ZARISKI DENSITY OF ASSOCIATED GRADED PRIMES AND DEGREE-1
TORSION IN SPECIAL FIBERS OF REES ALGEBRAS

RAHUL KUNDNANI

ABSTRACT. We study the geometric and homological conditions under which the set of associated primes
of the associated graded ring gr;(R) of a Noetherian ring R along an ideal I is Zariski dense in Spec R.
A unifying criterion is established: density occurs precisely when the special fibers of the Rees algebra
exhibit generic degree—1 torsion. Equivalently, on a dense open subset, every minimal reduction J C [
fails to induce an injective map on degree—1 components (gr;(R))1 — (gr;(R))1, or, equivalently, the
reduction number r;(I) is positive.

This correspondence links topological density on Spec R to algebraic data of reductions, analytic spread,
and Rees valuations. The framework remains stable under localization, completion, integral closure, and
flat base change, and persists through Veronese and symbolic filtrations. Quantitative bounds are given
in standard graded settings via Castelnuovo—-Mumford regularity, and explicit examples—monomial,
determinantal, and almost complete intersection ideals—demonstrate the criterion’s sharpness. The
results provide a cohesive view of how degree—1 behavior in the special fiber governs the global distribution
of associated graded primes.

1. INTRODUCTION

Big Picture. We investigate when Ass(gr;(R)) is Zariski dense in Spec(R) for a Noetherian ring R
and ideal I. This brings topological density into graded prime spectra, via the Rees algebra R;(R),
initial forms, and reductions|3, 20, 9]. Contributions. We provide practical, verifiable criteria (Section 3)
and structural consequences (Section 5), with explicit links to symbolic powers, fiber cones, and blowups
(Section 7)[10, 11, 12, 9].

Method. The proofs rely on the valuation-theoretic criteria for Rees valuations and integral closure
(Lemma 4.3) [16, 5, 21], together with analytic spread (Lemma 4.7) [6] and reduction principles
(Lemma 2.12) [6, 7], as collected in Section 4.

Organization. Section 2 fixes notation and hypotheses; Section 3 states the theorems; Section 4
develops the tools; Section 5 draws out stability and persistence phenomena; Section 6 illustrates with
models and counterexamples; and Section 7 connects to symbolic powers, fiber cones, blowups, and Rees
valuations.

NOTATION AND CONVENTIONS

Throughout, R denotes a commutative Noetherian ring and I C R a proper ideal. Unless otherwise
specified, all rings are Noetherian and all ideals are proper.

e Spec(R) — prime spectrum of R with the Zariski topology [18, 19].

e Ass(M) — set of associated primes of an R-module M [3, 4].

e Assh(M) — associated primes of maximal height in Supp(M).

e R, — localization of R at a prime p.

e x(p) — residue field of R,.

e m — maximal ideal in a local ring (R, m).

o m: R(I) — gry(R) — canonical graded surjection with kernel ().

e g1/ (R) = @,50 ["/I""! — associated graded ring of R along I [20, 9]; R(I) = @,;>c ["t" C R[t]
— Rees algebra of I [9]; F(I) = @,5¢ I"/mI™ — fiber cone (special fiber) [9]; Rs(I) = @50 [™t"
— symbolic Rees algebra [10, 11]. B

e X =Proj(R(I)) — blowup of Spec(R) along I.

o IM = () (I"R,NR)— nth symbolic power [10, 11, 12].
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e [" — integral closure of I" (characterized by Rees valuations) [5, 21].

e Rees valuations vy, ...,vs — valuations of R with v;(I) = 1; govern asymptotics [16].
e v,(z) = min; vj(x) — Rees gauge functional.

e in;(z) — initial form of x in gr;(R), i.e. the class in I™/I™F! for m = v.(z).

e ((I) =dim F(I) — analytic spread of I [6, 7].

e (,(I) — analytic spread at R,.

e J C I — a (minimal) reduction, generated by a superficial sequence of length ¢(I) [6].
e r;(I) — reduction number of I with respect to J [6, 9].

e depth M — homological depth of an R—module M [4].

e K, =Koszul(ins(z1),...,ins(zs); gr;(R)) — Koszul complex on a superficial frame [20].
® O(r,)(p) — density—defect function: degree-1 torsion measure in the special fiber at p.
e Hypotheses:

— (H1) R equidimensional and universally catenary (existence of superficial sequences) [19, 18].
— (H2) R, analytically unramified (completion reduced) [7].

— (H3) ¢,(I) = dim R, on a dense open of Supp(R/I).

— Condition (Y): non-injectivity of (gr (Ry))1 — (gr,(Ry))1 generically.

Remark 1.1 (On hypotheses). (H1) ensures the availability of superficial sequences and sound
dimension theory; it holds, for instance, for excellent rings and standard graded algebras over
a field. (H2) guarantees that completions are reduced, a standard assumption for controlling
associated-graded behavior via initial forms and for passing to dense opens uniformly in families.
(H3) (¢y(I) = dim R, generically on Supp(R/I)) expresses generic maximality of analytic spread;
it holds after shrinking to a dense open subset in standard geometric settings (e.g. equidimensional,
finitely presented families over a Noetherian base) and becomes automatic under reasonable
genericity assumptions (cf. [23]; [24]).

e ()4: cokernel in the degree-d sequence
0 — 14/t MO it iz o,

R — m-adic completion of a local ring (R, m).
Rg — localization of R at a multiplicative set S C R.
D(s) — basic open subset {p € Spec(R) | s ¢ p}.
Examples (when invoked):
— R=k[[z,9]], I = (2%, 2y, y?) — two-dimensional Cohen-Macaulay toy model.
— R =K[[x1,...,24]], I =m? — higher-dimensional Cohen-Macaulay case.
— R=K[[x,y,2]], I = (22 9% 2% vy) — almost complete intersection.
— R = R; X Ry, I =1 x Iy — non-equidimensional example.

Notation 1.2. Throughout the paper, R(I) denotes the Rees algebra and gr;(R) the associated graded
ring. The variable ¢ is the standard degree-1 indeterminate in R(I). We never redefine the base ring R.

Remark 1.3. Unless stated otherwise, Ass(gr;(R)) means associated primes of gr;(R) as an R-module
via R — gr;(R), contracted to Spec R. For fiber statements we apply Ass after base change to x(p).

2. STANDING SETUP, NOTATION, AND HYPOTHESES

Standing Setup 2.1 (Framework). Throughout, R denotes a commutative Noetherian ring with unit
and I C R a proper ideal. We write

gri(R) =@ /1", R() =1t C R[H],
n>0 n>0
and denote by 7 : R(I) — gr;(R) the canonical graded surjection with kernel (¢). Let X := Proj(R([))
be the blowup of Spec R along I, and let F := gr;(R) be the associated graded algebra. We write

Ass(M) for the set of associated primes of an R-module M, and Assh(M) for the subset of associated
primes of maximal height in Supp(M).

Remark 2.2 (Convention). (1) All spectra Spec(—) are taken with the Zariski topology. (2) For a prime
p € Spec(R), we write R, for the localization, x(p) for its residue field, and I, for the extended ideal.
(3) The analytic spread of I at a local ring (R, m) is denoted ¢(I); globally, we use £, (/) for the analytic
spread at R,. (4) Reductions of I are denoted by J C I with I"*1 = JI" for all n > 0; minimal
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reductions are always taken with respect to inclusion. (5) Integral closure of I" is written I". (6) For
filtrations F = {F), }n>0 with Fy = R, we write grz(R) = @,,50 Fn/Fnt1-

2.1. Global hypotheses and stability under operations.

Definition 2.3 (Hypotheses). We shall frequently assume the following conditions:

(H1) R is equidimensional and universally catenary.

(H2) For each p € Spec(R), R, is analytically unramified[7, 18, 19]; in local contexts (R, m), the
completion R is reduced.

(H3) The analytic spread satisfies ¢,(I) < dim R, for all p (always true), and equality holds on a dense
open subset of Supp(R/I).

Observation 2.4 (Stability). Assumptions (H1)-(H2) are preserved under localization and completion;
(H3) is preserved under localization on a dense open subset of Spec(R).

Proof of Observation 2.4. Equidimensionality and universal catenarity localize; analytically unramified
local rings remain so upon further localization, and completion of an analytically unramified local ring
is reduced by definition. The analytic spread satisfies £,(I) = dim F'(I,), where F(I,) = R(I,) ®r, k(p)
is the special fiber. Since F'(I,) is a finitely presented r(p)-algebra, the function p — dim F(I,) is
upper semicontinuous and generically constant on Supp(R/I) (cf. [9]). This establishes the dense-open

assertion in (H3).
(]

2.2. Notation and operators.

Definition 2.5 (Operators and functionals). Let v range over the Rees valuations of I[16, 5], normalized
so that v(I) = 1. Define functionals on R\ {0} by

'U*(aj‘) = m,,in V(.CE), inj(x) e IU*(x)/IU*(m)+1

(the initial form in gr;(R)). We refer to the transformation x +— iny(x) as the initial form operator and
to v, as the Rees gauge.

Remark 2.6 (Identity and law). The following identities hold whenever both sides are defined:

inf(zy) =inz(z) ing(y),  velzy) = ve(x) +0u(y),  ve(@ +y) = minfv.(2), v.(y)}.
Thus v, is a non-Archimedean valuation-type functional, and inj is multiplicative on initial degrees.
2.3. Graded and birational configurations.

Definition 2.7 (Configuration). Consider the commutative diagram of graded morphisms:

R R[]

[ |

gr;(R) —— (R/T) @ t(R/T) @ t*(R/I) @ -

FIGURE 1. Canonical commutative diagram relating R(I) = ,,> ["t", the associated
graded ring gr;(R), and the polynomial extension R[] modulo I.

where the right vertical map is the quotient by I[t]. At the level of schemes, we have the blowup
square
for some embedding of the Rees algebra into a polynomial ring (after choosing generators of I).

Remark 2.8 (Embedding and realization). The inclusion R < R]t] corresponds to realizing X as the
closure of the graph of the rational map Spec(R) --+ Proj(Sym(I)). This viewpoint underlies the use of
Rees valuations and normal cones in estimating Ass(gr;(R))[15, 21].
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X = Proj(R) —~— Spec(R) x PV

I J

Spec(R) === Spec(R)

FIGURE 2. Blowup diagram: the Rees algebra R(I) = ,,> ["t" defines the projective

scheme X = Proj(R(I)), embedded via j into the trivial projective bundle Spec(R) x PV.
The projection mx realizes X as the blowup of Spec(R) along I.

2.4. Conceptual overview and reduction framework.

Remark 2.9 (Conceptual mechanism). Zariski density of Ass(gr;(R)) in Spec(R) is governed by how
frequently initial forms in;(z) produce zero-divisors in gr;(R) across the base. Informally, if for many
primes p the fiber gr Ip(Rp) has embedded components, these components propagate upward to yield a
dense family of associated primes in the base.

Remark 2.10 (Reduction framework and localization principle). To convert Remark 2.9 into proofs, we:
(1) control zero-divisors in gr;(R) via reductions J C I and analytic spread,
(2) relate Ass(gr;(R)) to minimal primes of initial ideals of parameter ideals inside reductions,
(3) pass to localizations R, and by semicontinuity of fiber dimensions of the special fiber of the Rees
algebra, that is, of
F(Ip) = R(Ip) ®r, £(p),
whose degree—1 component controls the analytic spread and zero—divisor behavior on fibers.

2.5. Core lemmas (formalism).

Lemma 2.11 (Localization formalism). For any p € Spec(R) one has a natural graded isomorphism
grr, (Ry) = gry(R)yp,

for any homogeneous prime B lying over p which does not contain the irrelevant ideal @, ¢ I/l
In particular,

Ass(gry, (Ry)) € {aRy [ g € Ass(gr/(R)), q C p}.

Proof. The equality follows from the exactness of localization and the fact that (I"/I"*1), = I /1"
whenever the degree-one piece is not annihilated by inverting elements outside p. The statement on
associated primes is an instance of the behavior of Ass(—) under localization for graded modules viewed
degreewise. O

Lemma 2.12 (Reduction principle). Let J C I be a reduction with reduction number r [6, 9]. Then
there is a finite filtration of graded gr ;(R)-modules

0=M,y1 CM,C---C M CMy=gr;(R)
whose graded pieces are subquotients of shifts of gr ;(R). Consequently,

,
Ass(gr(R)) C | Ass(gr (R) (k).
k=0
Proof. Consider the standard filtration by the quotients I™/JI"~!, which are well known to control
the graded pieces up to shift [9, 5, 22, 5]. Each successive quotient of the filtration of gr;(R) is a
homomorphic image of a finite sum of copies of I™/JI"~!, which are gr ;(R)-modules with grading shift.
Therefore

Ass(gry(R)) € | Ass(gr (R)(—k)).
k=0
O

Lemma 2.13 (Initial form control). Let = € I be superficial for I (with respect to some infinite residue
field) [3, 20]. Then multiplication by iny(x) on gry(R) is injective in high degrees. Consequently, if iny(x)
is a zero-divisor in gr;(R), then the obstruction is confined to finitely many degrees, and is detected by

Ass(gr;(R)).
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Proof. This is standard: superficiality yields (I"*! : 2) N I™ = I" for all n > 0, which is equivalent
to the injectivity of multiplication by inj(x) on I"/I"*! in large n. If in;(z) is a zero-divisor, pick a
witness degree and chase associated primes degreewise. (]

2.6. Equivalences and criteria (characterization layer).

Proposition 2.14 (Characterization via fibers). After possibly replacing R by a standard faithfully flat
extension that renders residue fields infinite, and shrinking to a dense open where minimal reductions
exist and are generated by superficial sequences, assume (H1)-(H2). The following are equivalent:

(a) The set Ass(gr;(R)) is Zariski dense in Spec(R).
or a dense open subset U C Spec(R), the fibers gr possess a zero-divisor in degree 1 for a
b) F d bset U C S R), the fib 1, (Bp divisor in d 1 for all
pel.
(c) There exists a reduction J C I and a dense open U such that for all p € U, the natural morphism

gry, (Ry) — gry, (Ry)
fails to be generically injective in degree 1.

Proof. We freely shrink Spec(R) to a dense open subset on which superficial sequences exist and all
minimal reductions are generated by ¢(I) elements. Throughout, R;(R) := @, I"t" denotes the Rees
algebra. B

Item (a)=Item (b). If Ass(gr;(R)) is dense, then for each p in a dense open U, p lies under some
associated prime q € Ass(gr;(R)). The specialization map Spec(gr;(R)) — Spec(R) sends q to its
contraction p, and by Lemma 2.13 and upper semicontinuity of fiber depth, one may choose generators
of I forming a superficial sequence such that the associated primes responsible for non-regularity occur
already in degree 1.

Concretely, consider the exact Rees sequence

0— Ri(R)(~1) 5 Ri(R) — gr;(R) — 0.
After localizing at p and tensoring with the residue field k(p), we obtain
R .
Tory” (k(p), grlp(Rp)) — F(Iy)(—1) - F(ly) — ngp(Rp)@)“(P) — 0.

The kernel of multiplication by ¢ in degree 1 detects zero-divisors of gr I (Ry), and by semicontinuity of
Tor-ranks, this condition holds on a dense open subset.

Item (b)=-Item (c). On a dense open where minimal reductions exist, pick a minimal reduction J =
(x1,... s To( 1)) generated by a superficial sequence [6, 9]. For each p € U, consider the canonical map of
associated graded rings

Op : (g1, (Rp))1 — (grg, (Bp))1-

By the Valabrega—Valla criterion, 6, is injective if and only if J, N Ig = Jpl, (Here we work after possibly
replacing R by a standard faithfully flat extension ensuring infinite residue field so that superficial
sequences exist generically). The existence of a degree 1 zero-divisor in ery, (Ry) implies that this
equality fails, and therefore 6, is not injective. Thus, failure of injectivity occurs on a dense open subset
of Spec(R).

Item (c)=-Item (a). Failure of injectivity of gr; — gr; in degree 1 implies the presence of nontrivial
elements in ker(6y), hence zero-divisors in gr; (Rp) for p in a dense open U. By Lemma 2.11, associated
primes of fibers specialize to associated primes of gr;(R), and since U meets every basic open, these
primes are Zariski dense in Spec(R). Therefore Ass(gr;(R)) is dense.

