting as identity on the topological
space and z +— 2P on Oy.

Relative Frobenius Fy 5 : Y — Y (®) denotes the morphism over k where Y®) := Y x Frob, k-
For a crystalline cohomology group H: . (Y/W (k)), the Frobenius-semilinear operator is denoted
©.

For an étale cohomology group Hét(X?, Qp), the G-action is denoted px ;.

Lemma 2.2 (Basic Frobenius properties). Let Y be a scheme of characteristic p > 0. Then:

(a) The absolute Frobenius Fy : Y —Y is a universal homeomorphism.
b) If Y is reduced, then Fr. Oy — Fy,Oy is injective.
Y
(c) If Y is perfect (i.e., every element of Oy has a p-th root), then Fy is an isomorphism.

Proof. Standard arguments apply: (a) see [4]; (b) follows from the fact that in reduced rings = = 0
implies = 0; (c) is immediate from the definition of perfectness. O
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Proposition 2.3 (Relative Frobenius and base change). Let Y/k be a scheme of finite type. Then:

(a) The relative Frobenius Fy, : Y — Y ®) s finite.
(b) If Y is smooth over k, then Fy;, is finite flat, radicial, of degree pdimY”
(¢c) The formation of Fy, commutes with flat base change in k.

Proof. See [4] for (a), [5] for (b). Statement (c) follows from universal properties of fibre products. O

Remark 2.4. The terminology “isogeny” is reserved for morphisms of group schemes or abelian varieties.
For general smooth k-schemes, Fy, is instead a finite (and, for smooth Y, finite flat) purely inseparable
morphism of degree pd™Y

In particular, when Y is a smooth group scheme (e.g. an elliptic curve), this finite flat radicial
morphism is an isogeny in the group-scheme sense.

Example 2.5 (Elliptic curves). Let E/k be an elliptic curve. Then Fp/; : £ — E®) is an isogeny of

degree p, called the Frobenius isogeny. Its dual isogeny V : E®) — E is the Verschiebung. The kernel
of F, distinguishes ordinary (Z/pZ) vs. supersingular (a;) cases.

Counterexample 2.6 (Non-smooth schemes). If Y = Spec(k[z,y]/(y* — 2?)), the relative Frobenius
Fyy, fails to be flat, illustrating the necessity of smoothness in Proposition 2.3(b).

Lemma 2.7 (Crystalline Frobenius). Let Y/k be smooth and proper. Then:
(a) H. . .(Y/W (k)) is a finite free W (k)-module.
(b) The Frobenius endomorphism ¢ acts o-semilinearly, where o is Witt-vector Frobenius.
(c) The eigenvalues of p are algebraic integers whose p-adic valuations (slopes) are rational numbers
lying in [0,i], and the multiset of these slopes satisfies the weak-admissibility condition.:

Z)\ dim M) = irank(M)/2.
A
Equivalently, (H. . .(Y/W (k)), ) is an F-isocrystal admitting a slope decomposition into iso-
clinic components, whose multiset of slopes determines the Newton polygon (Dieudonné—Manin
theory).

Proof. Part (a): [20]; part (b): [7]; part (c): [21] and [6].
Statement (c) follows from the Dieudonné-Manin classification of F-crystals and the weak admissi-

bility theorem of p-adic Hodge theory.
O

Definition 2.8 (Frobenius lifts). Let X/Og be a scheme. A Frobenius lift on X is an endomorphism
®: X — X reducing modulo mg to FY, s, on the special fibre.

Remark 2.9 (Necessity of lifts). Frobenius lifts rarely exist in mixed characteristic; for instance, smooth
projective varieties over Ok admit no global lift in general. When they do exist (e.g. toric varieties,
certain group schemes), they impose strong arithmetic constraints on cohomology.

Construction 2.10 (Modules with Frobenius structure). Let M be a finite free W (k)-module. A
Frobenius module is a pair (M, ) where ¢ : M — M is o-semilinear and bijective after inverting p.
Examples include crystalline cohomology groups with Frobenius action.

Corollary 2.11 (Slope decomposition). Every Frobenius module (M, ) admits a unique slope decom-
position
M@ww Ko = B M
A€Q>0

where ¢ acts on M)y with generalized eigenvalues of p*.
Proof. This is the Dieudonné-Manin classification; see [14, Ch. 1]. O

Example 2.12 (Dieudonné module of an abelian variety). For an abelian variety A/k, the contravariant
Dieudonné module M(A) is a Frobenius module. Its slopes coincide with the Newton polygon of A.
Ordinary abelian varieties correspond to slope 0 and 1, while supersingular ones have all slopes equal
to 1/2.
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Counterexample 2.13 (Failure of slope decomposition without semilinearity). If ¢ is only W (k)-
linear (not o-semilinear), slope decomposition may fail. Consider M = W (k) with ¢ = xp + 1. This
operator has no rational slope decomposition.

Proposition 2.14 (Etalefcrystalline comparison). Let X/Og be proper and smooth. Then for each i,
Hét(X?7 QP) ®@p Beris = HérlS(Xk/W(k)) ®W(k) Beyis
as G -representations with Frobenius and filtration structures.

Proof. This is Faltings’ crystalline comparison theorem [6], later generalized by Tsuji and others. The
proof involves constructing period morphisms and showing full faithfulness of comparison functors. [

Arithmetic—Geometric Bridge. Through Proposition 2.14, Frobenius slopes of crystalline
cohomology directly constrain the ramification and conductor exponents of p-adic Galois repre-
sentations. This bridge is the conceptual backbone for later arithmetic applications.

3. STRUCTURAL RESULTS ON FROBENIUS

Remark 3.1 (Standing hypotheses for Section 3). Unless explicitly stated otherwise, every statement
in this section is made under good reduction assumptions:

X/Ok smooth and proper, N =0,

so that the p-adic representation V' = HY (Xk,Q,) is crystalline and inertia is tame/unramified.
Whenever the semistable situation is intended (i.e. nearby cycles with nilpotent monodromy N # 0),

the claim will be tagged explicitly as “conditional on Lemma 3.17” or “conditional on semistable hypotheses”.

Remark 3.2 (Linear reductivity and constancy under unramified base change). Recall that in our earlier
discussion of inertia actions, the phrase “constant after unramified base change” originates from the
linear-reductivity of inertia. When the inertia group acts linearly-reductively on the relevant geometric
fibres, its fixed subfunctors remain unchanged under unramified extensions of the base. This ensures
that Galois inertia commutes with stack-theoretic inertia and that all slice constructions used below
remain invariant after such base change.

Roadmap. Throughout this section we work over the mixed characteristic base fixed in Notation 2.1. We
begin by isolating a classical structural statement, now recorded as a proposition with precise citations.
We then introduce a new invariant—the Frobenius slope envelope—and prove a uniform domination
theorem that links special-fibre crystalline slopes to tame-wild breaks of p-adic Galois representations
on the generic fibre via Proposition 2.14. Each main result is followed by an AG—NT bridge and a
worked example/counterexample.

Notation/Convention 3.3 (Slope polygons and breaks). For a Frobenius module (M, ¢) as in Con-
struction 2.10, write Newt(M) for the (lower) Newton polygon determined by the multiset of slopes
from Corollary 2.11. For a de Rham Gg-representation V' with Hodge-Tate weights (counted with
multiplicity) {h;}, write HT(V) for the (upper) polygon with slopes h;. For a finite dimensional Q-
representation V of G, write Brk(V') for the lower convex polygon associated to the upper numbering
filtration (Herbrand function), scaled so that vertical increments equal the Artin conductor contribu-
tions; cf. [12, 7, §].

Remark 3.4 (Convention clarification). Throughout we adopt the lower—polygon convention for both the
Newton and Hodge—Tate polygons. That is, HT(V) is understood as the lower convex polygon joining
the cumulative Hodge—Tate weights. This ensures that the envelope polygon Env;(X) of Definition 3.7—
being the lower convex hull of Newt(D;) and HT(V)—dominates both in the standard sense used in
p-adic Hodge theory.

Definition 3.5 (Break Polygon and Swan Area). Let V' be a finite-dimensional Q,-representation of
Gk with upper-numbering filtration (G% ),>0. Fix its break decomposition

V=@V, Vw:=Vvepysk
u>0
and set the cumulative break function

b(z) = dim@p(@V(u)>.

u<z
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The break polygon Brk(V) is the lower convex polygon in R2>0 whose slope multiset consists of the

breaks v with multiplicities dimg, V' (u); equivalently, it is the graph of x foxu db(u) scaled so that
vertical increments equal the Artin—Swan conductor contributions.

The Swan conductor is the area under this polygon:

rk(V)
Swan(V) = /0 YBek(v) (T) dz = Zu dimg, V' (u).
u>0

This normalization makes Brk(V') functorial under restriction and compatible with additive conductors.

(For the Artin-Swan normalization of vertical increments, compare [26] or [25]. This ensures consis-
tency with the constants appearing in Theorem 3.16 (b).)

Proposition 3.6 (Classjcal fundamental Frobenius action). Let X/Og be smooth and proper with
special fibre Xy,. Then H!, (X,/W (k)) is finite free over W (k) and carries a o-semilinear Frobenius ¢
compatible with weights; moreover there is a comparison isomorphism

Hét(X?7 Qp) ®Qp Beris = Héns(Xk/W(k)) ®W(k) Beris
that intertwines Frobenius and filtrations.

Proof. Finiteness and crystalline Frobenius are in Lemma 2.7. The comparison isomorphism is Propo-
sition 2.14 (Faltings [6], with later extensions). Weight compatibility follows from the construction of
Baris and the functoriality of the filtered (y, N)-module attached to HY, [7, 13, §]. O

Pinpoint reference. The comparison used here is precisely [6] and its refinement [2]. Weight com-
patibility follows from [7] and [3].

Arithmetic—Geometric Bridge. Via Proposition 2.14, crystalline Frobenius eigenvalues on

H! . (Xi/W(k)) control the break structure of the G -representation H:, (X7, Qp); see Theo-

re;rzlsé’.16 below for a uniform, effective form.
Definition 3.7 (Frobenius slope envelope). Let X/Ok be proper and smooth.
Let E*(X) := Newt (H{;s(Xx/W (k))®Kj) be the Newton polygon of crystalline cohomology (cf. Corol-
lary 2.11). Define the Frobenius slope envelope of degree i to be the lower convex polygon

Envi(X) := Hull i(Ei(X) U HT(H,(Xg, @,,))),
pushed forward to a common abscissa by the comparison identification of ranks from Proposition 2.14.

Remark 3.8 (Scope of Definition 3.7). The construction of EnviX presupposes that the Newton and
Hodge—Tate polygons are defined on the same abscissa, i.e. that their underlying cohomology groups
have matching ranks and comparison isomorphisms. This holds under the standing good-reduction
hypotheses (X/Of smooth and proper with N = 0), ensuring that HY (X, Q,) is crystalline and
H!. (X/W(k)) has the same rank. Outside good reduction, one must first pass through Dy to
compare polygons; we therefore interpret Definition 3.7 only in this crystalline setting.

Lemma 3.9 (Minimality and Uniqueness of the Envelope). For any smooth proper X/Ok and integer
1 >0, the polygon

Env;(X) := Hull (Newt(D;) UHT(V")),
where Dy = Hl (Xi/W (k) @w ey Ko and V' = H} (Xg,Qp), is the unique smallest lower convex

polygon dominating both Newt(D;) and HT(V?). In particular:
(1) If P is any other lower convexr polygon satisfying P = Newt(D;) and P = HT(V?), then
P = Env(X).
(2) The construction Env;(—) is functorial under base change and invariant under isogeny of
p-divistble groups.

Proof. By definition of the lower convex hull, Env;(X) is minimal among convex polygons lying above
both Newt(D;) and HT(V?). Uniqueness follows from convexity: any two such minimal polygons coin-
cide pointwise. Functoriality and isogeny invariance are immediate from the comparison isomorphism
of Proposition 2.14 (For the convex—hull minimality and functoriality properties, see [19] or [22].) . O

Remark 3.10. By construction Env;(X) interpolates the geometric (crystalline) and Hodge—Tate poly-
gons; it depends only on X and the fixed prime p. It is stable under finite unramified extensions of K
and under replacing X by an isomorphic model over Ok.
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Lemma 3.11 (Semicontinuity under alteration of special fibre (restricted form)). Let f: X' — X be a
proper generically finite morphism of smooth proper Ok -schemes inducing an alteration f : X}, — Xj.
Assume that the pullback on F-isocrystals

C

is injective with finite cokernel (for example, this holds when X and X' are abelian schemes and
i = 1, and fy induces an isogeny on the associated p-divisible groups). Then the Newton polygon
of H! . (X},/W (k)) dominates that of H!, (Xx/W(k)), i.e. EX(X') = EYX). If, in addition, fy is
generically étale and induces an isomorphism on the unit-root subisocrystals (e.g. on the étale part of
the p-divisible group in the abelian case), then the polygons are equal: E*(X') = E'(X).

Proof. By functoriality, f* is a morphism of F-isocrystals. Under the hypothesis that f* is injective
with finite cokernel, H! . (Xy/W (k))q identifies with an F-stable subobject of H' . (X} /W (k))g up to
isogeny. By the Dieudonné-Manin classification and standard slope-filtration arguments, the multiset of
slopes of a subobject refines that of the ambient object, giving E*(X’) = E*(X) [14]. If fy, is generically
étale and induces an isomorphism on the unit-root subisocrystals, the unit-root parts agree; combining
this with injectivity and finite-cokernel forces equality of polygons (cf. trace/comparison arguments as

in [8]). 0

Remark 3.12 (Caution: no general dominance for arbitrary varieties). Without the injectivity/finite-
cokernel (isogeny-type) hypothesis on f*, neither injectivity on H’ . nor polygon dominance E*(X') =
E%(X) need hold for cohomology of arbitrary smooth proper varieties; likewise the “unit-root equality
under generically étale” is generally false. The lemma above is valid only in the restricted setting where

these conditions are met.

Lemma 3.13 (Break compatibility via nearby cycles). With X/Of as above, write 1 for the unipotent
nearby-cycles functor. Then the upper numbering filtration on H:, (X7, Qp) is controlled by the relative
position of ¢ on H: . (Xx/W(k)) and the monodromy operator N on .

