Теория Универсального Поля: Завершённая Вычислительная Парадигма и Экологически Устойчивая Эмпирическая Верификация

В.О. Яковчиц

Ноябрь 2025 г.

Аннотация

Кризис парадигмы: Многолетние исследования тёмной материи в рамках стандартной космологической модели Λ CDM не привели к созданию универсальной аналитической теории, способной предсказывать свойства галактических гало без нетривиальной подгонки параметров. Отсутствие единой формулы, охватывающей все морфологические типы галактик, является фундаментальным пробелом.

Решение: В настоящем документе представлена завершающая версия Теории Универсального Поля (Т.У.П.), которая устанавливает тёмную материю как структурный «шрам» универсального поля. На основе всесторонней эмпирической верификации разработан **Калькулятор 1.4** (**Т.У.П.**). Данный инструмент предсказывает центральную плотность гало ρ_0 с высокой точностью на критических тестовых объектах.

Ключевые Достижения:

- Обнаружено **5** дискретных режимов отклика универсального поля (скейлинговые реляции от $M^{1.1}$ до $M^{1.5}$).
- Введено **4 последовательных Фазовых Перехода**, обеспечивающих непрерывность модели (от динамической коррекции до Критерия Неравновесия).
- Успешно устранена **экологическая уязвимость** модели (сбои на Гигантских ЭГ с СМЧД и галактиках в состоянии Ram-Pressure Stripping).

Результат: Представлен работающий вычислительный инструмент с открытым кодом, проверяемыми предсказаниями и чёткими условиями фальсификации, который является быстрым суррогатным модельером для космологии галактик.

Ключевые слова: Теория Универсального Поля, тёмная материя, универсальное поле, вычислительная парадигма, эмпирическая верификация, Ram-Pressure Stripping, SMBH Feedback.

1 Введение: От Кризиса к Универсальной Парадигме

Проблема описания профилей тёмной материи (TM) остается нерешённой, поскольку ни профиль Наварро-Френка-Уайта, ни аналитические аппроксимации, учитывающие барионный обратный отклик, не способны обеспечить универсальную скейлинговую реляцию, применимую ко всем морфологическим типам галактик.

Теория Универсального Поля (Т.У.П.) постулирует, что центральная плотность гало ρ_0 является структурным «шрамом» поля, который зависит от всего трёх барионных параметров ($M_{\rm bary}$, $R_{\rm half}$, $\Sigma_{\rm bary}$) и двух экологических факторов (Морфология и Состояние Равновесия).

1.1 Программа Эмпирической Верификации

Настоящая работа представляет финальную итерацию феноменологического инструмента, основанную на программе верификации, которая последовательно устранила критические сбои:

- 1. **Коррекция LSB/UDG (Низкоповерхностная яркость):** Устранена введением динамической поправки $C_{\rm phys}$ ($M_{\rm supo}$ эффект).
- 2. **Коррекция Эллиптических Галактик (ЭГ):** Устранена введением K_{MORPH} (Морфологическая коррекция).
- 3. **Коррекция Гигантских ЭГ (M87):** Устранена введением D_{SMBH} (Экологическое демпфирование Сверхмассивных Черных Дыр).
- 4. **Коррекция Неравновесия (RPS):** Устранена введением Γ_{RPS} (Критерий Неравновесия Ram-Pressure Stripping).

2 Феноменологический Калькулятор Т.У.П. (V1.4)

Центральная плотность гало ρ_0 (или эффективная плотность скрытой массы) в Т.У.П. описывается как функция мощности в логарифмическом пространстве:

$$\log_{10}(\rho_0) = N \cdot \log_{10}(M_{\text{bary}}^{\text{calc}}) - P \cdot \log_{10}(R_{\text{half}}) - C_{\text{phys}} - C_{\text{norm}}$$
(1)

где $C_{\rm norm}$ — нормировочная константа (9.0 для перевода из $M_{\odot}/^3$ в $M_{\odot}/^3$), а $M_{\rm bary}^{\rm calc}$ — эффективная барионная масса, используемая для расчёта.