This completes the cycle of equivalences. O
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Ri(R)
LAV \\
gry(R) gry(R)
\ /l@ization at p
'913
ery, (Rp)

Fiber diagram of reductions and associated primes.
Density of Ass(gr;(R)) reflects fiberwise zero-divisors.

FIGURE 3. Fiberwise interaction between reductions and graded components.

Example 2.15 (Monomial ideal in a polynomial ring). Let R = k[z1,...,z4] and I = (27*,...,2%")
with 1 < r < d. Set A := k[z1,...,2,], B := k[zy41,...,24], S0 R = A® B and I = I'- R with
I'=(2*,...,2%) C A. For any basic open D(f) C Spec(B) (with f # 0), we have

Ry = A®y By, ngRf(Rf) = grp(A) @ By.

Hence degree-1 zero-divisors in gr;,(A) persist on the dense open Spec(A) x D(f) C Spec(R).
We claim that if » > 2 then gr;, (A) has a degree-1 zero-divisor. Write e; € (gry(A)); for the initial
form of z{". Consider the map

¢: Sym,(I'/I?) — grp(A), ei, - - - €, — class of ZL'Z” g e [T

Since I’ is generated by powers of distinct variables, ker(¢) contains a nontrivial quadratic relation
whenever r > 2:
e; - (a:;lj) —e; - (") € ker(¢) N ((grp(A))1 - A),

because both sides represent the same class in I'2/1'3.

Both terms indeed correspond to the identical element of I'2/I"® in degree 1 of gr;(A); hence their
difference maps to 0 in gry/(A), giving a nonzero kernel element in degree 1.

This produces a nonzero element 0 # u € (gry(A)); and a nonzero v € (gry (A)), with uv = 0; hence
u is a degree-1 zero-divisor in gry/(A). (Equivalently, in terms of Valabrega—Valla, for J = (z{*,25?) C I,
one has J N I'? # JI'; see the verification below.)

Now, if r < d then D(f) C Spec(B) is nonempty for some f € B, and the above tensorial description
shows that every such degree-1 zero-divisor of gry/(A) remains a zero-divisor in gr In, (Rf). Thus the

locus in Spec(R) where gr; (R,) has a degree-1 zero-divisor contains Spec(A) x D(f) and is therefore
dense. By Proposition 2.14, Ass(gr;(R)) is Zariski dense in Spec(R).

Valabrega—Valla check (explicit). Take r > 2 and J = (2{',25?) C I'. Then

JNI? S (2§ N (29, 292)2 o (229, 29125?) ¢ (237, 2§ a2, 22%2) = JTI.
Hence J N I? # JI', so the map gr;(A) — gry(A) is not injective in degree 1, and some degree-1
element is a zero-divisor.

QLB
gry(A) —— gr(R) = grp(A) @ B
®@pBy

Spec(A) gr[%é@JQA? >%r§p(é%)(§ f By

Spec(A) x D(f)

FIGURE 4. Persistence of degree-1 zero-divisors under base change along B — By (dense open).
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Example 2.16 (Equimultiple ideal in a Cohen-Macaulay local ring). Let (R, m) be Cohen-Macaulay
of dimension d, and let I be equimultiple with ¢(I) = ht([). By (H1)—-(H2), after shrinking to a dense
open of Spec(R) we may choose a minimal reduction J = (z1,... s T [)) generated by a superficial
sequence (hence a d’-sequence) such that

ng(R) = R[Xl,...,Xg([)]/'R with Xi»—>in(x,~).

Assume I # J, i.e. the reduction number r;(I) > 1. By the Valabrega—Valla criterion, the natural
morphism

0: gry(R) — gri(R)
is injective in degree 1 iff J N I? = JI. Since r;(I) > 1, one has I? # JI; moreover, because .J is
generated by a superficial sequence, equalities among initial forms reflect precisely the colon inclusions

that detect J N 12 = JI. Hence J N I? 2 JI, and 6 fails to be injective in degree 1.
That is, the Valabrega—Valla equivalence gives

JNI?+JlI,

so the “failure in degree 1”7 is exactly the non-equality J N I? # JI.
Consequently, by Proposition 2.14, the locus of associated primes of gr;(R) is Zariski dense in Spec(R).

Geometric intuition. Equimultiplicity (¢(I) = ht(/)) gives that the exceptional divisor of Proj(R;(R)) —
Spec(R) has pure codimension 1 over a dense open, while 7;(I) > 1 ensures a mismatch between the
first graded piece coming from J and that of I, creating a degree-1 torsion class in gr;(R).

gry(R) > gr(R)

degree 1
failure of injectivity <= JNI%?# JI

FIGURE 5. Degree-1 failure for gr; — gr; when r;(I) > 1 (Valabrega—Valla).

Example 2.17 (Symbolic power filtration). Let R be a normal domain and let I = p be a height-one
prime whose divisor class [p] € CI(R) is nontrivial. Consider the symbolic filtration p(™. Then (p(™)
is governed by the divisor theory on Spec(R): choosing a Weil divisor D with Or(—D) = p, we have
(Zariski locally) p™ = I'(Or(—nD)) and the symbolic Rees algebra

RV (p) 1= ) pr"
n>0

is the graded ring of sections of Or(—nD). If [p] # 0 in CI(R), then D is not principal, so there is no
global trivialization of Og(—D); consequently, the degree-1 piece p(l)/ p(2) carries torsion detected by
the failure of principalization along height-one strata.
Proof (local-affine argument). Choose an affine cover {U;} trivializing O(—D) with transition functions
u;; that are not restrictions of a global unit. The class of 1 in H%(U;, O(—D)) glues to a global section
s € p whose image in p/ p®? is annihilated by u;j — 1 on overlaps, producing a nonzero torsion element in
degree 1. Equivalently, one may rephrase this using the Rees valuations V;, where a nontrivial relation
among V; in degree 1 yields the same torsion class.

More algebraically, let Vi,..., Vs be the Rees valuations of p (height-one discrete valuations corre-
sponding to codimension-one points in the normalization of the blowup). For each n,

p™ ={zeR: Vi(x) >nV(p) for all i }.

If [p] # 0, there exists a dense open U C Spec(R) on which the Cartier data for D cannot be globally
glued; equivalently, some local trivialization Og(—D)|y; = Oy, and Or(—D)|y, = Oy, differ by a unit
that is not the restriction of a global unit on U; N U;. This produces a nontrivial class in

(gtpw (R))1 = p' /p?
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that becomes a zero-divisor after localization on a dense open covering {U;}: its annihilator is detected
by the discrepancy cocycle on overlaps and hence by the V; along height-one centers.
Passing to an I-adically comparable filtration via Rees valuations (as prepared in (H2)), we obtain
a dense open U C Spec(R) such that for all p € U, the fiber grp(.)(Rp) has a degree-1 zero-divisor.
P

Therefore, Proposition 2.14 implies that Ass(gr,.)(R)) is Zariski dense in Spec(R).

R¥™(p)

X := Proj R™(p)

Spec(R)

exceptional divisor ~ D not principal on a dense open

degree-1 torsion = fiberwise zero-divisors

FIGURE 6. Symbolic Rees algebra and the nonprincipal divisor D; fiberwise torsion in
degree 1.

Corollary 2.18 (Criterion via analytic spread). Assume (H1)-(H3) and let J be a minimal reduction
of I on a dense open U. If the reduction number rj(I) >0 on U, then Ass(gr;(R)) is Zariski dense in
Spec(R)[9, 5].

Proof. On U, gr; — gr; cannot be generically an isomorphism in degree 1 when r;(I) > 0, hence
Proposition 2.14. O

Example 2.19 (Positive reduction number forces density). In a standard graded k-algebra R with
irrelevant maximal ideal m, take I = m and let J be generated by a homogeneous system of parameters.
If R is not a polynomial ring, then r;(m) > 0, and Corollary 2.18 forces density of Ass(gr,(R)) in
Spec(R).

Example 2.20 (Blowup of a determinantal ideal). Let R = k[z;;] be a polynomial ring and I the ideal
of 2 x 2 minors of a 2 x n generic matrix. The analytic spread equals the height, but the Rees algebra is
not of linear type for n > 3, hence r;(I) > 0 for any minimal reduction J, yielding density.

Example 2.21 (Non-CM local ring). Let (R, m) be one-dimensional reduced but not Cohen-Macaulay,
and let / =m. Then r;(m) > 0 for any minimal reduction (since gr,,(R) has depth 0), so Corollary 2.18
applies.

2.7. Bounds, estimates, and inequalities.

Lemma 2.22 (Valabrega—Valla equivalence, [22]). Let (R, m) be a Noetherian local ring with infinite
residue field, and let I C R be an ideal. Let x1,...,xs be a superficial sequence for I, and set
J = (x1,...,25). Then the following conditions are equivalent:

(1) The natural graded map
(gry(R))1 — (gr7(R))
18 injective;
(2) JNI?=JI.
Equivalently, injectivity of gr ;(R)— gr;(R) in degree 1 holds if and only if every element of J N I? can
be written as a J-linear combination of elements of I.

Proof. This is the original criterion of Valabrega and Valla [22]. The hypotheses on superficiality and
infinite residue field ensure that x1,. ..,z form a filter-regular sequence on gr;(R), and the equivalence
follows by comparing the short exact sequences

0— JI/I? — 1/1* — 1/(J+I?) — 0.
O

Proposition 2.23 (Witnessing degree in the standard graded case). By the Valabrega—Valla criterion [22]
for degree—1 injectivity along a superficial sequence, together with the frame filtration (Proposition 2.57;
see also [5]), higher degrees are controlled by degree 1 (Here we work after possibly replacing R by
a standard faithfully flat extension ensuring infinite residue field so that superficial sequences exist
generically).
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Proof. By the Valabrega—Valla criterion [22] for degree—1 injectivity along a superficial sequence, together
with the frame filtration (Proposition 2.37), higher degrees are controlled by degree 1. O

Three working examples.

Example 2.24 (Uniform bound in graded case). If R is standard graded and I is generated in degree
m, then one can choose N < m(¢ — 1) by tracking the Castelnuovo-Mumford regularity of gr;(R) with
respect to a superficial sequence, giving an explicit degree bound for witnessing associated primes.

Example 2.25 (Parameter ideal). If I is generated by a system of parameters, then gr;(R) is Artinian
and every associated prime is witnessed in degree < dim R, hence N < dim R works uniformly.

Example 2.26 (Monomial ideals and polyhedral bounds). For I a monomial ideal, N can be chosen as
the maximal lattice distance from the origin to supporting hyperplanes of the Newton polyhedron of I
associated with Rees valuations, giving a polyhedral estimate on obstructing degrees.

2.8. Duality, symmetry, and invariance.

Lemma 2.27 (Symmetry under integral closure). Assume (H2). Then
Ass(gr7(R)) and Ass(gry(R))

have the same Zariski closure in Spec(R) [1, 5, 2].

Proof. The integral-closure filtration {I"},>( yields the same set of Rees valuations (and hence the
same normal cone up to normalization). Degreewise, I"™ and I™ agree generically, so associated primes
may differ only on a closed set; the closures coincide. O

Proposition 2.28 (Flat base change for associated graded rings). Let R — S be a flat morphism with
geometrically regular fibers (e.g. Cohen—Macaulay/S, fibers). Then

Asssars(S) C U Ass(S/p9),
pEAssr(gri(R))

in particular the image of Ass(gr;(R)) in Spec S contains Ass(gryq(9)).

2.9. Localization and specialization.

Lemma 2.29 (Depth-torsion criterion). Let (R, pRy) be a local ring as in Theorem 2.31 and consider
the exact sequence of graded R(I,)-modules

0 — R(I,)(—1) = R(I,) — gy (R,) — 0.
Then
ker(t: F(L)(—1) = F(I,)) #0 <= Tor"(x(p),er;,(Ry) #0 <= depthp, (gr; (R,)) = 0.
Proof. Tensor the above sequence with k(p) and use the long exact sequence of Tor to identify ker(-t)

with Torf{p(/ﬁ(p), gry, (Rp)). Non-vanishing of the latter is equivalent to vanishing of Ext? and hence to
depthp (gr; (Ry)) = 0 by the standard depth-Tor criterion (cf. [4] or [20]).

Lemma 2.30 (Depth-Tor equivalence in degree 1). Let (Ry,pRy) be a local ring and consider the exact
sequence of graded R(I,)-modules
0 — R(L)(—1) = R(L,) — gry, (Ry) — 0.
Then the following are equivalent:
R
ker(-t: F(Iy)(—=1) = F(Iy)) # 0 <= Tor;” (k(p),gr;,(Ry)) #0 <= depthp (gr;, (Ry)) = 0.

Reference. This is the standard depth-Tor criterion; see, e.g., [4] or [20].

Theorem 2.31 (Localization—specialization principle). Assume (H1)-(H2). After shrinking to a dense

open subset on which minimal reductions exist and are generated by a superficial sequence, the following
are equivalent:

(i) Ass(gr;(R)) is Zariski dense in Spec(R).
(i) For every nonempty open V C Spec(R) there exists p € V' such that Ass(gry, (Ryp)) contains a
nonminimal prime of Ry.



10 RAHUL KUNDNANI

(iii) There exists a dense subset D C Spec(R) such that for all p € D, the special fiber algebra
F(Iy) = R(I,) ®r, k(p) has a zero-divisor in degree 1.

Proof. Preliminaries. For every prime p C R and each n > 0 we have
(I"Rp) /(1" Ry) = (I"/1"),,

whence

(2.1) gry, (Ry) = (ng(R))p-

In particular, localization of associated primes satisfies

(2.2) Ass(gry, (Ry)) = {aRy : q € Ass(gr;(R)), 9CSp},

see Lemma 2.11. We also use the standard short exact sequence of graded R(I)-modules|9]
Note that Assh(gr;(R)) C Ass(gr;(R)) consists of the associated primes of maximal height in Supp(gr;(R));
in what follows, density statements automatically include Assh(gr;(R)).

(2.3) 0 — R(I)(—1) % R(I) — gr;(R) — 0.

After localizing at p and then tensoring over R, with x(p), we obtain an exact sequence of graded
k(p)—algebras

(2.4) Tory” (k(p), g1y, (Rp) — F(I)(—1) 5 F(I,) — gry, (Ry) @, £(p) — 0,
where F(Ip) = R(I) ®r, £(p) = B0 Iy / (0 Ry 1) Note that ker (-t : F(I,)(—=1) — F(I,)) is precisely
the image of the Tor;—term.

By Equation (2.4), the non-vanishing of Torf”'“ (1(p), gry, (Ry)) is equivalent to the existence of nonzero
elements in the kernel of -t : F'(I,)(—1)— F(I,), hence detects degree-1 torsion in the special fiber.

Lemma 2.32 (Depth 0 forces a nonminimal associated prime). Let (A, m) be a Noetherian local ring
with dim A > 1, and let M be a finitely generated A-module. If depthy M = 0, then m € Asss(M).
Consequently, any associated prime obtained from a depth-0 condition in a localization A = R, with
dim R, > 1 is nonminimal in Spec(A).

Proof. Since depth 4 M = 0, there exists € m that is a zero—divisor on M. Choose y € M with
m”y = 0 but m" 'y # 0 for some n > 1. Then Ann(y) is m-primary, so m = Ann4(y) is an associated
prime of M. Standard references include [?, Thm. 3.5] or [4, Prop. 3.6.11]. O

Item (i)=Item (ii). Let V' C Spec(R) be nonempty open. Choose q € Ass(gr;(R)) NV (possible by
density) and set p := q. By (2.2) we have

qRy € Ass(gry, (Ry)).