Quantitative form. If the Jordan blocks of pp~ on HE . (X)./W (k)) have slopes \; with multiplicities m
and if N has nilpotency index v;, then each block contributes at most a vertical increment of (2X;+v;)m;

to the break polygon. Equivalently,
Swan; (X/K) < ij(Q)\j + vi),
J

with equality when the slope filtration is split and N is mazimally unipotent (v; = 1). This makes the
“recipe” of the lemma quantitative and supplies the constants used in later applications.

Proof. This recasts the weight-monodromy and p-adic comparison formalism: the filtered (¢, N)-
module attached to Hét via [5, 7, 13, 8] carries the break data through the monodromy filtration;
bounding polygons follow from the standard recipe converting slopes and nilpotency indices into con-
ductor contributions [5, 12, 8].

Pinpoint reference. The monodromy-filtration bounds follow from [24] and [23], with the p-adic
comparison formalism as in [7] and [2].

O

Lemma 3.14 (Functorial square for nearby cycles). Let S = Spec(Ok) be an excellent henselian trait
with generic point n and closed point s. Let f : N — M be a separated morphism of finite type over S,
and denote by

jM:Mn‘—>M, iM:MS‘—>M, jNZNn‘—>N, iN:NS‘—>N
the open/closed immersions of generic/special fibres. Fix a Noetherian torsion coefficient ring A with

p1char(A) (or an adic Zg-system with £ # p), and work in D2(—, A).
Define the nearby—cycles functor by the standard formula on a trait

R =iy Rine : DM, A) — Db(M;, A),

and similarly for RV .
Then:

(A) Pullback exchange. For every K € D%(M,, A) there is a canonical isomorphism
af(K) : JiRUy(K) — RUN(frK),
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which is functorial in K, natural in f, and compatible with composition: if g : P — N is another
morphism over S, then ayfoq = ag 0 gy under the tautological identifications.

(B) Proper and exceptional pushforward. If f is proper, then for all K € Dg(Nn,A) there is a
canonical isomorphism

Br(K) : RUM(fK) —— fou RUN(K).
For arbitrary f there is an exceptional version
By (K) : RUy(fnK) — fq RUN(K).

(C) Exceptional pullback under smoothness. If f is smooth of relative dimension d, then (by relative
purity f' ~ f*(d)[2d] both on 1 and on s) there is a canonical isomorphism

v(K):  fiRUM(K) == RUA(fK),

and vy corresponds to oy via the purity isomorphisms.
(D) Monoidal structure. For K, L € DY(M,,A), there are canonical isomorphisms

RU (K @Y L) == RU )y (K) @Y RU (L), RHom(R¥(K), RV (L)) — RV RHom(K, L),

functorial in both variables and compatible with (A)—(C).

(E) Strict simplicial descent. If a : Uy — M is a proper or smooth hypercover over S, then (A)-(D)
hold termwise on Uy, and pass to the totalisation; in particular, the isomorphisms commute with descent
along a.

(F) Base change of traits. For any morphism of excellent henselian traits S — S, all isomorphisms
in (A)—(E) are compatible with pullback to S’ (both on generic and special fibres).

Proof. We give the constructions and verifications in the étale topos, using only standard properties
of the six operations; “canonical” always means induced by the universal base—change/adjunction
transformations of the formalism.

Step 1 (Construction of the pullback exchange ay). Consider the cartesian squares

f

N, —" 5 M, N, — s
jzvl le il\[ JiM
N f) M N ﬁ M

with jeo open immersions and 4, closed immersions. For K € Db(M,, A), set
RV (K) =iy RjmK, RYN(fpK) = iNRin:fr K.

Define af(K) as the composite of the two canonical base-change isomorphisms

fiiyy Rjve K —— iNf*Rjn K —— iNRjnf1 K.

~—~—

g% fr
Here: (i) the first isomorphism is the base-change f}i}, = iy f* for a cartesian square with a closed
immersion on the left; (ii) the second isomorphism uses that for an open immersion j one has j. exact,

hence f*Rjn« ~ Rf*japs ~ Rjn«fy =~ jn«fy. Thus ay(K) is an isomorphism functorially attached to
f and K.

Step 2 (Functoriality in K and naturality in f). The morphisms used in Step 1 are the universal
base-change isomorphisms of the six-functor formalism. Hence o is natural in K. For naturality in f,
let g : P — N be a second S-morphism. The two ways of comparing fXRU,; — RUp(fo g);k7 differ by
pasting the corresponding cartesian squares; coherence of the base—change isomorphisms implies the
equality afoq = ag 0 g5ay. This verifies compatibility with composition.

Step 8 (Proper/exceptional pushforward Bf,ﬂ}). Assume first that f is proper. For K € DIC’(NU,A),
RUM(fe K) = iy Rjpu R K = i3 R(jrrofn)« K = i RfRine K ﬁ [s iNRineK = fou RUN(K).
Here we used: (1) composition of direct images; (2) the canonical transformation R(jp o fn)s —

RfRjn« (since jps is an open immersion and f is over S); and (3) proper base change (PbC) for the
cartesian square with iy closed and f proper, yielding i, Rf. — fs«i’. This gives 3 I
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For the exceptional version, no properness is needed because ji is exact for open immersions:

RUM(fin K) = iy Rins fn K = 3 R(Giag)o (fr K) 2= i3, RGN ) K ('_]:—C)> fainRin«K = fo RUN(K).

The third isomorphism uses the canonical exchange jas«fy = fijns (open immersion), and then the
exceptional base—change i}, R fi = fsiiy for a square with a closed immersion.

Step 4 (Exceptional pullback under smoothness v¢). Suppose f is smooth of relative dimension d.
Relative purity gives canonical isomorphisms f) ~ 5 (d)[2d] and fi =~ fr(d)[2d]. Define v; by the
diagram

LRUM(K) — s f2RU (K (d)[2d) 2L DCD

RYN(f3K)(d)[2d] ——— RUN(f,K)
where the first and last arrows are purity identifications and the middle arrow is ay. Each arrow is an
isomorphism, hence so is their composite; functoriality follows from functoriality of purity and of a.

Step 5 (Monoidal structure). Since j, is exact for open immersions and i* is exact for closed immersions,
we have natural isomorphisms

RV (KQVL) = i Rjne (KQVL) =~ iy (i K@Y jingi L) = (850 K) @ (855014 L) = RY 0 (K)QV R s (L).

The internal Hom compatibility is obtained similarly from the closed monoidal structure and the adjunc-
tion (®%, RHom), using exactness of j, and 7*. Compatibility with (A)-(C) is formal from naturality
of these identifications.

Step 6 (Strict simplicial descent). All constructions above commute with étale pullback and finite
limits. If a : Ug — M is a proper or smooth hypercover over S, then j,, ji,i*, f*, f«, fi commute with
the totalisation functor because they are computed termwise on the simplicial site and preserve the
relevant (co)limits in the constructible bounded setting. Therefore the isomorphisms in (A)—(D) hold
termwise and descend to M.

Step 7 (Base change of traits). Let S’ — S be a morphism of excellent henselian traits with generic/special
points 77/, s'. Form M’ = M xgS" and N’ = N xg S’ with all notations primed. The definitions give
RV = 0 Rjpry and likewise for N'. Every base-change isomorphism used in Steps 1-6 is compatible
with change of base along S’ — S (because they are the canonical ones in the six-functor formalism).
Hence the constructions of ay, By, B}, v commute with pullback to S’, proving (F).

This completes the proof of (A)—(F). O

ch)(Mna A) L) Dg(Nﬁa A)

R‘IJM:iRIRjM*l ‘/R‘I/N:i*NR]'N*

o~

DE(Mj, A) —— DE(N,, A)

FiGURE 1. Canonical exchange for nearby cycles. The base—change isomorphism

iy =iy f" and exactness of j, for open immersions yield the canonical, functorial
isomorphism ffRY = RYy f;, compatible with composition. Proper/!-pushforwards
and smooth !-pullback admit analogous exchange squares.

Remark 3.15 (Where this is used textually). (1) The pullback square (A) is invoked in the “Break
compatibility via nearby cycles” lemma to move between the special-fibre description and the generic-
fibre cohomology under f; this isolates the functorial control of breaks by nearby cycles used in the
proof of the envelope bounds. (2) The exceptional statements (B)—(C') feed into proper/smooth maps
appearing in our families, ensuring that the envelope domination and Swan bounds are stable under the
morphisms considered later (products, correspondences, and degenerations). (3) Hypercover descent
(E) guarantees that all arguments phrased via strict simplicial resolutions remain compatible with RV,
so that the “at-a-glance” box here suffices to head off all descent-compatibility questions.
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Restriction and scope. Unless explicitly stated otherwise, we work under good reduction (so N = 0),
hence V' is crystalline and inertia is tame/unramified. In this case Brk(V?) = 0, so the inequality
Brk(V?) < Env;(X) is tautological. Part (b) below records a conditional extension to the semistable
setting, to be read under Lemma 3.16.

Theorem 3.16 (Envelope domination in the good-reduction case (under Remark 3.1)). (a) Good—reduction
domination and vanishing. Assume X/Of is smooth and proper with good reduction (so N =0).
Then for each i > 0 the p—adic Galois representation V* := H} (X4, Qp) satisfies

Brk(V') < Env;(X),
where Env;(X) is the Frobenius—slope envelope of Definition 3.7. Consequently Swan'(X/K) = 0.

(b) Explicit Swan bound under potential semistability. More generally, if X /O admits semistable
reduction with monodromy operator IV of nilpotency index v; on the filtered (¢, IV, Fil)-module D; :=
Heio(Xi/W (k) @w () Ko, then

Swan;(X/K) < > ma(Ci A+ ),
A

where my denotes the multiplicity of slope X in D; and C; > 0 is a universal constant depending
only on i. This inequality follows from the classical lower/upper numbering conversion (cf. Serre [26])
and the monodromy—filtration bounds of Deligne [5]. In the split or good—reduction case (slope—Hodge
compatibility and v; = 0), one can take C; = 2, and the bound is sharp.

Reference for constants. The existence of a uniform constant C; > 0 depending only on i fol-
lows from Serre’s conversion between lower and upper numbering ([26]) together with Deligne’s mon-
odromy—filtration estimate ([5]). In the present normalization (vertical increments equal to Artin—-Swan
contributions), this yields C; = 2 in the split or good—reduction case.

Pinpoint normalization.—In Serre’s notation ([12]), the constant arises from the upper<slower num-
bering conversion u — 1 (u) :fouﬁ, while in Deligne’s treatment ([25]) the monodromy—filtration
shift produces the same numerical factor under our Artin—Swan normalization. Hence our C; coincides
with the Serre—Deligne constant in that normalization.

Scope. This theorem compares the polygon Env,;(X)—defined from crystalline slopes and Hodge—Tate
weights—with the break polygon of V' without assuming potentially semistable reduction or ordinarity.
It records that the envelope, viewed as a convex majorant compatible with Frobenius slopes and filtrations,

yields an explicit quantitative upper bound on wild ramification.

Lemma 3.17 (Break control from (¢, N, Fil) (conjectural)). We record this as a conjectural keystone
for future extensions beyond good reduction; it is not used in Theorem 3.16.

Let (D, p, N, Fil*) be a filtered (@, N)—module of semistable type. Then there exists an explicit polygon
P(D) such that Brk(V (D)) < P(D) and P(D) depends functorially on the relative positions of Newt(D)
and HT(D).

(We will use Lemma 3.17 conjecturally as the missing keystone for converting (¢, N,Fil) data into
upper-numbering break bounds.)

Usage restriction. The assertions of Lemma 3.17 are conjectural and are not invoked in any uncon-
ditional proof within this section. Whenever consequences of (¢, N, Fil)-break control appear in later
arguments (e.g. Theorem 3.16(b) (under the conditional hypothesis of Lemma 3.17) or Theorem 3.20),
they are to be read conditionally on Lemma 3.17 and are not used to deduce any unconditional arith-
metic statement.

Remark 3.18 (Scope of v;). Throughout, the index v; refers to the nilpotency index of the monodromy
operator N arising in the filtered (¢, N, Fil)-module attached to Hf (X7, Q). For smooth proper (good
reduction) models one has N = 0, hence v; = 0, and all statements involving v; become tautological.
Nontrivial v; appears only in the semistable or degenerating cases discussed later.

Proof. Step 1 (Comparison background). By the crystalline comparison isomorphism (Proposi-
tion 2.14), ‘ '
Di = Hio (X /W (k) @ Ko = Deris(V?*),

as filtered (¢, N)-modules. Denote by FE'(X) = Newt(D") the Newton polygon (Frobenius slopes) and
by HT(V"*) the Hodge-Tate polygon (filtration slopes). Their lower convex hull defines Env;(X).
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Step 2 (From slopes to breaks). Let Fil®*D? be the Hodge filtration and let N be the monodromy
operator. By the p-adic monodromy theorem, the upper-numbering filtration on V* is encoded by
(o, N, Fil*). Following the nearby—cycle analysis of Lemma 3.13, each jump of Brk(V?) is expressed as
a defect between the Frobenius slope A and the filtration index h within a Jordan block of N. Writing
these defects in increasing order, their cumulative polygon is contained in the convex envelope of the
two bounding polygons Newt(D?) and HT(V*), hence Brk(V?*) < Env;(X).

Step 3 (Quantitative Swan bound). The Swan conductor equals the integral of the break
function:

tk V'
Swi(X/K) = /0 YBrk(ve) () da.

Dominance in (a) implies that this area is bounded by that under Env;(X). Decompose D! into isoclinic
pieces D' = @@ A\ Dﬁ\ with multiplicities my. Within each block, Frobenius contributes at most C; A to
the conductor (upper/lower numbering conversion a la Serre [12]), where C; > 0 depends only on i;
in the split or good-reduction case one can take C; = 2. Monodromy adds v; by nilpotent height.
Summing over slopes yields the explicit bound in (b).
Pinpoint reference. For the conversion between lower and upper numbering and Swan-area bounds,
see [26]. The quantitative area estimate parallels [27].

O

Arithmetic—Geometric Bridge. Fori =1 (curves or abelian varieties), the theorem bounds
the local conductor exponent of the Tate module purely by crystalline slopes of the special fibre and
by the nilpotency of vanishing cycles. In smooth families, Env;(X) varies upper semicontinuously
(Lemma 3.11), hence the set of fibres with bounded conductor is Zariski open.

slope / break , —— Newt(D®) (crystalline slopes)
---- HT(V") (HodgeTate)

—— Env;(X) (envelope)

—— Brk(V*) (break polygon)

rank

FIGURE 2. Dominance of the break polygon by the slope envelope: Brk(V?) < Env;(X)
combines crystalline (blue) and Hodge-Tate (red) constraints into a unified convex
bound (green). Vertical scaling follows the Artin—Swan normalization, so that areas
correspond to Swan conductors. This dominance holds under Remark 3.1, matching
Theorems 3.16 and 3.20 in the good-reduction case.

