
УДК 519.8 :  519.245

Влияние пространственного разрешения на оптимальность пути 
мобильного робота в двумерных решеточных моделях

П. В. Москалев1,a, М. М. Стебулянин1, А. С. Мягков1

1 Московский государственный технологический университет «СТАНКИН»,
Россия, 127055, г. Москва, Вадковский пер., д. 1

E-mail: a moskalefff@gmail.com

Аннотация. В данной работе исследуется влияние пространственного разрешения дискрети-
зированного (решеточного) представления окружающей среды на эффективность и коррект-
ность поиска оптимального пути в сложных условиях. Рассматриваются сценарии, характе-
ризующиеся возможным наличием узких проходов, неоднородным распределением препят-
ствий и зонами повышенных требований к безопасности в непосредственной окрестности 
препятствий.  Несмотря  на  широкое  применение  решеточных  представлений окружающей 
среды в робототехнике благодаря их совместимости с сенсорными данными и поддержке 
классических алгоритмов планирования траекторий, разрешение этих решеток оказывает су-
щественное влияние как на достижимость цели,  так и на показатели оптимального пути. 
Предлагается  алгоритм,  сочетающий анализ  связности среды,  оптимизацию траектории и 
геометрическое уточнение безопасности. На первом этапе с помощью алгоритма Лиса (Leath) 
оценивается достижимость целевой точки путем выявления связной компоненты, содержа-
щей стартовую позицию. При подтверждении достижимости целевой точки на втором этапе 
алгоритм A* применяется к узлам данной компоненты для построения пути, минимизирую-
щего одновременно как длину пути, так и риск столкновения. На третьем этапе для узлов, 
расположенных в зонах безопасности, осуществляется уточненная оценка расстояния до пре-
пятствий с помощью комбинации алгоритмов Гилберта-Джонсона-Кирти (GJK) и расширяю-
щегося многогранника (EPA). Экспериментальный анализ позволил выявить нелинейную за-
висимость вероятности существования и эффективности оптимального пути от параметров 
решетки: так, снижение пространственного разрешения решетки повышает вероятность по-
тери связности и недостижимости цели, тогда как увеличение ее пространственного разреше-
ния влечет рост вычислительной сложности без пропорционального улучшения характери-
стик оптимального пути.

Ключевые  слова:  мобильный  робот,  поиск  оптимального  пути,  решеточная  перколяция, 
перколяционный кластер, алгоритм Лиса, алгоритм A*, алгоритм Гилберта-Джонсона-Кирти, 
алгоритм расширяющегося многогранника.

Благодарности.  Работа выполнена при финансовой поддержке Министерства науки и выс-
шего образования Российской Федерации — государственное задание в области научной дея-
тельности FSFS-2024-0012.

Impact of spatial resolution on mobile robot path optimality in 
two-dimensional lattice models

P. V. Moskalev1,a, M. M. Stebulyanin1, A. S. Myagkov1

1 Moscow State University of Technology “STANKIN”,
1 Vadkovsky lane, Moscow, 127055, Russia

E-mail: a moskalefff@gmail.com

Abstract. This paper examines the impact of the spatial resolution of a discretized (lattice) repre-
sentation of the environment on the efficiency and correctness of optimal pathfinding in complex 
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environments. Scenarios are considered that may include bottlenecks, non-uniform obstacle distri-
butions, and areas of increased safety requirements in the immediate vicinity of obstacles. Despite 
the widespread use of lattice representations of the environment in robotics due to their compatibil-
ity with sensor data and support for classical trajectory planning algorithms, the resolution of these 
lattices has a significant impact on both goal reachability and optimal path performance. An algo-
rithm is proposed that combines environmental connectivity analysis, trajectory optimization, and 
geometric safety refinement. In the first stage, the Leath algorithm is used to estimate the reachabil-
ity of the target point by identifying a connected component containing the starting position. Upon 
confirmation of the target point’s reachability, the A* algorithm is applied to the nodes of this com-
ponent in the second stage to construct a path that simultaneously minimizes both the path length 
and the risk of collision. In the third stage, a refined obstacle distance estimate is performed for 
nodes located in safety zones using a combination of the Gilbert-Johnson-Keerthi (GJK) and ex-
panding polyhedron (EPA) algorithms. Experimental analysis revealed a nonlinear relationship be-
tween the probability of existence and the efficiency of an optimal path and the lattice resolution: 
reducing the spatial resolution of the lattice increases the likelihood of connectivity loss and the un-
reachability of the target, while increasing its spatial resolution increases computational complexity 
without a proportional improvement in the characteristics of the optimal path.