Since we localized at the same prime, qR, = pR,, which is the mazimal ideal of R,. If dim R, > 1 (the
only case relevant for density under (H1)), then pR, is not a minimal prime of R,; hence the associated
prime qR, is nonminimal, proving Item (ii). (When dim R, = 0, both sides are vacuous: Spec(R;) has
only minimal primes; see Lemma 2.11.)
Item (ii)=Item (iii). Fix a nonempty open V and pick p € V as in Item (ii). Then gr; (R,) has an
associated prime 9 containing a nonminimal prime of Ry; in particular depthp (gry (R,)) = 0. It
follows that Tor?p (r(p), v, (Ry)) # 0. By exactness of (2.4), the map

1 F(lp)(—1) — F(Ip)
has nonzero kernel. Since (F(I;)(—1))g = 0, the kernel lives in degrees > 1, hence there exists
u € F(ly)g—1, d > 1, with ¢t - u = 0. Equivalently, some degree-1 element of F(I,); = I,/pRy1, is a
zero—divisor in F(I,). As V was arbitrary, the set of such p is dense, proving Item (iii).
Item (iii)=Item (i). Let D C Spec(R) be dense with the degree-1 zero—divisor property in F(Iy).
By (2.4), for each p € D we have Tor?” (r(p), grr, (Rp)) # 0, hence depthp (gr (Ry)) = 0 and thus
Ass(gry (Ry)) # @. By (2.2), for each such p there exists q € Ass(gr;(R)) with g C p. Therefore

Ass(gr;(R)) meets every basic open subset D(f): given D(f), choose p € DN D(f), then any q C p as
above still lies in D(f). Hence Ass(gr;(R)) is Zariski dense in Spec(R), proving Item (i).

This completes the circle of implications and the proof of Theorem 2.31. U
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Example 2.33 (Generic fibers over a domain). Let R be a Noetherian domain and A a finitely generated
R-algebra; set S := A and fix an ideal I C S. Let n = Spec(Frac(R)) be the generic point and write

Sy =S ®@pr Frac(R), I, := I ®p Frac(R).

Then the generic fiber algebra is

F(I;) = R(I) ®s, Frac(R) = P mil(nf);” (m, = 0).
n>0

Step 1 (Generic freeness and openness). By generic freeness, after shrinking to a dense open U C Spec(R),
both S|y and gr; | are flat over U. The locus of p € U where F(I),) has a degree-1 zero-divisor is the
support of the coherent sheaf

Ti = Tory” (k(p), g1, (Sp));,

hence constructible, and open whenever nonempty.

Step 2 (Propagation from the generic fiber). Assume F(I,) contains a nonzero u € (F(I,))1 with v-u =0
for some homogeneous v # 0. By semicontinuity of Tor ranks in flat families, after shrinking U the same
relation holds on each fiber over U. Thus, for all p € U, F(I,) has a degree-1 zero—divisor.

Step 8 (Conclusion via Theorem 2.81). Since the degree—1 zero—divisor locus is dense, Theorem 2.31
implies that Ass(gr;(S)) is Zariski dense in Spec(R).

F(Ip) degree—1 zero—divisor at n
specialize along U % /
‘F(Ip)v p eU

FIGURE 7. Specialization of a degree—1 zero—divisor from the generic fiber n =
SpecFrac(R) to fibers over a dense open U C Spec R. Here F(I) = R(Ip) ®g, k(p) is
the special fiber of the Rees algebra, and the dashed arrow indicates passage along the
family. This illustrates the localization—specialization principle used in Theorem 2.31.

Example 2.34 (Families of curves). Let k be algebraically closed, R = k[C] the coordinate ring of a
smooth affine curve C, and let I C Rz, y| define a flat family of plane curves

m: ¢ = Spec (R[z,y]/I) — C = Spec(R).

For each closed point p € C, write I, C Ry[z,y] for the specialization and denote the special fiber of the
Rees algebra by F(Ip).

Step 1 (Tangent cone and initial forms). Suppose there are infinitely many closed points p; € C' at which
the tangent cone of %), is nonreduced (e.g. repeated tangency of branches or coincident components).
Then the initial forms iny, (x),iny, (y) are zero-divisors in gr I, (Rp,[z,y]), hence F(I,,) has a degree-1
zero—divisor.

Step 2 (Openness and density on the base). Nonreducedness of the tangent cone is detected on the
exceptional divisor of the blowup X = Proj(R([)) — C and defines a constructible set; the assumption
on infinitely many p; forces a dense subset

D := {peC: F(Ip); has a zero-divisor } C C.

Step 8 (Apply Theorem 2.31). The density of D implies, via the fiber exact sequence and Theorem 2.31,
that Ass(gr;(R[z,y])) is Zariski dense in Spec(R).
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X = Proj(R(I)) ™ C

exceptional divisor records tangent cone

nonreduced tangent cone on fibers

FIGURE 8. Geometric interpretation of the Rees construction. The blow-up X =
Proj(R(I)) projects to the center C' = Spec(R) via 7, and its exceptional divisor encodes
the projectivized tangent cone of I. Under specialization, nonreduced behavior of the
tangent cone on fibers corresponds to the failure of flatness in R(I), a phenomenon
central to the localization—specialization analysis in Theorem 2.31.

Example 2.35 (Deformation to monomial ideals). Let R = k[z1,...,zy,] and I C R be a homogeneous
ideal. Fix a term order < and form a flat Grobner degeneration Z C R[t] with

I, =1, I|_,=1I"

Let R := R(Z) C (R[t))[T]; then R is flat over k[t], with fibers R(I) at t = 1 and R(I™) at t = 0.
Step 1 (Flatness = persistence of degree—1 relations). Flatness gives specialization of associated primes
and semicontinuity of Tor.

Flatness gives specialization of associated primes and semicontinuity of Tor (by upper semicontinuity
of Tor and Nakayama’s lemma on fibers, justifying openness).

If F(I™) has a degree-1 zero-divisor, then the kernel of -T': F(Z)|,_,(—1) = F(I)|,_, lifts to a
nonzero kernel on a Zariski open neighbourhood of ¢ = 0. Thus, for ¢ in a dense open of A}ﬂ, F(I) has a
degree—1 zero—divisor.

Step 2 (Monomial verification). For monomial ideals, degree—1 zero—divisors can be certified combinato-
rially: if two minimal generators correspond to incomparable vertices of the Newton polyhedron with a
common support face, then some linear form in the degree—1 piece multiplies into the same monomial
class in degree 2, producing torsion in F(I'").

Step 8 (Density transfer). Hence, whenever F'(I'™) has degree-1 torsion, the same holds generically for
F(I); by Theorem 2.31 this yields Zariski density of Ass(gr;(R)).

or o [HyReCilization Along 1y

FiGure 9. Flat specialization from the initial filtration to the actual graded ring. The
degeneration parameter t interpolates between the initial ideal I™ and the original ideal
I, inducing a flat family of graded rings gryn(R) ~» gr;(R). This diagram illustrates
how the graded structure behaves continuously under Rees deformation, a key step in
comparing symbolic and ordinary powers in Theorem 2.31 and related propositions on
analytic spread.

2.10. Construction, decomposition, and reduction.

Definition 2.36 (Canonical superficial frame). After possibly replacing R by R[z1,...,ZzN]|w to ensure
infinite residue field locally, choose £(I) superficial elements 7, ..., xy generating a minimal reduction J.
Define the superficial frame of I to be the data (J; x1,...,z r7(I)) together with the degree filtration
on gry(R) induced by ins(z1),...,in(xy).

Proposition 2.37 (Decomposition along a superficial frame (Frame filtration)). Let (J; x1,..., 2 1)
be a superficial frame. Then gr;(R) admits a finite filtration by graded submodules whose successive
quotients are homomorphic images of iterated mapping cones of multiplication by iny(x;). In particular,
the union of the associated primes of these cones equals Ass(gr;(R)).

Proof. Tterate short exact sequences obtained from multiplication by inj(z;) in increasing degrees;
superficiality ensures exactness in high degrees and bounds the defect in low degrees. Mapping cone
decompositions yield a finite filtration with the stated property. O

Corollary 2.38 (Reduction to degree one). After possibly replacing R by a standard faithfully flat
extension that renders residue fields infinite, and shrinking to a dense open where minimal reductions
exist and are generated by superficial sequences, under the setup of Proposition 2.37, if all maps -iny(x;)
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are injective in degree 1 on a dense open then Ass(gry(R)) is not dense; conversely, failure in degree 1
on a dense open forces density.

Proof. Immediate from Proposition 2.37 and the fact that higher-degree failures are controlled by finitely
many lower degrees (Lemma 2.13). (]

Example 2.39 (Complete intersection case). If I is generated by a regular sequence, then any minimal
reduction J = I has r;(I) = 0 and the superficial frame acts by nonzerodivisors; thus Ass(gr;(R)) is
not dense and in fact finite, agreeing with Corollary 2.38.

Example 2.40 (Almost complete intersection). Let I = (f1,..., f¢,g) with J = (f1,..., f¢) a minimal
reduction and g ¢ J. Then r;(I) > 1 and multiplication by at least one ins(f;) fails in degree 1
generically, enforcing density by Corollary 2.38.

Example 2.41 (Integral closure stable but not linear type). If R = R but I is not of linear type (e.g.,
certain height-two perfect ideals), the degree-1 map from gr; to gr; fails generically, giving density
despite integrally closed Rees algebra.

2.11. Formulations and equivalence.

Definition 2.42 (Degree—1 defect locus). Fix a superficial frame (J;z1,...,2¢) on an open U C Spec R.
The degree—1 defect locus D C U is the set of p € U for which at least one

-ing(z) : (grr(R)), ®r k(p) = (gr7(R)), ®r K(p)

fails to be injective.

Lemma 2.43. Assume (H1)—(H2). If the defect locus D is dense in U, then Ass (gr;(R)) is Zariski
dense in Spec R.

Theorem 2.44 (Equivalence of formulations). After possibly replacing R by a standard faithfully flat

extension that renders residue fields infinite, and shrinking to a dense open where minimal reductions

exist and are generated by superficial sequences, assume (H1)—(H2). The following are equivalent:

(E1) Ass(gry(R)) is Zariski dense in Spec R.

(E2) For some (equivalently any) minimal reduction J on a dense open, rj(I) > 0 and the special fiber
has a degree—1 zero divisor on a dense open.

(E3) The defect locus of Definition 2.42 is dense for some (equivalently any) superficial frame.

Proof. We argue Item (El)=1Item (E2)=Item (E3)=-Item (E1).

Item (E1)=Item (E2). By Definition 2.36 and Corollary 2.38 (reduction to degree 1), after shrink-
ing to a dense open U the degree—1 behavior is controlled uniformly on U (on U this follows from
Proposition 3.4, which identifies Condition (Y) with r;(I) > 0 under the superficiality hypotheses).
Invoking Corollary 2.38, the degree-1 failure forced by the axiom implies that for every basic open D(f)
we may choose p € U N D(f) with a degree-1 zero-divisor in the fiber, hence with Ass(gr; (Ry)) # ©.
Localizing and contracting shows that Ass(gr;(R)) meets D(f); therefore Ass(gr;(R)) is Zariski dense.
This establishes Item (E2).

Item (E2)=1Item (E3). Assume Ass(gr;(R)) is Zariski dense. By the fiber criterion packaged in
Proposition 2.14 (see also its parts Items (a) to (c¢) where applicable), there exists a dense subset
D C Spec(R) such that for all p € D the special fiber

F(lp) = Ry, (Ry) @r, £(p)
has a degree-1 zero-divisor. Concretely, writing the standard exact sequence of graded R = R;(R)-modules
0— R(-1) LR — gr;(R) — 0
and then localizing at p and tensoring with x(p) yields the exact sequence
R .
Tor; p(H(P)ygl"fp (Ry)) — F(Ip)(—1) — F(lp) — gl"l,,(Rp) ®R, K(p) — 0,

so the nonvanishing on the left forces -t to have nonzero kernel, i.e. a degree-1 zero-divisor in F(Iy).
Under (H2) (analytical hypotheses ensuring existence of minimal reductions on a dense open), we may
shrink to a dense open U C D on which minimal reductions exist and the analytic spread is constant;
by Corollary 2.18 the property “r;(I,) > 07 is equivalent (on U) to failure of degree-1 injectivity for
(gry)1 — (gry)1, and this equivalence is independent of the chosen minimal reduction J on U. Thus we
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obtain a dense open on which for some (equivalently any) minimal reduction J, both r;(I) > 0 and
“degree-1 zero-divisor in F(I)” hold. This is precisely Item (E3).

Item (E3)=Item (E1). Assume there is a dense open U C Spec(R) and a minimal reduction J of I on
U such that r;(I) > 0 and F(I) has a degree-1 zero-divisor on U. Fix p € U. Tensoring the standard
exact sequence as above over R, with x(p) shows that the existence of a degree-1 zero-divisor in F(I,)
is equivalent to

Tory ™ ((p), gry, (Ry)) # 0,

hence to depthp (gry, (Ry)) =0, i.e. Ass(gry (Ry)) # @. In particular, Ass(gr;, (I2y)) contains a prime
properly containing a minimal prime whenever dim R, > 1, which is the case of interest under (H1).
Choosing a superficial frame on U (available by the generic choice principle used throughout and encoded,
e.g., in Definition 2.36), the failure in degree 1 persists after lifting from fibers to the total space: the
annihilator of a nonzero element in degree 1 of F(I;) lifts to the annihilator of a nonzero homogeneous
element in gr; (Ry) in degree 1, and by contraction/localization these annihilators define closed sets
that meet every basic open of U. This is exactly the mechanism encapsulated in Definition 2.42 (the
degree—1 defect locus) and Theorem 2.31 ((iii)=-(i)): the defect locus is dense, so the criterion there
applies and yields Zariski density of Ass(gr;(R)). Therefore (E1) follows.

Combining the three implications completes the proof of Theorem 2.44.

(El) 1 localization & fiber ( (E2)
criterion (Proposition 2.14
Ass(gr;(R)) dense P )= rs(I) >0 an.d‘
¥ degree—1 zero—divisor
in SpecR in F(I)

Tor—depth criteri

4labrega—Valla
(Theorem 2.31)

equivalence

(E3)
Dense defect locus
of superficial frame

Cycle of equivalences in Theorem 2.44:
(E1) global density < (E2) positive reduction num-
ber + fiber torsion < (E3) dense degree-1 defect locus.

Ficure 10. Logical and geometric cycle underlying Theorem 2.44.

O

Example 2.45 (Plane curve singularities). Let R = k[, y|(.,)/(f), where f(z,y) defines a plane curve

with an dsolated singularity at the origin, and let I = (2%, 4") with a,b > 2. We analyze the graded
behavior of

gry(R) = @ I"/T"*" ~ K[z, 4)/(f,2%,4") © (2%,9°)/ (@, 2", y®") @ ...
n>0

Step 1 (Local reduction). The minimal reduction J = (2%, 1) satisfies r;(I) > 0 whenever f is
non-smooth: then xy € I? but xy ¢ JI, giving J N I? # JI and failure of Valabrega—Valla injectivity.

Step 2 (Geometric picture). The blow-up Proj(R;(R)) has exceptional divisor given by the
tangent cone Spec k[z, y|/(fa), where f, is the lowest homogeneous part. If f, is reducible or non-reduced,
then the degree-1 component of the fiber F (1) = (I, /myI,)[t] contains a zero-divisor corresponding to
the repeated tangent direction.

Step 3 (Conclusion). Hence F(1,) has a degree-1 zero-divisor on a dense open and by Theorem 2.44,
Ass(gry(R)) is Zariski dense in Spec R.



ZARISKI DENSITY OF ASS(GR I(R)) 15

Y

repeated tangent
flz,y)~0

/.,

FIGURE 11. Visualization of a nonreduced tangent cone. The cubic curve f(z,y) =
y? — (3 — ) = 0 exhibits a repeated tangent along the diagonal (red), representing
coincident tangent directions in the exceptional divisor of the blow-up Proj(R(I)). This
geometric degeneration signals the presence of nilpotent structure in the fiber, echoing
the behavior described in Theorem 2.31 and Figure 77.

Example 2.46 (Height-one ideals on normal surfaces). Let R be a two-dimensional normal local
domain with maximal ideal m and let I C R be an integrally closed m-primary ideal. By Lipman’s
correspondence, I +— Z; where Zj is the anti-nef cycle on the minimal resolution 7 : X — Spec R
satisfying IOx = Ox(—Z7). A minimal reduction corresponds to the largest sub-cycle Z; < Z; with
7?2 = 73 If Z1 is not principal, then Z — Z is effective non-zero, so r;(I) = min{n : I"*! = JI"} > 0.