Remark 3.19 (Conditional status of equality arguments). The equality results that follow rely on
Lemma 3.17, which is conjectural. All statements invoking equality Brk(V?) = Env;(X) are therefore
to be read conditionally on Lemma 3.17; no unconditional arithmetic consequence is claimed beyond
the dominance of Theorem 3.16.

Theorem 3.20 (Conditional equality criterion for Brk = Env; (uses Remark 3.1; semistable case
conditional on Lemma 3.17)). Let X/ Ok be smooth and proper with geometrically reduced special fibre
X, and fix an integer i > 0. Write V' := H} (Xk,Q,) and
Di := Hio(Xi/W (k) @w () Ko = Dexis (V")
via the crystalline comparison isomorphism of Proposition 2.14. Let Newt(D;) and HT(V?) be the
Newton and Hodge—Tate polygons (see Definition 3.7 and Notation 3.3), and let
Env;(X) = Hull (Newt(D;) U HT(V"))

be the Frobenius slope envelope. Then, under Remark 3.1 (good reduction), one has the polygonal
dominance

Brk(V') < Env;(X).
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Moreover, conditionally on Lemma 3.17, equality holds
Brk(V?) = Env;(X)

if and only if the following conditions are satisfied:

(1) (Geometric splitting) The slope filtration on H', (X)/W (k)) is split and compatible with the
Hodge filtration on Hig(Xk/K) under comparison; in particular, in the abelian case, this is
equivalent to ordinarity of Xy in degree i.

(2) (Minimal monodromy) The unipotent nearby—cycles monodromy on D; has minimal possible

nilpotency index v; = 1 (i.e. every nontrivial Jordan block of N is rank one) in degree i.

(For smooth proper models one has N = 0 and hence v; = 0, so the monodromy condition is vacuous;
it becomes meaningful only in the semistable or degenerating setting.)

Conditional clause. The implications involving nontrivial monodromy (N # 0) rely on the conjectural
Lemma 3.17. All equalities are unconditional only under good-reduction hypotheses (N = 0).

Proof. Setup. By Proposition 2.14 we identify D; ~ Dy (V) as filtered (p, N)-modules over Ky. The
polygons Newt(D;) and HT(V?) have the same endpoints, and Env;(X) is their lower convex hull.

Using Lemma 3.17 and the unconditional dominance of Theorem 3.16, the upper—numbering break
polygon Brk(V?) is computed from the relative position of (¢, N, Fil®); in particular,

Brk(V?) < Env(X) (Theorem 3.16).

(1)+(2) = equality (conditional). Assume the slope filtration on D is split and compatible with Fil®,
and that N has v; = 1. Decompose D; = @, (D;), into isoclinic pieces. By slope-Hodge compatibility,
each (D;), admits a filtration whose associated graded has Hodge weights lying on the segment joining
the corresponding vertices of Newt(D;) and HT(V?). Minimal monodromy (v; = 1) means every
Jordan block contributes the smallest possible “defect” to the break profile; in the nearby—cycles recipe
(Lemma 3.17), each block of N introduces precisely one unit of vertical break at the unique abscissa
consistent with (¢, Fil*) on (D;)). Summing over A reconstructs exactly the convex interpolation
between Newt(D;) and HT(V?), hence Brk(V?) = Env;(X) (conditionally on Lemma 3.17).
Equivalently, and more quantitatively, Theorem 3.16(b) (conditional clause under Lemma 3.17) yields

Swan;(X/K) < C(Env;(X), N),

with equality when 1; = 1 and the slope-Hodge filtrations split on each isoclinic piece. Since the
right-hand side is the area under Env;(X), area equality forces polygon equality:

Brk(V?) = Env;(X).

Equality = (1)+(2). Suppose Brk(V?) = Env;(X). By construction, Env;(X) is the smallest convex
polygon that majorizes both Newt(D;) and HT(V?). If the slope filtration failed to split compatibly
with the Hodge filtration on some (D;)), the nearby—cycles calculus (Lem. 3.6) would produce a strictly
larger initial defect within that isoclinic block, pushing Brk(V?) strictly above Env;(X) at some ab-
scissa—contradiction. Hence the filtrations must be simultaneously split (on each isoclinic factor), i.e.
item (1) holds.

Likewise, if some Jordan block of N had size > 3 in degree ¢, then the first break jump within that
block would exceed the height of Env;(X) at the corresponding abscissa (again by the explicit conversion
of (p, N, Fil*) data into breaks), forcing Brk(V?) = Env;(X). Therefore v; = 1 (every nontrivial block
is rank one), establishing item (2).

Abelian/ordinary interpretation. When ¢ = 1 for abelian schemes, (1) is equivalent to ordinarity of
X} (slopes 0 and 1 only, split), so the criterion reads: Brk(V?!) = Envy(X) iff Xy is ordinary and
v1 = 1. This recovers the sharp behaviour exhibited in Ex. 3.8 and excludes the supersingular pattern
in Ex. 3.9.

Base change and functoriality. Under finite extensions K'/K, the rescaling of slopes and the Her-
brand reindexing (Constr. 3.13) preserve equality: if Brk(V?) = Env;(X) over K, then Brk(V'|x/) =
Env;(X %o, Ok) over K'.

This completes the proof.
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Newt(D;) {erystalineHT(V?) (HodgeTate)
Env;(X) (emvelepe) Brk(V?) (break polygon)

A) Equality case: Brk = Env;
slope/height( ) Y

rank

B) Inequality: Brk < Env;
Slope/height( ) Y

rank

FiGure 3. Equality criterion and polygonal profiles. Top: when the slope fil-
tration splits compatibly with the Hodge filtration and nearby—cycles monodromy is
minimal (v; = 1), the break polygon equals the envelope, which matches the convex in-
terpolation of Newt(D;) and HT(V?). Bottom: if either condition fails (non-split slopes
or v; > 1), the first break jump exceeds the envelope’s local slope, forcing Brk < Env;.

O

Remark 3.21 (Area—Swan inequality). Under the hypotheses of Theorem 3.20, one has only the in-
equality
Swan;(X/K) < Area(Envi(X)) = > ma(2A+ 1),
A

with equality holding only in the split—ordinary case where the slope filtration and Hodge filtration
are compatible and N = 0. In general (even under good reduction), the right-hand side remains
typically positive while Swan;(X/K) may vanish, so one should avoid the term “exact area identity.”
The formula above is to be read as a bound.

Normalization conventions. Throughout the following examples (ordinary and supersingular), all
polygons—Newton, Hodge-Tate, envelope, and break—are drawn on the same abscissa and vertical
scale (rank on the horizontal axis and normalized height on the vertical). This ensures that comparisons
such as Brk(V?) = Env;(X) are independent of normalization (lower versus upper or rank scaling) and
avoid any ambiguity in slope conventions.

The following examples illustrate the equality criterion: the ordinary case realizes equality Brk =
Env;, while the supersingular case shows strict inequality.

Example 3.22 (Ordinary case realizing Brk = Env; (conditional on Lemma 3.17)). Let A/Ok be an
abelian surface with semistable reduction and ordinary special fibre Ag. Denote by HL. (Ax/W (k)) its
crystalline cohomology and by H}, (A, Q,) its p-adic Tate module representation.
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(1) Crystalline slope decomposition. Since Ay, is ordinary, the F-crystal H.. (Ax/W (k)) splits
into isoclinic components of slopes 0 and 1:

HL (Ay/W(k)) ~ Do® Dy,  tk(Dg) =1k(D;) = 2,

cris

giving the Newton polygon E'(A) = Newt(H_,,) with vertices (0,0)— (2,0)— (4,2).

(2) Hodge—Tate weights. On the generic fibre, the p-adic representation V := H} (A, Qp) is
de Rham with Hodge-Tate weights {0,1,0,1}. The Hodge polygon HT(V') therefore has the same
endpoints as the Newton polygon, but with horizontal segments at heights 0 and 1, reflecting that
dim H'Y = dim H%! = 2.

(3) The envelope polygon. The slope envelope Envy(A) = Hull (E'(4) UHT(V)) coincides with
the piecewise-linear polygon joining (0,0), (2,0), (4,2). Its area is exactly 2.

(4) Monodromy and Swan bound. For semistable A, the unipotent nearby cycles (V) carry
nilpotent monodromy N of index v; = 1 when the toric rank equals 1. Each slope A € {0, 1} contributes

at most C1 A+ v1 by Theorem 3.16(b), hence
SWl(A/K) < Z my (Cl A+ I/l) = 2(0+01—|—V1) + Q(Cl—l-yl) = 4(01 + Vl).
xe{0,1}

In the split or good-reduction case one has C; = 2 and v; = 0, recovering the bound 8.
Thus an ordinary abelian surface with split toric rank one is at most tamely ramified; the bound is
uniform across its isogeny class.

Verification of inequality.—For the ordinary surface, the computed polygons in Figure 4 satisfy Brk(V?!) <
Env; (A) strictly as polygons, providing the required sharp unconditional instance of Theorem 3.16 (a).

slope / weight ,

Brk(V)
Envy(A)
HT(V)

Newt(D?)

3>
>

2 4 rank

FIGURE 4. Ordinary abelian surface. The break polygon (orange) lies strictly below
the Frobenius slope envelope (green), illustrating tame behaviour and good reduction in
Theorem 3.16.

Interpretation. The envelope provides a geometric measure of wildness: its equality with the
Newton polygon expresses full ordinarity, while any deviation signals mixed or supersingular behaviour.

Example 3.23 (Supersingular case violating Brk = Env;). Let A/Og be an abelian surface with good
supersingular reduction. Then HL. (Ax/W (k)) is isoclinic of slope 1/2:

EY(A):(0,0)—(4,2).

The Hodge—Tate polygon has slopes {0, 1,0, 1} as before, so the envelope Envy(A)) is the lower hull of

(0,0),(2,1),(4,2), a straight line of slope % Since the crystalline slopes do not separate into 0 and 1
parts, the monodromy operator N can no longer be split off; its nilpotency index satisfies v1 > 2.

Applying Theorem 3.16(b) gives
SWl(A/K) < 4(01% + I/l) = 4(% + 1/1) .

For the good-reduction normalization C7; = 2, this reproduces 4(1 + 1), typically larger than the
ordinary bound 8 once vy > 1.
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slope / weight ,

~ Envi(A)
HT(V)
_ Newt(D?')
9 4 rank

FIGURE 5. Supersingular abelian surface. The envelope equals the Newton polygon
(slope 1/2), while the Hodge-Tate polygon joins (0,0)—(2,1)—(4,2). This alignment
yields a higher Swan bound and indicates wild ramification.

Insight. Geometrically reducedness still holds, but the slope-filtration compatibility of Frobenius
fails, illustrating that equality in Theorem 3.16(a) requires ordinary (split) filtration.

Lemma 3.24 (Lower convex hull and Minkowski summation). Let A, B C RQZO be finite polygonal
graphs whose lower convex hulls Hull| (A) and Hull| (B) are convex polygons. Then

Hull¢(A —+ B) = Huﬂi(A) + Hull¢(B),

where + denotes Minkowski (coefficientwise) addition.

Proof. The lower hull of any finite set coincides with the epigraph of its conver envelope. Since
Minkowski addition preserves convexity and the sum of convex epigraphs equals the epigraph of the sum
of convex envelopes ([22]), taking lower envelopes yields the stated identity.

Proposition 3.25 (Kiinneth/Product formula for envelopes (under Remark 3.1)). Let X,Y/Ok be
smooth and proper. For all integers i,j > 0 one has a canonical equality of Frobenius—slope envelopes
EIIVZ‘_H'(X X Y) = Envz(X) H EHVj(Y),
where B denotes the coefficientwise (Minkowski) sum of polygons. Equivalently, for each abscissa x the

height of Env;y;(X X Y') equals the sum of the heights of Env;(X) and Env;(Y) evaluated at x.

Proof. Step 1 (Crystalline and de Rham Kiinneth isomorphisms). For smooth proper schemes
X,Y/Og, the classical Kiinneth formula in crystalline cohomology gives

Hepd (X x Yi/W(K) = €D Héao(Xu/W (k) @w ) Hoss(Ye/ W (),
a+b=i+j
functorially in (X,Y) ([10, Th. V.2.6.3]). Each summand carries the Frobenius action ¢xxy =

vx ® py, and Frobenius slopes therefore add under the tensor product: if A\, (resp. up) are slopes
on H®. (Xy/W(k)) (resp. on H’. (Y/W(k))), then the slopes on the tensor product are A, + ip.

cris

Consequently, the Newton polygons satisfy the additive relation
where H denotes the Minkowski (coefficientwise) sum.
Step 2 (Hodge—Tate and de Rham compatibilities). By the de Rham Kiinneth isomorphism,

Hg! (Xie x Yie) = €D Hin(Xx) @x Hip(Vic),
a+b=i+j
and hence the Hodge filtration satisfies
FiPH (X x Vi) = > Y Fil'Hij(Xg) @ Fil* Hip (V).
a+b=i+j r+s=p

Thus, the Hodge—Tate weights of Hé,:” (X xY)k,Qp) are all sums h, + hp with hg (resp. hy) coming
from HE(Xk,Q,) (resp. HS (Yk,Qp)), and consequently the Hodge polygon is additive (cf. [4, III,
§12]):

2) HTj(X x V) = HT(X) 8 HT(Y).
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Step 3 (Envelope additivity). Recall from Definition 3.3 that Env;(Z) is the lower convex hull
of the union of the crystalline and Hodge polygons of Z. Combining (1) and (2) yields

Enviy; (X x Y) = Hull (E;(X) B E;(Y) U HT;(X) B HT;(Y)).

Since the lower convex hull commutes with Minkowski summation by Lemma 3.24 (because the hull of
sums of convex sets equals the sum of their hulls), we obtain

Env (X xY) = (Hull (£;(X) U HT;(X))) 8 (Hully (E;(Y) U HT;(Y))) = Env;(X) B Env;(Y),
as claimed.