Keywords: mobile robot, optimal pathfinding, lattice percolation, percolation cluster, Leath algo-
rithm, A* algorithm, Gilbert-Johnson-Keerthi algorithm, expanding polytope algorithm.
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1. Введение

Планирование оптимальной траектории является фундаментальной задачей в робото-
технике, автономном управлении транспортными средствами и роботизированных системах, 
требующей балансировки между точностью представления окружающей среды и вычисли-
тельными ресурсами, доступными для выполнения алгоритмов навигации [Ericson, 2005; Gu, 
Cao, 2011; Goldstein et al., 2020]. Современные подходы, основанные на решеточных пред-
ставлениях, позволяют интегрировать данные сенсоров с классическими алгоритмами поис-
ка, такими как A* и его модификациями, что обеспечивает быструю обработку и интерпрета-
цию окружающего пространства [Lingelbach, 2004]. Тем не менее, выбор оптимального раз-
решения при дискретизации окружающей среды является  критически важным,  поскольку 
влияет на качество оптимального пути и вычислительную эффективность алгоритма [Ericson, 
2005; Otte et al., 2009].

Особую актуальность рассматриваемая тема приобретает в условиях, где присутству-
ют узкие проходы и неоднородное распределение препятствий, создающие повышенные тре-
бования к безопасности передвижения. В таких сценариях даже незначительное несоответ-
ствие параметров дискретизации может привести к ошибкам в оценке связности окружаю-
щей среды, что, в свою очередь, повлияет на достижимость целевых точек и безопасность 
траектории [Otte et al., 2007; Gaisbauer et al., 2018]. В данной работе предлагается новый под-
ход, направленный на объединение топологического анализа связности, оптимизации траек-
тории и геометрического уточнения зон безопасности, что позволяет адаптировать алгорит-
мическое решение к особенностям конкретного пространства.

В литературе можно наблюдать широкое применение решеточных представлений в за-
дачах  планирования  траекторий.  Исследования,  посвященные  полному  покрытию  про-
странства и оценке связности, указывают на важность выбора оптимальной дискретизации 
для правильного моделирования среды [Gaisbauer et al., 2018; Zhang et al., 2024]. Классиче-
ский алгоритм A* [Hart et al., 1968], адаптированный для работы с решетками, демонстриру-
ет высокую эффективность при условии корректной валидации эвристических функций, од-
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нако  его  производительность  существенно  зависит  от  размеров  ячеек  [Gu,  Cao,  2011; 
Goldstein et al., 2020].

Кроме того, исследования, ориентированные на динамическое планирование траекто-
рий для автономных транспортных средств, показывают, что использование детализирован-
ных решеточных моделей помогает корректно предсказывать движения объектов и предот-
вращать аварийные ситуации, однако это приводит к существенному росту вычислительной 
нагрузки [Otte et al., 2007; Otte et al., 2009]. Дополнительное внимание уделяется методам, 
направленным на валидацию параметров безопасности, например, основанным на примене-
нии  комбинаций  алгоритмов  Гилберта-Джонсона-Кирти  (GJK)  и  расширяющегося  много-
гранника (EPA) для оценки минимальных расстояний от робота до препятствий, что суще-
ственно улучшает характеристики построенных маршрутов в условиях высокого риска столк-
новений  [Gilbert et al., 1988; Ericson, 2005].