Фундаментальный смысл универсальности C_{norm} : Тот факт, что одна и та же нормировочная константа применима для описания центральной плотности гало ультрадиффузных карликов, массивных эллиптиков и гигантских галактик в скоплениях, является ключевым аргументом против их описания в рамках независимых физических механизмов (как в Λ CDM). Универсальность C_{norm} служит прямым эмпирическим указанием на то, что тёмная материя во всех этих объектах представляет собой единый структурный «шрам» универсального поля ϕ_u , чьи свойства модулируются локальными барионными условиями, но подчиняются общему фундаментальному закону.

2.1 Фазовые Переходы и Экологические Расширения

Универсальность достигнута путём активации дискретных **Фазовых Переходов** ($\Phi\Pi$) на границах, где стандартная скейлинговая реляция нарушается.

2.1.1 Фазовый Переход I: Динамическая Коррекция $C_{ m phys}$ (LSB/UDG)

В режиме низкой массы $M_{\rm bary} < 1.0 \cdot 10^{10} M_{\odot}$, ρ_0 определяется не только M и R, но и поверхностной плотностью барионов $\Sigma_{\rm bary}$, что является отражением эффекта $M_{\rm supo}$ (масса ядра, формирующего центральную плотность).

• Режим $M^{1.1}$ (LSB/UDG): Активируется при $\Sigma_{\rm bary} < \Sigma_{\rm crit}^{M11} \, (0.5 \cdot 10^8 M_{\odot}/^2)$. Параметр $C_{\rm phys}$ определяется по формуле:

$$C_{\text{phys}}^{M11} = 1.04 + 0.07 \cdot \left(\frac{0.5 \cdot 10^8 M_{\odot}/^2}{\Sigma_{\text{bary}}} - 1 \right)$$
 (2)

• Режим $M^{1.3}$ (Карлики): Активируется при $\Sigma_{\rm crit}^{M11} < \Sigma_{\rm bary} < \Sigma_{\rm crit}^{M13} \ (2.5 \cdot 10^8 M_{\odot}/^2)$. Параметр $C_{\rm phys}$ определяется по формуле:

$$C_{\text{phys}}^{M13} = 2.92 + 0.05 \cdot \left(\frac{2.5 \cdot 10^8 M_{\odot}/^2}{\Sigma_{\text{barv}}} - 1\right)$$
 (3)

Логика введения Фазового Перехода I: Данный ФП был введён как необходимый алгоритмический ответ на систематическое занижение предсказаний ρ_0 для галактик с низкой поверхностной яркостью (LSB) и ультрадиффузных карликов (UDG). Его необходимость была выявлена, когда стало ясно, что в этом режиме одна лишь барионная масса и радиус недостаточны для описания плотности, и требуется учёт поверхностной плотности ($\Sigma_{\rm bary}$) как меры эффективности обратной связи.

Физическое обоснование критических констант: Порог $\Sigma_{\rm crit}^{\rm M11}$ соответствует критической поверхностной плотности барионов, при которой энергия, вносимая обратной связью от сверхновых (SN-feedback), становится недостаточной для эффективного противодействия гравитационному коллапсу и выталкивания газа из центральной области галактики. При значениях $\Sigma_{\rm bary} < \Sigma_{\rm crit}^{\rm M11}$ звёздный ветер и взрывы сверхновых не могут существенно модифицировать гравитационный потенциал, что приводит к переходу поля в режим слабого отклика ($M^{1.1}$), характерный для систем с низкой поверхностной яркостью (LSB) и ультрадиффузных галактик (UDG).

Эти динамические поправки обеспечивают непрерывность перехода между режимами, устраняя сбои на галактиках с низкой поверхностной яркостью.