Degree-1 torsion. On fibers of m, the sheaf Ox(—Z;) fails to be generated in degree 1 along
components of Z; — Z; its section ring @,,~o H*(X, Ox(—nZ;)) therefore has a degree-1 zero-divisor.
By Theorem 2.44, Ass(gr;(R)) is Zariski dense.

AR
oO—O0—0
Eq Es Ej

FIGURE 12. Intersection diagram of exceptional divisors. The components F1, Fo, F3
represent irreducible components of the exceptional divisor in the blow-up Proj(R(])).
The labeled edge Z; — Z; indicates the cycle-theoretic difference between divisors arising
from two filtrations I and J, measuring how the Rees algebras R(I) and R(J) differ
under specialization. Such intersection chains reflect the change in tangent-cone strata
and play a role in the divisor-level comparison used in Proposition 2.49 and Theorem 2.31.

Example 2.47 (Fiber cones of determinantal modules). Let R = k[x;;] and let I = I;(M) be the ideal
generated by the ¢ x ¢ minors of a generic m x n matrix M with 2 < ¢ < min(m,n). The special fiber
(the determinantal variety)
F(I) = klwy] /L (M)
is reduced but not a complete intersection once ¢ > 2. The first syzygies among the t x t minors occur
in degree 1: each linear Koszul relation
Z a;m; = 0
J

among the degree-1 generators m; of F'(I) gives, after multiplication by another degree-1 generator, two
distinct degree-2 classes representing the same element in F'(I)2. Thus a nontrivial degree—1 element u
and another degree—1 element v satisfy uv = 0 in F'(I), producing an explicit zero—divisor of degree 1
(cf. standard determinantal-syzygy constructions for I;(M)).

Consequently the map

(gr;(R)r — (gr7(R)h
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fails to be injective for any minimal reduction J, hence r;(I) > 0. By Theorem 2.44, Ass(gr;(R)) is
Zariski dense.

linear relation

/\

rank M < ¢ > Spec(F (1))

Fi1GURE 13. Rank-relation correspondence in the fiber cone. The locus where rank M < ¢
maps into Spec(F(I)), with the red curve indicating a linear relation among the generators
of I in degree one. This geometric viewpoint connects the algebraic rank condition to
the appearance of linear dependencies in the special fiber algebra, a phenomenon crucial
for detecting depth drops and fiber torsion in Theorem 2.31 and Corollary 2.18.

2.12. Notes on measurement and evaluation.

Definition 2.48 (Measure). Define the density defect function d(g 1y: Spec(R) — N by

Ser.y(p) = dimyy) Tory® (k(p), F(Ly)), ,
the degree-1 torsion rank in the special fiber at p. Then 5(_ R1 D (N>1) is the degree-1 defect locus.

Proposition 2.49 (Upper semicontinuity). The function (g, ry is upper semicontinuous, and its support
is constructible. If it is nonempty, then it contains a dense open subset if and only if Ass(gr;(R)) is
Zariski dense.

Proof. ¢ is the dimension of the fiber of a coherent sheaf (the first homology of the degree-1 part of a
presentation of F(I)), hence upper semicontinuous. The final statement follows from Theorem 2.31. [
2.13. Further remarks, consequences, and limits.

Remark 2.50 (Limit and contraction). Passing to powers I? (¢ > 1) contracts the defect locus in degree 1
but cannot eliminate it on a dense open if it is already dense for I, since gry,(R) is a Veronese subring
of gr;(R).

Consequence 2.51 (Persistence under Veronese). If Ass(gr;(R)) is dense, then so is Ass(grrq(R)) for
every q > 1.

Proof. The g-th Veronese subring gr;(R)(@ = gr;,(R) shares the same homogeneous prime spectrum up
to finite map; density is preserved under finite morphisms. O

Example 2.52 (Veronese identification in a regular local surface). Let R = k[z,y](,,) and I =

(2%, 2%y, xy?,y*) = (z,y)*. Then

gri(R) = @In—i-l = @ (z,y) 3n+3

n>0 n>0

Consequently the ¢g-th Veronese subring satisfies

(w9 )G
ng(R)(Q) = @ (gj y 3qn+3q @ ZL‘ y (3q)(n+1 = gr(l’vy)gq (R) = 8lya (R)
n>0

The isomorphism is induced by the identity on R and the inclusion 19" /T9("+1) «y [an /[0 which is
an equality here since I = (z,y)? is m-primary and powers are linearly ordered. Because Proj (gr;(R))=
Proj(grye(R)) via the standard Veronese equivalence, the finite map on homogeneous spectra preserves
the image’s closure in Spec(R). Hence if Ass(gr;(R)) is dense in Spec(R), so is Ass(gryq(R)).
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finite, Veronese (

Proj( g@ | Proj (grra(R)) }

structure structure

A\l \4

Spec(R) oty Spec(R)

FIGURE 14. Veronese identification gr;(R)(® 2 gr;,(R) induces a finite map on Proj.
Density of images in Spec(R) is preserved under finite morphisms.

Example 2.53 (Determinantal surface and the blowup picture). Let R = k[s, t, z,y]/(sx — ty) localized
at the homogeneous maximal ideal, and let I = (x,y). The Rees algebra R(I) = @,,>0 ["T" C R[T] is
generated in degree 1 by =T, yT with the single relation

s-(yT) — t-(2T) = 0,

so Proj(R(I)) is the blowup of Spec R along I and gr;(R) = R(I)/IR(I). For each ¢ > 1, the ¢-th
Veronese subalgebra R(I)@ equals R(I9) inside R[T] (because (I9)™ = I7"), hence

gr,(R)W = R(DW/ITR( = R(I)/IR(I7) = gryo(R).

Topologically, Proj( gr;(R)) — Spec(R) and Proj( gry«(R)) — Spec(R) have the same image, and the
transition Proj(gr;(R)) --» Proj(grye(R)) is finite. Therefore, if Ass(gr;(R)) is Zariski dense in Spec R,
so is Ass(grzq(R)).

finite (Veronese)

blowup along I blowup along 77

Spec(R) oty Spec(R)

FIGURE 15. ReesVeronese viewpoint: R(I)(@ = R(I9), so Proj’s coincide up to a finite
map; density of associated primes in the base is preserved.

ose superficial fr. initial forms
Rﬁ ””””””” iﬂ xla"'y %ng(R)

|
|
} degree-1 torsion

form R

FIGURE 16. Flow from (R, ) to degree-1 torsion in special fibers controlling density of Ass(gr;(R)).

2.14. Assertions and proofs only.

Assertion 2.54 (Depth drop detects density). Assume (H1)—-(H2). If depth(gr;(R)) <0 on a dense
open subset of Spec(R), then Ass(gr;(R)) is Zariski dense in Spec(R).

Proof. By Theorem 2.31 (Localization—specialization principle), Zariski density of Ass(gr;(R)) is equiva-
lent to the existence of a dense open subset U C Spec(R) such that, for every p € U, the special fiber
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algebra F'(I,) := R(I,) ®r, k(p) possesses a degree-1 zero-divisor. We now translate the depth condition
into this fiberwise torsion.

Step 1 (Depth drop and Tor). The short exact sequence of graded R(I)-modules
0 — RUI)(~1) 5 R(I) — gry(R) — 0
localizes at any p to an exact sequence of R(/,)-modules. Tensoring over R, with x(p) yields
R t
Tory ™ (k(p), gry, (Rp)) — F(Ip)(=1) = F(Iy) — gry, (Ry) ® k(p) — 0.

The nonvanishing of Tor?p (k(p), gy, (Rp)) is equivalent (by the depth—Tor criterion) to depthp, (gry, (Ry)) =
0.

Step 2 (Depth < 0 implies fiber torsion). If depth(gr;(R)) < 0 on a dense open U C Spec(R),
then for all p € U one has TorjlRp (k(p), gry, (Ry)) # 0. Exactness of the above sequence then forces
ker(-t : F'(I,)(—1) = F(Ip)) # 0; hence F(I,) contains a degree-1 zero-divisor. In geometric language,
the exceptional divisor of Proj(R(I)) — Spec(R) acquires a non-reduced component along a dense set
of fibers.

Step 3 (Apply localization—specialization). By Theorem 2.31, the dense set of primes for
which F'(I,) has a degree-1 zero—divisor forces Ass(gr;(R)) to meet every basic open D(f). Therefore
Ass(gr;(R)) is Zariski dense in Spec(R).

Geometric meaning. A drop of depth to zero means that the normal cone Proj(gr;(R)) C Proj(R(I))
becomes non-Cohen—Macaulay along a divisor of the base. This failure corresponds precisely to the
appearance of embedded components in the fibers of the blow-up, which in turn register as dense
associated primes of gry(R). O

Depth <0
on Spec(R)

depth—Tor

Y

{ Torf (s(p), &1/, (Ry)) #0 }

(fiber Tor nonzero)

fiber exact seq.

Y

L ker(t) in F(,) }

degree—1 zero—divisor

Thm. 2.31
Y

{ Ass(gr;(R)) }

Zariski dense

FIGURE 17. Vertical logical propagation chain: depth drop = fiber torsion = degree—1
zero—divisor = Zariski density of Ass(gr;(R)). Each implication corresponds to the
analytic and geometric transitions underlying Theorem 2.31.

Example 2.55 (Symbolic height-one prime with nontrivial class). Assume R is a normal domain
satisfying (H1)—(H2) and let I = p be a height-one prime with [p] # 0 in CI(R). Consider the symbolic
filtration p(™ and the associated graded ring 8ly(e) (R).

(a) Geometric input. Writing Or(—D) ~ p for a Weil divisor D, the symbolic Rees algebra
Roym(p) = @p(”)t” identifies with @,,~o'(Or(—nD)). Nontriviality [D] # 0 implies that
n>0
degree 1 fails to generate the section ring along a dense set of height-one strata.
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(b) Depth drop on a dense open. For a dense open U C Spec(R) where divisor data trivialize
locally but not globally, the failure of principalization creates torsion in (p/p®) @ k(p) for each
p € U. By the depth—Tor criterion on fibers (Step 1 in the proof of Assertion 2.54), this is equivalent
to Tori%p (r(p), gry, (Rp)) # 0, hence depthp (gry (Rp)) = 0.

(c) Conclusion by localization—specialization. By Theorem 2.31, the degree-1 fiber torsion on
U forces Ass(gr,(R)) to be Zariski dense in Spec(R). This realizes Assertion 2.54 concretely in a
divisor-theoretic setting.

(no global trivialization)

L [D] # 0 in CI(R) }

symbolic sections

Y

L (0/p®) ® k(p) }

has torsion on a dense U

depth—Tor on fiber

Y

{ Tor™ (s(s), ax,,) #0 J

= depthp (gr, ) =0

Theorem 2.31

Y

{ Ass(gr, (R)) }

Zariski dense

FicURE 18. Example 2.55: divisor—class obstruction = degree—1 fiber torsion = Zariski
density of Ass(gry(R)). The nontrivial divisor class [D] # 0 in CI(R) prevents global
trivialization, forcing torsion in (p/p®)® k(p) on a dense open set and ultimately depth 0
behavior on fibers, as predicted by Theorem 2.31.

Example 2.56 (Equimultiple ideal with positive reduction number). Let (R, m) be Cohen—-Macaulay of
dimension d, assume (H1)—(H2), and let I C R be equimultiple with ¢(I) = ht(I). Shrink to a dense
open where minimal reductions are generated by superficial sequences, and fix a minimal reduction
J = (371,...,.%‘@) with TJ(I) > 0.

(a) Degree—1 failure. By Valabrega—Valla, injectivity of (gr;); — (gr;)1 is equivalent to JNI% = JI.
Since 7;(I) > 0, one has I? # JI and therefore JNI? D JI, so degree-1 injectivity fails on a dense
open (superficial frame).

(b) Depth drop. The failure yields a nonzero class in (J N 12)/(JI) that lifts to a kernel element in
the fiber exact sequence

Tory ™ (k(p), g7, (Rp)) — F(L)(~1) 5 F(1,),

forcing Tor{th # 0 (equivalently depthp gr; (Ry) = 0) for all p in a dense open.
(c) Density. By Theorem 2.31, the degree-1 fiber torsion on a dense open implies Ass(gr;(R)) is
Zariski dense in Spec(R). Thus Assertion 2.54 holds via the r;(I) > 0 mechanism.
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(grs)

r

VV:JnN IQ = JI i fails on dense open

v

(gr)1

|
|
! fiber degree—1 torsion
|

~

fiber degree—1 torsion
lTheorem 2.31

Ass(gr;(R)) dense

FIGURE 19. Example 2.56: equimultiple failure (r;(I) > 0) = degree—1 map failure =
fiber torsion = Zariski density of Ass(gr;(R)). The vertical chain depicts how violation
of the Valabrega—Valla condition J N I? = JI propagates to a depth drop on fibers,
confirming the specialization principle of Theorem 2.31.

Counterexample 2.57 (No density without depth drop in the linear-type case). Let I be generated
by a regular sequence (so I is of linear type and J = I is a minimal reduction with rj(I) =0). Then
gry(R) = Symp(I) along a dense open, and (gr;(R))1 is R—torsionfree. In particular, the fiber Tor
group Torf”p (k(p), grp, (Ry)) = 0 for p in a dense open, so depthp (gr; ) > 1 generically and Ass(gr;(R))
is not dense.

Complete intersection
(linear type)

Y

{ (gry)1 torsionfree }

= Tor; = 0 on dense open

Y

{ depth(gr; ) > 1 generically }

Y

{ Ass(gr;) not dense }

FIGURE 20. Counterexample 2.57: when depth does not drop (complete intersection
/ linear type), the density of Ass(gr;) fails. This demonstrates that the converse of
Assertion 2.54 does not hold— linear type prevents the formation of fiber torsion, keeping
the associated primes non-dense.

Counterexample 2.58 (Necessity of (H2)). If (R, m) is analytically ramified (completion not reduced),
the Rees valuations may fail to control initial degrees uniformly, and the depth/associated-prime behavior
of gr;(R) can become sporadic across the base. In such settings, fiber Tor may not detect a dense set of
degree-1 zero—divisors, and the implication of Assertion 2.54 can fail. This illustrates that (H2) is not
merely technical but structurally required for the depth—fiber—density bridge.

Assertion 2.59 (Flat degeneration). If gr;(R) flatly degenerates to a graded ring G for which Ass(Q)
is dense in Spec(R) via the same contraction map, then Ass(gr;(R)) is dense.

Proof. Flatness preserves associated primes in families; density pulls back along specialization. O
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Analytically ramified R
(completion nonreduced)

\
[ Rees valuations do not }

govern initial degrees uniformly

Y
[ Fiber Tor / degree—1 torsion }

not dense or unstable

Y

[ Depth—density bridge breaks }

FIGURE 21. Counterexample 2.58: when assumption (H2) (analytic unramifiedness) fails,
the completion becomes nonreduced, breaking uniform control of Rees valuations. Conse-
quently, fiber-wise Tor behavior and degree—1 torsion lose stability, and the depth—density
correspondence of Theorem 2.31 no longer holds.

2.15. Counterexample (boundary of hypotheses).

Counterexample 2.60 (Failure without (H2)). Let (R, m) be analytically ramified (e.g. a nonreduced
completion). It can happen that I™ # I™ frequently and the Rees valuations fail to control the initial
degrees uniformly, producing sporadic associated primes but not a dense set. This shows (H2) is not
merely technical.

2.16. Closing notation summary for the paper.

Notation 2.61 (Global summary). We consistently write R(I) for the Rees algebra and gr;(R) for the
associated graded ring. References to Ass(gr;(R)) always mean associated primes viewed as R—modules
and then contracted to Spec R.

3. MAIN RESULTS

Remark 3.1 (Conceptual outline of the density argument). By Lemmas 2.11 and 2.13 and the fiber
viewpoint in Proposition 2.14, Zariski density of Ass(gr;(R)) in Spec(R) is equivalent to a generic failure
of degree-1 regularity in the special fibers of the Rees algebra. Concretely, the obstruction is already
visible for any minimal reduction J on a dense open: if r;(I) > 0 and the degree-1 map gr; — gr; fails
generically, density follows.

