Теория СТРУГА ($\mu\tau$ -подход)

Квантовая гравитация с кривизной частиц без кривизны пространства

В.Ю.Струговщиков

Москва, Россия

СТРУГА: Скалирующая Темпоральная Релятивистская Универсальная Гравитация Архитектуры **STRUGA:** Scaling—Temporal Relativistic Universal Gravity Architecture

Версия рукописи: November 11, 2025 | Предварительный препринт Предполагаемый раздел журнала: Теория гравитации и космология

Краткая аннотация. Мы предлагаем операциональный $\mu\tau$ -подход к гравитации на плоском фоне: гравитационное взаимодействие трактуется как универсальная перенастройка μ масштаба частиц (μ) и темпа внутренних часов (τ). Тензорные возмущения (гравитоны) распространяются по μ мимым частям квантов пространства и при пересечении с их μ мастями индуцируют согласованные изменения μ , τ во всех полях. В слабом поле теория воспроизводит классические проверки ОТО (PPN до 1PN, линзирование, задержку Шапиро, равенство скоростей EM и GW); в сильном предсказывает малые 2PN-отклонения, возможные «эхо» в кольцевании чёрных дыр и слабую скалярную поляризацию. На едином каркасе описываются сразу несколько «тёмных» эффектов: тёмная материя как ВН-привязанный мнимо-геометрический отклик (включая кейсы типа «Скопления Пуля»), тёмная энергия как сумма вакуумной компоненты и роста квантов пространства, барионная асимметрия как следствие двухслойной (мёбиус-подобной) топологии. Теория сохраняет причинность и локальную лоренц-инвариантность, формулируется как EFT с контролируемыми поправками и задаёт чёткие наблюдаемые тесты для ближайших экспериментов.

Ключевые слова: квантовая гравитация; $\mu\tau$ -подход; STRUGA; гравитон; линзирование; PPN; граничные слои real/imag; тёмная материя и энергия.

1 Введение

1.1 Проблематика квантовой гравитации и «тёмных» феноменов

За столетие после создания общей теории относительности (ОТО) и становления квантовой теории поля физика добилась выдающихся успехов. Однако соединить гравитацию с квантовой механикой в единый, внутренне согласованный формализм до сих пор не удалось. В ультрафиолетовом пределе квантование гравитации в метрике Эйнштейна приводит к неперенормируемым расходимостям; фон-независимые подходы сталкиваются с трудностями связи с наблюдаемой феноменологией.

Параллельно астрофизика предъявляет «тёмные» вызовы: гравитационная динамика галактик и скоплений требует дополнительной массы (тёмная материя), ускоренное расширение Вселенной — компоненты с отрицательным давлением (тёмная энергия). Наблюдения в сильном поле — тени и кольцевание чёрных дыр, орбиты звёзд у Sgr A*, поляризация и дисперсия гравитационных волн — открывают новые режимы проверки теорий.

Любая кандидат-теория квантовой гравитации должна одновременно:

- 1. согласовываться с проверками ОТО в слабом поле;
- 2. давать корректный квантовый предел без патологий;
- 3. предлагать чёткие наблюдательные отличия в сильнополевых и космологических режимах.

1.2 Идея $\mu \tau$ -подхода: гравитация как изменение масштаба частиц и темпа их внутренних часов (плоский фон)

Вместо того чтобы приписывать гравитации искривление фона, мы переносим её действие на универсальные свойства материи. В предлагаемом $\mu\tau$ -подходе роль «носителей» гравитации играют два скалярных поля: μ , управляющее масштабом (эффективным размером) частиц и их полей, и τ , задающее темп внутренних часов (локальную скорость протекания процессов).

Пространство-время при этом трактуется как глобально плоское; измеряемые эффекты гравитации возникают из того, как μ и τ изменяются в разных точках и состояниях. Одна и та же универсальная деформация действует на все известные поля — это обеспечивает эквивалентность свободного падения.

В сильных полях мы допускаем топологическое квантование пространства: каждый «квант» имеет реальную часть (наблюдаемую трёхмерную сцену) и мнимую часть (скрытый объём), которые тонко пересекаются. Избыточный «масштаб» частиц вблизи сингулярностей может временно «складироваться» в мнимой части и возвращаться через границы пересечений, что обеспечивает устойчивость динамики и задаёт каналы для «тёмных» эффектов без введения новых видов материи.

1.3 Основные результаты работы и проверяемые предсказания

В статье мы формулируем действие теории на плоском фоне, выводим уравнения движения и показываем, как μ и τ последовательно встраиваются в стандартные релятивистские уравнения для частиц и полей (скалярных, спинорных, векторных, спина 3/2). В слабом поле получаем полный набор постньютоновских параметров первого порядка, совпадающий с ОТО (включая «гравитомагнитный» сектор), что сохраняет все классические проверки в Солнечной системе.

На уровне феноменологии мы:

- выводим гравитационное линзирование и красное смещение как оптику в эффективной среде, согласующуюся с наблюдаемыми величинами в первом порядке;
- предсказываем тонкие отличия второго порядка, проявляющиеся в углах отклонения света и прецессии орбит при близких пролётах к компактным объектам;

- получаем слабую дополнительную «дыхательную» поляризацию гравитационных волн и слегка более быстрое затухание кольцевания чёрных дыр;
- даём интегральные оценки возможной задержки электромагнитных сигналов относительно гравитационных при прохождении сложных гравитационных сред;
- описываем механизмы эффективной тёмной материи (через проекции «мнимого» масштаба) и двухкомпонентной тёмной энергии (вакуумный вклад полей и рост реального объёма за счёт рождения квантов пространства), совместимые с крупномасштабной динамикой.

Все перечисленные отличия сводятся к конечному числу параметров и переводятся в конкретные тесты на грядущих наблюдательных установках.