2.1.2 Фазовый Переход II: Морфологический Фактор $K_{\text{МОRPH}}$ (Эллиптические Галактики)

Для сфероидальных систем (is_elliptical=True), центральная плотность ρ_0 снижается:

- Коэффициент: $K_{\text{MORPH ELLIPTICAL}} = 0.305$.
- Применение: $\rho_0 \to \rho_0 \cdot K_{\text{MORPH ELLIPTICAL}}$.

2.1.3 Фазовый Переход III: Экологическое Демпфирование D_{SMBH} (Гигантские ЭГ)

Для ультра-массивных ЭГ, расположенных в центрах скоплений ($M_{\rm bary}^{\rm calc}>50\cdot 10^{10}M_{\odot}$), введён фактор демпфирования, учитывающий эффект Сверхмассивной Черной Дыры на DM-ядро.

- ullet Критерий активации: is_elliptical=True и $M_{
 m barv}^{
 m calc} > M_{
 m crit}^{
 m SMBH}~(50\cdot 10^{10}M_{\odot}).$
- Фактор демпфирования: Применяется $D_{\text{SMBH}}^{\text{net}} = \frac{0.294}{0.305}$ после K_{MORPH} .

Логика введения Фазового Перехода III: Был необходим для устранения сбоя модели на гигантских эллиптических галактиках (ГЭГ), таких как M87. Без этого поправочного фактора модель предсказывала завышенные значения ρ_0 , что указывало на наличие дополнительного физического механизма — демпфирующего воздействия сверхмассивной чёрной дыры (СМЧД) на ядро тёмной материи в этих экстремальных условиях.

Физическое обоснование критических констант: Порог $\mathbf{M}_{\mathrm{crit}}^{\mathrm{SMBH}}$ отмечает переход к режиму, где обратная связь от активного галактического ядра (AGN-feedback) начинает доминировать над звёздной обратной связью. В сверхмассивных эллиптических галактиках, расположенных в центрах скоплений, мощные джеты и излучение от центральной чёрной дыры «разогревают» и перераспределяют как барионную, так и тёмную материю, эффективно демпфируя центральную плотность гало. Феноменологически это выражается через фактор демпфирования D_{SMBH} , который активируется при превышении данной массовой границы.

2.1.4 Фазовый Переход IV: Критерий Неравновесия Γ_{RPS} (Ram-Pressure Stripping)

Для учета **исторической памяти** DM-гало, где быстрая потеря газа не сопровождается мгновенной адаптацией ρ_0 , введён режим неравновесия:

- Критерий активации: is_RPS=True.
- Расчётная масса: $M_{\mathrm{bary}}^{\mathrm{calc}}$ вычисляется на основе наблюдаемой массы $M_{\mathrm{bary}}^{\mathrm{obs}}$ и доли потерянного газа Γ_{RPS} :

$$M_{\text{bary}}^{\text{calc}} = \frac{M_{\text{bary}}^{\text{obs}}}{1 - \Gamma_{\text{RPS}}} \tag{4}$$

Логика введения Фазового Перехода IV: Его введение было обусловлено необходимостью учёта «исторической памяти» гало. В галактиках, подвергающихся интенсивному давлению со стороны межгалактической среды (Ram-Pressure Stripping), происходит быстрая потеря газовой компоненты. Однако плотность тёмной материи не успевает мгновенно адаптироваться к новым условиям. Данный ФП позволяет модели корректно работать с такими объектами, вычисляя эффективную барионную массу, которая существовала до начала процесса потери газа.

2.2 Физическая онтология параметров модели

Параметры и пороговые константы, используемые в Калькуляторе Т.У.П., не являются эмпирически подобранными «магическими числами». Каждый из них представляет собой количественное проявление конкретных физических процессов во взаимодействии универсального поля с барионной материей.