Важным аспектом является анализ компромисса между качеством найденного пути и 
вычислительными затратами. Ряд исследований демонстрирует, что увеличение разрешения 
решетки с какого-то момента уже не приводит к оптимизации траектории, а лишь увеличива-
ет вычислительную трудоемкость задачи, для компенсации которой обычно требуется разра-
ботка  адаптивных методов дискретизации [Ferguson,  Stentz,  2006;  Radhakrishnan,  Gueaieb, 
2024]. На фоне этого, в ряде работ, посвященных интеграции различных алгоритмических 
подходов в гибридных системах управления, подчеркивается, что для достижения оптималь-
ного баланса необходимо учитывать как топологические, так и геометрические характеристи-
ки моделируемой среды [Gu, Cao, 2011; Bandi, Thalmann, 2000].

Целью настоящего исследования является анализ влияния пространственного разре-
шения решеточного представления окружающей среды на корректность и эффективность по-
иска оптимального пути в сложных условиях, характеризующихся наличием узких проходов, 
неоднородностью препятствий и зонами с повышенными требованиями к безопасности (зон 
безопасности). Для достижения поставленной цели необходимо решить следующие задачи. 

1. Выполнить дискретизацию с заданным пространственным разрешением рабочей 
области физического пространства в виде взвешенной квадратной решетки с 
единичной евклидовой окрестностью.

2. Реализовать оценку топологической связности двумерной решеточной модели рабочей 
области, определяющей существование пути между стартовой и целевой точками. 

3. Реализовать построение оптимального пути, адаптированного для минимизации 
длины и риска столкновений на однородной решетке. 

4. Реализовать метод геометрической валидации для детальной решеточной 
аппроксимации оптимального пути зонах безопасности вблизи препятствий. 

5. Провести анализ зависимости вероятности существования и эффективности 
оптимального пути от пространственного разрешения и количества препятствий на 
решеточной модели рабочего пространства.

2. Алгоритмы и методы моделирования

Рассматривается задача построения оптимального пути для круглого мобильного ро-
бота радиуса  в квадратной области , содержащей  эллипти-
ческих препятствий   с зонами безопасности вокруг них радиуса . 

Алгоритм включает последовательные этапы: а) дискретизация области; б) топологи-
ческий анализ связности; в, г) поиск оптимального пути и его валидацию в зонах безопасно-
сти.

2.1. Дискретизация рабочей области

Пусть модель рабочей области содержит K препятствий 
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, (1)

каждое из которых представляет собой эллипс , заданный своими псевдослучайными, рав-
номерно  распределенными  параметрами:  центром  и  полуосями  , 

 при , а также углом их поворота  относитель-
но базового направления.

Среди совокупности препятствий (1) в модели рабочей области перемещается круглый 
мобильный робот радиуса :

, (2)
где  — положение центра робота.

Для  корректного учета размеров робота (2)  выполним переход из физического про-
странства в конфигурационное, где робот становится точкой, а препятствия увеличиваются 
на  с помощью суммы Минковского:

, (3)

где  — множество всех положений центра робота, при которых он пересекается с препят-
ствиями;  — круг радиуса .

Тогда зону безопасности в конфигурационном пространстве можно определить:

, (4)

где  — евклидова -окрестность , где робот не сталкивается с препятствиями, но доста-
точно близок к ним; $ $ — евклидово расстояние между вектором  
и множеством A в конфигурационном пространстве.

Рабочая область покрывается равномерной квадратной решеткой с шагом h, определя-
ющим число узлов:

. (5)

Тогда множество узлов соответствует целочисленной решетке:

. (6)

для которой координаты узла  определяются как .
Каждому узлу квадратной решетки (6) присваивается вес:

 (7)

Будем рассматривать решетку (6)  с единичной евклидовой окрестностью, в которой 
для любого узла   его окрестность   включает все узлы , такие 
что 

. (8)
Для каждого узла  стоимость перехода  по ребру определяется следую-

щим образом:

 (9)

где   — штрафной параметр за вход в зону безопасности;   — индикатор события; 
 — евклидово расстояние между узлами u и v в конфигурационном пространстве:

 (10)
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Последнее условие в (10) означает, что если хотя бы один из узлов u или v заблокирован, то 
переход между ними считается недопустимым.