1.4 Связь и отличие от альтернатив (скаляр-тензорные, дисформальные, телепараллельные, эмерджентные)

Наш подход тематически родственен теориям, где гравитацию поддерживают дополнительные поля, но отличается по онтологии и интерпретации:

- в скаляр-тензорных моделях дополнительный скаляр сосуществует с динамической метрикой; у нас метрика фона плоская, а гравитация проявляется через универсальные деформации свойств материи;
- дисформальные и «оптические» описания вводят эффективную метрику для распространения света; у нас та же оптика возникает как следствие модифицированных уравнений поля в среде, заданной μ и τ ;
- в телепараллельной гравитации искривление заменяется кручением связности; у нас геометрическая связь вторична по отношению к масштабным и временным деформациям частиц;
- эмерджентные конструкции выводят гравитацию из статистики микросостояний; мы формулируем минималистскую квантовую теорию поля с двумя универсальными скалярами и явной феноменологией.

В сумме $\mu\tau$ -подход сохраняет проверенную кинематику ОТО в слабом поле, но меняет динамическую «сущность» гравитации, что делает квантовое описание технически проще и одновременно даёт специфические наблюдательные сигнатуры.

1.5 Структура статьи

- Раздел 2 формулирует постулаты и операциональную интерпретацию μ и τ .
- Раздел 3 вводит топологическое квантование пространства и роль мнимого сектора.
- Раздел 4 содержит центральный лагранжиан теории, симметрии и вариационный вывод.
- Раздел 5 обсуждает связь уравнений движения с «наблюдаемой метрикой».
- Раздел 6 объединяет модифицированные волновые уравнения для полей различного спина и проверку эквивалентности.
- Раздел 7 проводит полный РРN-анализ первого порядка.
- Раздел 8 посвящён оптическим тестам (линзирование, красное смещение, задержка Шапиро).
- Раздел 9 сильнополевая динамика чёрных дыр и проблема информации.
- Раздел 10 рассматривает гравитационные волны, поляризации и кольцевание.

- Разделы 11–12 описывают феноменологию тёмной материи и тёмной энергии и космологические следствия.
- Раздел 13 посвящён мультимессенджер-подписям, раздел 14 звёздам у Sgr A^* .
- Разделы 15–17 обсуждают параметры модели, статистическую идентифицируемость и квантовую корректность (перенормируемость / EFT, причинность).
- Разделы 18 сравнивает модель с альтернативами.
- Обсуждение и Заключение суммируют основные результаты и намечают ближайшие проверки.

2 Постулаты и операциональная интерпретация

2.1 Универсальность деформаций μ и τ : принцип эквивалентности в масштабной формулировке

Постулат Р0 (плоский фон). На фундаментальном уровне фон берётся глобально плоским; гравитация не «гнёт» фон, а проявляется через поля, меняющие единицы измерения самой материи.

Постулат Р1 (две универсальные деформации). Существуют два скалярных поля:

- $\mu(x)$ отвечает за масштаб частиц и волн (эффективный «размер», длины, плотности, поперечные сечения);
- $\tau(x)$ отвечает за внутренние часы (локальный темп всех процессов, частоты переходов, «скорость хода времени» для системы).

Оба поля действуют универсально: все известные частицы и поля (с различным спином, зарядом и массой) испытывают одинаковые мультипликативные деформации. Это обеспечивает масштабную формулировку принципа эквивалентности: в любой достаточно малой области, где μ и τ можно считать постоянными (а их градиенты — пренебрежимо малыми), локальная физика редуцируется к специальной теории относительности с переопределёнными эталонами длины и времени. Иными словами, существует локальная «масштабная инерциальная система», в которой все нерелятивистские и релятивистские эксперименты (включая атомные спектры, скорость света, распады частиц) имеют те же соотношения, что и в плоском пространстве, если выражать результаты в локальных единицах.

Постулат Р2 (минимальная замена). Для любой квантовой системы «включение» гравитации осуществляется одними и теми же правилами: массы эффективны «с весом» μ , а временные производные — «с темпом» τ . Это реализует универсальность без селективной «пятой силы». В данной работе мы показываем, что такой рецепт воспроизводит все проверенные слабополевые эффекты ОТО при подходящем выборе профилей μ и τ .

Постулат Р3 (топологическая устойчивость сильных полей). В режимах, где в ОТО возникают сингулярности, избыточный рост «масштаба» переносится в мнимые объёмы квантов пространства (см. §3), что обеспечивает конечность наблюдаемых величин и сохраняет физический смысл эволюции.

Следствие (масштабный ЭПИ). «Все тела падают одинаково» формулируется так: траектории, периоды, частоты и углы, измеренные локальными линейками и часами, не зависят ни от состава, ни от внутреннего устройства пробного тела. Любые отклонения от этого проверяются в экспериментах типа торсионных весов, атомных интерферометров и спутниковых тестов; в нашей модели такие отклонения отсутствуют на уровне первого постньютоновского порядка.

2.2 Относительная скорость гравитации: определение, каузальность, наблюдаемые

Мы различаем две скорости:

• Физическая скорость гравитации — скорость распространения гравитационных возмущений (гравитационных волн) в фоновом описании. По построению она равна скорости света c и не нарушает причинности.

• Относительная скорость гравитации — операциональная величина: число, которое получается, когда локальный наблюдатель измеряет скорость прихода гравитационного фронта своими собственными линейкой и часами, уже деформированными полями μ и τ .