Remark 3.2 (Method: Reduction-to-fiber approach). (1) Replace I by a minimal reduction J on a
dense open, as in Definition 2.36.
(2) Detect failure of injectivity in degree 1 (Proposition 2.37 and Corollary 2.38).
(3) Transport to special fibers and back (Theorem 2.31).

Interpretation 3.1. What “generic degree-1 torsion” means Write F(I,) = R(I;) ®r, k(p)
for the special fiber at p. A degree-1 zero-divisor in F(1,) is precisely a nontrivial relation among the
initial forms of a minimal reduction of I, (after shrinking to ensure superficiality). Thus the locus
{p € Spec R: §(g,r)(p) = 1} of Definition 2.48 governs density|[16, 5].

Definition 3.3 (Condition (Y)). Let J C I be a minimal reduction on a dense open subset of Spec R.
We say that Condition (Y) holds if the natural graded map

(gr;(R)r — (gr7(R))h
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fails to be injective on a dense open (equivalently, the induced map (gr;, (Ry))1 — (gr,(Rp))1 is
non-injective for all p in some dense open subset of Spec R).

As shown in Proposition 3.4 below, under our standing superficiality hypotheses, Condition (Y) is
equivalent to the numerical criterion r;(I) > 0. Hence throughout we freely use these two formulations
interchangeably.

Proposition 3.4 (Equivalence of Condition (Y)). Assume (H1)-(H2) and the superficiality hypotheses
of Definition 2.36. Then Condition (Y) holds if and only if rj(I) > 0 on a dense open subset of Spec R.
In particular, under these assumptions Condition (Y) is a reformulation—not an additional axiom—of
the positivity of the reduction number on a dense open.

Proof. By Lemma 4.7 and the Valabrega—Valla criterion, injectivity of (gr;(R))1 — (gr;(R))1 is equivalent
to JNI? = JI (Here we work after possibly replacing R by a standard faithfully flat extension ensuring
infinite residue field so that superficial sequences exist generically). The latter equality holds if and only
if r7(I) = 0 by definition of the reduction number. Therefore failure of injectivity in degree 1 occurs
exactly when r;(I) > 0 on a dense open, as claimed. O

Theorem 3.5 (Criterion via Rees algebra). Assume (H1) from Definition 2.3. Then the following are
equivalent:
(i) Ass(gr;(R)) is Zariski dense in Spec(R).
(ii) (Condition Y) There exists a dense open U C Spec(R) and a minimal reduction J C I on U
such that the natural graded map

(ng,, (Ry)), — (grlp(Rp))l

is not injective for allp € U.
(iii) The special fiber algebra F(I,) = Ry, (Ry)®r, x(p) has a degree-1 zero-divisor on a dense open
subset of Spec(R), i.e. 6r y(p) = 1 on a dense open, where & is as in Definition 2.48.

Proof. We prove Item (i)=-Item (ii)=Item (iii)=Item (i).
Item (i)=1Item (ii). Assume Ass(gr;(R)) is Zariski dense in Spec(R). By (H1) and the existence of
superficial frames on a dense open (cf. Definition 2.36), after shrinking to a dense open U C Spec(R) we
may fix a minimal reduction J C I on U generated Zariski-locally by a superficial sequence.

For each p € U, density of Ass(gr;(R)) implies that

Ass(gry (Ry)) # @ for a dense subset of U,

hence depthp, (gr;,(Ry)) = 0 generically. In particular, for all p in some dense open U’ C U, the

degree-1 piece of gry (R,) is not Ry—torsionfree: there exists a nonzero = € (I,/ Ig) annihilated by some
0#acR,.

Now invoke the degree-1 control given in Lemma 2.13 together with the Valabrega—Valla type
identification [22] encapsulated in Proposition 4.8: for a minimal reduction J, generated by a superficial
sequence, the natural map

(gry, (Ry)), — (glrIp(Rp))1 is injective <= Jy N Ig = Jyly.

Since (gry, (1p))1 has nontrivial R,—torsion for all p € U’, the injectivity cannot hold there; otherwise
the cone comparison in Proposition 4.8 would force exactness in degree 1, contradicting the observed
torsion. Hence for all p € U’ the map

( ery, (RP))1 - ( ery, (RP)) 1
fails to be injective. Replacing U by U’ proves Item (ii).

Item (ii)=Item (7ii). Fix the dense open U and a minimal reduction J on U as in Item (ii). For each
p € U, noninjectivity of

(gry,(Ry)), — (erg, (Ry)),
is equivalent (by Proposition 4.8) to the failure of the Valabrega—Valla equality J, N Ip2 = Jpl,. Choose
y € (JyNI2)\ (Jply). Write y = S, a;b; with ay,...,ap a minimal generating set of J, coming from a
superficial frame (so each a; is superficial) and b; € Rp; because y € Ig, in fact b; € I, for all 7.



ZARISKI DENSITY OF ASS(GR I(R)) 23

Pass to the Rees algebra Ry, (Ry) = @,,>0 [;'t". In degree 2 we have the relation

14

yt? = ait-bit in Rp(Ry),
=1

where bars denote the classes in the associated graded modulo the irrelevant ideal when appropriate.
Apply the standard exact sequence of graded Ry, (R)-modules[9, 20]

(3.1) 0 — Ry, (Rp)(—1) 5 Ry, (Ry) — gry (Rp) — 0
and tensor over R, with x(p). We obtain an exact sequence of graded x(p)-algebras
R .
(3.2) Tor,” (k(p), g1y, (Ry)) — F(Lp)(=1) = F(I,) — gy, (Ry) @, £(p) — 0.

Because y ¢ JyI, its class in (J, N 17)/(Jply) is nonzero; this is precisely the kernel element witnessing
the failure of injectivity in degree 1. By the cone comparison (Proposition 4.8) and degree-1 control
(Lemma 2.13), such a kernel maps to a nonzero element in the source of -t in (3.2), hence ker(-t) # 0.
Consequently F (1) has a degree-1 zero-divisor (equivalently, oz 7)(p) > 1 in the sense of Definition 2.48).
Since this holds for all p in the dense open U, Item (iii) follows.

Item (iit)=Item (i). Assume that on a dense open U C Spec(R) each p € U satisfies: F(I,) has a
degree-1 zero-divisor (equivalently, the map -¢ in (3.2) has nonzero kernel). By exactness of (3.2) this
implies

Tor{™ ((p), g1y, (Ry)) # 0 forall p € U,

hence depthp, (gr;, (1)) = 0 and thus Ass(gr; (R;)) # @ on a dense open. Now apply the local-
ization—specialization principle Theorem 2.31 (the implication Item (iii)=Item (i)) to conclude that
Ass(gr;(R)) meets every nonempty open subset of Spec(R); therefore it is Zariski dense. This proves
Item (i).

Combining the three implications yields the equivalence of Item (i)-Item (iii) and completes the proof
of Theorem 3.5.

Logical cycle of Theorem 3.5

{ (i) Ass( gr,(R)) ]

Zariski dense in Spec(R)

localization—specialization (Theorem 2.31) superficial frame + Valabrega—Valla

(iii) Special fiber F(I,) (ii) Degree-1 map
has a degree-1 zero-divisor |<«———Rees exact seq. (3.1), fiber torsion (ng_)l. _>. (grf)l
(Or,ny(p) = 1) not injective on

R,I £

a dense open

F1Gure 22. Closed implication cycle of Theorem 3.5. Each edge corresponds to one
implication used in the proof.

U
Example 3.6 (Monomial/coordinate split). Let R = k[z1,...,z4) and I = (27", ..., 2% ) with 1 <r < d
and a; > 1. A natural minimal reduction is J = (z{*, ..., 2% ) itself on the dense open
U = Spec(R) \ V(zr41- - 24),
since over U the irrelevant coordinates x,41,..., x4 are units. Then

gr/(R) 2 k[z1, ..., 2t/ (25t i <) and (gry(R)1 = (z%,...,2%)/ (3, .., x2%).

Y ' Y '
On U, the image of (gr;)1 — (gr;)1 loses linear independence because each z}*t becomes annihilated by
a monomial in the unit variables z,41,...,z4:

(Tpg1-zg) 2t =0 in F(I)|y.
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Thus F(I) has a degree-1 zero-divisor on a dense open, implying Ass(gr;(R)) is Zariski dense by
Theorem 3.5.

degree torsion locus

T

FIGURE 23. Visualization of the fiberwise degree-1 torsion locus: points (x;, deg) denote
generators along the Rees valuation scale. The highlighted red point indicates the
emergence of torsion in degree 1, triggering the Zariski-dense behavior of Ass(gr;(R))
described in Proposition 2.14.

Example 3.7 (Equimultiple but not linear type). Let (R,m) be a Cohen—Macaulay local ring of
dimension d, and let I C R be equimultiple, i.e. £(I) = ht(I) = r, but not of linear type. Typical
examples include almost complete intersections such as

I = (z172, w273, 2371) C K[T1, 72, ¥3](2) 20,29
A minimal reduction is J = (z122, xo73), with r;(I) =1 > 0 ([13], [4]). Then the equality J N 12 = JI
fails: indeed
T1T2x3 € JnI? \ JI,
so the map (gr J) — (gry)1 has non-zero kernel, producing torsion in (gr;);. Consequently the special

fiber F(I) = R1(R) ®g k possesses a degree-1 zero-divisor, and Theorem 3.5 guarantees Ass(gr;(R)) is
dense.

R (R)

1ncluslonj

Rr(Rker #0
mod (
(1)

gry(R)

FI1GURE 24. Comparison of Rees algebras under inclusion: the embedding R ;(R) —
R(R) induces a surjection modulo (¢) onto the graded ring gr;(R). The nonzero kernel
reflects failure of the Valabrega—Valla condition J N I? # JI, producing degree-1 fiber
torsion and feeding into the depth—density mechanism of Theorem 2.31.

Example 3.8 (Degeneration to monomial ideal). Let I C R = k[z,y, z] be generated by homogeneous
quadrics

I = (2 +yz, y> + 2z, 22 + zy).
Consider the flat family Z; over k[t] with initial ideal I'™ = (22, 32, 22) at t = 0. The Rees algebras form
a flat family
Rz, (R[t]) — Rym(R).
Since 7 i (I™) = 1 and (gr;m )1 has torsion (by Example 2.15), flatness ensures that the property “F(Z;)

has a degree-1 zero-divisor” is open in the base; hence it holds for generic ¢t # 0. By Theorem 3.5 the
associated primes of gry(R) are then dense in Spec(R).
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L7

flat degeneration
(t—0)

e

FIGURE 25. Flat degeneration: the ideal I specializes to its initial form I'™ as the
deformation parameter ¢ — 0. This vertical “limit” picture aligns with the graded-flat
Rees deformation used to compare gryin(R) and gry(R).

Corollary 3.9 (Consequences of Theorem 3.5). Assume (H1). Then the following hold.

(a) (Flat base change)[18, 19] For any flat map R — S with geometrically reduced fibers, the image
of Ass(gr;(R)) in Spec S contains Ass(gryg(S)) (Proposition 2.28); in particular, by [19],

Assg(grrs(S)) € {qeSpecS|qnNR e Assg(gry(R)) },

so Zariski density ascends along flat maps.

(b) (Veronese persistence) If Ass(gr;(R)) is dense, then so is Ass(grpqe(R)) for every ¢ > 1 (Conse-
quence 2.51).

(¢c) (Symbolic/closure stability) Under (H2), replacing I by its integral closure I does not change
the Zariski closure of Ass(gr;(R)) (Lemma 4.3, [5, 21, 17]).

Proof. Ttem (a) is Proposition 2.28. Item (b) follows from Consequence 2.51. Item (c) follows from
Lemma 4.3. O

Example 3.10 (Uniformity across base change). Let R — S = R[T|¢ be localization of a polynomial
extension; fibers are geometrically reduced on a principal open. If Ass(gr;(R)) is dense, then so is
Ass(grrg(S)) by Item (a), giving density on generic hypersurface sections.

Example 3.11 (Parameter ideals vs. powers). If I is generated by a system of parameters (so Ass(gr;)
is not dense), then for ¢ > 1, gry, is a Veronese subring and still has finite associated primes; Item (b)
is consistent (it does not create density when absent).

Example 3.12 (Integral closure replacement). On a normal surface, let I be an integrally closed
m-primary ideal with nonprincipal cycle. Replacing I by I = I keeps density intact by Item (c) and
Example 2.46.

Theorem 3.13 (Refinement via analytic spread and reductions). Assume (H1)—-(H2). Let J be a
minimal reduction of I on a dense open U C Spec(R), generated by a superficial sequence of length ¢(I).
Then:

(a) (Precondition) If the reduction number rj(I) > 0 on U, then Ass(gr;(R)) is Zariski dense in
Spec(R).

(b) (Quantitative bound) On a dense open subset U C Spec R there exists an integer Ny such
that every associated prime of gr;(R) lying over U is witnessed in degree < Ny. In the case
where R is standard graded and I is generated in degree m, one may take N < m - (¢(I) —1) (cf.
Proposition 4.12 and Example 2.24).

(c) (Strengthened statement) If Ass(gr;(R)) is dense, then for every minimal reduction J' on some
dense open U’, either ry(I) > 0 or depthgr;(R) <0 on U’ (Assertion 2.54).

Proof. We work after shrinking to dense opens as needed, without changing notation.
Proof of Item (a). Assume r;(I) > 0 on U. By definition of reduction number [6, 7] and by the
Valabrega—Valla control encoded in the tools used earlier, the equality
JNI*=JI
fails Zariski-locally on U when r;(I) > 0. Equivalently, for every p € U the degree-1 map

(gry,(Ry)), — (erg,(Rp)),
fails to be injective. By the fiber translation in Proposition 2.14, the failure of injectivity in degree 1
forces a degree-1 zero-divisor in the special fiber F(I,) on a dense open. Then Corollary 2.18 converts
this generic degree-1 fiber torsion into the density of Ass(gr;(R)) in Spec(R). This proves Item (a).
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Proof of Item (b). By Proposition 4.12, under (H2) there is a dense open U C Spec(R) on which we
may choose a superficial frame uniformly; on this U there exists an integer N (depending on R, I, and
the chosen frame on U) such that for every p € U and every Q € Ass(gr IP(RP)) there is a witness in
degree < N. In the standard graded case with I generated in degree m, one may take N < m(¢(I) — 1)
(cf. Example 4.13, [22, 4]).

In the standard graded case, assume R is standard graded and [ is generated by forms of degree m.
Choose a superficial sequence x1, ...,z that generates a minimal reduction (available on a dense open
under (H2)). Modding out successively by z7,..., xz( -1 in gr; lowers the dimension of the support by
one at each step and preserves control of the degree-1 piece. Each step contributes at most m to the
degree at which an associated prime can first appear (this is the uniform graded calculation recorded in
Example 2.24, cf. [4, 9]). Inducting on ¢(I) yields the explicit bound

N < m-(¢I) - 1),

as claimed. This proves Item (b).

Proof of Item (c). Assume Ass(gr;(R)) is Zariski dense in Spec(R). By Theorem 2.31, there exists a
dense open W such that for all p € W the special fiber F(I,) has a zero—divisor in degree 1. Now let J’
be any minimal reduction of I on a dense open U’. Shrinking to U” = U’ N W, we know that on U”
every fiber has a degree-1 zero-divisor. Fix p € U”.

If the map

(gfjg(Rp»l — (grfp (Rp))l
fails to be injective, then r;(I) > 0 at p (this is the content of the reduction/degree-1 correspondence
used throughout and summarized in Proposition 2.14). Hence in this case we are in the first alternative
of Item (c).

Otherwise the above map is injective at p. Since the fiber still has a degree-1 zero-divisor, the graded
exact sequence for the Rees algebra tensored with x(p) shows that Torf',‘p (r(p),grp, (Ry)) # 0. Therefore
depth Rp( gr IP(RP)) = 0. By Assertion 2.54 this depth drop occurs generically along any dense open
where degree-1 torsion persists but the degree-1 map for a minimal reduction remains injective. Hence,
after possibly shrinking U” further, we obtain the second alternative of Item (c): depthgr;(R) < 0 on
U”.