В результате дискретная модель рабочей области задается как взвешенный неориенти-
рованный граф 

, (11)
где   —  множество узлов решетки;   — множество допустимых ребер решетки; 

 — веса узлов решетки (7), соответствующие топологии рабочей области; 
 — веса ребер решетки (9) в евклидовой метрике, соответствующие топо-

логии рабочей области (11).

2.2. Топологический анализ связности

На первом этапе проводится оценка связности решетки чтобы определить, существует 
путь между стартовой и целевой точками при заданном разрешении решетки. Для этого мож-
но воспользоваться алгоритмом Лиса, позволяющим итеративно исследовать соседние ячей-
ки и сформировать связную компоненту , включающую в себя стартовый узел . Если 
целевой узел также принадлежит связной компоненте , то условие достижимости счита-
ется выполненным. Такой подход позволяет выявлять случаи, когда погрешности дискретиза-
ции приводят к нарушению связности между областями конфигурационного пространства 
[Lingelbach, 2004; Otte et al., 2009]. 

Оригинальный алгоритм Лиса  [Leath, 1976] был разработан для выделения связного 
подмножества узлов на псевдослучайно-взвешенной однородной решетке. Псевдокод моди-
фицированного алгоритма Лиса представлен в листингах 1 и 2 и для детерминированной ре-
шетки реализует обход в ширину с ограничением на принадлежность к подмножеству допу-
стимых узлов .

Листинг 1. Анализ связности в конфигурационном пространстве

Require: Стартовый узел s, весовая матрица w, размер N
Ensure: Связная компонента  или 
1: if  then
2: return 
3: end if
4: 
5: while Q не пуста do
6: 
7: for all 
8: if  and  then
9: 
10: 
11: end if
12: end for
13: end while
14: return 

Листинг 2. Вспомогательная функция 

1: 
2: for 
3: for 
4: if  then
5:  
6: if  and  then
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7:
8: end if
9: end if
10: end for
11: end for
12: return 

При малой плотности препятствий (ниже порога перколяции) содержащая s компонен-
та связности   обычно совпадает с допустимым подмножеством узлов  , то есть алго-
ритм выявляет связное подмножество узлов решетки, включая зоны безопасности, но исклю-
чая препятствия. Это позволяет анализировать для решетки: а) формирование сквозных пу-
тей (через перколяцию между границами решетки);  б,  в)  формирование заблокированных 
компонент решетки, их распределение по размерам и прочие характеристики.

Данный алгоритм обеспечивает корректную оценку глобальной связности стартовой и 
целевой точек с учетом размеров робота при верхних оценках временной и пространственной 
сложностей порядка . Если , то искомого пути не существует и алгоритм завер-
шается.

2.3. Поиск оптимального пути

После подтверждения связности стартового и целевого узлов решетки  осуще-
ствляется построение оптимального маршрута с использованием алгоритма A*  [Hart  et al., 
1968]. В предлагаемой модификации традиционная эвристическая функция дополняется ве-
совыми коэффициентами, зависящими от расстояния до ближайших препятствий, что позво-
ляет учитывать риск столкновения. Такой подход обеспечивает построение пути, минимизи-
рующего как его длину, так и потенциальный риск столкновения, что критически важно в зо-
нах с высокой плотностью препятствий [Gu, Cao, 2011; Goldstein et al., 2020]. Ограничение 
поиска лишь подмножеством узлов связной компоненты, выделенной на первом этапе, позво-
ляет уменьшить область поиска и, следовательно, снизить вычислительную нагрузку при по-
вышении пространственного разрешения.

