Теория Универсального Поля: Эволюционная Космология и Принцип Предсказанной Неоптимальности (Уровень 2)

Яковчиц В.О.

1 ноября 2025 г.

Аннотация

Настоящая работа завершает формализацию Теории Универсального Поля (Т.У.П.), представляя её как эволюционную мета-модель. Ввожу формализм **Эволюционного** Параметра (Λ_n) , описывающего фундаментальные константы цикла n, и вероятностный закон перерождения $(F_{\text{пер}})$, минимизирующий **Функцию Информации Сингулярности** (Σ) — безразмерный функционал структурной нестабильности. Ключевым следствием является Принцип Предсказанной Неоптимальности: значения констант в Λ_n являются не идеальными, а исторически обусловленными.

Теория предлагает единое объяснение Тёмной Материи (через статические решения поля ϕ_u) и Тёмной Энергии (как проявление фундаментального изъяна $\rho_{\rm vac}$). **Проблема Масштаба** $\rho_{\rm vac}$: Наблюдаемый масштаб плотности тёмной энергии ($\rho_{\Lambda} \sim 10^{-120} M_{\rm Pl}^4$) не является произвольным параметром, а представляет собой прямое следствие Принципа Предсказанной Неоптимальности (ППН). Это есть нескомпенсированный остаток структурной нестабильности ($\Sigma[\Lambda_n]$) предыдущего цикла, который был минимизирован в процессе перерождения, но не обнулён полностью. Таким образом, ρ_{Λ} выступает мерой «неоптимальности» нашего цикла относительно идеально стабильной конфигурации.

Определена программа проверки, включающая поиск аномалий в реликтовом излучении и гравитационно-волновом фоне.

1 Введение

Т.У.П. Уровня 1 [1] установила гравитацию и инерцию как следствие динамики дуплета скалярных полей ($\bar{\phi}_u, \phi_u$). Для перехода к полной онтологии требуется ответить на вопросы:

- 1. Что определяет значения фундаментальных констант?
- 2. Какова природа космологической динамики?

Уровень 2 решает эти вопросы через три принципа:

- **Цикличность:** Вселенная последовательность циклов (Расширение Коллапс Перерождение)
- **Телеология:** Цель цикла минимизация фундаментального изъяна $\rho_{\rm vac} = V(\langle \phi_u \rangle)|_{\rm min}$
- **Наследие:** Константы Λ_n несут информацию о нестабильности предыдущих циклов

Космологический синтез: Т.У.П. предлагает единое объяснение Тёмной Материи (гравитационные воронки поля ϕ_u) и Тёмной Энергии (проявление изъяна $\rho_{\text{час}}$).

2 Математический Аппарат

2.1 Формализм эволюционного параметра

Эволюционный параметр включает независимые константы Т.У.П. Уровня 1:

$$\Lambda_n = \{G_0, \hbar, c, \alpha, \beta, \mu^2, \lambda, \ldots\}$$
 (1)

 $m_{ ext{eff}}$ является следствием выбора μ^2 и λ в процессе спонтанного нарушения симметрии.

2.2 Функция Информации Сингулярности (Σ)

 Σ — безразмерный функционал, измеряющий интегральную нестабильность цикла:

$$\Sigma = \frac{1}{S_{\rm Pl}} \int_0^{t_{\rm cycle}} dt \int dV \left[\gamma_1 D_{\bar{\phi}} + \gamma_2 S_{\phi} + \gamma_3 T_M \right]$$
 (2)

где $S_{\rm Pl} = \hbar$, а веса $\gamma_1 \gg \gamma_2 \gg \gamma_3$.

2.2.1 Компоненты функционала Σ

• Динамическая стабильность $(D_{\bar{\phi}})$:

$$D_{\bar{\phi}} = \frac{1}{2} \cdot \frac{M_{\text{Pl}}}{t_{\text{Pl}}} \cdot \frac{(\nabla_{\beta} \bar{\phi}_u)(\nabla^{\beta} \bar{\phi}_u)}{\langle \bar{\phi}_u \rangle^2}$$
(3)

Физический смысл: Плотность мощности, затрачиваемой на поддержание стабильности гравитации

• Стабилизационная эффективность (S_{ϕ}) :

$$S_{\phi} = \frac{|\nabla_{\mu} T_{\mu}^{\mu}|}{\langle \phi_{u} \rangle} - V(\phi_{u}, \Lambda_{n}) \tag{4}$$

где $V(\phi_u,\Lambda_n)=-\frac{1}{2}\mu^2\phi_u^2+\frac{\lambda}{4}\phi_u^4$ Физический смысл: Плотность энергии, связанная со стабилизацией материи

• Структурное богатство (T_M) :

$$T_{M} = \rho_{\text{Pl}} \cdot \left(\frac{\rho_{\text{VII}}}{\rho_{\text{барионов}}}\right) \cdot \left(\frac{n_{\text{galaxies}}}{n_{\text{Pl}}}\right) \cdot \left(\frac{M_{\text{bar}}}{M_{\text{halo}}}\right)$$
(5)

Физический смысл: Плотность энергии, вложенная в создание структурной сложности

2.2.2 Обоснование весов γ_i и онтология нестабильности

Иерархия $\gamma_1 \gg \gamma_2 \gg \gamma_3$ отражает фундаментальный приоритет выживания цикла над вторичными свойствами.