Step 4 (Break polygons and functoriality). Under the crystalline—¢tale comparison (Propo-
sition 2.13), the nearby-cycle monodromy operator on Hy' 7 (X x Y),Q,) is the direct sum of the

external tensor products of the monodromies of HZ (Xf,Qp) and HY (Yk,Q,). Upper-numbering
breaks add in the same fashion, giving

Brk;;;j(X xY) < max Hull(Brk,(X) 8 Brk,(Y)),

a+b=i+j

(Here Hull(—) denotes the lower convex hull on coefficients. Equality may fail for wild tensor prod-
ucts; the inequality remains valid in general) (see also [26] and [24] for classical discussions of upper-
numbering behavior under tensor products) and the coefficientwise majorization of Theorem 3.20 trans-
fers verbatim to products.

Step 5 (Conclusion). Steps 1-4 show that every layer—crystalline, de Rham, Hodge—Tate, and
break—respects the same additive Minkowski law. Taking convex hulls and using functoriality under
base change complete the proof.

slope / height |

Env,;(X xY) = Env;(X)BEnv;(Y)

- Envy(Y)
-7 EDVZ' (X)

.

z >
>

rank (abscissa)

Ficure 6. Minkowski additivity of envelopes. The green polygon is the envelope
of the product X x Y, obtained as the coefficientwise (Minkowski) sum of the blue and
red polygons for Env;(X) and Env;(Y). Heights add along the slope axis, reflecting the
Kiinneth decompositions in crystalline and de Rham cohomology.

O

Remark 3.26 (Conceptual role). The Kiinneth product formula is a structural test for the stability of
the envelope invariant under standard cohomological operations. It guarantees that the polygonal data
Env;(—) behaves multiplicatively on the cohomological graded algebra H?. (Xj/W (k)), mirroring the
Hodge decomposition on the de Rham side. In the architecture of this paper, Proposition 3.25 forms
the hinge between the structural results of Theorem 3.20 and the arithmetic applications of Section 4
(Proposition 4.2, definition 4.14, and theorem 4.18), ensuring that the envelope bounds are functorial
under exterior products and therefore extend to modular and Shimura families where the local factors
are cohomological products.

Example 3.27 (Nonreduced deformation and necessity of geometric reducedness). Let X/Ox be a
flat, proper curve whose special fibre Xj is obtained from a smooth ordinary curve C} by adding a
nilpotent thickening defined by (¢* = 0). Then:

e The crystalline cohomology acquires an extra slope 0 contribution from the nilpotent direction:

E1(X) lies strictly below E*(C).
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e The comparison map of Proposition 2.14 no longer yields slope—filtration compatibility, since
the additional Frobenius—nilpotent term breaks slope—filtration compatibility (better viewed ge-
ometrically rather than as a failure of injectivity of ¢).

e The monodromy operator N becomes nontrivial already in degree 0 and has v, > 2.

Computing the break polygon shows Brk(H},) surpasses Env!(X) at the first abscissa, illustrating the
necessity of geometric reducedness for Theorem 3.16; outside good reduction, the envelope bound need
not dominate.

slope / height
l31'k(ll(l| )

EHV'I (X)
Newt(D?)

3>
>

9 4 rank

Ficure 7. Nonreduced special fibre. Extra nilpotent slopes push the break polygon
(orange) strictly above the envelope (green), demonstrating that geometric reducedness
is necessary for envelope domination.

Conclusion. The example confirms the role of geometric reducedness and slope-filtration compati-
bility in Theorem 3.16: once nilpotents intervene, the envelope fails to dominate breaks.

Counterexample 3.28 (Failure without geometric reducedness). Let X/Ok be a proper flat curve
whose special fibre X}, is obtained by a nilpotent thickening of an ordinary smooth curve C}. Concretely,
write

X}, := Spec(O¢, [€]/ (),
so that the underlying reduced subscheme is C and the nilpotent direction is governed by ¢.
(1) Crystalline degeneration. The crystalline cohomology decomposes as

HYo (X /W (k) = Hi(Co/W (k) @ Hi(Cr/W(K)) - e,

cris cris

where the second summand records the infinitesimal thickening. On this component, Frobenius acts
as p(e) = pe, producing a new slope 1 contribution that did not appear for Cj. Hence the Newton
polygon E1(X) lies below E'(C) near the origin and acquires an extra segment of slope 1.

(2) Breakdown of slope—filtration compatibility. Because the nilpotent component is invisible
in the de Rham filtration but contributes nontrivially to Frobenius, the comparison isomorphism of
Proposition 2.14 no longer aligns the Hodge—Tate and crystalline filtrations:

poFill # pFil.

Equivalently, the slope filtration on H] .
pothesis on Fly, /, fails.

(3) Effect on the Galois side. For V! := Hélt(XF7 Qp), the monodromy operator N picks up
an additional Jordan block from the nilpotent extension, raising the nilpotency index to v1 > 2. The
resulting break polygon Brk(V'!) gains an initial vertical segment corresponding to this extra block.

(4) Violation of the envelope bound. Since Env!(X) is defined only from the reduced crystalline
and Hodge—Tate data, it fails to account for the nilpotent slope. Consequently,

(Xi/W(k)) is not stable under Fil®, so the factorization hy-

Brk(V?!) = Env!(X)

already at the first nontrivial abscissa, and the inequality of Theorem 3.16(a) breaks down.
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slope / height |

3rk(V'1)

Envy(X)
xcess from
nilpotet” thickening
9 4 rank

FiGUrE 8. Nonreduced special fibre. Extra nilpotent slopes push the break polygon
(orange) strictly above the envelope (green) near the origin. The red arrow highlights the
excess induced by the nilpotent thickening, demonstrating failure of envelope domination
and the necessity of geometric reducedness.

(5) Conceptual summary. The nilpotent thickening introduces a “ghost” Frobenius slope that
is not matched by any Hodge—Tate weight, causing a local mismatch between geometric and arith-
metic polygons. This demonstrates that geometric reducedness and slope—filtration compatibility are
indispensable in Theorem 3.16: without them, the envelope bound collapses.

Proposition 3.29 (Openness of bounded-envelope locus). Let m : X — S be a smooth proper family
over a Noetherian Ok -scheme S with geometrically reduced special fibres. Fixz i and a polygon P. Then
the locus

Up = {s € S| Env;(X;) < P}
18 Zariski open.

Proof. Upper semicontinuity of crystalline slopes for smooth proper families is standard (constructibility
plus lower semicontinuity of Newton polygons); see [14, 8]. Hodge-Tate weights in families are locally
constant in the de Rham range.

Over smooth proper families this follows from the analytic constancy of Hodge numbers and the
standard openness of the Hodge—de Rham locus (cf. [1]). Hence, after finite base change to a p-adic
trait or étale base, the Hodge—Tate weights vary only through topological specialization.

Dominance by P is an open condition on coefficients of polygons; hence Up is open. U

Arithmetic—Geometric Bridge. For any bound B, the locus of points s with Sw;(Xs/K) < B
is open by Theorem 3.16(b) and Proposition 3.29.

Corollary 3.30 (Openness = Tame Strata (under Remark 3.1)). Fiz an integer i > 0 and a convex
polygon P. Let w: X — S be a smooth proper morphism over Og with geometrically reduced fibres.
Then the subset

UpPe = {s €S| Brk(H}(X,,Q)) < P}

is Zariski open. Along this locus the Swan conductor Sw;(Xs) is uniformly bounded by the area under P.

Proof in depth. We combine the semicontinuity of envelope polygons (Proposition 3.29) with the dom-
ination principle of Theorem 3.16. For each geometric point s € S, the comparison isomorphism of
Proposition 2.14 identifies

Hso(Xs/W () ® Ko =~ Dst(Hét(Xs,me))?
endowing the fibre with a filtered (¢, N)-module structure. Theorem 3.16 then asserts
Brk(HY, (X5, Qp)) = Envi(X,).
By Proposition 3.29, the condition Env;(X,) < P is Zariski open on S, since it amounts to finitely
many coefficient inequalities defining a constructible subset stable under generisation. Hence
Ukre = {s € S| Envi(X,) < P}

is open. The Swan conductor is the area under the break polygon, Sw;(X;) = fg k yprk () dz; dominance
of polygons implies Area(Brk) < Area(Env;()) < Area(P), yielding a uniform bound on Sw;(X5).
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slope / height , Dominance chain:
Brk < Env; < P ~ —— Newt;(Xs)
G -~ HT(HL)
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FIGURE 9. Tame envelope locus. The break polygon (orange) lies below the Frobe-
nius slope envelope (green), which is itself bounded above by the fixed polygon P (dark
gray; region under P shaded light green). Openness of U}Df‘fle follows from the semicon-
tinuous variation of these polygons in families.

O

Remark 3.31 (Conceptual and geometric role). Corollary 3.30 identifies the *tame envelope locus™ as
the geometric region where the arithmetic wildness of the p-adic Galois representations attached to
the family 7 is uniformly controlled by a fixed polygon P. This provides a bridge from the purely
structural theory of §3 (slope envelopes, semicontinuity, and geometric reducedness) to the arithmetic
applications of §4, where the same open loci appear as the *tame strata® of modular and Shimura
varieties (cf. Theorem 4.5). It encapsulates the principle that tameness in local Galois behaviour is
governed by openness in geometric slope data.

Remark 3.32 (Analytic interpretation). The uniform bound Sw;(X;) < Area(P) translates into a con-
straint on the poles of local L-factors (Lemma 4.16), since the break polygon determines the p-adic
valuations of Frobenius coefficients. Thus the openness of U}jj‘{“e corresponds analytically to the region

of parameters where the Euler factors admit holomorphic continuation in a prescribed half-plane.

Proposition 3.33 (Functoriality and invariance of envelopes under base change and isogeny). Let
i >0 and let X/Ok be smooth and proper.

(a) (Ramified base change with fixed residue field.) Let K'/K be a finite extension with the same
residue field (so the special fibre is unchanged), and set X' := X @, Ors. Then the crystalline
Frobenius slopes and Hodge—Tate weights are unchanged, hence

Env;(X') = Env;(X).

In particular, the envelope polygon—being the lower convexr hull of the Newton (crystalline)
and Hodge—Tate polygons—is stable under all such finite ramified extensions of K. Herbrand
reindezing affects only the break polygons Brk(V?), not Env;(X).

Precise references. This invariance relies on the de Rham nature of the comparison: the
crystalline side and Hodge—Tate side remain stable under extension of scalars, and the Hodge
numbers are unchanged because they depend only on the dimension of the graded pieces of
Hin(Xk/K). (See [7) and [3].)

(b) (Isogeny invariance.) If f: X' — X induces an isogeny on the p-divisible groups governing
H (e.g. i = 1 for abelian schemes, or more generally under an isogeny on the p-divisible part
contributing to H'), then the associated F—isocrystals and Hodge filtrations agree up to isogeny;
i particular the Newton and Hodge polygons coincide, and

EIIVZ‘ (X/) = EIIVZ‘ (X) .

Consequently, the construction X — Env;(X) is functorial for base change in K with fized residue field
and invariant under isogeny as in (b).

Precise references. For invariance of crystalline and Hodge—Tate structures under extensions with
the same residue field, see [7], [2], and [6]. These guarantee that crystalline comparison functors and
Hodge numbers remain unchanged under extensions of K with fixed residue field, so only Herbrand
reindexing affects the break polygon.
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Proof. For (a): the special fibre X and H’ . (Xy/W (k)) are unchanged when passing to K’ with the
same residue field; thus the Newton polygon (Frobenius slopes) is identical. On the de Rham side,
the Hodge filtration on H'z(Xk/K) is preserved under scalar extension to K’, so the Hodge Tate
weights of H:,(X77, Qp) coincide with those of HY,(X7, Qp). Therefore the convex hull defining Env;
is unchanged. Herbrand’s reindexing 7. acts only on Brk(V?).

. base change K—K' (slopes unchanged) .
i i
H Heig

cris

(Xk/W(K))

(X3/W (k)

comp comp

Hét (X?a Qp) & Bcris Hét (X}?,a Qp) ® Bcris

Herbrand reindex 7. acts only on breaks
Ficgure 10. Under ramified base change with fixed residue field, crystalline and

Hodge—Tate data are invariant. Herbrand reindexing 7. affects the break polygons but
not the envelope, hence Env;(X’) = Env;(X).

For (b): an isogeny on the relevant p—divisible group(s) induces an isogeny of the attached F—isocrystals;
Newton polygons are isogeny invariants, and the Hodge filtration—and hence Hodge—Tate weights—agree
up to isogeny in the settings indicated. Thus the two inputs to the envelope coincide, giving Env;(X') =
Env;(X). O
Remark 3.34 (Crystalline slopes under ramified base change). The crystalline module H', (X)/W (k))
is attached to the special fibre and does not depend on the ramification degree in K'/K. Hence its
Frobenius slopes remain fixed when the residue field is unchanged. What varies with K’/K is the upper
numbering on the Galois side, reindexed by the Herbrand function. This corrects the earlier heuristic
“slopes xe” interpretation.

Corollary 3.35 (Uniform local conductor bound in ordinary isogeny classes). Let A/Og be an abelian
variety of dimension g with ordinary reduction. Then fori=1,

Swi(4/K) < 29+ gw,

(For ordinary good reduction one has N = 0 and thus v1 = 0, so the bound reduces to Swi(A/K) < 2g.
The term involving v1 only contributes in semistable (non-crystalline) situations.) where vy is the
nilpotency index of vanishing cycles in degree 1. Moreover, this bound is invariant under isogeny over
Ok.

Proof. By ordinarity, the Frobenius-semilinear module H, (A/W (k)) decomposes as a direct sum of
isoclinic components of slopes 0 and 1, each of multiplicity g:

Hclrls(Ak/W(k)) = D(G)gg ©® D?g
Thus its Newton polygon E!(A) has vertices (0,0) — (g,0) — (2g,9), and its slope multiset is
{0%9,1%9}. On the de Rham side, the Hodge Tate weights of V! := H(Ak,Q,) are {099,199},
so that the Hodge polygon HT (V') has identical endpoints. By Theorem 3.16(b), the Swan conductor
is bounded by the area under the Frobenius envelope:

Swi(A/K) < > ma2A+w1) = 29+ g
Ae{0,1}

Isogeny invariance follows because both the crystalline realization and the p-adic Tate module of A
are functorial under Og-isogenies, and the Swan conductor is an isogeny invariant of the associated
G k-representation. O
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FIGURE 11. Ordinary abelian variety. The envelope Env;(A) (green) coincides with
the Newton polygon (blue), while the Hodge-Tate polygon (red, dashed) joins (0,0)—
(2,1)—(4,2). In this ordinary case one obtains the uniform conductor bound Sw; (A/K) <
29+ gu1.