Алгоритм  решает  задачу  поиска  пути  минимальной  стоимости  из  стартового  узла 
 в целевой узел , при условии, что оба узла допустимы  и 

. В качестве эвристической функции используется евклидово расстояние между фи-
зическими координатами узлов:  

. (12)

Эвристика (12) является допустимой (не переоценивающей стоимость пути в непре-
рывной среде) и согласованной (удовлетворяющей условию монотонности  
для всех допустимых ребер), что гарантирует оптимальность найденного решения и отсут-
ствие необходимости повторного анализа узлов.

Алгоритм реализует поиск в конфигурационном пространстве с использованием оче-
реди с приоритетом, упорядоченной по значению функции , где  — наи-
меньшая известная стоимость пути от  s до  u. На каждой итерации из очереди извлекается 
узел с минимальным f, после чего обновляются оценки стоимости для всех его проходимых 
соседей. Процесс завершается при извлечении целевого узла t или опустошении очереди.

Псевдокод алгоритма представлен в листинге 3. Предлагаемая модификация сохраняет 
все теоретические гарантии оригинального A*, включая полноту (если путь существует, то 
он будет найден) и оптимальность (найденный путь имеет минимальную стоимость среди 
всех допустимых путей на решетке ).

Таким образом, предложенная модификация алгоритма A* обеспечивает геометриче-
ски обоснованный и безопасный поиск оптимального маршрута в дискретном конфигураци-
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онном пространстве, учитывающий как физические размеры робота, так и предпочтения к 
избеганию зон с повышенными требованиями к безопасности в окрестности препятствий.

Листинг 3. Поиск оптимального пути в конфигурационном пространстве

Require: , штраф  
Ensure: Оптимальный путь  или 
1: if  or 
2: return 
3: end if
4: Инициализировать , , parent
5: , 
6: open  очередь с приоритетом, closed 
7: open.insert(s, )
8: while open не пуста
9:  open.pop_min()
10: if  then 
11: return ReconstructPath(parent, s, t) 
12: end if
13: closed  closed 
14: for all 
15: if  or  then continue
16: end if
17:  if 'ребро осевое' else 
18:
19: tentative_g   cost
20: if tentative_g  then 
21: parent[v]  tentative_g
22:
23: Обновить v в open
24: end if
25: end for
26: end while
27: return 

2.4. Валидация оптимального пути

На заключительном этапе алгоритма выполняется геометрическая валидация найден-
ного дискретного пути , полученного с помощью модифицированного ал-
горитма A*. Цель данного этапа — подтвердить безопасность траектории в непрерывном ра-
бочем пространстве, компенсируя потенциальные погрешности, внесенные дискретизацией и 
повышенным риском столкновений в зонах безопасности.

Валидация ограничивается узлами пути, принадлежащими зонам безопасности в кон-
фигурационном пространстве, то есть таким , для которых . Для каждого та-
кого узла вычисляется точное евклидово расстояние между телом робота и эллиптическими 
препятствиями в физическом пространстве.

Пусть   — физические  координаты  центра  робота,  соответствующие 
узлу . Робот в физическом пространстве моделируется как круг 

, (13)
где   — заданный радиус робота. Препятствия   , представляют собой 
эллипсы, заданные аналитически. Для каждой пары  вычисляется евклидово рас-
стояние  
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. (14)

Расстояние  (14) определяется  с  помощью комбинации  алгоритмов  Гилберта-Джон-
сона-Кирти (GJK) и  расширяющегося многогранника (EPA), которые в случае пересечения 
тел  возвращают  ,  в  противном  случае  —  вычисляют  минимальное  расстояние  и 
направление разделения с точностью представления форм робота и препятствий в физиче-
ском пространстве [Gilbert et al., 1988; Ericson, 2005].

Минимальное расстояние от робота до любого препятствия в положении  определя-
ется как

. (15)

Полученное в соответствии с (15) значение сравнивается с требуемой безопасной дистанцией 
 (например, , если зона безопасности была определена как -окрестность в 

физическом пространстве).  Если для любого проверяемого узла выполняется  ,  то 
путь считается небезопасным, и алгоритм возвращает отрицательный результат.