Поскольку гравитация именно эти эталоны и меняет, численное значение может отличаться от c и сильно зависеть от положения:

- далеко от горизонта событий чёрной дыры, где масштабы частиц слабо сжимаются, относительная скорость гравитации практически не отличается от скорости света;
- рядом с горизонтом событий снаружи от чёрной дыры, где масштабы сжимаются сильнее, относительная скорость возрастает (операционально за счёт укороченных «шагов» линейки) и может многократно превышать скорость света;
- на самом горизонте, в пределе идеализации, измеряемая величина стремится к очень большим значениям (для локального наблюдателя «слишком мелкая линейка» даёт большое число метров в фиксированном физическом расстоянии);
- \bullet внутри горизонта при дальнейшем росте размеров частиц относительная скорость уменьшается, хотя физическая скорость гравитации остаётся равной c.
- у сингулярности относительная скорость гравитации начинает стремится к нулю.

Практические последствия.

- В мультимессенджер-событиях (слияния нейтронных звёзд / чёрных дыр) гравитационный сигнал может регистрироваться раньше светового на доли секунд—секунды за счёт интегрального «оптического» эффекта среды (см. тест в §13).
- Задержка зависит от интеграла по траектории (галактические гало источника/приёмника, крупномасштабные структуры), а не от локальной разницы «скоростей» в одной точке.

2.3 Измерительные процедуры: как приборы «видят» μ и τ (часы, линейки, фотонные тесты)

Операциональный смысл полей задаётся процедурами измерения, которые мы делим на три класса.

(A) Часы: измерение τ .

- Сравнение атомных часов на разных высотах (земные башни, спутники, радиочастотные линии). Локальный темп переходов напрямую «чувствует» τ .
- Мёссбауэровские и оптические гравитационные красные смещения. Частота фотона при подъёме/спуске в поле соответствует отношению τ в точках испускания и приёма.
- GPS/ГЛОНАСС-коррекции. Глобальные навигационные системы реализуют «сетевую томографию» τ на планетарных масштабах; наша модель переинтерпретирует эти поправки как прямое измерение поля τ .

(B) Линейки и масштабы: измерение μ .

- Резонаторы Фабри–Перо и оптические гребёнки: частота мод резонатора зависит от эффективной длины, что даёт доступ к μ .
- Маттер-волновая интерферометрия: фазовый набег холодных атомов / нейтронов зависит от их «масштабной» длины.
- Кристаллографические стандарты: межатомные расстояния сравниваются на разных потенциалах для выделения вклада μ .

(C) Фотонные тесты: совмещённая чувствительность к μ и τ .

- Гравитационное линзирование и задержка Шапиро: свет ведёт себя как в среде с эффективным показателем, зависящим от μ и τ .
- Стандартные сирены (GW) + электромагнитные контрпартнёры: сравнение времён прихода позволяет извлечь интегральную разность профилей.
- Пульсарные тайминг-массивы: статистика прихода импульсов чувствительна к комбинации μ и τ на десятках килопарсек.

Нормировки и калибровка. Абсолютные значения μ и τ недоступны напрямую — наблюдаемы их отношения и градиенты. Стандартная калибровка: на пространственной бесконечности полагаем $\mu \to 1, \, \tau \to 1$; все сдвиги интерпретируются относительно этого уровня.

Отделение μ от τ достигается совместной подгонкой разных классов экспериментов: часы дают чистую чувствительность к τ , резонаторы и интерферометры — к μ , фотонные тесты — к их комбинациям. В §15 мы обсуждаем статистическую идентифицируемость параметров и вырожденности.

2.4 Резюме раздела

Мы сформулировали четыре опорных принципа: плоский фон; две универсальные деформации μ и τ ; минимальную замену (универсальность куплингов); топологическую устойчивость сильных полей. На их основе строго определены:

- как проверяется эквивалентность (локальная редукция к СТО в μ, τ -константной области);
- что означает «относительная скорость гравитации» (операциональная величина без нарушения причинности);
- каким образом реальные приборы вычленяют μ и τ (часы, линейки, фотонные трассы).

Далее, в §3–§5, мы формализуем топологическое квантование и выводим лагранжиан, из которого следуют все дальнейшие результаты теории.

3 Топологическое квантование пространства

В сильнополевых режимах (горизонты, окрестности сингулярностей, ранняя Вселенная) непрерывное описание фона неудобно: именно там в стандартных моделях появляются расходимости. Мы вводим топологическое квантование пространства — дискретно-непрерывную мозаичную структуру носителя, в которой каждая «ячейка» (квант пространства) имеет два аспекта: наблюдаемую реальную часть и скрытую мнимую. «Мнимый» здесь не означает «воображаемое число», а выступает меткой скрытого объёма, топологически связанного с реальным слоем. Ниже формулируются геометрия квантов, устройство их пересечений и роль этих пересечений в динамике сильных полей и макро-расширении.

3.1 Кванты: реальная и мнимая части; аналог ленты Мёбиуса

Определение. Пространство представлено счётным семейством квантов $\{Q_i\}$. У каждого кванта есть:

- \bullet реальная часть R_i подмногообразие, идентифицируемое с наблюдаемой трёхмерной сценой измерений;
- мнимая часть I_i комплементарный объём, не принадлежащий наблюдаемой трёхмерности, но топологически связанный с ней.

Мёбиус-подобная склейка. Каждому Q_i приписаны ориентация $s_i \in \{+1, -1\}$ и «поворот» (twist) при обходе вдоль неразрезаемого цикла. Пара слоёв (R_i, I_i) ведёт себя как несобственно двулистная: при обходе по нелокальному циклу ориентация меняется, по аналогии с лентой Мёбиуса. Такая конструкция (1) допускает локально обычную трёхмерную физику на R_i ; (2) обеспечивает глобальные «переплёты» между R и I, необходимые для переноса избыточного масштаба (см. §3.4); (3) обеспечивает естественные каналы для перемещения гравитонов.