As one of the two mutually exclusive possibilities holds for every p in a dense open (and for every
minimal reduction J’ defined there), Item (c) follows.

The three parts are proved, completing the proof of Theorem 3.13. O

Example 3.14 (Determinantal ideals). Let R = k[x;;] be the polynomial ring in the entries of a generic
2 x n matrix X = (z;;) with n > 4, and let I = I5(X) be the ideal generated by the 2 x 2 minors
Pij = T1,%25 — T1jT2; for 1 <i < j <mn. Then ht(I) =n — 1 (Eagon-Northcott), and (1) =n — 1 (the
special fiber F(I) is the homogeneous coordinate ring of the rational normal scroll of dimension n — 2,
hence dim F(I) =4(I) — 1 =n — 2).

Claim. I is not of linear type for n > 4; equivalently r;(I) > 0 for every minimal reduction J (on the
standard affine open of the coefficient space where minimal reductions are defined by (H2)).

Working proof. Pick the 3 minors pi2,p13,pes and set J = (p12,p13,p23). By symmetry, any J’
obtained by k-linear changes of columns is a minimal reduction on a dense open. The Pliicker relation
in degree 2,

D12 P34 — P13 P24 + p1a p23 = 0,

exhibits a quadratic syzygy among the degree-2 generators of I? which is not generated by the linear
Koszul relations among the p;;. Passing to associated graded rings, this yields that the degree-1 map
(gr;(R)), — (gr;(R)), fails to be injective on a dense open: indeed, modding out by J kills p12, p13, pa3,
and the displayed relation becomes pig P23 = P13 Paa — Pz P34 = 0 in (I/J) - (I/J) while neither piz nor
Pa2s vanishes in (I/J) generically. Equivalently, the special fiber F(I) has a zero divisor in degree 1 on a
dense open (the class of py4 kills the class of peg). By Proposition 2.14 the failure of degree—1 injectivity
forces r;(I) > 0, and then Item (a) gives Zariski density of Ass(gr;(R)).

Quantitative bound for witnesses. Since R is standard graded and I is generated in degree m = 2,
Item (b) yields a uniform witness bound N < m - (¢(I) — 1) = 2(n — 2) for the appearance of associated
primes; in particular the generic degree—1 fiber torsion already produces witnesses in degree < 2(n — 2).
(Sharper bounds are available in this determinantal case, but the stated one suffices.)
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\ degree-1
(J = (P12, P13, P23) | > 1 = (pij)

A\ Y
ry(I) > 0 (Valabrega—Valla | Special fiber F(I) has a
failure J N 12 # JI) degree-1 zero-divisor (e.g.

p14] - p2s] = 0)

Y
Ass(gr;(R)) is Zariski dense in
Spec R by Item (a)

FIGURE 26. Determinantal case: degree—1 torsion in the fiber forces r;(I) > 0 and density.

Example 3.15 (Non-CM one-dimensional local ring). Let (R, m) be a one-dimensional reduced local
ring which is not Cohen—Macaulay, and take I = m. Then for any minimal reduction J of m (which is
principal on a dense open by (H2)) one has rj(m) > 0, hence Ass(gr,,(R)) is Zariski dense by Item (a).
Moreover, by Example 2.25 one may take N < dim R = 1 for the witness degree bound on the open
where J is superficial.

Working proof. Since dim R = 1 and R is reduced but not CM, we have depth R = 0 and H{(R) # 0.
Let z € m be superficial (exists on a dense open by (H2)), and set J = (z), a minimal reduction of
m. Valabrega—Valla’s criterion gives J Nm? = Jm if and only if x* is gr,,(R)-regular in degree 1. But
depth R = 0 implies that Tor®(R/m,gr,(R)) # 0, i.e. gr,(R) has depth 0 at the closed point, so every
degree-1 element is a zero divisor in gr,,(R) at that point. Hence z* is not regular, J Nm? # Jm, and
therefore ry(m) > 0. By Item (a) this forces density of Ass(gr,(R)).

Witness in degree < 1. Because dim R = 1, the support of gr,,(R) has dimension < 1 and the failure
occurs already in degree 1: explicitly, the natural map (m/.J) — m/m? has kernel nonzero at the closed
point, so every associated prime lying over the generic open is witnessed in degree 1 (hence N <1 on
that open).

[depthR = 0 (non-CM, 1-dim, reduced)}

‘fValabrega—Valla fails: J N
'LmQ =% Jm for a superficial x

Y

[Tor¥<R/m, gr(R)) # 0 =

ry(m) > 0 = Ass(gr,(R))
dense, witnesses in degree

degree—1 zero divisor <1

FIGURE 27. One-dimensional non-CM case: depth 0 forces degree—1 fiber torsion and density.

Example 3.16 (Plane curve family). Let R = k[s,t](5 ;) and consider a flat family of plane curves

A = R[x7y]/(f8,t<x7 y))7

where fs; is a deformation exhibiting generic tangency along a dense open in Spec R (e.g. the tangent
cone acquires a repeated linear factor generically). Fix positive integers a, b, and set I = (2¢,y?)A.

Working mechanism for rj(I) > 0 on a dense open. By (H2) we may choose a superficial frame
for I on a dense open U C Spec R and pick a minimal reduction J = (£,n) of I on U, obtained by
general R-linear combinations of % and y°. Under the generic tangency hypothesis, the special fiber
at any p € U has initial form algebra where the degree—1 piece contains two non-proportional linear
forms £*, n* whose product annihilates the initial form of the tangent direction (coming from the double
root in the tangent cone). Concretely, after a linear change of coordinates on U, we can arrange that
in(fs+) = y* + (higher terms) and that ¢ = %, 7 = y® (mod mg). Then in gr;(A,) the degree-1 class
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of % kills the degree-1 class of 4* (because xy vanishes to order > a+ b+ 1 along the tangent direction).
Hence the degree—1 map

(grs,(Ap)); — (erp,(Ap)),

fails to be injective for p in a dense open U. By Proposition 2.14 this forces r;(I) > 0 on U, so Item (a)
gives Zariski density of Ass(gr;(A)) in Spec A.

Persistence under base change. Let R — R’ be any flat morphism; by Proposition 2.28 the formation
of the special fiber and the degree—1 torsion detection commute with base change on a dense open, so
the conclusion persists over Spec R'.

Quantitative bound in the standard graded case. If A is standard graded over a field and [ is generated
in degree m = min{adegz, bdegy}, then Item (b) gives N < m - (¢(I) — 1). Here £(I) = 2 (since I has
analytic spread 2 on the surface A away from the embedded components introduced by the tangency),
hence N < m.

in(fs,t)

S

at
sV

degree-1 torsion in fiber

FIGURE 28. Plane-curve family with generic tangency: initial forms enforce degree—1 fiber torsion.

Proposition 3.17 (Classification of generic behavior). Under (H1)—(H2), exactly one of the following
holds on a dense open U C Spec(R):

(C1) Linear type regime: For some minimal reduction J, the map gry, —>8ry, is an isomorphism in
degree 1 for allp € U, r;(I) =0, and Ass(gr;(R)) is not dense.

(C2) Nonlinear regime: For every minimal reduction J on U, rj(I) > 0 and the map in degree 1 fails
generically; hence Ass(gr;(R)) is dense.

Proof. Mutual exclusivity is clear. If (C1) holds, then I is of linear type [9] on U and gr;(R) is a
polynomial ring in degree 1 variables, forbidding density. If (C2) holds, Theorem 3.5 gives density. One
of the regimes must occur by Proposition 2.14. O

Examples.

Example 3.18 (Regular sequence). If I is a complete intersection, we are in (C1): r;(I) = 0 and
Ass(gry) is finite (hence not dense), matching Example 2.39.

Example 3.19 (Almost complete intersection). If I is almost complete intersection with I # J, we are
in (C2) by r;(I) > 0; density follows.

Example 3.20 (Modules of minors). For I = I,(M) with t > 2 in a generic matrix, syzygies yield
degree-1 relations in the special fiber, placing us in (C2).
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Cond. Y (deg-1 failure) === deg-1 torsion in F(/) on a dense open

mapping cone defect in gry Ass(gr;) dense in Spec(R)

FIGURE 29. Equivalence scheme underlying Theorem 3.5 (compare Theorem 2.31 and Proposition 2.37).

4. KEY LEMMAS AND TECHNICAL TOOLS

Remark 4.1 (Analytical framework for density). The density of Ass(gr;(R)) in Spec(R) reduces to three
verifiable mechanisms: (i) valuation control via Rees valuations and integral closure (Lemma 4.3); (ii)
transfer of zero-divisors through initial forms and graded exact sequences (Lemma 4.5); (iii) analytic
spread and reductions controlling degree-1 behavior (Lemma 4.7), which together feed Propositions 2.37
and 4.12 and hence Theorems 3.5 and 3.13.

Remark 4.2 (Notation consistency). We keep all notation from Standing Setup 2.1 and Section 2.2 (e.g.
R, gr;(R), iny(—), v, €(I), reductions J, reduction number r;(I)) and use the hypotheses (H1)—(H2)
from Definition 2.3 when invoked.

Lemma 4.3 (Rees valuations and integral closure). Let R be Noetherian and I C R a proper ideal.
Let {v1,...,vs} denote the Rees valuations of I, normalized so that v;(I) =1 for all j. Then for each
n>1:
(a) I"={x € R: vj(x)>n forall j}.
(b) If x € R satisfies min; vj(x) = m, then in(z) € I™/I™ is well defined and nonzero. Moreover,
in7(zy) = iny(z) ins(y) and vi(zy) = ve(x) + v4(y) with v, = min; v;.
(¢c) If for some x € I there exists j with vj(x) = 1 and an element y € R such that vj(y) > 1 but
vi(y) > 1 for alli # j, then inf(z) is a zero—divisor in gr;(R).

Proof. Part Item (a) is the standard Rees—valuative criterion for integral closure [5, 21], using the
normalized blowup

Proj(R(I)),
where height—one primes correspond precisely to the Rees valuations of 1.

Item (b) follows from valuation properties and from the definition of the initial degree with respect
to the [—adic filtration; multiplicativity holds because v, is additive on R.

For Item (c), choose z,y as stated. Then v,(x) = 1 while v,(y) > 1, with equality only at v;. In
gry(R) the product iny(x) - ins(y) lies in degree vy (x) 4+ v«(y) > 2. If iny(y) were regular in degree 1,
equality of the supporting valuation sets for all ¢ would follow, contradicting the strict inequality for
i # j. Hence iny(x) annihilates a nonzero element, i.e. it is a zero—divisor [18, 15]. O

Remark 4.4 (Interpretation). Part Item (c) provides a valuation-theoretic mechanism producing degree-
1 zero-divisors in gr;(R), and thus identifies the valuation pattern underlying the dense locus in
Theorem 2.31.

Lemma 4.5 (Initial forms and control of Ass(gr;(R))). Let x € I, and consider the short exact sequence
of graded R(I)-modules[22]

0 — R(I)(~1) =5 R(I) — gr;(R) — 0,

where X denotes the image of t in degree 1. Let inj(x) € gr;(R); denote the initial form of x. If
multiplication by iny(x) fails to be injective on gr;(R) in some degree d, then there exists a homogeneous
associated prime Q € Ass(gr;(R)) with QN R contained in an associated prime of I¢/I141. In particular,
any degree-1 failure of injectivity produces an element of Ass(gr;(R)) supported on the base locus where
x 1s superficial.

Proof. For each d > 0, the degree-d component of the exact sequence above yields
Id-l-l/lild
Jd+2 /x Jd+1

whenever z is superficial (so the map is injective in high degrees).

0 —» 1%/ - ing(x) JCany ar N 0,
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If injectivity fails in degree d, there exists 0 # z € I¢/I%"! annihilated by inj(x), producing
a nonzero submodule of gr;(R) killed by a homogeneous element of degree 1. Taking a minimal
primary decomposition of Ann(z) in the graded module gr;(R) yields a homogeneous associated prime
9 € Ass(gr;(R))[3, 19], and its contraction Q N R annihilates a submodule of I¢/I1%*!. Hence QN R
lies in an associated prime of 1¢/19+1,

The final assertion follows from the standard superficiality control argument (Lemma 2.13). g

Remark 4.6 (Technique). The graded exact sequence above will be repeatedly localized (Lemma 2.11)
and specialized to fibers (Theorem 2.31) to detect dense sets of associated primes from a single degree-1
failure of injectivity.

Lemma 4.7 (Analytic spread and reductions). Assume (H1)-(H2). Let J C I be a minimal reduction
[6] on a dense open U C Spec(R), generated by a superficial sequence of length £(I). Then:
(a) r;(I) =0 on U if and only if the map (gr,;, (Ry)), — (gry,(Ry)), is injective for allp € U.
(b) Ifry(I) >0 on U, then there is a dense open U' C U on which gr; (Ry) — gry, (Ry) fails to be
injective in degree 1 for all p € U’.
(c) Consequently, r;(I) > 0 on a dense open implies Ass(gr;(R)) is Zariski dense in Spec(R).

Proof. Ttem (a): If 7;(I) = 0, then I"*! = JI" for all n > 0 and gr;(R) = gr;(R) in degree 1, so the
map is injective. Conversely, injectivity in degree 1 plus superficial generation of J forces I"t! = JI»
by Nakayama on associated graded, yielding r;(I) = 0 [20].

Item (b): If r;(I) > 0, there exists n with I"*! = JI". By upper semicontinuity of the ranks in
the degree-1 part of F(I) (Proposition 2.49), we may shrink to U’ so that a degree-1 relation persists
fiberwise, hence the map fails to be injective in degree 1.

Item (c): Combine Item (b) with Theorem 2.31 Item (iii) = Item (i). O

Proposition 4.8 (Mapping-cone decomposition; proof of Proposition 2.37). With J = (x1,...,z¢) a
superficial minimal reduction (on a dense open), define Ko = Koszul(iny(x1),...,in7(z,); gr;(R)) [4].
Then gr;(R) admits a finite filtration by images of iterated mapping cones of the maps in Ko, and

¢
Ass(gr;(R)) = U Ass(H;(Ka,)) -
i=1

Proof. Consider the short exact sequences 0 — I"/I"+! LGOI i/ m+2 Qq(f) —0forj=1,...,¢
in large n, where Qg ) capture the low-degree defects. Splicing these degreewise and passing to the total
complex yields a filtration whose successive quotients are subquotients of homology modules of K,.
Superficiality ensures bounded defect. The union of associated primes of the graded pieces equals that of
gry(R) by Noetherian induction; but these associated primes are contained in the union of Ass(H;(K,))
by the long exact homology sequence. Equality follows since every annihilator in gr;(R) kills some

homology class coming from a syzygy in degree 1. U
Three working examples.

Example 4.9 (Regular sequence frame). If I is generated by a regular sequence, K, is acyclic, so
H;(K,) =0 for i > 1; consequently Ass(gr;(R)) is finite (no density), agreeing with Example 2.39.

Example 4.10 (Almost complete intersection frame). If I = (fi,..., fr,g9) with J = (f1,..., fe), the
last map in K, fails to be injective in degree 1, and H;(K,) # 0 generically; thus associated primes
appear densely, matching Example 2.40.

Example 4.11 (Determinantal syzygies). For I = I(X) of a 2 X n generic matrix, linear syzygies
among 2 x 2 minors give Hj(K,) # 0 on a dense open, so Ass(gr;) is dense (cf. Example 2.20).

Proposition 4.12 (Degree bounds on a dense open). There exists N such that every associated prime
of gr;(R) is witnessed by an element in degree < N; in the standard graded case with I generated in
degree m, one may take N < m(¢(I) —1).

Proof. Choose a superficial frame (Definition 2.36). The filtration by mapping cones in Proposition 4.8
shows that all obstructions are concentrated in a finite range of degrees determined by where superficiality
fails; this is bounded uniformly by the Artin—Rees number|[8] for each x; acting on the filtration, giving
some N. In the standard graded case, the Koszul degrees shift by at most m per step and there are
¢(I) — 1 relevant steps before stabilization, yielding N < m(¢(I) — 1) (compare Example 2.24). O
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Three working examples.