Псевдокод процедуры валидации представлен  в  листинге  4.  Благодаря  выпуклости 
круга и эллипса, комбинация GJK+EPA сходятся за небольшое (обычно не более 20) число 
итераций в двумерном случае. Этот этап обеспечивает гарантию соблюдения заданного без-
опасного расстояния в физическом пространстве.

Листинг 4. Валидация оптимального пути в физическом пространстве

Require: Путь , препятствия , параметры  и 
Ensure: Безопасен ли путь?
1: for all  : 
2:
3:
4: for k = 1 to K
5:
6:
7: end for
8: if  then
9: return false
10: end if
11: end for
12: return true

3. Результаты вычислительных экспериментов

Для эмпирической оценки влияния пространственного разрешения решеточной моде-
ли на корректность и эффективность поиска оптимального пути была разработана серия вы-
числительных экспериментов, включающая генерацию тестовых сценариев, настройку пара-
метров квадратной решетки и количественный анализ полученных результатов.

3.1. Тестовые сценарии и параметры решетки

В качестве базовой области использовалась квадратная рабочая зона  
с L = 10 м. Внутри области случайным образом размещались K эллиптических препятствий 

, где K варьировалось в диапазоне от 10 до 100 с шагом 10, что позволило исследовать по-
ведение алгоритма как в условиях низкой, так и высокой плотности препятствий. Центры 
препятствий  генерировались независимо из равномерного распределения . 
Полуоси   выбирались из интервала   м, а их ориентация   — из 
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. Радиус мобильного робота фиксировался на уровне  м, а радиус зоны без-
опасности — на уровне  м.

Для каждого значения  K генерировалось по 300 независимых конфигураций препят-
ствий, что обеспечивало приемлемую статистическую репрезентативность результатов. Стар-
товая и целевая точки фиксировались в противоположных углах области, чтобы максимизи-
ровать сложность оптимального пути и вероятность его пересечения со сложными препят-
ствиями: , .

Пространственное разрешение задавалось шагом узлов h решетки, который принимал 
значения из множества   см, что соответствовало линейным размерам ре-
шетки  узлов. Для каждого размера ре-
шетки  N с учетом физических размеров и расположения препятствий оценивались относи-
тельные доли занятых p и свободных узлов .

Для каждой комбинации  генерировалось по 300 независимых реализаций, к каж-
дой из которых применялся предложенный алгоритм.

1. Топологический анализ связности решетки с использованием модифицированного 
алгоритма Лиса.

2. Поиск оптимального пути на решетке с использованием модифицированного 
алгоритма A* со штрафом . 

3. Валидация оптимального пути в зонах безопасности с помощью алгоритмов GJK+EPA 
при пороговом значении  м.

Примеры построения оптимального пути для двух подобных реализаций с идентичными пре-
пятствиями и различным пространственным разрешением решетки показаны на рис. 1 (а, б).

Рис. 1. Примеры построения оптимального пути на решетках при  препятствий и 
различных значениях шага узлов решетки h: а) при  см; б) при  см.

3.2. Измеряемые метрики

Для  каждой  комбинации  модельных  параметров  и  пространственного  разрешения 
фиксировались следующие метрики.

1. Вероятность существования связного пути , определяемая по доле сценариев, в 
которых целевая точка была достижима (то есть  и путь прошел валидацию).

2. Стоимость оптимального пути  ,  определяемая суммарной стоимостью пути c 
учетом штрафов в зонах безопасности.
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3. Эффективность оптимального пути , определяемая отношением стоимо-

сти кратчайшего пути  , полученного на свободной от препятствий 
решетке с текущим значением шага узлов h, к стоимости оптимального пути , 
полученного на той же решетке с препятствиями .