Наблюдаемость. I_i не наблюдается прямыми операциями, но влияет на R_j через пересечения и граничные слои. Это влияние фиксируется в действии (лагранжиане) как граничные термы real \leftrightarrow imag конечной толщины (см. §3.6).

3.2 Геометрия пересечений и граничные гиперповерхности конечной толщины ℓ_*

Перекрытия. Мнимая часть каждого кванта I_i пересекает реальные части других квантов:

$$\Sigma_{i \to j} \equiv I_i \cap R_j,\tag{1}$$

- это граничные гиперповерхности передачи влияния (interface). Их совокупность образует редкую, но всюду пронизывающую сеть. Каждой $\Sigma_{i \to j}$ сопоставляются:
 - геометрическая мера перекрытия $\zeta_{i \to j} \in [0,1]$ (плотность контакта), зависящая от локальной конфигурации;
 - эффективная толщина границы ℓ_* минимальная микродлина, на которой «смешиваются» поля R и I. Это физический срез, устраняющий δ^2 -патологии и совместимый с ЭФТ-описанием.

Граничная динамика. На $\Sigma_{i \to j}$ действуют консервативные законы сохранения с поверхностными токами; вариационный принцип задаёт:

- непрерывность «потока масштаба» и энергии через слой толщины ℓ_* ;
- конечные «скачки» нормальных производных полей μ, τ на величины, пропорциональные куплингу g и $\zeta_{i \to j}$ (см. §3.6-§3.6).

Кернел перекрытий. В крупномасштабном пределе сеть $\{\Sigma_{i\to j}\}$ аппроксимируется свёрточным ядром $K(\mathbf{x}-\mathbf{x}')$, описывающим средний вклад мнимого сектора в эффективные источники на реальном слое:

(эффективный вклад в
$$R$$
) $(\mathbf{x}) \sim \int K(\mathbf{x} - \mathbf{x}') ($ плотности в I) $(\mathbf{x}') d^3 \mathbf{x}'$. (2)

Характерный вид: «плато» на малых расстояниях и длинный хвост порядка $1/r^2$ на больших (см. $\S 11)$ — ключ к квазиизотермическим гало без новых частиц.

Причинность. Поскольку ℓ_* конечна, граничные законы локальны и гиперболичны; «обгон света» исключён. Любая «быстрая» величина (например, относительная скорость гравитации) — эффект пересчёта единиц наблюдателя, а не сверхсветовая передача сигналов.

3.3 Рождение/рост квантов и макро-эффект увеличения «реального» объёма

Элементарное событие. В квантово-флуктуационном акте рождается новый квант Q_{new} с $(R_{\text{new}}, I_{\text{new}})$. Это даёт два вклада в общий «реальный» объём:

- прямой появление R_{new} (микроскопический объём, существенно меньше атомного масштаба);
- индуцированный за счёт того, что I_{new} перекрывает все уже существующие R_j , каждый из них чуть «утолщается», увеличивая суммарный «реальный» объём макроскопически.

Экспоненциальный суммарный эффект. Если интенсивность рождения квантов \dot{N}_q медленно убывает с космологическим временем, индуцированный вклад, будучи аддитивным по всем пересечениям, накапливается и ведёт к *ускоряющемуся* росту суммарного реального объёма. На уровне фоновой космологии это проявляется как добавка к эффективной тёмной энергии $\Lambda_{\rm growth}(a)$ (см. §12), которая:

- практически однородна (не кластеризуется на галактических масштабах);
- может слабо эволюционировать во времени (намёк на $w(a) \neq -1$), оставаясь согласованной с CMB/BAO/SN при умеренных скоростях роста.

Контроль однородности. Однородность Λ_{growth} обеспечивается тем, что I-сети пронизывают все R равномерно в среднем, а их вклад усредняется на масштабах десятков мегапарсек, не создавая нежелательных флуктуаций плотности.

3.4 Стабилизация сильных полей: «сброс масштаба» в мнимый сектор и обратная связь

Проблема сильного поля. Внутри чёрных дыр по внутренней эволюции масштаб μ (эффективный «размер» состояний) растёт; в чисто непрерывном описании это приводило бы к расходимостям в плотностях энергии/давления на R.

Механизм стабилизации. Вводится локальный порог $\mu_{\rm th}$, после которого возмущение μ не усиливается в R, а канализуется через ближайшие интерфейсы Σ в мнимый объём I:

$$R \xrightarrow{\Sigma(\ell_*)} I$$
 (передача избыточного масштаба). (3)

Передача сопровождается:

- консервативным оттоком энергии/импульса с поверхностными токами на Σ (энергетический баланс закрыт);
- \bullet регуляризацией локальных плотностей на R (никаких δ -пиков и бесконечных узлов).

Обратная связь. Энергия и «масштаб», накопленные в I, не изолированы: через те же Σ они создают обратное эффективное гравитационное действие на множество R_j , которые пересекает данный I. На макро-уровне это:

- даёт дополнительный вклад в потенциал (выглядит как «тёмная масса»), контролируемый ядром K(r);
- остаётся слабым вокруг одиночной ВН (локальный профиль $\propto r^{-4}$, быстрая сходимость суммарной массы; см. §11.1);
- может быть существенным при суммировании по множеству источников на галактических/скопленчес масштабах (формирование гало; см. §11.2–§11.3).

Физическая картина в чёрной дыре. Внутри горизонта рост μ ведёт к устойчивому «сбросу» на Σ , так что наблюдаемые величины на R остаются конечными; «информация» не обязана теряться — она перераспределяется между R и I и может возвращаться через те же интерфейсы (см. §9.4).

Каузация и унитарность. Обмен идёт через слои конечной толщины ℓ_* с локальными законами сохранения; причинность не нарушается. В квантовом описании граничные термы обеспечивают унитарную эволюцию в расширенном пространстве состояний $(R \oplus I)$.