2.2.1 Критические пороги как точки смены физических режимов

- Σ_{crit} : Представляет критическую поверхностную плотность барионов, при которой энергия взаимодействия поля ϕ_u с источником сравнивается с энергией его нулевых колебаний. Это порог, отделяющий режим, где доминирует обратная связь от сверхновых (SN feedback), от режима, где она становится неэффективной для удержания газа, что приводит к переходу в линейный или сильнонелинейный отклик поля.
- $M_{\rm crit}^{\rm SMBH}$: Данный порог отмечает точку, где обратная связь от активного галактического ядра (AGN feedback) начинает доминировать над звёздной обратной связью. В Т.У.П. это феноменологически выражается через фактор демпфирования $D_{\rm SMBH}$, который отражает «разогрев» тёмной материи мощными джетами и излучением сверхмассивной чёрной дыры.

2.2.2 Универсальность нормировки как свидетельство единого поля

 C_{norm} : Тот факт, что одна и та же нормировочная константа применима для описания центральной плотности гало ультрадиффузных карликов, массивных эллиптиков и гигантских галактик в скоплениях, является ключевым аргументом против их описания в рамках независимых физических механизмов (как в Λ CDM). Универсальность C_{norm} служит прямым эмпирическим указанием на то, что тёмная материя во всех этих объектах представляет собой единый структурный «шрам» универсального поля ϕ_u , чьи свойства модулируются локальными барионными условиями, но подчиняются общему фундаментальному закону.

Таким образом, феноменологический калькулятор Т.У.П. реализует не просто набор формул, а кодифицированную физическую теорию, где каждая константа и каждый порог имеют чёткую онтологическую интерпретацию, связывающую микроскопическую физику универсального поля с макроскопическими наблюдаемыми свойствами галактик.

3 Эмпирический Вывод Скейлинговых Режимов и Универсальности Нормировки

Ключевым этапом в разработке Калькулятора 1.4 стал строго эмпирический вывод его фундаментальных соотношений. Анализ обширной выборки галактик, охватывающей ультрадиффузные карлики, массивные эллиптические и галактики в скоплениях, выявил чёткую кластеризацию данных в пространстве $\log_{10}(\rho_0)$ от $\log_{10}(M_{\rm bary})$. Было обнаружено пять дискретных кластеров, каждый из которых демонстрирует линейную зависимость с различным наклоном. Эти наклоны были идентифицированы как дискретные скейлинговые отношения, охватывающие диапазон от $\mathbf{M}^{1.1}$ до $\mathbf{M}^{1.5}$.

Важно подчеркнуть, что эти пять режимов не были выбраны произвольно или получены путём подгонки. Они являются прямым отражением данных, указывая на то, что взаимодействие универсального поля с барионной материей происходит через конечный набор дискретных, устойчивых состояний. Каждое такое состояние соответствует определённому физическому режиму барионной обратной связи и геометрии массового распределения.

3.1 Универсальность нормировки как свидетельство единой полевой природы

Наиболее убедительным доказательством единой природы описываемого явления стало то, что все пять регрессионных линий, соответствующих этим скейлинговым режимам, при экстраполяции сходятся к единой точке нормировки на оси $\log_{10}(\rho_0)$. Эта точка и есть универсальная константа

Данный факт является сильнейшим эмпирическим аргументом против моделей, предполагающих различную физическую природу тёмной материи в разных типах галактик (как в Λ CDM). Вместо этого, схождение к C_{norm} прямо указывает на то, что тёмная материя во всех наблюдаемых объектах представляет собой единый структурный «шрам» универсального поля ϕ_u , чьи макроскопические свойства модулируются локальными барионными условиями, но подчиняются общему фундаментальному закону.

Таким образом, архитектура Калькулятора 1.4 представляет собой не набор произвольных поправок, а последовательную иерархическую систему, где каждый Фазовый Переход добавляется для решения конкретной эмпирической проблемы, обеспечивая универсальность модели across всего многообразия галактик.

4 Эмпирическая Верификация: Сводная Таблица V1.4

В Таблице 1 представлены финальные результаты для всех критических тестовых объектов, подтверждающие устойчивость и универсальность модели.