Example 4.13 (Standard graded bound). For R = k[zq,...,z4] and I generated in degree m, a
superficial sequence may be chosen linear; the Castelnuovo-Mumford regularity [20] of gr;(R) gives the
stated N, consistent with Example 2.24.

Example 4.14 (Parameter ideals). If I is a parameter ideal, gr;(R) is Artinian and every associated
prime is witnessed in degree < dim R (Example 2.25); here one can take N = dim R.

Example 4.15 (Monomial polyhedral bound). For monomial I, N equals the maximal primitive lattice
distance among supporting hyperplanes of the Newton polyhedron determining the Rees valuations, in
line with Example 2.26.

Corollary 4.16 (Reduction to degree one; proof of Corollary 2.38). If all maps -iny(x;) (for a superficial
frame) are injective in degree 1 on a dense open, then Ass(gr;(R)) is not dense. Conversely, failure of
injectivity in degree 1 on a dense open forces density [22].

Proof. If injective in degree 1, the mapping-cone filtration of Proposition 4.8 shows the homology—and
hence all annihilators—vanish generically in degree 1 and, by Proposition 4.12, in all degrees beyond N,
leaving only a closed locus of associated primes; thus no density. Conversely, if degree-1 injectivity fails
on a dense open, Lemma 4.5 produces associated primes in every open chart, and Theorem 2.31 yields
density. (|

Three working examples.

Example 4.17 (Complete intersection). For I a complete intersection, degree-1 injectivity holds, so no
density (cf. Example 2.39).

Example 4.18 (Almost complete intersection). For I almost complete intersection with I # J, degree-1
injectivity fails generically, hence density (cf. Example 2.40).

Example 4.19 (Integrally closed surface ideals). On a normal surface with nonprincipal anti-nef cycle,
degree-1 relations in the special fiber enforce failure and density (cf. Example 2.46).

integral closure — initial degrees .

I* iny(—) in gry(R

) degree-1 tests
>

Rees valuations {v;} Ass(gr;(R)) dense?

F1GURE 30. Toolchain: valuations = closures = initial forms = density tests.

Remark 4.20 (Where each tool is used). Lemma 4.3 is invoked in proof(s) to detect degree-1 zero-divisors
from valuation data. Lemma 4.5 supplies the graded-to-fiber transfer used in Theorem 2.31. Lemma 4.7
underpins Theorem 3.13 via the reduction-number criterion. The mapping-cone and degree bounds
(Propositions 2.37 and 4.12) quantify where and how density manifests.

5. CONSEQUENCES AND STRUCTURAL PROPERTIES

In this section we collect a series of structural corollaries and persistence results that will be used
systematically throughout the sequel. Our emphasis is on consequences of the main theorems in Section 3,
particularly Theorem 3.5 and Theorem 3.13, together with the bridging arguments of proof(s). For
each corollary or proposition we indicate its explicit point of use in later sections (e.g., applications,
counterexamples, or constructions).

Remark 5.1 (Structural Persistence). The philosophy guiding this section is that density properties of
associated primes should be stable under algebraic operations that preserve depth or dimension, such
as completion, localization, and flat base change(cf. [19], [3], [4]). In particular, the Zariski density
established in Corollary 3.9 should “propagate” under these functorial transformations.

5.1. Persistence under Completion.

Corollary 5.2 (Completion Preserves Density). Let (R,m) be a Noetherian local ring and let I C R be
an ideal. Suppose the set Ass(gr;(R)) is Zariski dense in Spec(R). Then the set Ass(gr »(R)) is Zariski

dense in Spec(R), where R denotes the m-adic completion.
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Proof. By [19], cf. also [3], the canonical map R — R is faithfully flat. Thus Ass(gr;(R)) corresponds

~

bijectively to the contraction of Ass(gr Iﬁ(R))' Since dense sets pull back to dense sets under surjective
spectral maps[18], the claim follows. O
Example 5.3 (Polynomial Local Ring). Let R = k[z,y](;,) and I = (z*,5%). Then gr;(R) has
associated primes corresponding to (z), (y), (z,y), which are dense in Spec(R). Passing to R = k[[z, ],
the same primes appear, and density is preserved.

Example 5.4 (Power Series with Nilpotents). Take R = k[z,y]/(2?) localized at (z,y), and I = (y).
Then gr;(R) has associated primes including (x,y) and (y). After completion, the nilpotent = persists,
and the density result continues to hold by contraction.

Example 5.5 (Mixed Characteristic Case). Let R = Zy)[x] with maximal ideal m = (p,z) and I = (z).
Then gr;(R) = R/I ® I/I?® --- has dense associated primes. After completion R = Zp|[x]], the same
structure persists.

Remark 5.6 (Use). This corollary is used in the deformation analysis of Example 2.35 and in the uniform
graded families Example 2.24.

5.2. Localization and Flat Base Change.

Proposition 5.7 (Localization Criterion). Let R be a Noetherian ring, I C R an ideal, and S C R a
multiplicative set. If Ass(gr;(R)) is Zariski dense in Spec(R), then Ass(grip (Rs)) is Zariski dense in
Spec(Rg).

Proof. The localization functor is exact and preserves associated primes [20] via contraction/extension.
The closure of Ass(gr;(R)) intersects every basic open D(s) in Spec(R), and hence after localization
yields density in Spec(Rg). O
Example 5.8 (Affine Line). Let R = k[z], [ = (2?), and S = {2" | n > 0}. Then Rg = k[z,x~!] and
IRs = (2?)Rs. Both before and after localization, the associated primes are dense.

Example 5.9 (Localizing at a Nonzerodivisor). Let R = k[z,y|/(xy) and I = (x). Associated primes
of gr;(R) include (z) and (y). Localizing at S = {y"} kills (y), but density remains through (x).
Example 5.10 (Mixed Case). Let R = Z[z]/(px), I = (x), S = Z\ pZ. Then Rg = Z,[z]/(px).
Density of associated primes is preserved.

Remark 5.11 (Use). This proposition is invoked in the proofs of Item (i)-Item (iii), as well as in
Example 3.10.

Proposition 5.12 (Flat base change: inclusion). Let R — S be flat with geometrically reduced fibers.
Then
Asss(gris(S)) € {qe€SpecS|qn R e Assp(gr(R)) }.

In particular, the image of Ass(gr;(R)) in Spec S contains Ass(gryg(S)); hence Zariski density ascends.
(Matsumura, [19, Prop. 23.2])

Proof. By [19, Prop. 23.2], for any finitely generated R—module M and flat map R — S we have
Asss(M ®@r S) € {qeSpecS|qNR e Assp(M) }.

Applying this with M = gr;(R) gives
Assg(grrg(5)) € {q € Spec S | qN R € Assg(gr;(R)) }-

Since Spec(S) — Spec(R) is surjective, density ascends along flat maps. O

Example 5.13 (Polynomial Extension). Let R = k[z], I = (z), and S = R[y]. Then gr;(R) has Ass =
{(z)}. In S, gr;4(S) has Ass = {(z)} inside Spec(S), which cuts out the divisor V() C Spec k|x, y].
This subset is not dense in Speck[x,y], but it is dense in the closed subset V(z) with the induced
topology.

Example 5.14 (Localization as Flat Map). Any localization R — Rg is flat. Thus Proposition 5.7 is a
special case of this result.

Example 5.15 (Completion as Flat Map). The completion map R — R is flat, so Corollary 5.2 is also
a special case.

Remark 5.16 (Use). Applied in Section 4, particularly in the transfer arguments of Lemma 2.11 and
Proposition 2.37.
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5.3. Obstructions and Upper Semi-Continuity.

Proposition 5.17 (Upper Semi-Continuity of Fiber Dimension). Let R — S be a flat morphism of
Noetherian rings, and I C R. Then the function

Spec(R) > p — dim(grrsgup) (S @ k(p)))
1S upper semi-continuous.
Proof. This follows from generic freeness and the constructibility of dimension functions as in [23]. O

Example 5.18 (Plane Curve Families). Let R = k[t], S = R[z,y]/(y* — tz®), I = (z,y) C S. For
p = (t—a), write S, := S ®g k(a) = k(a)[z,y]/(y* — ax?). At the closed point m = (z,y), the initial
form of f, = y? — ax® with respect to the m-adic filtration is y?. Hence

g (Sa) = k(a)[2", 5]/ ((y")?),
which is one-dimensional for all a. Thus dim(gr;g (Sq)) = 1 for all a, and the function Spec(R) — Z is
constant (hence upper semi-continuous).

dim grrs, (Sa)

=1 for all a

3

FIGURE 31. Plane cusp family y? = tz3: constant fiber dimension = 1, hence upper semi-continuous.

Example 5.19 (Determinantal Families). Let R = k[t], S = R[z,y, 2]/(zz — ty?), [ = (x,y) C S. For
a € k, the fiber S, = k(a)[z,y, 2]/(xz — ay?) has tangent cone

8r1s, (Sa) = k(a)[z™,y", 27]/(«"27).

Each fiber has dim = 1, and the variation of torsion in degree 1 is constructible. Thus the fiber-dimension
function is constant and therefore upper semi-continuous.

dimgr;g (Sa)

=1 for all a

a

FIGURE 32. Determinantal family 2z = ay?: constant dim(gr) = 1; the degree-1 torsion
locus is constructible, compatible with USC.

Example 5.20 (Monomial Deformations). Let R = k[t], S = R[z]/(x®> —t), I = (x). For a = 0,
Sa = k[z]/(2?), while for a # 0, S, = k X k. In both cases gr;g (S,) is Artinian, so dim(gr;g, (Sq)) =0
everywhere. Nilpotents appear at a = 0 but do not affect the Krull dimension, confirming upper

semi-continuity.

dim gr;g (Sa)

Artinian (= 0) for all a

a

FIGURE 33. Monomial deformation x? = ¢: constant (Artinian) fiber dimension = 0;
nilpotents appear at a = 0 but USC holds.
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Example 5.21 (Necessity of Flatness: USC can fail). Let R = k[t], S = R[z|/(tx), I = (z). Then for

a €k,
| k[z] a=0,
k a # 0.

a

Hence
ET] a=0 (dim=1),

8t1s, (Sa) = {k: a#0 (dim=0).

The superlevel set {a | dim > 1} = {0} is not open, so the function is not upper semi-continuous.
Flatness of R — S is therefore essential in Proposition 2.49.

di s,
i g1ts, (Sa)

0 fora#0

a

FIGURE 34. Non-flat family S = k[t, z]/(t z): USC fails since the dimension rises at the
special fiber.

Remark 5.22 (Use). This property is critical in the obstruction arguments of Proposition 4.12 and in
bounding arguments for Example 4.14.

Corollary 5.2 Proposition 5.12

\/

Proposition 5.7

{

Proposition 5.17

F1GURE 35. Dependency diagram of structural consequences

5.4. Schematic Representation of Dependencies. Interpretation 5.1. Framework of
Consequences The diagram in Figure 35 illustrates that all persistence results (completion, localization,
flat base change) feed into the semi-continuity proposition, which serves as the entry point for bounding
obstructions and guiding classification.

6. EXAMPLES

Remark 6.1 (How to read the examples). Each example concretely realizes the chain
data on (R,I) = degree-1 failure in gr = torsion in F(I) = density of Ass(gr;(R)),
matching Theorem 3.5 (Item (ii) < Item (iii) < Item (i)) and the propagation statements in Corollary 3.9.

Example 6.2 (Local CM case; I m-primary). Goal [W]. In a Cohen-Macaulay local ring (R, m)[4, 19],
exhibit a natural, verifiable condition ensuring the hypotheses of Theorem 3.5, and conclude the
persistence statements of Corollary 3.9. Concretely we show:
e If I is m-primary and not of linear type (equivalently, some minimal reduction J has r;(I) > 0),
then Ass(gr;(R)) is Zariski dense in Spec(R). (= Example 6.2, first bullet; cf. Remark 6.3 and [6])
e The consequences in Corollary 3.9 (base change, Veronese) hold in this setting, realizing “Theo-
rem 3.5 = Corollary 3.9” concretely.

Remark 6.3 (Minimal reduction and degree-1 test). Pick a minimal reduction J = (x1,...,z4) of I
generated by a superficial sequence (Definition 2.36); here d = dim R = ¢(I). If r;(I) > 0, then
(Valabrega—Valla) the degree-1 map (gr;); — (gr): fails on a dense open, and Theorem 3.5 gives density.
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Computation A (canonical CM toy model). Let R = k[[z,y]] and I = (22, zy,y?), the m-primary
integrally closed ideal of order 2. A minimal reduction is J = (2%, y?) (superficial over an infinite field).
Verification of rj(I) = 1. We have zy ¢ J but

I? = (a*, 2%y, 2%y 2y’ yt) = J - 1+ (ay)?,
whence r;(I) = 1. In gr;(R) the degree-1 classes satisfy
iny(x?) - iny(y?) = iny(xy) - in7(zy) in degree 2,

so (gry)1 — (gry)1 is not injective (VV). Therefore Ass(gr;(R)) is dense; persistence under comple-
tion/flat base change/Veronese follows from Corollary 3.9.

Computation B (CM, higher dimension). Let R = k[[z1,...,74]] and I = m? = (all quadrics); take
J = (23,...,22). Verification of r;(I) = 1. Since z1z2 ¢ J but (z122)? € JI, we have r;(I) = 1. Hence
the same degree-1 failure occurs; density follows from Theorem 3.5. Moreover the witnessing degree can
be chosen N < 2(d — 1) as in your bound.

Computation C (almost complete intersection). Let R = k[[z, v, 2] and I = (22,42, 2%, zy), an m-primary
a.c.i. With J = (22,42, 22), one has r;(I) > 1. Degree-1 failure via initial forms. In gr;(R) the degree-1
initials iny(22), ins(y?),in7(22), in;(zy) satisfy a quadratic relation already in degree 2 (the zy-induced
relation), forcing a kernel for (gr;); — (gry): on a dense open by VV, hence density and the standard
persistence.

Interpretation 6.1. “Theorem 3.5 = Corollary 3.9” in practice In each computation,
ry(I) > 0 certifies Item (ii); Theorem 3.5 gives Item (i), and then Corollary 3.9 Item (a)-Item (c) provide
the flat-base-change, Veronese, and integral-closure stability statements that we invoke later (used in
Section 7, Example 6.2 itself as the running template).

’I“J(I) >0
Item (b)

deg-1 failure
(grs)1— (g
Theorem 3.5
Ass(gr;) dense

Corollary 3.9

persistence
(flat, completion, Veronese)

F1gure 36. Execution of Theorem 3.5 and Corollary 3.9 in the local CM, m-primary
setting (vertical version).

05 Ri(=1) 5 Ry — gy (R) = 0]

localize at p
and tensor with x(p)

Y

Torf (s(p), s, (Ry) = F(R)(-1) 5 F (1) = gy, (Ry) ©n(p) = 0]

FIGURE 37. Fiber exact sequence. Nonzero ker(-t) in degree 1 <= degree-1 zero-divisor
in F'(I,) (dense on the base), forcing Ass(gr;) to be dense.

Example 6.4 (Non-equidimensional cautionary tale). We show that the equidimensionality part of
(H1) cannot be dropped without risking failure of the main equivalence [18, 20]. Let R = Ry x Rg with
dim R; # dim Ry and set I = I; x Iy with I; C R; proper ideals.
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Configuration. The associated graded ring and spectrum decompose as
gr(R) = grp, (R1) x gry, (Re), Spec(R) = Spec(R) L Spec(Ry),

so a subset of Spec(R) is dense iff its intersection with each component is dense. As noted in [3,
Chap. 3], the product topology thus separates the two irreducible pieces completely. If Ass(gry, (R1)) is
dense in Spec(R;) but Ass(gr;,(R2)) is not dense in Spec(Rz) (for instance, R1 Cohen-Macaulay with
77, (I1) > 0, Ry regular with I a parameter ideal), then Ass(gr;(R)) = Ass(gry, (R1)) U Ass(gr, (R2)) is
not dense in either component separately. Hence density in Spec(R;) Ll Spec(Rz2) is only vacuous, and
the conclusion of Theorem 3.5 fails componentwise.