3.5 Двухслойная мёбиус-топология и разделение материи/антиматерии. Ранняя барионная асимметрия

В топологическом квантовании (§3) реальная часть кванта пространства имеет двулистную (мёбиусподобную) структуру, которую удобно описывать как два слоя A и B, сшитые по граничным областям Σ . Локально наблюдаемая вселенная представляет собой суперпозицию вкладов обоих слоёв, но материальные возбуждения привязаны к одному из них: условно, частицы — к A, античастицы — к B. Такая геометрия:

- допускает локальные процессы рождения/аннигиляции при встрече соответствующих возмущений из A и B;
- допускает редкие топологически обусловленные «перебросы» между слоями через Σ (в режимах высоких плотностей и температур), параметризуемые эффективной скоростью Γ_{Σ} ;
- в конфигурациях с глобальной Z_2 -монодромией (мёбиус-подобная идентификация вдоль неразрезаемого цикла) однократный обход по этому циклу переводит возбуждение со слоя A на слой B (второй обход возвращает $B \to A$). В ориентируемой топологии смена слоя требует пересечения границы Σ и описывается «перебросами» с эффективной скоростью Γ_{Σ} ;
- естественным образом порождает глобальную барионную асимметрию, если в ранней вселенной возник дисбаланс заселённости слоёв и далее поддерживался космологическим расширением и конечной проницаемостью Σ .

Таким образом, наблюдаемое «доминирование материи» можно трактовать как локальный предел двухслойной топологии, в котором «антислой» был разрежен и/или динамически вытеснен.

3.6 Комментарий к параметрам и связям с феноменологией

- ℓ_* микросрез теории, определяет УФ-границу ЭФТ и величину эффективных граничных куплингов (см. §4, §16).
- $\zeta_{i \to j}$ и среднее ядро K(r) геометрические параметры сети пересечений, извлекаемые из макроданных (галактические кривые вращения, слабое линзирование).

• порог $\mu_{\rm th}$ и форма нелинейностей в потенциале $V(\mu, \tau)$ задают режим стабилизации в сильных полях, влияя на тонкие сигнатуры кольцевания (QNM) и тени BH (см. §10, §9).

В совокупности $\S 3$ задаёт микрогеометрию носителя теории, на которой основаны лагранжиановая конструкция ($\S 4$), слабополевая (PPN) эквивалентность GR ($\S 7$) и феноменологические следствия для чёрных дыр, гало тёмной материи и эффективной тёмной энергии ($\S 9$ – $\S 12$).

4 Поля, симметрии и лагранжиан — ядро формализма

Мы формализуем $\mu\tau$ -подход как локальную квантовую теорию полей на глобально плоском фоне с двумя универсальными скалярными полями — масштабом $\mu(x)$ и внутренним временем $\tau(x)$ — и вспомогательным «сдвигом» $B_i(x)$, обеспечивающим корректный гравито-магнитный предел. Все поля Стандартной модели (СМ) получают универсальные деформации через «минимальные замены».

4.1 Содержимое: $\mu(x), \tau(x), B_i(x),$ поля Стандартной модели

- $\mu(x)$ безразмерный скаляр, управляющий масштабом частиц/волн (эффективные длины, массы, поперечные сечения).
- $\tau(x)$ безразмерный скаляр, задающий темп внутренних часов (локальную скорость протекания процессов).
- $B_i(x)$ вектор под SO(3) (сдвиг в (3+1)-разложении), необходимый для корректного g_{0i} в слабом поле (frame-dragging).
- $\Phi_{\rm SM}$ стандартные поля СМ (фермионы, калибровочные поля, Хиггс), на которые μ, τ действуют *универсально*.

Для удобства разложений вводим флуктуации

$$\mu(x) = 1 + \frac{\phi_R(x)}{\Lambda_\mu}, \qquad \tau(x) = 1 + \frac{\sigma(x)}{\Lambda_\tau}, \tag{4}$$

где ϕ_R, σ — канонические скаляры (массовая размерность 1), а $\Lambda_{\mu,\tau}$ — характерные масштабы.

4.2 Симметрии: локальная Лоренц-инвариантность, СРТ, калибровки СМ

Работа ведётся в касательных рамках со стандартной локальной Лоренц-инвариантностью: в областях, где $\partial \mu, \partial \tau$ малы, динамика редуцируется к СТО с переопределёнными локальными эталонами; μ, τ трансформируются тривиально. Сохраняются СРТ и калибровочные симметрии $SU(3) \times SU(2) \times U(1)$; «минимальные замены» совместимы с ковариантными производными. Глобальные трансляции и повороты фона — симметрии действия; нарушаются только конкретными конфигурациями $\mu(x), \tau(x)$.

4.3 Размерности и естественные шкалы $\Lambda_{\mu}, \Lambda_{\tau}, \ell_{*}$

Работаем в единицах $\hbar = c = 1$.

$$[\phi_R] = [\sigma] = 1, \quad [\Lambda_\mu] = [\Lambda_\tau] = 1, \quad [\mu] = [\tau] = 0, \quad [B_i] = 0.$$
 (5)

 ℓ_* — микросрез (минимальная толщина граничных слоёв real \leftrightarrow imag, см. §3), задаёт УФ-срез EFT: $\Lambda_{\rm UV}\sim 1/\ell_*$. При таких размерностях базовые взаимодействия маргинальны (операторная размерность ≤ 4), что обеспечивает корректность EFT.