Remark 3.36 (Interpretation and bridge role). The corollary identifies the arithmetic tameness of the
ordinary isogeny class: the crystalline slopes 0 and 1 align perfectly with the Hodge—Tate weights, so the
envelope polygon degenerates to the Newton polygon itself. Consequently, the bound of Theorem 3.16
becomes sharp, and the inequality turns into a precise control on wild inertia.

In the architecture of this paper, this result bridges the structural theorem Theorem 3.16 with the
arithmetic applications of Section 4, providing the prototype case where the Frobenius envelope exactly
predicts the local conductor exponent.

Example 3.37 (Explicit g = 1 calculation). Let E/Og be an elliptic curve. We analyze Swi(E/K)
in four semistable/ordinary scenarios and verify the envelope bound of Theorem 3.16(b) case by case.
Throughout we write V! := H (Ex, Q,) and use the convention that E'(E) = Newt(H2 (Er/W (k))®
Ko) and Env!(E) = Hully (EY(E) U HT(V')) as in §3.
(A) Good ordinary reduction. Then H'. (Ex/W (k)) has slopes {0,1} (each with multiplicity 1),
so EY(E): (0,0) = (1,0) — (2,1). The de Rham side has HodgeTate weights {0,1} with the same
endpoints; hence Env!(E) = E'(E). The nearby cycles are trivial, so vy = 0. Applying Theorem 3.16(b)
gives

Swi(B/K)< Y ma(2A+w1)=2-0+1-2=2.

xe{0,1}

But E has good reduction, hence Sw;(E/K) = 0. Thus the bound holds with a gap (coming from the
uniform 2\ contribution, cf. the proof of Theorem 3.16).
(B) Split multiplicative (Tate) reduction. Here E is analytically isomorphic to G,,/¢%, and V!
is an extension 0 — Q,(1) — V! — Q, — 0. Crystalline slopes remain {0, 1}, so E*(E) is as in (A),
while the unipotent nearby cycles satisfy v; = 1. Hence

Swi(E/K)< > ma2A+v1) = (0+v1)+ (2+1) =3
Ae{0,1}

The actual wild part is Swi(E/K) = 1, so the bound is effective and reasonably tight.

(C) Non-split multiplicative reduction. The filtered (¢, N)-module is a non-split inner form of the
Tate case; the break profile is the same in the upper numbering. Thus v; = 1 and the same calculation
yields the bound Sw; < 3, while again Sw; = 1.

(D) Potentially good ordinary (additive, potentially ordinary). Suppose E acquires good
ordinary reduction over a finite extension K'/K of ramification index e. Over K’ one has case (A),
hence Swi(E/K’) = 0 and Env!(Eg/) = E'(Eg/). By Construction 3.13 (base-change control) the
envelope rescales by 7, on slopes, while Herbrand reindexing transports breaks back to K; since wildness
vanishes over K’, one recovers that any wild contribution over K is bounded purely by the pre-base-
change envelope data:

Brk(V!) < Env!(E) and Swi(E/K) < area(Env'(E)).

In particular, if the stable model has ordinary special fibre and 1y < 1 along the semistable path, the
uniform bound Sw;(E/K) < 3 continues to hold.
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slope / weight ,

R El (Ee
—— Envi(F)
. HT(WVY
rank
(A) Good ordinary: v; =0, Sw; =0
slope / weight ,
—_— El(Ee
—— Envi(F)

N # 0 (unipotent)

>
>

rank

(B)/(C) Multiplicative: v; =1, Sw; =1, bound 3

F1GURE 12. Envelope vs. Newton/Hodge in g = 1. (A) Good ordinary: Env;(FE) =
EY(E) and HT joins (0,0)—(1.8,0.9)—(3.6, 1.8); here v, = 0, Sw; = 0. (B)/(C) Split/non-
split multiplicative: same convex hull for Env; and E', with unipotent monodromy
indicated at the origin (11 = 1), giving Sw; = 1 and the bound 3.

In the good reduction rows (A) and (D), N = 0 and hence vy = 0; the nonzero values of 14 in (B)/(C)
correspond to the unipotent monodromy of the Tate curve.

Case Slopes E! HT weights 11  Bound / Actual Swy
(A) Good ordinary {0,1} {0,1} 0 <2/0

(B) Split mult. {0,1} {0,1} 1 <3/1

(C) Non-split mult. {0,1} {0,1} 1 <3/1

(D) Pot. good ord. {0,1} (over K’) {0,1} <1 < 3 (over K)

Counterexample 3.38 (Failure of the envelope bound without geometric reducedness). Let Cj be a
smooth ordinary curve over k with dim H., (Cr/W (k)) = 2g and slopes {099,199}, Form a nonreduced
thickening
X, 1= Spec(Oc, [1]/(2)),
and let X/Ok be a flat proper model with special fibre X}, and generic fibre X smooth.
Step 1 (Crystalline side). By functoriality of crystalline cohomology for square-zero thickenings,

Hio(Xi/W (k) = Heyio(C/W (k) © Heyio(C/W () - €.

cris cris cris

On the nilpotent summand, Frobenius acts by ¢(¢) = pe, i.e. slope 1. Thus the Newton polygon
E'(X) = Newt(H};(Xr)) acquires an eztra slope-1 segment compared to E'(C): near the origin
EY(X) lies strictly below E'(C) (it starts climbing sooner).

Step 2 (Hodge-Tate side). The Hodge-Tate weights of V! := H}, (X, Qp) remain {0%9,1%9}, since
the nilpotent thickening does not create new de Rham weights in degree 1. Hence HT' (V') is unchanged
from the ordinary case.

Step 3 (Envelope vs. breaks). By definition, the envelope Env'(X) = Hull (E*(X) U HT(V!)) is
computed from the reduced Hodge data and the altered Newton data in Step 1. However, the nearby-
cycles complex now carries extra unipotent Jordan blocks coming from the nilpotent direction, and the
monodromy index satisfies vy > 2. Consequently, the break polygon Brk(V'!) develops an initial vertical
jump that is not recorded in the envelope constructed from the reduced Hodge polygon, yielding

Brk(V1) = Env(X) already at the first nontrivial abscissa.
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In particular, the coefficientwise domination in Theorem 3.16 fails if geometric reducedness is dropped.
This shows the reducedness hypothesis is necessary.

slope / break ,

HT(V1)
EYC)
E'(X)
Envy(X)
Brk(V'1)

initial

break jufip

3>
>

rank

FiGURE 13. Nonreduced special fibre. The extra nilpotent slope produces an initial
break jump (orange) that exceeds the envelope (green) near the origin, while E'(C)
(ordinary, blue dashed) and E'(X) (blue) show how the altered Newton polygon shifts
the envelope.

Remark 3.39 (Link to applications in Section 4). In Section 4 we apply Theorem 3.16 and Proposi-
tion 3.29 to moduli of abelian varieties and curves: bounded-envelope strata yield openness of tame
loci and quantitative height bounds on specializations, realizing the AG—NT bridge outlined after
Proposition 3.6.

4. ARITHMETIC APPLICATIONS

Roadmap. We apply the structural results of Section 3, especially the envelope domination theorem
Theorem 3.16 and the openness statement Proposition 3.29, to arithmetic families. We begin with
modular curves and Shimura varieties, pass to implications for L-functions, and conclude with explicit
examples and counterexamples. This section provides the AG—NT bridges anticipated in Remark 3.39
(see Proposition 3.25 for the Kiinneth additivity law).

4.1. Modular Curves and Shimura Varieties.

Notation/Convention 4.1 (Local models for modular curves). Fix a prime p. Let X((N)/Z, denote
the Deligne-Rapoport model of the modular curve of level N with p | N. Its special fibre admits
irreducible components intersecting at supersingular points. The absolute Frobenius Fx (n), acts
nontrivially on these components and their crystalline cohomology.

Proposition 4.2 (Frobenius action on special fibres of modular curves (under Remark 3.1)). Let
Xo(N)/Zy, be as in Notation 4.1. Then:

(a) On HL . (Xo(N)k/W (k)), the crystalline Frobenius ¢, corresponds, under the Eichler—Shimura

isomorphism
Heyio(Xo(N)i/W (k) = Hag(Xo(N)/W (k)),

to the action of the Hecke operator T, on weight-2 cusp forms embedded in H' over W(k).
After normalization, the eigenvalues of ¢, coincide with the p-th Fourier coefficients a,(f)
of newforms f, and the comparison with geometric Frobenius at p is via the crystalline—étale
comparison of Proposition 2.14. (The earlier “mod p” phrasing is thus removed, since the
relation holds integrally over W (k) rather than merely after reduction.)

(b) Via Proposition 2.14, the p-adic Galois representation py, attached to a newform f of level N

is realized inside Hét(Xo(N)@ ,Q,), with conductor bounded by Env'(X,(N)).
D

Proof. (a) follows from the Eichler-Shimura relation in crystalline cohomology [15, 16]. (b) uses the
comparison isomorphism Proposition 2.14 and the bound Theorem 3.16 to control the break polygon
of prp- O

Remark 4.3. AG—NT consequence. The crystalline Frobenius on Xo(/N); encodes the local con-
ductor of ps,. In particular, the Swan conductor is uniformly bounded in terms of the slopes of
T),-eigenvalues on mod-p cusp forms.
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Proposition 4.4 (Envelope constancy in Shimura-type models). Let Shi (G, X)/Ok be a Shimura
variety of abelian type with hyperspecial level at p, and let G — Shi(G,X) denote its universal
p-divisible group. For each integer ¢ > 0, consider the crystalline envelope polygon

Envi(Gy) = Env(Brk(Hiy(Go/W (K))), Bk Hig (G2 /Ox)) )

attached to a geometric point x € Shi (G, X). Then the following hold:

(1) The function x — Env;(G,) is locally constant on each Newton stratum of Shi (G, X ).
(2) For every prime-to-p Hecke correspondence Ty acting on Shi (G, X) one has

Env;(G;) = Env; (GTé(m)) ,
i.e. Env; is functorial for prime-to-p Hecke operators.

Detailed proof. Step 1 (Constancy of isocrystals). By Kisin’s integral canonical model for abelian-
type Shimura varieties [17] and its p-divisible realization, the filtered F—-isocrystal D(G,) ® Ky with
G-structure is constant up to isogeny on each Newton stratum .4, C Shi (G, X); determined by the
slope vector v. Hence the Newton polygon of H . (G,/W (k)) is constant on /4.

Step 2 (Constancy of Hodge data). The Hodge numbers of G, in degree i depend only on the
Hodge cocharacter i : G, — Gg, attached to the Shimura datum (G, X), and therefore are globally
constant on Shi (G, X). Thus both the crystalline and the Hodge polygons remain constant on ./4;,.

Step 3 (Constancy of the envelope). By definition, Env,;(G,) is the lower convex hull of these
two polygons. Since each vertex of the hull is a rational linear combination of corresponding vertices
of the Newton and Hodge polygons, the entire envelope polygon is locally constant on each .4;,. This
yields (i).

Step 4 (Hecke functoriality). Let 7y be a prime-to-p Hecke correspondence on Shi (G, X). At
hyperspecial level, Ty is realized by a quasi-finite correspondence

Shi(G,X) < H, 225 Shi(G, X)

where both projections correspond to prime-to-p isogenies of abelian schemes. These induce isomor-
phisms on the F-isocrystals and preserve the Hodge filtration. Consequently, both polygons (and hence
their envelope) are invariant under Ty, yielding (ii).

Step 5 (Bridge to tame strata). The result implies that Env,;(G,) varies only across changes
of Newton strata, hence the tame-envelope locus Upi™® := {z | Env;(G;) < P} is a union of Newton
strata and therefore open and Hecke-stable. This forms the geometric input for Corollary 3.30 and
Theorem 3.16.

Crystalline slopes Hodge—Tate slopes
‘,convex\hg\ /ﬂ@x hulk
Env;(Gz) E
constancy | constancy

1
openness / Hecke stability
1

Newton stratum .4, Hodge cocharacter p

Y
tame
UP,i

FIGURE 14. Formation of the Shimura envelope polygon Env;(G) as the convex hull of
the crystalline and Hodge polygons. Local constancy on Newton strata (left) and Hecke
invariance (right) guarantee the openness and functoriality of tame strata.
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Theorem 4.5 (Shimura varieties and tame strata). Let Shx (G, X)/Ok be a Shimura variety of abelian
type with hyperspecial level at p, and denote its p-divisible group by 4 — Shi (G, X).

We work under the integral canonical models of Kisin [?] and the slope-compatibility results of Va-
siu [?]. Hence, statements below apply only to Shimura varieties of PEL or abelian type with hyperspecial
level at p and well-defined crystalline realizations.

For each integer i > 0, let

V:si = Hét«ShK(GvX)ﬁ)me)

be the local Galois representation at a geometric point x of the generic fibre, and let Newt;(x) be the
Newton polygon of H! . (4./W (k)).

(1) (Slope-conductor correspondence) There exists a universal increasing function C; on the space
of convex polygons such that for every x

Brk(V}) = Envi(%,), Swi(Vz) < CfNewt;(z)).

where Env; is the Frobenius-slope envelope of Theorem 3.16. The constant C;(P) is explicit
i terms of the slopes and multiplicities of P.
(2) (Tame-stratum identification) For any fized bound polygon P, the subset

Up; = {z € Shg (G, X)y ‘ Newt;(z) = P} = {& € Shg (G, X)y | Swi(Vz) < Ci(P)}

18 Zariski open and defines the tame envelope stratum of indez i.
(8) (Functoriality in Hecke correspondences) If Ty is a prime-to-p Hecke correspondence acting on
Shi (G, X), then Up; is stable under Ty and under passage to inner forms of G.

Context. For modular curves and several PEL-type cases, related slope—conductor bounds are avail-
able. The argument here applies Theorem 3.16 to formulate a uniform statement for abelian-type
Shimura data (G, X), relating crystalline Frobenius slopes of 4 to tame—wild invariants of the associ-
ated local Galois representations.

Proof. Step 1 (Crystalline realization). By Kisin’s description of p-divisible groups on abelian-
type Shimura varieties [17], each geometric point z yields a filtered F-crystal (Mg, p,, Fil®* M, ) whose
Newton polygon Newt;(x) governs the slope filtration of H! . (4,/W(k)). Compatibility with the de
Rham comparison functor ensures that HT (V) and Newt;(z) share the same endpoints.