Для каждой пары  оценивались выборочные средние для указанных метрик. Анализ за-
висимости проводился с использованием статистических моделей нелинейной регрессии и 
визуализации для формирования эмпирических гипотез о влиянии пространственного разре-
шения  на  указанные метрики.  Особое  внимание  уделялось  анализу  поведения  системы в 
окрестности возможного порога перколяции, где можно предположить экстремальные значе-
ния градиентов функций  и .

Вычислительные эксперименты проводились в среде Python 3.13 с  использованием 
библиотек NumPy, SciPy и собственных реализаций описанных выше алгоритмов. 

3.3. Аппроксимация измеряемых метрик

На рис. 2 (а, б) показаны сечения поверхности , соответствующие вероятности 
существования  связного  пути,  при  фиксированных  значениях  параметров   или 

. Статистический анализ данных, построение регрессионных моделей и визуализа-
ция проводились в системе R с использованием библиотек из репозиториев CRAN.

Рис. 2. Вероятность существования связного пути от: а) доли свободных узлов q при 
различных значениях шага h решетки ; б) логарифма шага h при 

различных значениях доли свободных узлов q решетки .

Семейство  функций  вероятностей  существования  связного  пути   в  сечениях 
 удовлетворительно аппроксимируется с помощью обобщенной асимметричной ло-

гистической функции:

(16)

где  — вектор параметров, оцениваемый при минимизации суммы квадратов 
отклонений  с помощью реализации алгоритма Левенберга-Марквардта, реали-
зованного в функции “gsl_nls( )” из одноименного пакета “gslnls” [Chau, 2021].

Для  аппроксимации  семейства  функций  вероятности  существования  связного  пути 
 в сечениях  можно использовать более простую степенную функцию вида:

 (17)
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где  — вектор параметров, оцениваемый при минимизации суммы квадратов от-
клонений  аналогично предыдущей модели.

На рис. 3 (а, б) показаны сечения поверхности , соответствующие эффективно-
сти оптимального пути, при фиксированных значениях q и h, аналогичных ранее используе-
мым при построении рис. 2.

Рис. 3. Эффективность оптимального пути от: а) доли свободных узлов q при 
различных значениях шага h решетки ; б) логарифма шага h при 

различных значениях доли свободных узлов q решетки .

Семейство функций эффективности оптимального пути   в  сечениях   
удовлетворительно аппроксимируется с помощью линейно-логистической функции:

 (18)

где  — вектор параметров, оцениваемый при минимизации суммы квад-
ратов отклонений  аналогично предыдущим моделям.

Для аппроксимации семейства функций эффективности оптимального пути   в 
сечениях  можно использовать логарифмическую функцию вида:

 (19)

где  — вектор параметров, оцениваемый при минимизации суммы квадратов от-
клонений  аналогично предыдущим моделям.

4. Обсуждение результатов

Для показанных на рис. 2 (а) графиков аппроксимаций (16) в сечениях функции веро-
ятности  существования  связного  пути   при  фиксированных   наблюдаются 
вполне типичные для перколяционных моделей возрастающие асимметричные сигмоидные 
кривые, описывающие переход от   к  , для которых можно отме-
тить следующие закономерности. 

1. С ростом доли свободных узлов  функция вероятности существования связного 
пути монотонно возрастает , причем чем меньше шаг узлов решетки 

, тем более быстрый рост наблюдается . 

2. Для каждого значения h существует критическое значение доли свободных узлов , 
при котором производная функции  достигает максимума .
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3. Увеличение шага узлов решетки  влечет за собой увеличение критической доли 
свободных узлов .

4. Увеличение шага узлов решетки  также влечет за собой увеличение радиуса -
окрестности критических значений доли свободных узлов , в которой 
функция  значимо отличается от тривиальных значений .

На рис. 2 (б) показаны графики аппроксимаций (17) в сечениях функции вероятности 
существования связного пути  при фиксированных , на которых наблюдают-
ся также вполне типичные для перколяционных моделей убывающие сигмоидные кривые, 
описывающие переход от  к  со следующими закономерностями. 