4.4 Строим лагранжиан

Полное действие:

$$S = \int d^4x \left(\mathcal{L}_{\mu\tau} + \mathcal{L}_{SM}(\Phi_{SM} \mid \mu, \tau, B) + \mathcal{L}_B + \mathcal{L}_{bdry} \right).$$
 (6)

(a) Кинетика μ, τ и потенциал $V(\mu, \tau)$ (вакуумная энергия).

$$\mathcal{L}_{\mu\tau} = \frac{1}{2} \,\partial_{\alpha} \phi_R \,\partial^{\alpha} \phi_R + \frac{1}{2} \,\partial_{\alpha} \sigma \,\partial^{\alpha} \sigma - V(\mu, \tau), \tag{7}$$

$$V(\mu,\tau) = \frac{m_{\mu}^2}{2} \phi_R^2 + \frac{m_{\tau}^2}{2} \sigma^2 + \frac{\lambda_{\mu}}{4} \phi_R^4 + \frac{\lambda_{\tau}}{4} \sigma^4 + \frac{\lambda_{\times}}{2} \phi_R^2 \sigma^2 + V_0, \tag{8}$$

где V_0 — вакуумная энергия (вклад в эффективную $\Lambda_{\rm grav}$ в космологии). Потенциал снизу ограничен; малое смешивание λ_{\times} допускается.

- (b) «Минимальные замены» в СМ: $m \to m\,\mu,\; \partial_t \to \tau(\partial_t + B_i\partial_i)$. Для любых полей СМ:
 - Масштабирование масс/порогов: $m \mapsto m \, \mu(x)$ (для фермионов $m_f \bar{\psi} \psi$, для векторов $m_V^2 A_\mu A^\mu/2$, для Хиггса массовый параметр и VEV).
 - Временной поток в кинетике:

$$\partial_t \longrightarrow \tau(x) \left(\partial_t + B_i(x) \partial_i \right),$$
 (9)

пространственные контракции — с δ_{ij} (или с $\mu^2 \delta_{ij}$ в «оптической» записи). Для калибровочных полей $\partial_{\mu} \to D_{\mu}$; замена касается D_t .

Примеры.

$$\mathcal{L}_X = \frac{1}{2} \left[\tau^2 (\dot{X} + B_i \partial_i X)^2 - (\nabla X)^2 \right] - \frac{1}{2} m_X^2 \mu^2 X^2, \tag{10}$$

$$\mathcal{L}_{\psi} = \bar{\psi} \left[i \gamma^{0} \tau (\partial_{t} + B_{i} \partial_{i}) + i \gamma^{i} \partial_{i} - m_{\psi} \mu \right] \psi, \tag{11}$$

а для электродинамики модифицируются временные составляющие (см. §8: «показатель среды» для света).

Эти правила обеспечивают универсальность деформаций и сохраниение калибровочных симметрий.

(c) \mathcal{L}_B (гравито-магнитный сдвиг, PPN-предел).

$$\mathcal{L}_B = \frac{M_B^2}{2} \left[(\partial_i B_j - \partial_j B_i)^2 - (\partial_i B_i)^2 \right] - B_i J^i, \tag{12}$$

где J^i — эффективный импульсный ток материи (в слабом поле $J^i \simeq \kappa \, T^{0i}$ с κ из PPN-сопоставления), а M_B задаёт нормировку. В калибровке $\partial_i B_i = 0$ вариация даёт

$$\nabla^2 B_i = -\kappa \, T^{0i},\tag{13}$$

что воспроизводит g_{0i} и frame-dragging на уровне первого PN (см. §7).

(d) Граничный терм real \leftrightarrow imag (толстая граница, безразмерный эффективный куплинг). На каждом интерфейсе Σ между реальной и мнимой частями кванта пространства (см. §3) вводим локальный вклад

$$\mathcal{L}_{\text{bdry}} = \int_{\Sigma} d^3 \xi \ h \ \tilde{g}(\mu, \tau) \ \mathcal{O}_R(\Phi_{\text{SM}}, \phi_R, \sigma) \ \mathcal{O}_I[\text{мнимые моды}], \tag{14}$$

со сглаживанием на толщине ℓ_* . Эффективная константа $\tilde{g} \sim g/\ell_*$ безразмерна, обеспечивая отсутствие УФ-патологий и корректность EFT. Этот терм реализует «сброс избыточного масштаба» и обратную связь от мнимого сектора (см. §3.4).

4.5 Энергомоментный тензор, токи Нётер и законы сохранения

В объёме (bulk) нётеровский тензор энергии-импульса

$$T^{\mu\nu} = \sum_{\Phi} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\Phi)} \, \partial^{\nu}\Phi - \eta^{\mu\nu}\mathcal{L}, \qquad \Phi \in \{\phi_R, \sigma, B_i, \Phi_{\rm SM}\}, \tag{15}$$

удовлетворяет $\partial_{\mu}T^{\mu\nu}=0$. На интерфейсах Σ возникают поверхностные токи из $\mathcal{L}_{\mathrm{bdry}}$, и закон сохранения принимает вид

$$\partial_{\mu}T^{\mu\nu} + \delta_{\Sigma} j_{\text{surf}}^{\nu} = 0, \tag{16}$$

что обеспечивает глобальное сохранение при обмене между реальным и мнимым секторами. Калибровочные токи СМ сохраняются (ковариантные дивергенции нулевые); СРТ сохраняется благодаря локальности и действительным коэффициентам.

4.6 Знаки кинетики, отсутствие призраков; гиперболичность (задача Коши)

Кинетические члены $(\partial \phi_R)^2$, $(\partial \sigma)^2$ имеют правильные знаки; $M_B^2>0$. Потенциал V снизу ограничен — призраков и градиентных нестабильностей нет в подпространстве (ϕ_R,σ,B_i) .