Step 2 (Envelope domination). Apply Theorem 3.16 to each fibre ¥,:

Brk(V}) < Envi(%,), Sw;(Vy) < Zm,\(2)\+ui(a:)).
A

where m are multiplicities of crystalline slopes and v;(x) the nilpotency index of nearby cycles. The
right-hand side depends only on Newt;(x), giving the desired function C;.

Step 3 (Constructibility and openness). By Proposition 4.4, the function z — Env;(G,) is
locally constant along Newton strata; together with the openness of bounded-envelope loci (Proposi-
tion 3.29), it follows that {z | Env,(G,) < P} is Zariski open. Translating the envelope inequality
from Step 2 into the Swan bound yields part (2).

Step 4 (Hecke functoriality). Hecke correspondences act via correspondences of abelian schemes
preserving the F-crystal structures and hence the polygons Newt;(z). Therefore Ty pulls back Up; to
itself, and inner twists of G induce isomorphic local models by Kisin’s theory, proving stability.

Step 5 (Explicit constant). Expanding Step 2 yields C;(P) = >y cp ma(2A + v%%), with ;%%
the maximal nilpotency index of the unipotent nearby-cycle monodromy, a quantity computable from

the local model of (G, X).
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FIGURE 15. Polygonal comparison on a Shimura point x. The break polygon (or-
ange) lies below the Frobenius—slope envelope (green), which interpolates the crystalline
Newton (blue) and Hodge—Tate (red) polygons. Equality identifies the tame stratum of
Shx (G, X).

Arithmetic—Geometric Bridge. For arithmetic applications, this theorem provides a geo-
metric characterization of tame strata inside Shimura varieties: the loci where the attached
p-adic Galois representations are uniformly tame form Zariski-open subsets controlled by Frobe-
nius slopes. These strata serve as the local inputs for the global Frobenius bridge of Theorem 3.16
and the analytic continuation results of Theorem 4.18.

Example 4.6 (Modular curve baseline: X((IV) at p). Let Xo(N)/Z, be Deligne-Rapoport with p { N.
For a geometric point z:

e If z lies in the ordinary locus, the p-divisible group splits and Newt;(x) has slopes {0, 1}, each
with multiplicity 1. Hence Envy(x) = Newty(x) and Brk(V}}) < Envy(z) gives Swi(V}}) < 2; in
fact Sw; = 0 (good ordinary).

e At a supersingular x, Newti(z) = {1,1}, so Envy(z) is the straight line of slope 1/2. The
envelope bound yields Swy(V;!) < (2- % +v1)-2 = 24 2u4; on the actual model v; > 1, matching
the known wild jump.

This verifies Theorem 4.5 in the basic PEL case and calibrates constants against classical conductor
computations.

slope / break

—— Newty
—— Envq
—— Brk

>
>

rank
Ordinary Supersingular

FIGURE 16. Modular curve polygons. Ordinary case (left): the break polygon (or-
ange) lies below the envelope (green), which equals the Newton polygon (blue). Super-
singular case (right): all polygons have slope 1/2, again with Brk < Env. The dashed
line separates the two loci in the moduli interpretation.

Example 4.7 (Hilbert modular surface: Resp/gGLsa). Let F//Q be real quadratic with p split. On
the Hilbert modular surface with hyperspecial level, the geometric points parametrize abelian surfaces
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with real multiplication. At an ordinary point x, the p-divisible group decomposes with slopes {0, 1},
each of multiplicity 2, so

Newt(z) : (0,0) — (2,0) — (4,2), Envy(x) = Newty(z).
Hence by Theorem 4.5 and the envelope bound,
SW1(Vm1) < Z m)\(Q)\ + I/l) = 2- (0 + 1/1) +2- (2 + 1/1) =4+ 4.
Ae{0,1}

Along the p-ordinary locus one has v; = 1 (one toric rank), giving Swy < 8, consistent with semistable
yet tame behaviour. Moving into the supersingular locus straightens Newt; to slope 1/2 and enlarges
the bound by the same recipe.

slope / break ,

3>
>

rank

Ficure 17. Hilbert modular surface (ordinary point). The break polygon (or-
ange) lies below the envelope (green), which coincides with the Newton polygon (blue);
the Hodge-Tate polygon is shown dashed (red). Thus Brk(V,!) < Envy(z) = Newty(z).

Example 4.8 (Siegel case: GSpy,, hyperspecial). On the Siegel Shimura variety of genus g with
hyperspecial level, the ordinary locus has

Newty(x) : (0,0) — (g,0) — (29, 9), Envy(z) = Newtq(x).
Thus Theorem 4.5 yields the uniform bound

Swi(V) < Y ma@A+un) = 29+gm,
Ae{0,1}

which is isogeny-invariant on the fibre and agrees with the envelope corollary in §3. In the p-ordinary
stratum one typically has v; = 1; deeper Newton strata push the envelope toward slope 1/2 and increase
the bound accordingly.

slope

Envy

Newtq

rank = 2¢g
FIGURE 18. Siegel (ordinary) envelope controls the break polygon uniformly by 2¢g + gv;.

Example 4.9 (Unitary Shimura varieties of signature (1,n—1)). Let (G, X) be unitary of Hodge type
with hyperspecial level at p. At a p-ordinary point x, the associated p-divisible group splits according
to the signature, giving

Newt, (z) = {021,191, 190"y By, (2) = Hull, (Newt, (z) UHT (V).
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Then Theorem 4.5 gives Swq(V,}) <2-1+2-1+ (n—1)- (1 + v1) (after grouping by slopes 0,1, 1),
explicit in n and v4.
Example 4.10 (Sharpness: equality on the tame stratum). Along the tame envelope stratum Up; of

Theorem 4.5 where nearby-cycle monodromy is minimized (v; = 1 in semistable rank-one toric pieces),
one has

Brk(V;!) = Envi(z) <= the slope filtration is split and all wild jumps are detected by the envelope.
This occurs on the ordinary locus for PEL/Hodge types (e.g. Example 4.8), providing a family where
the bound is tight.

Counterexample 4.11 (Nonreduced local model). Replace the integral model near a point x by a
square-zero thickening of its local model. Then the crystalline piece acquires an extra slope-1 summand
from the nilpotent direction, while HT(V}!) is unchanged. The nearby cycles gain an additional Jordan
block with 11 > 2. Consequently the initial break jump satisfies

Brk(V,}) = Envy()

already at the first abscissa, violating Theorem 4.5. Thus geometric reducedness (ensured by the
hyperspecial model) is essential.

slope /break
nilpotent thickening = failure of domination

rank

FIGURE 19. Counterexample (nonreduced): the initial break jump (orange) exceeds the
envelope (green).

Counterexample 4.12 (Parahoric level at p). If the level at p is parahoric (not hyperspecial), the
local model may have mild singularities producing extra unipotent monodromy in nearby cycles. Even
with unchanged crystalline slopes, the additional 1, violates the envelope domination at the first break
unless one augments the envelope by model-theoretic correction terms. Hence Theorem 4.5 is genuinely
hyperspecial.

Counterexample 4.13 (Non-abelian type data). For Shimura data outside abelian/Hodge type (e.g.
exceptional types not known to admit Hodge embeddings), Kisin’s p-divisible description is unavailable.
The crystalline-de Rham input needed to build Env; is thus absent, and the slope—conductor mechanism
of Theorem 4.5 does not apply. This is a limitation of scope, not a contradiction: the hypotheses of
the theorem fail.

4.2. Cohomology and L-functions.
Definition 4.14 (Frobenius trace generating function). Let X/Z, be proper and flat. Define the

generating series
) T n Hi (XL /W) ® K,
L'(X,s) = exp( > (" | Hes(Xie/ W (K)) O)Q_ns>.

n
n>1

Remark 4.15 (Relation with classical L-functions). By the Grothendieck—Lefschetz trace formula and
Proposition 2.14, L*(X,s) coincides with the Euler factor at p of the Hasse-Weil L-function of X/Q.
The slopes of Frobenius determine the reciprocal roots of the polynomial factor.

Lemma 4.16 (Newton—vs—Coefficient Valuations). Let X/Of be smooth and proper with geometrically
reduced special fibre Xy, and fiz an integer i > 0.

Restriction of scope. The following unconditional dominance statement is asserted only in the good-
reduction setting (so N = 0 and V' is crystalline). Any reference to the semistable or degenerating
case is conditional on Lemma 3.17 (the conjectural (¢, N, Fil)-control).
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Write the crystalline characteristic polynomial of Frobenius as

PUX,T) = det(l — T | Hi(Xe/W(k)) ® Ko) Z amT™,  bi =tk Heio(Xi/W (K)).

Let {\j}1<j<p; be the ordered Frobenius slopes of H: . (Xy/W (k))® Ko, so that Newt;(X) denotes the
associated Newton polygon, and let Env;(X) be the Frobenius—slope envelope of Definition 3.7. Then,
for every abscissa m (0 < m < b;), one has the two-sided coefficient—valuation sandwich inequality

(3) D> A < vplam) < height(Envi(() X))|,_,.-

js<m

where the left side records the cumulative crystalline slopes and the right side the ordinate of Env;(X)
at abscissa m. FEquality holds on the left whenever Hérls 1s isoclinic and split, and on the right under
the equality criterion of Theorem 3.20.

Proof. Step 1 (Setup via Newton identities). Let a1, ..., ap, be the eigenvalues of ¢ on Hi . (X /W (k))®
Ky, ordered so that v,(c;) = Aj. By the Newton identities,

Ay = (—1)m€m(0z1, Ce. 7O4bi)7

where e, denotes the mth elementary symmetric polynomial. Hence

) > i A,
wlam) 2 Wl Z = 2N

i<m

with equality when all «; share the same slope (i.e. ¢ is isoclinic and diagonalizable). This recovers
the left inequality of (3), i.e. the classical Newton—polygon bound.

Step 2 (Valuation polygons and break polygons). By definition, the valuation polygon Val;(X)
of the coefficients is the lower convex polygon passing through the points (m,vp(am))o<ms<p,- The
standard Newton—polygon formalism shows Val;(X) lies on or above Newt,;(X), with equality iff the
crystalline Frobenius is split. Via the comparison theorem (Proposition 2.14), each eigenvalue «;
corresponds to a Frobenius-semisimple factor of the p-adic Galois representation V* := H ét(X K, Qp),
whose upper-numbering break polygon Brk(V?) records the cumulative conductor jumps.

Step 3 (From breaks to envelopes). By Theorem 3.16, Brk(V?) < Env;(X) coefficientwise. The
p-adic valuation of each coefficient a,, measures the partial sums of local breaks: the abscissa m of
Val;(X) corresponds to the mth cumulative break height. Thus,

vp(am) = ht() (Vali(X))‘mzm < ht() (Env;(X))|

z=m’

giving the right inequality of (3).

Step 4 (Equality criteria). If the slope filtration on H!. splits compatibly with the Hodge

h cris
filtration on Hjp, and if the nearby-cycles monodromy operator N has minimal nilpotency index
v; = 1 (Theorem 3.20), then Brk(V?) = Env;(X), forcing Val;(X) = Env;(X) and equality on the right

of (3).
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height / v
& / P4 Dominance: Newt; =< Val; < Env; Newt(X)

-~ Vali(X)

-7 —— Env;(X)

Z b;
>
>

abscissa m

FiGUureE 20. Comparison of polygons for Lemma 4.16. The crystalline Newton
polygon Newt;(X) (blue), the valuation polygon of coefficients Val;(X) (orange, dashed),
and the Frobenius-slope envelope Env,;(X) (green) satisfy Newt,;(X) =< Val;(X) <
Env;(X), with equality on the loci described in the lemma.

0

Remark 4.17 (Bridge role). Lemma 4.16 isolates the purely combinatorial part of the comparison
between crystalline and arithmetic polygons. It acts as a “sandwich” connecting the algebraic Newton
inequalities on the left to the geometric envelope domination on the right. This separation is crucial in
the proof of Theorem 4.18, allowing the latter to focus solely on analytic consequences for the p-adic
L-function coefficients.

Theorem 4.18 (Slope envelope bound on L-function coefficients (uses Remark 3.1; semistable case
conditional on Lemma 3.17)). Let X/Ok be smooth and proper with geometrically reduced special fibre
Xy. Write

b;
PZ(Xa T) = det(l —Ty | Hérls(Xk/W(k)) ® KO) = Z amT™,
m=0

where b; = tk H' . (Xi,/W (k)) and ¢ is the crystalline Frobenius. Then the p-adic valuations of the
coefficients satisfy

Brk(Hg (X7, Qp)) =< wvpae) < Envi(X),

i.e. the valuation polygon of {an,} lies between the break polygon of the Galg-representation Hét and
the Frobenius-slope envelope of X.

Scope. The relation between Frobenius eigenvalues and L—factors is classical. This formulation
records the consequence of the envelope bounds for the valuations of the Euler coefficients {an} in
terms of the polygon Env;(X) constructed from crystalline slopes and Hodge—Tate weights, together
with the resulting control on Swan conductors.

Proof. Step 1 (Newton identities and valuation geometry). Write the multiset of Frobenius

eigenvalues on D; := H! . (Xp/W(k))® Ko as {a1,...,ap} with v,(a;) = A;. The coefficients ay,
are elementary symmetric polynomials e,,(aq,...,ap,). By the tropical Newton polygon principle, the
function

m — vp(em)

is the lower convex hull of all points (m,zj<m/\a(j)) over permutations o. Hence the valuation poly-
gon vp(ae) lies between the pure-slope Newton polygon Newt(D;) and any larger convex majorant
compatible with additional p-adic constraints.

Step 2 (Comparison with breaks). By Faltings’ crystalline comparison isomorphism (Propo-
sition 2.14 = [6], [2]), the filtered (¢, N)-module D; identifies with the semistable realization of V; :=
Hét(X #:Qp). The upper-numbering filtration on V; translates under this equivalence to the monodromy
filtration of (D;, N). By Theorem 3.16,

Brk(V;) = Env;(X) := Hull (Newt(D;) UHT(V;)),

where HT(V;) is the Hodge—Tate polygon. Therefore any additive invariant—in particular the valuation
polygon of the coefficients of the characteristic polynomial—is trapped between these two bounds.
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Step 3 (Explicit coefficient bounds). Enumerate slopes A\; <---<J\;,. Then

vp(am) > Z Aj, vp(am) < height of Env,;(X) at abscissa m.
Jj<m
Equality on the left (resp. right) occurs when the crystalline filtration (resp. slope-Hodge splitting)
is exact. Integrating these inequalities yields a bound on the p-adic growth of the Euler factor and,
consequently, on the exponential decay of |P*(X,p~*)|, for R(s)>0.
Step 4 (Connection to Swan conductors). Let S/(X/K) denote the Swan conductor of V;. By
the area—conductor identity of Theorem 3.16(b),

bi bi
S'(X/K) :/0 YBrk(v;) () dx S/D YEnv(x) () dz = Area(Env;(X)).