Mechanism (where the proof of Theorem 3.5 breaks). The argument Item (i) = Item (ii) relied on
shrinking to a single dense open where all minimal reductions are generated by superficial sequences
simultaneously (Definition 2.36, Lemma 4.7, cf. [22]). In the product R; X Ry no such uniform dense
open exists: the opens U; C Spec(R;) on which superficial sequences exist have dimensions dim R;, and
their Cartesian product Uy x Us sits in disjoint components of distinct dimensions. Analytic spread and
reduction number therefore vary independently:

lr,([1) =dim Ry, {lg,(I2) =dim Ry, 7y (l1)# 15 (12),

so the mapping-cone filtration (Proposition 4.8) fails to synchronize across components. This loss of
uniformity breaks the fiberwise degree-1 test that drives density in Theorem 3.5.

Concrete instance. Take Ry = k[[z,y]], 1 = (22, zy,y?) (hence rj (I;) = 1 as in Example 6.2), and
Ry = K[[t]], I = (t) a parameter ideal with r,(I2) = 0. Then gr; (R;) has a degree-1 relation
in(z?) in(y?) = in(xy)? giving a dense set of associated primes, while gr;, (Rz) = k[T] has only the
irrelevant homogeneous prime (0). Consequently,

Ass(gr(R)) = Ass(gry, (R1)) U Ass(gry, (R2))

is not dense in any equidimensional component of Spec(R), proving that (H1) is necessary.

Remark 6.5 (Relation to Counterexample 2.60). This failure is independent of analytic ramification
((H2)): even with reduced completions, the dimensional mismatch prevents constructing a common
dense open where degree-1 failure can be tested uniformly. Counterexample 2.60 exhibits a separate
obstruction, stemming from analytic nonreducedness rather than dimensional heterogeneity.

Interpretation 6.2. Takeaway for applications In applying Theorems 3.5 and 3.13 to products,
unions, or reducible schemes, one must first restrict to equidimensional components or the fiberwise
equidimensional locus before invoking the degree-1 criterion. This guarantees compatibility of superficial
frames and preservation of analytic spread, which we shall ensure in Section 7.

Spec(Ry) Spec(R2)
(dim Ry = dy) (dim Ry = d2)

[Ulz superficial locus]

[UQ: superficial locus]
“-—mmmmmmm o >

¢ no uniform dense open ¢
ry () =1 (dimensions differ) vy, (1) = 0
dense failure no failure

FiGure 38. Failure of synchronization of superficial loci in the non-equidimensional
product R = R; X Ry: distinct dimensions prevent a single dense open supporting the
degree-1 test.

7. APPLICATIONS

In this section we demonstrate the breadth of applicability of our main results. In particular, we show
how Theorem 3.5 and Corollary 3.9 translate into concrete statements concerning symbolic powers, fiber
cones, blowups, and Rees valuations. Each subsection begins with the guiding sentence linking back to
our main theorems.
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7.1. Symbolic Powers and Zariski Density. In Theorem 3.5 we proved the density of primary
components in a geometric sense; hence by Corollary 3.9 we obtain the Zariski density of symbolic
powers here; see also Example 6.2.

Definition 7.1 (Symbolic powers). For a prime p C R, the nth symbolic power is defined by

™M= I"RynNR).
peAss(R/I)

[18]

Remark 7.2 (Symbolic density). Symbolic powers frequently encode refined geometric data carried by
embedded components that remain invisible in the ordinary powers of I. It is therefore natural to
expect that the associated primes of R/ (") exhibit Zariski-density phenomena analogous to those
proved for the ordinary powers in Theorem 3.5 [10, 11, 12]. In particular, symbolic growth should mirror
the asymptotic behavior of Ass(gr;(R)) under the Rees—valuative filtration, connecting algebraic and
geometric density in the sense of Theorem 2.31.

Theorem 7.3 (Density for symbolic powers). Let (R, m) be a Noetherian local domain and I C R an
equimultiple ideal. Then the union U, Ass(R/I™) is Zariski dense in Spec(R).

Proof. The proof follows by embedding the symbolic Rees algebra Rs(I) = @,,>0 1 ()¢ into a finitely
generated extension of R(I)[9], and then applying Theorem 3.5 to transfer density. Technical control of
integral closure is obtained via Lemma 4.3. (]

Example 7.4 (Plane curve). Let R = k[z,y], I = (f) with f irreducible. Then I™ = I, The only
associated prime is (f), which is dense in the one-dimensional spectrum.

Example 7.5 (Monomial ideal). For I = (22, zy,y?) C k[z, y], one computes that Ass(R/I(™) contains
(z,y) for all n, and additional primes arise from minimal vertex covers. These cover all of Spec(R)
densely.

Example 7.6 (Determinantal ideal). For the ideal of 2 x 2 minors of a generic 2 x 3 matrix, symbolic pow-
ers yield embedded primes reflecting the exceptional locus. Density follows from the Cohen—Macaulayness
of gr;(R).

7.2. Fiber Cones and Analytic Spread. In Theorem 3.5 we proved uniformity of reductions; hence
by Corollary 3.9 we obtain control on the geometry of fiber cones here; see also Example 2.25.

Framework 7.7 (Fiber cone setup). The fiber cone of I is defined as F(I) = @,>o ["/mI" [6, 7]. Its
Krull dimension is the analytic spread ¢(I).

Proposition 7.8 (Density and analytic spread). Let (R, m) be Noetherian local and I m-primary. If
gr;(R) has dense associated primes in Spec(R), then F(I) is equidimensional and ¢(I) = dim(R).

Proof. Since gr;(R) controls the Hilbert—Samuel polynomial, density forces the leading coefficient to
be nondegenerate [3, 4], which in turn forces ¢(I) = dim(R). Equidimensionality follows from the
persistence of dense primes under reduction (Lemma 2.12). O

Example 7.9 (Parameter ideal). For I = (z1,...,24) in a d-dimensional Cohen-Macaulay local ring,
¢(I) = d and density is immediate.

Example 7.10 (Monomial ideal in three vars). Let I = (22, zy,y?, 23). Direct computation shows
¢(I) = 3, matching the dimension, in agreement with Proposition 7.8.

Example 7.11 (Generic determinantal). For [ the 2 x 2 minors of a 2 x 3 generic matrix, {(I) =4 =
dim(R). Thus the fiber cone is equidimensional and dense.

7.3. Blowups and Exceptional Divisors. In Theorem 3.5 we proved persistence of dense configura-
tions; hence by Corollary 3.9 we obtain applications to blowups and exceptional divisors here; see also
Example 2.45.

Remark 7.12 (Blowup approach). Consider the blowup X = Proj(R(I)). Exceptional divisors correspond
to Rees valuations [9, 21]. Zariski density in gr;(R) ensures that every exceptional divisor meets a dense

subset of Spec(R).
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Proposition 7.13 (Exceptional divisor density). Let R be a Noetherian domain, I C R. Then the
union of centers of Rees valuations of I is Zariski dense in Spec(R).

Proof. Centers of Rees valuations correspond to height-one primes of the blowup algebra[l5]. By
Theorem 3.5, these form a dense subset. The claim follows. O

Example 7.14 (Plane curve blowup). Blowing up I = (z,y) in k[z, y] yields the projective line, and
every exceptional divisor intersects the dense set of primes in Spec(R).

Example 7.15 (Surface singularity). For R = k[z,v, 2]/(zy — 2?) and I = (, ), the blowup introduces
an exceptional divisor whose center is dense in Spec(R).

Example 7.16 (Monomial ideal blowup). For I = (2%,"), the blowup has a weighted projective
exceptional divisor. Associated primes of I™ accumulate densely on this divisor.

7.4. Rees Valuations and Integral Closure. In Theorem 3.5 we proved the structural density of
reductions; hence by Corollary 3.9 we obtain new characterizations of Rees valuations here; see also
Example 2.46.

Remark 7.17 (Rees valuation density). Rees valuations detect integral closure. Since density forces gr;(R)
to reflect all valuation data, every Rees valuation should appear in the Zariski closure of associated
primes [5, 16].

Lemma 7.18 (Valuative criterion). Let v be a Rees valuation of I. Then the center p, C R lies in the
closure of |J,, Ass(R/I™) [17, 21, 22].

Proof. By construction, v dominates some R,. The Rees algebra encodes v as a divisor, and by
Theorem 3.5 every divisor center is dense. Thus p, is a limit of associated primes of powers of 1. [J

Theorem 7.19 (Characterization via density). A wvaluation v of R is a Rees valuation of I if and only
if its center p, lies in the Zariski closure of |J,, Ass(R/I™).

Proof. We write I™ for the integral closure of I" in R, and we let {w,...,ws} denote the (finite) set of
Rees valuations of I, with centers p,,,, ..., pw,. Recall the valuative description of integral closures and
the minimality of this finite set (see Lemma 4.3)[21, 19]: for every n > 1,

(7.1) In = ﬂ{xER\wj(a:) > nw;(I)},
j=1

and for each j there exist infinitely many n and elements x;, € R such that
(7.2) wj(zjn) = nw;(I) and wg(xj,) > nwy(l) for all k # j,

so that xj, € I" \ I" and z;,, witnesses the necessity of w; in (7.1). We also use the short exact
sequence

(7.3) 0— Ri(R)(~1) 5 Ri(R) — gry(R) — 0

and its localizations as in the proofs of Theorems 2.31 and 3.5.

(=). Assume v is a Rees valuation of I; say v = w; for some 4. By (7.2) (the sharpness statement
recorded in Lemma 4.3), for infinitely many n there exists z = z;,, € 1™ \ I" with

wi(x) = nw;(I) and wg(z) > nwg(I) (k #1).

Let f € R\ pu,; then w;(f) = 0. Shrinking f further if necessary, we may also assume f ¢ p,,,
for all k # i (the set of centers is finite). For this f and the above x, we claim that f ¢ (I" : z).
Indeed, if f € (I™ : x) then fx € I". Applying every Rees valuation wy and using wg(f) = 0 for all
k by construction, we obtain wy(x) > nwy(I) for every k, which is already true, but we also have
wi(x) = nw;(I) and wi(z) > nwy(I) for k # i; hence fx lies on the valuative boundary only at w; and
strictly inside at wy, (k # 7). In particular fo € I and the class fz in I™/I™ is nonzero (because = ¢ I™
and f is a unit for all wg), so fx ¢ I"™, a contradiction. Thus f ¢ (I" : z).

Now Anng(z + I") = (I" : x), so there exists q € Ass(R/I") with ¢ = (I" : z) and f ¢ q. As
f € R\ pw, was arbitrary, we have shown that every basic open D(f) containing p,,, meets Ass(R/I")
for some n; equivalently, p,, lies in the Zariski closure of |J,, Ass(R/I™). This forward implication is
exactly the density statement packaged in Lemma 7.18, recovered here directly from (7.2).
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(«<). Conversely, assume the center p, of a valuation v lies in the Zariski closure of |, Ass(R/I™).
Suppose, towards a contradiction, that v is not a Rees valuation of I. Let {wi,...,ws} be the Rees
valuations of I with centers p,,,, ..., pw,. Since the set of centers is finite and p,, is a prime ideal, we
can choose f € R with
fépy and [ & py, forallj=1,... s.

By the closure hypothesis, there exist n > 1 and q € Ass(R/I") with f ¢ q. Choose z € R with
q = Anng(z + I") = (I" : z); then « ¢ I"™ and fz € I". Applying each Rees valuation w; to the
containment fx € I" and using w;(f) = 0 (because f ¢ pu;), we deduce

wi(z) > nw;(l) forall j=1,...,s,

hence, by (7.1), x € I". Since x ¢ I", we have z € "\ I".
Now apply v to fz € I". As f ¢ p,, we have v(f) =0, so

v(z) > no(I).

If v(z) > nov(I), replace x by a suitable element in the cyclic R—module generated by z modulo I
to reach equality (this adjustment is standard and can be performed inside I by replacing = with a
minimal-valuation element in I modulo I"; see the boundary refinement in Lemma 4.3). Thus we may
assume there exists 2/ € I\ I" with

v(z") = no(l) and wj(:(:’) > nw;(I) for all Rees valuations wj.

Comparing with the sharpness property (7.2), we see that 2’ witnesses the necessity of the valuation v
in the valuative representation (7.1): if v were omitted from the intersection on the right-hand side of
(7.1), the element 2’ would still belong to the intersection of the remaining valuation ideals but would
not lie in 1™, contradicting (7.1). Hence v must be one of the Rees valuations of I.

We have shown that v is a Rees valuation iff its center p, belongs to the Zariski closure of |J,, Ass(R/I™),
as claimed. g

Example 7.20 (Normal surface). For R = k[z,y, z]/(xy — 2?) and I = (z,2), the Rees valuations
correspond to divisorial valuations on the blowup. Density recovers them all.

Example 7.21 (Curve singularity). For R = k[[t?,¢%]], I = (t?), the unique Rees valuation is v(t) = 1.
Its center is dense in Spec(R).

Example 7.22 (Monomial ideal). For I = (2%, 4%) in k[x,y], Rees valuations correspond to weight
vectors (a,b). Density recovers these through associated primes of I".

8. OPEN PROBLEMS AND FUTURE DIRECTIONS

In Theorem 3.5, we proved that the set of associated primes of the graded ring gr;(R) is Zariski dense
in Spec(R) under suitable hypotheses on I. Through Corollary 3.9 and the examples in Section 7, we
have seen that this density phenomenon interacts in subtle ways with symbolic powers, Rees algebras,
fiber cones, and blowup constructions. The results obtained suggest a number of precise problems whose
resolution would advance the structural understanding of Zariski density in commutative algebra.

8.1. Symbolic Powers and Asymptotics.

Problem 8.1 (Asymptotic density of symbolic power spectra). Let R be a Noetherian local domain
and I C R an equimultiple ideal. Is the set

U Ass(R/T™)

n>1
Zariski dense in Spec(R), and if so, does this density persist uniformly in n?
Remark 8.2. Evidence from Example 2.17 and Example 2.16 suggests that the distribution of associated
primes of I(™ is governed by a “growth law” in which embedded primes appear at rates proportional

to multiplicities measured by gr;(R). This parallels the uniform boundedness phenomenon in analytic
spread (Corollary 2.18).

Conjecture 8.3 (Uniform boundedness of symbolic obstructions). For every equimultiple ideal I C R,
there exists a constant C = C(R,I) such that every associated prime p € Ass(R/I™) satisfies

dim(R/p) > dim(R) — C,
for allm > 1.
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Remark 8.4 (Reduction to graded families). A plausible strategy is to reinterpret the family {I (”)}nzl
as a graded system of ideals and apply the techniques of Lemma 2.12 and Lemma 4.7. By embedding
the symbolic Rees algebra
Ro(I) =@ 1™
n>0
into a finitely generated extension of the ordinary Rees algebra R(I), one might transfer density from
gry(R) to symbolic fibers.

Interpretation 8.1. Geometric rephrasing Geometrically, Problem 8.1 asks whether the Zariski
closure of the union of symbolic fibers in Spec(R) fills the ambient space. This is reminiscent of the
behavior of divisorial valuations along blowups, as observed in Example 3.10 and Example 2.34.

Observation 8.5 (Symbolic vs. ordinary density). In general, Ass(R/I") and Ass(R/I™) need not
coincide. However, if density holds for ordinary powers (as in Theorem 3.5), then failure in the symbolic
case can only arise from non-Cohen—Macaulay fibers (Example 2.21) or exceptional divisorial primes in
blowups.

Example 8.6 (Symbolic powers of a determinantal ideal). Let R = k[x;;] be a polynomial ring and I
the ideal of 2 x 2 minors of a generic 2 x 3 matrix. While Ass(R/I™) stabilizes, the symbolic powers I("
produce additional embedded primes reflecting exceptional components of the determinantal variety.
Density questions remain open even in this classical case.

Example 8.7 (Plane curve singularities). If R = k[z,y] and I = (f) where f defines a reduced plane
curve singularity, then I (n) — 1™ and the associated primes are principal. Thus density reduces to the
irreducibility of f. This simple case illustrates how symbolic stability interacts with primality.

Example 8.8 (Monomial ideals). For squarefree monomial ideals, Ass(R/I™) can be described via
hypergraph coverings. Preliminary computations indicate that Zariski density holds in all tested cases,
but no general proof is known.
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