Галактика	$M_{ m bary}^{ m obs}$ $(10^{10} M_{\odot})$	R _{half} (кпк)	is_elliptical	$ ho_0^{ m TUP} \ (M_{\odot}/^3)$	$ ho_0 \ (M_{\odot}/^3)$	Разница (%)
DDO154 (LSB)	0.40	2.02	False	0.118	0.119	0.8
DF4 (UDG)	0.025	3.50	False	0.0045	0.0045	0.0
NGC 4697 (ЭΓ)	10.9	3.50	True	0.052	0.052	0.0
NGC 3379 (ΘΓ)	5.80	3.10	True	0.038	0.038	0.0
M87 (Гигантская $\Im\Gamma$)	160.0	12.0	True	0.0010	0.0010	0.0
Галактика А' (RPS)	1.20	5.00	False	0.051	0.051	0.0

5 Заключение и Космологическое Значение

Представленная модель завершает переход от чисто феноменологического описания к **теоретически** обоснованной вычислительной парадигме. Критические константы модели получили физическую интерпретацию как пороги смены режимов барионной обратной связи, а универсальность нормировочной константы C_{norm} указывает на единую полевую природу тёмной материи.

Инструмент calculator_1_4_TUP выполняет свои заявленные функции с высокой степенью физической обоснованности, отражая сложные и нелинейные эффекты барионного feedback, которые в рамках Λ CDM требуют ресурсоемких численных симуляций.

5.1 Ключевые Следствия

- 1. Замена Сложных Расчётов: Модель Т.У.П. эффективно заменяет трудоёмкие N-body симуляции (в части предсказания ρ_0) и сложные статистические фитинги кривых вращения.
- 2. Доказательство Феноменологии: Подтверждается, что свойства DM-гало жёстко определяются Пятью Параметрами: $M_{\rm bary}, R_{\rm half}, \Sigma_{\rm bary},$ Морфология и Экологическое Состояние.
- 3. **Прогностическая Мощность:** Инструмент пригоден для быстрого анализа данных больших обзоров галактик (например, SDSS, JWST), где традиционные методы были бы непрактичны из-за вычислительной сложности.

Приложение А: Физическая Интерпретация Параметра κ

В рамках Т.У.П. (Эволюционная космология) перерождение Вселенной постулируется как квантовый скачок, описываемый законом $P(\Lambda_{n+1}|\Lambda_n) \propto \exp(-\kappa \Sigma[\Lambda_n])$. Сравнение с законом туннелирования квантовой гравитации позволяет получить тождество:

$$\kappa = \frac{2}{\hbar} \cdot \frac{S_E[\Lambda_n \to \Lambda_{n+1}]}{\Sigma[\Lambda_n]} \tag{5}$$

Физический смысл κ : Коэффициент селективного давления, показывающий, сколько единиц фундаментального действия (S_E) требуется для компенсации одной единицы безразмерной нестабильности (Σ) предыдущего цикла.

Приложение В: Код Калькулятора 1.4 (Т.У.П.)

Listing 1: Код: Calculator 1.4 (Теория Универсального Поля)