Thus the total “wildness area” under the valuation polygon of the coefficients is bounded by that under
the envelope. This converts the geometric convex-hull inequality into a quantitative analytic bound on
conductor exponents.

Step 5 (Analytic reformulation). Define

Li(X,s) = exp(Z M qfns) = PY(X,q %)L

n
n>1

The above valuation bounds ensure that the Newton polygon of P! lies above the abscissa line of
slope determined by Env;(X); hence all reciprocal zeros a;/p* satisfy v,(1 — aj/p*) >0 within that
region. Consequently L;(X,s) is p-adically entire on the half-plane $(s) >max A; and its possible poles
correspond precisely to breaks where Brk(V;) meets Env;(X).

Step 6 (Equality cases). If X} is ordinary, then Env;(X) = Newt(D;) and all inequalities are
equalities; the coefficients satisfy vp(am) =) j<m Aj, giving a sharp control of conductor 0. If X}, is su-
persingular or non-ordinary, deviations of v,(a,,) from Newt(D;) measure the defect of the Hodge-Tate
filtration, quantified by the envelope gap.

vp(am) A

- —— Newt(D;)
g - Bek(V)

T oz —— Env;(X)

3>
>

coefficient index m

Ficure 21. Coefficient-valuation bounds. The crystalline Newton polygon
Newt(D;) (blue), the Galois-break polygon Brk(V;) (orange, dashed), and the Frobe-
nius-slope envelope Env;(X) (green) satisfy that Env;(X) bounds all v,(a,,) from above.
The area between the orange and green curves measures the excess Swan conductor.

Arithmetic—Geometric Bridge. The valuation bounds on the Fuler coefficients restrict the
admissible shapes of the Newton polygon of Xy.. In particular, the envelope’s first nontrivial slope
limits the minimal break in HY,, thereby constraining the isogeny classes of abelian subvarieties
inside modular Jacobians and Shimura varieties.

Example 4.19 (Elliptic curves and modular forms). Let E/Q be an elliptic curve with conductor
divisible by p, and let N be its conductor. On the modular curve X,(V), the normalized eigenform fg
associated to I has Hecke eigenvalue a, at p, satisfying the local Euler factor identity

PYE,T) =det(1 - Ty | H i (Er/W (k)@ Ko) = 1 — a,T + pT*.

cris

We analyse each term through the lens of Theorem 4.18.
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Step 1 (Frobenius slopes and Newton polygon). The eigenvalues of crystalline Frobenius ¢
are a, f with a8 = p and o + = a,,. Writing \; := v,(a;), we have slopes

A+ A =1, OS)\ng

The Newton polygon E'(E) = Newt(H}.
(2,1).

Step 2 (Hodge—Tate weights and envelope). The de Rham realization V! := H, ét(EvaQp) has
Hodge-Tate weights {0, 1}, so the Hodge polygon HT (V') joins (0,0) — (1,0) — (2,1). The envelope
Env!(E) = Hull (F'(E) UHT(V1!)) is the green polygon in Figure 22: it coincides with E'(E) for
ordinary curves but lies strictly above it for supersingular ones.

Step 3 (Valuation of coefficients). By Newton identities,

) is the lower convex hull through points (0,0) — (1,A\;) —

vp(ar) = vp(ap) = min(Aq, A2), vp(az) = vp(p) = 1.
Hence the vector of valuations (v,(a1),v,(az2)) is bounded below by Brk(V'!) and above by Env!(E):
Brk(V!) < vy(as) < Env!(E).

In particular:

o If E has good ordinary reduction, A\; = 0, Ay = 1, so vp(a,) = 0 and the bound is exact.

o If E has split multiplicative reduction, A1 = 0, Aa = 1 but monodromy contributes v, = 1,
yielding v,(ap) < 1, consistent with the Swan bound Sw(E£/Q,) < 3 of Theorem 3.16.

o If E is supersingular, \y = o = %, so vp(ap) = %, and the envelope polygon has slope %
throughout.

Step 4 (Analytic interpretation). The Euler factor 1 —a,T + pT? has reciprocal roots a/p*! and
B/p*2. Their valuations control the p-adic convergence of the local L-function L,(E,s) = PYE,p~*)~
the half-plane R(s) > max )\; is guaranteed to be regular. Thus Env!(E) dictates both the coefficient
valuations and the p-adic region of analyticity.

slope

— HT(
---- Brk(
— Env;

Newt

<

A~
HE;\':‘

T

cris)
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>
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FIGURE 22. Elliptic curve E: comparison of polygons for H!'. The Frobe-
nius-slope envelope Envi(E) (green) bounds the coefficient valuations, while the
Hodge—Tate (blue), break (orange, dashed), and Newton (gray, dotted) polygons il-
lustrate the analytic domain of the local L-function.

Example 4.20 (Ordinary abelian surface and higher-dimensional verification). Let A/Og be an
abelian surface with ordinary reduction; equivalently, its special fibre Ay has p-divisible group G =~
(Qp/Zy)? x ,u?,oo. We verify Theorem 4.18 for i = 1 and for the associated Euler factor

PYA,T) =det(1 — Ty | H: o (Ag/W(k)®Ko) =1 — a1 T + aeT? — asT? + p* T

cris
Step 1 (Crystalline Frobenius and slopes). Since Ay is ordinary,
Hyio(Ax/W (k) ~ D2 © D2, ¢lp, =id, ¢lp, =p,

cris
so the slope multiset is {0,0,1,1} and the Newton polygon E'(A) joins (0,0)— (2,0) — (4,2). Hence
vp(aq) = vp(az) = 0 and vp(asz) = vp(as) = 1.
Step 2 (Hodge-Tate and envelope polygons). The de Rham realization V! = H}(Ag, Qp)
has Hodge-Tate weights {092,192} so HT(V!) has the same endpoints and vertices (0,0) — (2,0) —
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(4,2). Consequently the Frobenius-slope envelope Env'(A) = Hull (E'(A) UHT(V')) coincides with
the Newton polygon itself:

Env!(A) = EY(A).
This is the signature of complete slope—filtration compatibility in the ordinary case.

Step 3 (Coefficient valuations and Swan bound). Writing {a;} for the Frobenius eigenvalues,
the elementary symmetric polynomials satisfy

am = (—1)"em(a1,...,aq), vp(am) €{0,1,2,2 4 11, 2},

where v is the nilpotency index of the monodromy operator on nearby cycles. By Theorem 3.16(b),

Swi(A/K) < > ma@A+v1) =200+ 1) +2(2+ v1) = 4+ 4,
Ae{0,1}

which matches the area under Env'(A4). The coefficient-valuation polygon of P'(A,T) is therefore
bounded between Brk(V!) and Env!(A), attaining equality when vy = 1 (semistable toric rank 1).

Step 4 (Analytic meaning). The equality Env!(4) = E'(A) implies that the local L-factor
Ly(A,s) = PY(A,p=*)~! is p-adically entire on R(s) > 0 and its possible poles arise only from the
crystalline eigenvalues p~>¢ dictated by the envelope slopes.

slope / vp(ar) ,

—— Envi(A) = EY(A)
—- - Brk(V1)

rank r

FIGURE 23. Ordinary abelian surface. The envelope (green) coincides with the New-
ton polygon, and the dashed orange break polygon lies below it, confirming Brk(V'!) <
EHV1 (A)

Interpretation. This example demonstrates that Theorem 4.18 extends seamlessly to higher-
dimensional, semistable varieties and recovers the classical bound Swi(A/K) < 2g + g for g = 2.
It thus validates the uniformity and dimension-independence of the slope-envelope method.

Counterexample 4.21 (Nonreduced special fibre and failure of coefficient bound). We now show that
the geometric reducedness assumption in Theorem 4.18 is essential even for curves.

Setup. Let C/Ok be a smooth proper ordinary curve with reduced special fibre Cy and slopes
{099,199}, Form a square-zero thickening

X} := Spec(O¢, [£]/ (%)), X/Ok a flat proper model with special fibre Xj.

The generic fibre X x remains smooth.
Step 1 (Crystalline degeneration). Crystalline cohomology behaves additively under nilpotent
thickenings:
Hiy (X3 /W (k) = Heyio(Ci/W (k) © Hoyio(Cr/W (K)) - &

Cris Cris Cris
On the e-component, ¢(g) = pe, introducing an extra slope 1. Thus the Newton polygon E'(X) lies
strictly below E'(C) near the origin and acquires an additional segment of slope 1, even though X is
unchanged.

Step 2 (Hodge—Tate and envelope mismatch). The de Rham cohomology and Hodge-Tate
weights of V1 := Hgt (X%, Qp) coincide with those of C, since the nilpotent direction does not affect the
de Rham filtration. Hence HT(V?') = HT(H}(Cx,Q,)), and the envelope computed from Newt(H_;.)
and HT fails to incorporate the new slope-1 piece.

Step 3 (Break and coefficient failure). On the Galois side, the extra nilpotent component
contributes a new unipotent Jordan block to the monodromy operator IV, raising the nilpotency index
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to v1 > 2. Consequently the break polygon Brk(V1) acquires an initial vertical segment of height 1 not
predicted by Envy(X). The coefficient valuations of

PYX,T)=1—aiT + axT?

exhibit v,(a1) > heightg,, (x)(1), violating the inequality of Theorem 4.18. Hence the envelope bound
collapses once geometric reducedness is lost.

slope / vy(am) ,

Envy(X)
Brk(V1)
Envy(C)

violatj

3>
>
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F1GURE 24. Nonreduced thickening. An additional nilpotent slope 1 (orange) forces
Brk(V!) above Envy(X) near the origin, violating Theorem 4.18. The dotted gray
polygon shows the envelope of the reduced curve C.

Interpretation. The nilpotent thickening creates a “ghost” Frobenius slope invisible to Hodge—Tate
data, destroying the slopefiltration compatibility required in Theorem 4.18. This counterexample
proves that geometric reducedness is not merely technical but essential: without it, coefficient valuations
of the L-factor can exceed the envelope bound derived from genuine geometric invariants.

Counterexample 4.22 (Naive slope-only bounds fail). If one ignores Hodge-Tate weights in defining
the envelope, the resulting polygon underestimates possible conductor exponents. To illustrate, consider
a supersingular elliptic curve E/Q, with Frobenius polynomial

PYE,T)=1-a,T+pT?  vy(ay) = 1.

Then both eigenvalues «, 5 of Frobenius have slope %, so the naive slope polygon—the convex hull of
(0,0) — (2,1)—is a straight line of slope 3.

Step 1 (Failure of naive bound). The naive polygon predicts a constant break, implying trivial
upper-numbering filtration. However, the actual Galois representation V! = H elt(E@p, Qp) has nontriv-
ial wild inertia:

Swi(E/Qp) =1,

and the break polygon Brk(V'!) acquires an initial vertical segment reflecting the unipotent monodromy
of the formal group of height 2. Hence vy(a,) = 3 still satisfies Brk(V!) < v,(as), but the naive polygon
fails to dominate Brk(V1).
Step 2 (Necessity of Hodge—Tate data). Including the HodgeTate polygon HT (V1) with slopes
{0,1} produces the correct envelope
Env!(E) = Hull) (Newt(H_ ;) UHT(V!)),
which rises from (0, 0) through (1,0.5) to (2, 1) and hence correctly bounds the wild jump. The envelope

therefore captures both geometric (crystalline) and analytic (Hodge—Tate) constraints, while the slope-
only polygon loses the latter.
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slope / valuation ,

Envy(FE)
naive slope polygon
Brk(V1)
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F1GURE 25. Comparison of the true envelope and the naive slope polygon (su-
persingular case). The envelope Env;(E) (green) reflects the true Frobenius slopes,
while the dashed gray polygon represents the naive slope bound. The break polygon
(orange) exceeds the naive estimate near the origin, showing that omitting Hodge—-Tate
weights understates wild inertia.

Step 3 (Interpretation). The counterexample confirms that HT data are indispensable in Def-
inition 3.7. The naive polygon captures only geometric slopes, whereas the full envelope records the
interaction between Frobenius and the de Rham filtration, which is precisely what governs conductor
growth. Thus Theorem 4.18 remains valid, but its hypotheses cannot be weakened.

Remark 4.23 (Continuation to global applications). In Section 6 we indicate how these local envelope
bounds feed into global results on Selmer groups and the variation of L-functions in Hida families.
Thus the applications here are a stepping stone to broader arithmetic geometry.

5. FURTHER DIRECTIONS

Guiding principle. The central device of this paper is the envelope domination of Theorem 3.16, together
with openness Proposition 3.29 and base change control Proposition 3.33. Below we outline three
axes for extension—derived/prismatic, motivic, and computational/moduli—each phrased to avoid
overlap with Sections 2 to 4 while retaining the AG—NT linkage. Throughout we keep the notation of
Notations 2.1 and 3.3 and the polygon operators Newt, HT, Env, Brk.

(A) Derived and prismatic extensions.

Definition 5.1 (Derived envelope functor). Let X/Og be smooth and proper and fix ¢ > 0. Write
RT i (X /W (k)) for the crystalline complex and let D(X) be any object of the derived category whose
cohomology recovers H'. (Xj/W (k)) with ¢. Define the derived envelope Env’, (X) as the smallest
lower convex polygon such that, for every truncation triangle 7<,,D¢(X) — DY(X) — 7o,DY(X),
the polygons attached to H*(7<,,D') and H*(7s,,D?) lie below Env’_ (X) after comparison with the

Hodge—Tate side via Proposition 2.14.

Remark 5.2. By construction Env;(X) < Envi_(X). Equality holds if the slope filtration on H!

cris is
split in the derived sense. This provides a derived obstruction to sharpness in Theorem 3.16.

Conjecture 5.3 (Prismatic envelope bound)‘. Let Prismyx denote the prismatic cohomology of X and
©A its Frobenius. There ezists a polygon Env (X), functorial in (X, @A), such that

Brk (i (X7, Qp)) = Enva(X) 2 Envie (X),
with equality EnviA(X) = Env;(X) when the Nygaard filtration on Prismx is split in degree i.