1. С ростом шага узлов решетки  функция вероятности существования связного 
пути монотонно убывает , причем чем больше доля свободных узлов 
решетки , тем более медленный спад наблюдается . 

2. Для каждого значения q существует критическое значение шага узлов , при 
котором производная функции  достигает минимума .

3. Увеличение доли свободных узлов  влечет за собой увеличение критического 
шага узлов решетки .

4. Увеличение доли свободных узлов решетки  также влечет за собой увеличение 
радиуса -окрестности критических значений шага узлов решетки , в 
которой функция  значимо отличается от тривиальных значений .

Для показанных на рис.  3 (а) графиков аппроксимаций (18) в сечениях функции эф-
фективности оптимального пути   при фиксированных   наблюдаются вполне 
типичные для некоторых перколяционных моделей обобщенные сигмоидные кривые, описы-
вающие переход от минимальных постоянных значений  к проходящим че-
рез точку  (1, 1) возрастающим прямым , для которых можно отметить 
следующее.

1. Для каждого значения h существует первое критическое значение доли свободных 
узлов, ниже которого  функция эффективности оптимального пути падает до 
нуля .

2. Увеличение шага узлов решетки  влечет за собой увеличение первой 
критической доли свободных узлов .

3. Для каждого значения h существует второе критическое значение доли свободных 
узлов, при котором  производная функции  достигает максимума 

.

4. Увеличение шага узлов решетки  влечет за собой увеличение второй 
критической доли свободных узлов .

На рис. 3 (б) показаны графики аппроксимаций (19) в сечениях функции эффективно-
сти оптимального пути  при фиксированных , на которых наблюдаются пря-
мые в полулогарифмическом масштабе убывающие линии со следующими закономерностя-
ми.

1. Для каждого значения q существует критическое значение шага решетки , выше 
которого функция эффективности оптимального пути  падает до нуля.

2. Увеличение шага узлов решетки  влечет за собой незначительное снижение 
эффективности оптимального пути  тем меньшее, чем ближе доля 
свободных узлов к тривиальным значениям .
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5. Выводы и заключение

На основании проведенного статистического анализа можно сформулировать следую-
щие выводы.

1. При возрастании шага узлов решетки  вероятности существования связных 
путей на решетке убывают , причем чем меньше доля свободных узлов 
решетки , тем при меньших значениях h становиться значимым этот процесс.

2. Все аппроксимирующие кривые в сечениях  имеют сигмоидную форму, что 
указывает на наличие в конфигурационном пространства аналога геометрического 
фазового перехода. Радиус окрестности этого перехода на конечных решетках зависит 
от размера системы, но чем больше размер системы (то есть, чем меньше h), тем при 
меньших значениях q и в меньшей окрестности  происходит этот фазовый 
переход.

3. Эффективность оптимального пути  на незаполненных решетках (при ) 
высокого разрешения (при ) близка к 1 — оптимальный путь совпадает с 
кратчайшим евклидовым расстоянием. При падении доли свободных узлов решетки 
эффективность оптимального пути вначале падает до уровня 0.72…0.73 из-за 
необходимости обхода препятствий, а затем до 0 из-за падения вероятности 
существования связного пути. 

В заключение отметим, что хотя функции  и   описывают разные аспекты 
предложенной модели — существование связного пути и его эффективность, но они взаимо-
связаны. В частности, пороговые значения  для функции  находятся в ле-
вой окрестности интервала   резкого возрастания функции  . Это означает, 
что рост вероятности существования связного пути и рост его эффективности происходят со-
гласованно — при достижении критической плотности свободных узлов решетки.

В  качестве  направлений  для  дальнейшего  развития  представленного  исследования 
можно выделить анализ влияния коррелированных распределений препятствий на показатели 
вероятности и эффективности оптимального пути, а также экспериментальную верификацию 
разработанных алгоритмов для управления мобильными роботами.
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