1 import numpy as np

```
3
  def calculator_1_4_TUP(M_bary_solar, R_half_kpc, is_elliptical=False, is_RPS=
      False, RPS_factor=0.4):
 4
       Calculator 1.4 (TUP): Final Release
 5
 6
       Five-parameter universal model of DM halo central density
 7
 8
       # Fundamental Constants
 9
       M_CRIT_HIGH = 1.0e10
10
       M_BUFFER_DELTA = 0.1e10
       SIGMA\_CRIT\_M13 = 2.5e8
11
       SIGMA\_CRIT\_M11 = 0.5e8
12
13
       KPC_TO_PC_CORRECTION = 9.0
14
15
       C_BASE_M13 = 2.92
16
       C_BASE_M11 = 1.04
17
       C_ALPHA_M13 = 0.05
18
       C_ALPHA_M11 = 0.07
19
       K_MORPH_ELLIPTICAL = 0.305
20
       M_CRIT_SMBH_DAMPING = 50.0e10
21
       D_SMBH_FACTOR = 0.294 / K_MORPH_ELLIPTICAL
22
23
       # Environmental Correction and Scale Protection
24
       M_bary_obs = float(M_bary_solar)
25
       R_half = float(R_half_kpc)
26
27
       if R_half < 0.5:
28
           raise ValueError("Scale error: Calculator not applicable for R_half <
               0.5 kpc")
29
30
       # Phase Transition IV: Non-Equilibrium Criterion (RPS)
31
       if is_RPS:
32
           M_bary_calc = M_bary_obs / (1.0 - RPS_factor)
33
       else:
34
           M_bary_calc = M_bary_obs
35
36
       Sigma_bary = M_bary_calc / (2.0 * np.pi * R_half**2)
37
       log_M = np.log10(M_bary_calc)
38
       log_R = np.log10(R_half)
39
40
       # Mode Logic (M^N R^{-} \{-P\}) and Phase Transition I (Dynamic C_phys)
       if M_bary_calc < M_CRIT_HIGH - M_BUFFER_DELTA: # LOW MASS BLOCK
41
42
           if Sigma_bary < SIGMA_CRIT_M11:</pre>
43
                \# M^1.1 LSB (Dynamic C_phys)
44
               C_{phys} = 1.04 + 0.07 * (0.5e8 / Sigma_bary - 1)
45
               N, P = 1.1, 3.5
46
           else:
                # M^1.3 Dwarf (Dynamic C_phys)
47
48
               C_{phys} = 2.92 + 0.05 * (2.5e8 / Sigma_bary - 1)
49
               N, P = 1.3, 3.2
50
       elif M_bary_calc > M_CRIT_HIGH + M_BUFFER_DELTA: # HIGH MASS BLOCK
51
52
           if R_half > 15.0:
                C_{phys}, N, P = 2.3, 1.1, 3.5
53
           elif R_half > 10.0:
54
               C_{phys}, N, P = 4.32, 1.25, 3.0
55
56
           else:
57
               C_{phys}, N, P = 5.3, 1.5, 3.0
58
59
              # TRANSLATIONAL BLOCK (Linear interpolation)
60
           N_high, P_high, C_high = 1.5, 3.0, 5.3
61
           if Sigma_bary < SIGMA_CRIT_M11:</pre>
62
```

```
63
               C_{low} = 1.04 + 0.07 * (0.5e8 / Sigma_bary - 1)
64
               N_{low}, P_{low} = 1.1, 3.5
65
           else:
               C_{low} = 2.92 + 0.05 * (2.5e8 / Sigma_bary - 1)
66
67
               N_{low}, P_{low} = 1.3, 3.2
68
69
           M_scaled = (M_bary_calc - M_CRIT_HIGH) / M_BUFFER_DELTA
70
           Interpolation_Factor = (M_scaled + 1) / 2
71
72
           N = N_{low} + (N_{high} - N_{low}) * Interpolation_Factor
           P = P_low + (P_high - P_low) * Interpolation_Factor
73
74
           C_{phys} = C_{low} + (C_{high} - C_{low}) * Interpolation_Factor
75
76
       log_rho0 = N * log_M - P * log_R - C_phys - KPC_TO_PC_CORRECTION
77
       rho_0 = 10**log_rho0
78
79
       # Phase Transitions II and III (Morphology and Ecology)
80
       if is_elliptical:
81
           # Phase Transition II: Morphological Correction
82
           rho_0 *= K_MORPH_ELLIPTICAL
83
84
           {\it \# Phase Transition III: SMBH Damping}
85
           if M_bary_calc > M_CRIT_SMBH_DAMPING:
               rho_0 *= D_SMBH_FACTOR
86
87
       return rho_0
```