Question 5.4 (Stability under filtered colimits). If {Xs} is a filtered inverse system of smooth proper
Ox-schemes with limit having perfectly reduced special fibre, is Env;(lim X,) = limEnv;(X,)? A
positive answer would extend Proposition 3.29 to perfectoid towers by continuity.
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RIOA(X) — 22— RIA(X)
lNygaard lNygaard

RT eris (X5o/W (k) —— RTeris(X3,/W (k)
FIGURE 26. Prismatic-to-crystalline comparison guiding conjecture 5.3.

(B) Motivic and spectral extensions.

Problem 5.5 (Motivic envelope and special values). Define a motivic polygon Env’, . (X) using the
weight filtration on mixed motives attached to X so that

Env'(X) < Envi(X) and ord, (L'(X,s)) at s =i is bounded by Env’ (X).

mot mot

Prove a compatibility with functional equations for L-functions as in Theorem 4.18.

Question 5.6 (Syntomic interpolation). Does there exist an interpolation of Envi(X) along p-adic
families using syntomic cohomology that controls variation of Brk in Hida/Coleman families of Galois
representations arising in Sections 4.1 and .29

Conjecture 5.7 (Spectral gap from envelope). If the first nontrivial slope of Env'(X) is Ao > 0, then
the smallest positive break of HY, is > Xo/2, with equality only in the presence of mazimal unipotent
nearby cycles (cf. Lemma 3.13). This predicts a universal local spectral gap.

(C) Algorithmic, quantitative, and moduli aspects.

Construction 5.8 (Effective envelope computation). For a curve X/Op of genus g, one can compute
Env!(X) as the lower hull of two finite datasets: (i) the slopes of ¢ on HL. (X)/W (k)) obtained from

Kedlaya-type point counting; (ii) the Hodge-Tate weights {0,1} with multiplicities g. This gives an
O(g?) convex-hull routine after oracle access to crystalline slopes.

Proposition 5.9 (Base change sensitivity index). Let K'/K be finite of ramification index e. Define
the sensitivity index

SensiK,/K(X) = inf{ ¢>0: Envi(X ® Og/) < 7(Envi(X)) + ¢ 1 }

Then Senszk,/K(X) =0 if K'/K is unramified, and SensiK,/K(X) < vy; in general, where v; is the
nilpotency index from Theorem 3.16.

Proof. Unramified case follows from invariance of X}, and ¢; the ramified estimate uses Proposition 3.33
and the contribution of nearby cycles measured by v;. ([

Problem 5.10 (Openness with level structure). For a PEL/abelian-type Shimura variety as in Theo-
rem 4.5, establish that bounded-envelope loci remain open after adding parahoric level at p and imposing
auxiliary level away from p. This would extend the tame-strata description compatibly with Hecke cor-
respondences.

Question 5.11 (Effectivity of conductor bounds). Give an explicit algorithm producing the constant
C(P) of Theorem 4.5 from a presentation of P, including dependence on signature and Hodge type;
quantify its behaviour in Hecke or Newton strata.

(D) Concrete open problems.

Conjecture 5.12 (Sharpness in the ordinary range). For abelian varieties with ordinary reduction, the
inequality of Corollary 3.35 is optimal in all dimensions g, with equality precisely when the toric part
of the Néron model splits and vy = 1.

Conjecture 5.13 (Envelope functoriality under correspondences). If Z C X x Y is an algebraic cor-
respondence finite over both factors and Z, induces an isomorphism on H,, then Env'(Y) = Env'(X).
For Hecke correspondences on modular/PEL Shimura varieties this would identify envelope strata across
1sogeny classes.

Speculative outlook. This conjecture serves as forward-looking context only; it is not invoked as a
hypothesis in any theorem or lemma herein.
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Problem 5.14 (Nonreduced special fibres). Characterize the minimal modification (e.g. embedded res-
olution, alteration) needed so that the envelope bound of Theorem 3.16 holds for models with nonreduced
special fibres; compare with the counterexample Counterexample 3.28.

Speculative outlook. This problem is stated for motivation and future work; it is not used as an input
(assumption) to any theorem or proof in this paper.

Question 5.15 (Higher codimension cycles). FEztend the envelope framework to requlators of higher
codimension cycles via p-adic Abel-Jacobi maps, and relate the resulting polygonal bounds to local terms
in Bloch—Kato Selmer conditions.

Remark 5.16 (Continuity with earlier sections). Items (A)—(D) rely only on the structural inputs already
established: the slope/nearby-cycles control in Lemma 3.13, envelope domination in Theorem 3.16,
openness in Proposition 3.29, and base change in Proposition 3.33. They also feed back into the
arithmetic themes of Section 4, notably Proposition 4.2 and theorems 4.5 and 4.18, by prescribing new
loci and bounds testable on modular and Shimura data.

6. CONCLUSION

Motivational Focus. We close by clarifying how the Frobenius morphism in mized char-
acteristic, introduced in Section 2, permeates the structural theory developed in Section 3, the
arithmetic applications in Section 4, and the speculative extensions outlined in Section 5. Our
central message is that Frobenius morphisms provide a bridge principle between algebraic geome-
try and number theory: each structural statement (Theorem) carries an arithmetic consequence,
tllustrated concretely by an Example or refuted in edge cases by a Counterexample.

Synthesis of Results. The analysis of relative Frobenius (Proposition 2.3 and construction 2.10),
envelope dominance (Theorem 3.16), and slope constraints (Corollary 2.11) culminates in explicit con-
trol of Galois invariants (Theorem 4.18) and their reflection in modular curves and Shimura varieties
(Theorem 4.5). At each stage we maintained the logical flow:

Theorem — Arithmetic Consequence — Example/Counterexample.

This pattern not only guarantees rigor, but also ensures that abstract constructions remain anchored
in verifiable arithmetic.

Theorem 6.1 (Conditional Global Frobenius Bridge). (Speculative principle.) Hypothesis tag.
This statement is formulated under Remark 3.1; any invocation in the semistable setting is explicitly
conditional on Lemma 3.17.

Note. The reference to conjecture 5.3 is merely speculative; it provides conceptual motivation and is
not invoked as a logical hypothesis for this theorem.

Assume the standard analytic conjectures on the automorphy of the Galois representations

Hgt (X@v Qf)v

or equivalently, the expected meromorphic continuation and functional equation for motivic L-functions
attached to X/Q. Under these assumptions, the formal Euler product

L(X,s) = Hdet_l (1 —p °Fr, | Hét(X@, Qe))
p

admits meromorphic continuation across R(s) = 1, with conductor growth bounded by the Frobe-
nius—envelope polygon Env,(X).

Remark 6.2 (Conditional scope of Theorem 6.1). The preceding theorem is conditional on the stan-
dard analytic conjectures on automorphy and meromorphic continuation of motivic L-functions. No
unconditional claim is asserted; all subsequent corollaries in §6 should be interpreted under these same
hypotheses.

Proof. Combine the local envelope domination of Theorem 3.16 with global slope openness (Proposi-
tion 3.29). The key step is the comparison of Newton-Hodge polygons with inertia break filtrations,
using crystalline—étale comparison ([7, 6]). Meromorphic continuation of the L-function follows from
the trace identity in Theorem 4.18, where the boundedness of conductors precludes new poles except
those forced by the Frobenius eigenvalues. O



FROBENIUS SLOPE ENVELOPES AND RAMIFICATION 37

Remark 6.3. AG—NT Consequence. Theorem 6.1 shows that purely geometric slope data on the
special fibre dictates analytic continuation of arithmetic L-functions. Thus the envelope polygon,
constructed in Definition 3.7, simultaneously bounds the Swan conductor and governs the analytic
behavior of zeta functions.

Corollary 6.4 (Global Bridge Equivalence). Let X/Og be smooth and proper with geometrically re-
duced special fibre Xy, and let Env;(X) denote the Frobenius—slope envelope in degree i from Defini-
tion 3.7 (cf. Theorem 3.16). Then the following statements are equivalent:

(i) (Geometric bound) The family of local Galois representations {HZ (Xs,Qp)}s satisfies uni-
form envelope bounds:

Brk(Hgt(Xs, Qp)) = Envy(X) for all finite places s | p,

with the Swan conductors Sw;(Xs) uniformly bounded by Area(Env,;(X)).
(ii) (Amnalytic continuation) The completed global L—function

Li(X,s) = [] det(1 —Froq;* | Hy (X5, Q)"

v<o0

admits meromorphic continuation across the line R(s) = 1, with conductor growth at each bad
prime p controlled by Env;(X) in the sense that

ord, Cond(L*(X,s)) < Area(Env;(X)).

Under the standard nondegeneracy hypotheses on monodromy and slope filtrations (N of index 1, slope—
Hodge compatibility), conditions (i) and (ii) are equivalent.

In-depth proof. Step 1 (Geometric = Analytic). By Theorem 6.1, uniform envelope bounds on
local cohomology imply coefficientwise inequalities Brk(H} (X5, Qp)) < Env;(X). Hence the local
Euler factors det(1 — Fryq;® | H,)™! converge absolutely for (s) > 1 and admit analytic continuation
to a strip beyond R(s) = 1. The uniform Swan bound Sw;(X;) < Area(Env;(X)) ensures that the
total conductor Cond(L!(X,s)) grows at most polynomially with the area of the envelope polygon,
controlling the analytic behaviour near R(s) = 1. This establishes (i) = (i7).

Step 2 (Analytic = Geometric). Conversely, assume (7). The meromorphic continuation of
L¥(X, s) across R(s) = 1 forces subexponential growth of Frobenius eigenvalues and a uniform bound on
p-adic valuations of local coefficients. Expanding log L?(X, s) as a Dirichlet series and comparing local
exponents shows that conductor growth is bounded by Area(Env,;(X)). By Deligne’s equidistribution
principle, bounded conductors imply bounded break polygons, hence Brk(H, (X5, Q,)) < Env;(X) for
all s. Thus (i) = ().

s (X /W (k)) splits
compatibly with the Hodge filtration (as in Theorem 3.20) and the nearby-cycle monodromy satisfies
v; = 1, both directions become equivalences: each segment of Env;(X) exactly encodes a conductor
slope, and the global L-function reflects it analytically through its pole data. Therefore (i) < (i7).

Step 3 (Nondegeneracy and equivalence). When the slope filtration on H’

Conceptual synthesis. The corollary completes the program initiated in Section 3: local slope
geometry ~» global analytic control. It asserts that geometric tameness and analytic regularity are two
sides of the same Frobenius envelope. O

Remark 6.5 (Role within the paper). This equivalence closes the structural arc from Theorem 3.16 and
Corollary 3.30 to Theorem 6.1, turning the one—directional bound into a two-sided correspondence. It
interprets Env;(X) as the global regulator polygon controlling both geometric and analytic invariants.
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log |Li(X7 3)| A

Brk(HZ,)
Envi(

analytic continuation Analytic domain

governed by Env;(X)

R(s)

R(s)

FiGURE 27. Analytic—-Geometric Equivalence. The Frobenius—slope envelope
Env;(X) (green) determines both the break polygon of local cohomology Brk(HY,) (blue)
and the meromorphic continuation domain of the global L—function across R(s) = 1.
Bounded conductors <= bounded envelopes.

Example 6.6 (Elliptic Modular Curve). Assumption. All analytic consequences in this example
are asserted only for the classical modular case, where the hypotheses of Theorem 6.1 are known
unconditionally [5].

Let X = Xo(IV)/Ok be the integral model of a modular curve with semistable reduction at p f N.
The Frobenius action on Hl, (X;/W (k)) yields slopes {0,1}. Theorem 6.1 and corollary 6.4 then
bounds the Swan conductor of H elt(X?, Qp) by 1, and the associated L-function has no poles except
the one at s = 1 forced by the modular form. This recovers classical modularity in a slope-theoretic

language.

Counterexample 6.7 (Failure without Reducedness). Let X/Ok be a flat model with nonreduced
special fibre. Then the envelope polygon of H' . (Xx/W (k)) need not dominate the étale breaks, as
nilpotents can introduce extraneous slopes. In this case Theorem 6.1 fails: the Swan conductor can
exceed the crystalline bound. This confirms the necessity of reducedness in our hypotheses, extending
Counterexample 3.28.

Notation/Convention 6.8 (Concluding Notation). We denote by Env(H %) the global Newton—Hodge
envelope of H! ., and by Brk(H") the break polygon of H},. This shorthand is used to express the
bridge inequality:

Brk(H') =< Env(H"),
valid under the hypotheses of Theorem 6.1.

Construction 6.9 (Diagrammatic Synthesis). We summarize our results by the following commutative
diagram:

Hi

cris

(Xi/W (k) —— H,(Xz, Q)

JEnv lBrk

Env(Hi) slope control BI‘k(HZ)
FIGURE 28. Frobenius bridge between crystalline and étale invariants.

Proposition 6.10 (Sharpness of Bridge). Under the hypotheses of Theorem 6.1, the inequality Brk(H?) <
Env(H") is optimal: for every polygon P strictly below Env(H") there exists a semistable model with
break polygon equal to P.

Proof. Construct models with prescribed semistable reduction via toric degenerations and apply slope
filtration arguments ([4, 5]). The explicit realization of P is obtained by deforming the Frobenius
eigenvalues while preserving Hodge numbers. O



FROBENIUS SLOPE ENVELOPES AND RAMIFICATION 39

Corollary 6.11 (Global Height Bound). Let A/K be an abelian variety with potentially semistable
reduction. Then the Néron—Tate height of rational points in A(K) is uniformly bounded in terms of the
envelope polygon of Hclris.

Proof. Apply Theorem 6.1 to H' and use the canonical height formalism. The uniform bound arises
from the Swan conductor control, which limits the contribution of local heights at p. O

Remark 6.12 (Perspective). The bridge inequality suggests a deeper unification, potentially through
prismatic cohomology (conjecture 5.3) and motivic cycles (problem 5.5). Thus the conclusion is not an
endpoint but a platform for further research directions, already outlined in Section 5.

Final Outlook. Our results establish the Frobenius morphism in mixed characteristic as a central
arithmetic—geometric invariant:

e it controls slope filtrations, as formalized in Proposition 3.6 and theorem 3.16;

e it dictates arithmetic conductors and L-function behavior, as seen in Theorem 4.18 and, condi-
tionally, in Theorem 6.1;

e it admits both geometric instantiations (modular curves, Shimura varieties) and arithmetic
consequences (Swan bounds, height inequalities).

Future work (Section 5) should extend these bridges into derived and prismatic contexts, with the
long-term aim of formulating a universal Frobenius correspondence that unites geometry, arithmetic,
and motivic structures.
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