Главные части уравнений движения — второго порядка по времени; для материи оператор имеет вид

$$au^2 \partial_t^2 - \Delta$$
 (при наличии B_i — с конвективной поправкой $\propto B_i \partial_i$),

что задаёт корректную Задачу Коши. Требование $\tau(x)>0$ фиксирует ориентированность «времени» и исключает смену знака временной нормы.

Физические скорости характеристик не превосходят световую; «относительные сверхсветовые» величины — артефакт локальной перенормировки эталонов (см. §2.2), каузальность не нарушается.

Толщина границы ℓ_* обеспечивает естественный УФ-срез $\Lambda_{\rm UV} \sim 1/\ell_*$: граничные взаимодействия не порождают неустранимых дивергенций; в объёме все вершинные коэффициенты — безразмерны (или положительной размерности), что даёт стандартный EFT-контроль (см. §16).

4.7 Квантование $\mu \tau$ -полей и спектр квазичастиц (гравитон)

Линеаризуя масштабные поля

$$\mu = 1 + \delta \mu, \qquad \tau = 1 + \delta \tau, \qquad B_i = \delta B_i$$
 (17)

на фоне наблюдаемой метрики $ds^2_{\rm obs}$ (см. §5), получаем набор волновых возмущений. Физически наблюдаемый *гравитон* соответствует безмассовой тензорной моде со спинами ± 2 , которую удобно описывать в касательных рамках через поперечные бесследовые комбинации $\{h_+,h_\times\}$, выражаемые через $\delta\mu,\delta\tau,\delta B_i$ и сохраняющие калибровочную инвариантность.

На этом уровне:

- тензорные поляризации h_+ , h_\times распространяются со скоростью c (как и свет) и куплируются к универсальному источнику $T_{\mu\nu}$ материи (на квадрупольном порядке);
- возможна слабая скалярная примесь «дыхательная» мода

$$s \propto \delta(\mu/\tau),$$
 (18)

обладающая безразмерной амплитудой $\kappa_b \ll 1$ и не изменяющая 1PN-предсказаний;

• векторные комбинации подавлены калибровочными условиями и не формируют новых дальнодействующих поляризаций.

Каноническая нормировка лагранжиана тензорных мод приводит к стандартной энергетике гравитационных волн:

$$\langle F \rangle = \frac{c^3}{32\pi G} \langle \dot{h}_+^2 + \dot{h}_\times^2 + \kappa_b \, \dot{s}^2 \rangle, \tag{19}$$

а универсальность куплинга закрепляет масштабный эквивалентностный принцип и обеспечивает совпадение сектора $\{h_+,h_\times\}$ с предсказаниями ОТО на квадрупольном уровне (см. §10).

Итог раздела. Мы задали минималистский, но полноценный лагранжев формализм $\mu\tau$ -подхода: два универсальных скаляра (масштаб и внутреннее время), сдвиг B_i для гравито-магнитного сектора, «минимальные замены» в СМ и регуляризованный граничный обмен с мнимым сектором. Конструкция (i) сохраняет калибровки и СРТ, (ii) задаёт корректную гиперболическую динамику без призраков, (iii) даёт правильный слабополевой предел (PPN), и (iv) предоставляет осмысленный УФ-срез через ℓ_* . В следующих разделах мы выведем уравнения движения и выполним PPN-сопоставление с ОТО.

5 Уравнения движения и «наблюдаемая метрика»

В этом разделе, исходя из действия §4, выводим уравнения Эйлера—Лагранжа для полей μ, τ, B_i и материи, формулируем операциональный интервал наблюдений (эффективную «метрику измерений») и показываем, что в слабом поле он сводится к стандартной постньютоновской форме, совпадая с ОТО на уровне PPN.

5.1 Уравнения Эйлера-Лагранжа для μ, τ, B_i и полей СМ

Напомним структуру действия

$$S = \int d^4x \left(\mathcal{L}_{\mu\tau} + \mathcal{L}_{SM}(\Phi_{SM} \mid \mu, \tau, B) + \mathcal{L}_B + \mathcal{L}_{bdry} \right), \tag{20}$$

где $\mathcal{L}_{\mu\tau}$ содержит канонические кинетические члены для флуктуаций ϕ_R , σ (так что $\mu = 1 + \phi_R/\Lambda_\mu$, $\tau = 1 + \sigma/\Lambda_\tau$) и потенциал $V(\mu, \tau)$, \mathcal{L}_B задаёт «гравитомагнитный» сектор, а $\mathcal{L}_{\text{bdry}}$ — граничные вклады на интерфейсах $R \leftrightarrow I$ конечной толщины ℓ_* (см. §3).

(i) Поле масштаба μ . Вариируя по ϕ_R получаем

$$\phi_R + \frac{\partial V}{\partial \phi_R} = J_\mu + J_\mu^{\text{(bdry)}}, \qquad J_\mu \equiv \frac{\partial \mathcal{L}_{\text{SM}}}{\partial \mu} \frac{\partial \mu}{\partial \phi_R} = \frac{1}{\Lambda_\mu} S_\mu.$$
 (21)

Здесь S_{μ} — универсальный «массовый» источник (сумма по полям СМ). Для простых полей:

$$S_{\mu} \supset \begin{cases} -m_X^2 X^2, & \text{скаляр } X, \\ -m_{\psi} \bar{\psi} \psi, & \text{фермион } \psi, \\ -m_A^2 A_{\alpha} A^{\alpha}, & \text{массивный вектор } A_{\alpha}. \end{cases}$$
 (22)

Граничный вклад $J_{\mu}^{(\mathrm{bdry})}$ задаётся вариацией $\mathcal{L}_{\mathrm{bdry}}$ (см. §4.4).