- 1. γ_1 (Стабильность гравитации): Абсолютный приоритет. Нестабильность G ($D_{\bar{\phi}}$) делает невозможным существование каких-либо долгоживущих структур.
- 2. γ_2 (Эффективность конденсата): Вторичный приоритет. Без генерации инерционных масс (S_ϕ) не формируется стабильная материя субстрат для сложности.
- 3. γ_3 (Структурное богатство): Критически важный, но минимальный вклад.

Здесь требуется важное концептуальное уточнение:

Высокое структурное богатство (T_M) увеличивает нестабильность Σ . Это не ошибка, а ключевое положение теории. Создание и поддержание сложных структур (галактик, звёзд) является мощным источником энтропии и нестабильности для Универсального Поля. Идеально стабильная с точки зрения Σ Вселенная была бы однородным морем реликтового излучения — стабильной, но "мёртвой".

Таким образом, $F_{\text{пер}}$ стоит перед выбором:

- Минимизировать Σ полностью: получить стабильную, но пустую вселенную $(T_M \to 0)$
- Допустить небольшую нестабильность: чтобы позволить возникнуть структурному богатству $(T_M > 0)$

Конечное, ненулевое значение γ_3 является математическим выражением этого компромисса. Оно указывает, что в рамках телеологии Т.У.П. структурное богатство является желательным, но "дорогостоящим" свойством. Наша Вселенная, с её наблюдаемым структурным богатством, существует не вопреки принципу минимизации Σ , а как следствие точно настроенного баланса, найденного $F_{\text{пер}}$, где малая "переплата" в нестабильности ($\gamma_3 T_M$) компенсируется выигрышем в способности порождать сложность.

Это позволяет теории естественным образом объяснить наблюдаемость Вселенной, не апеллируя к Антропному Принципу.

2.3 Вероятностный закон перерождения

Переход между циклами описывается распределением:

$$P(\Lambda_{n+1}|\Lambda_n) \propto \exp(-\kappa \Sigma[\Lambda_n]) \tag{6}$$

где:

- $\Sigma[\Lambda_n]$ функционал нестабильности текущего цикла
- к коэффициент селективного давления
- P вероятность перехода к конфигурации Λ_{n+1}

Интерпретация:

- \bullet $\kappa \to 0$ слабый отбор, конфигурации почти случайны
- ullet $\kappa o \infty$ жёсткий отбор, реализуется только минимальная Σ
- $0<\kappa<\infty$ реалистичный режим, допускающий неоптимальность

Квантовая природа перерождения: Вероятностный закон $P \propto \exp(-\kappa \Sigma)$ представляет собой прямую аналогию с квантовым туннелированием в конфигурационном пространстве фундаментальных констант. Количественное подтверждение этой аналогии и всего формализма перерождения требует обнаружения специфических космологических реликвий: аномальных мод в угловой анизотропии и поляризации космического микроволнового фона (КМФ) или специфического стохастического гравитационно-волнового фона, порождённого фазовыми переходами Универсального Поля ϕ_u на самых ранних этапах цикла. Поиск таких сигнатур указан в Дорожной карте (Приоритет 2) как ключевой тест онтологии Т.У.П.

3 Предсказания и Верификация

3.1 Принцип Предсказанной Неоптимальности

Значения констант в Λ_n являются исторически оптимальными. Пример: $m_{\rm eff} \approx 10^{10} \, \Gamma$ эВ представляет компромисс между стабильностью G и унаследованными ограничениями.

3.2 Дорожная Карта

- 1. **Приоритет 1:** Численное моделирование BBN с $m_{\rm eff} \geq 10^{10}~\Gamma$ эВ
- 2. Приоритет 2: Поиск космологических реликвий:
 - Аномальные моды в спектре и поляризации КМБ
 - Стохастический гравитационно-волновой фон от фазового перехода
- 3. Приоритет 3: Количественная проверка неоптимальности:
 - Оценка вкладов в Σ для текущего цикла
 - ullet Определение значения κ из наблюдаемых констант

4 Заключение и Перспективы

Т.У.П. преобразована в расчётный каркас эволюционной космологии. Настоящая работа закладывает основу для Уровня 3, задачами которого являются:

- 1. Микроскопическая реализация $F_{\text{пер}}$ в рамках квантовой гравитации
- 2. Установление связи между Σ и $\rho_{\rm час}$ следующего цикла
- 3. Разработка методов численного моделирования полного цикла

Проверка Принципа Предсказанной Неоптимальности станет решающим тестом для предложенной парадигмы.

References

[1] Яковчиц В.О. (2025). Теория Универсального Поля: Полная Скалярно-Тензорная Формализация и Программа Эмпирической Фальсификации. Уровень 1.

Ключевые слова: Теория Универсального Поля, цикличность вселенных, фундаментальные постоянные, принцип предсказанной неоптимальности, функция информации сингулярности.