(ii) Поле внутренних часов τ . Вариируя по σ получаем

$$\sigma + \frac{\partial V}{\partial \sigma} = J_{\tau} + J_{\tau}^{\text{(bdry)}}, \qquad J_{\tau} \equiv \frac{\partial \mathcal{L}_{\text{SM}}}{\partial \tau} \frac{\partial \tau}{\partial \sigma} = \frac{1}{\Lambda_{\tau}} S_{\tau}.$$
 (23)

Источник S_{τ} — «временная» плотность кинетических энергий, т.е. та часть лагранжиана, которая множится на τ в замене $\partial_t \to \tau(\partial_t + B_i \partial_i)$. Для примеров:

$$S_{\tau} \supset \begin{cases} +\tau \left(\dot{X} + B_{i}\partial_{i}X\right)^{2}, & \text{скаляр } X, \\ +\bar{\psi}\,\gamma^{0}i(\partial_{t} + B_{i}\partial_{i})\psi, & \text{фермион } \psi, \\ +\mathbf{E}\cdot\mathbf{E}, & \text{электромагнитное поле (в удобной калибровке).} \end{cases}$$
(24)

(iii) «Сдвиг» B_i (гравитомагнитный сектор). Вариируя по B_i , получаем уравнение типа безмассового Проки с источником импульсного потока материи:

$$M_B^2 \left(\nabla^2 B_i - \partial_i \partial_j B_j \right) = J_i^{(B)} + J_i^{(bdry)}, \qquad J_i^{(B)} \equiv \frac{\partial \mathcal{L}_{SM}}{\partial B_i}.$$
 (25)

В калибровке $\partial_i B_i = 0$ и в слабом поле $J_i^{(B)} \simeq \kappa T^{0i}$; подходящий выбор κ/M_B^2 воспроизводит стандартный g_{0i} и эффекты frame-dragging (см. §5.3).

(iv) Поля Стандартной Модели. Правила «минимальной замены» (§4.4) приводят к замене

$$D_t \equiv \tau(\partial_t + B_i \partial_i), \qquad m \mapsto m \mu, \tag{26}$$

и стандартным уравнениям движения с указанными модификациями. Для скаляра X:

$$D_t^2 X - \Delta X + m_X^2 \mu^2 X =$$
 (взаимодействия), (27)

при сохранении калибровочных токов и СРТ. Граничные условия на Σ обеспечивают баланс потоков между реальным и мнимым секторами (см. §3.2 и §4.5).

5.2 Эффективный интервал наблюдений и оператор потока времени

Поскольку μ и τ перенастраивают эталоны (линейки и часы), естественно ввести *операциональный* интервал, который непосредственно «считывают» приборы (атомные часы, интерферометры, фотонные трассеры):

$$ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i dx^i dt + \mu^2 \delta_{ij} dx^i dx^j$$
(28)

Этот интервал не постулируется как фундаментальная динамическая метрика, а восстанавливается из уравнений движения материи: фазовые скорости, фронты и инварианты ведут себя так, как если бы распространялись в $ds_{\rm obs}^2$. Соответствующий универсальный оператор «потока времени»:

$$D_t \equiv \tau(\partial_t + B_i \partial_i) \tag{29}$$

одинаков для всех полей, реализуя масштабную формулировку принципа эквивалентности: локально, при почти постоянных μ, τ, B , вся микрофизика совпадает со СТО в локальных единицах.

5.3 Слабое поле и сопоставление с PPN

Для статического слабого источника с ньютоновым потенциалом U разложим

$$\mu = 1 + \frac{U}{c^2} + \mathcal{O}(c^{-4}), \qquad \tau = 1 - \frac{U}{c^2} + \frac{1}{2} \frac{U^2}{c^4} + \mathcal{O}(c^{-6}), \qquad B_i = -\frac{4}{c^3} V_i + \mathcal{O}(c^{-5}),$$
 (30)

где V_i — стандартный постньютоновский векторный потенциал (свёртка ρv_i с ньютоновским ядром). Подставляя в (28), получаем компоненты «наблюдаемой метрики»:

$$g_{00}^{(\text{obs})} = -\tau^2 = -\left(1 - \frac{2U}{c^2} + \frac{2U^2}{c^4}\right) + \mathcal{O}(c^{-6}),$$
 (31)

$$g_{ij}^{(\text{obs})} = \mu^2 \, \delta_{ij} = \left(1 + \frac{2U}{c^2}\right) \delta_{ij} + \mathcal{O}(c^{-4}),$$
 (32)

$$g_{0i}^{(\text{obs})} = \tau^2 B_i = -\frac{4}{c^3} V_i + \mathcal{O}(c^{-5}).$$
 (33)

Тем самым, в 1PN-приближении (с учётом члена U^2/c^4 в g_{00}) получаем me же наблюдаемые компоненты, что и в ОТО при стандартной PPN-калибровке:

$$\gamma = 1,$$
 $\beta = 1,$ $\alpha_{1,2,3} = \xi = \zeta_i = 0,$

а гравитомагнетизм (перетаскивание инерциальных систем) задан $g_{0i} = -4V_i/c^3$. Отсюда следуют классические тесты: линзирование света у Солнца, задержка Шапиро, прецессия перицентра, Ленз–Тирринг — без отличий от ОТО на уровне текущей точности.

Итог. Операциональная метрика ds_{obs}^2 , выведенная из универсальных деформаций μ, τ, B_i в уравнениях движения материи, автоматически воспроизводит слабополевые эффекты и задаёт корректную отправную точку для полного PPN-анализа (§7). Далее мы используем её для вывода оптики гравитации (линзирование, красное смещение) и для формулировки сильнополевых предсказаний (чёрные дыры, гравитационные волны).

6 Линеаризованная теория: SCRE ($\mu \tau$ -версии волновых уравнений)

Линеаризуем теорию вокруг однородного фона

$$\mu = 1 + \frac{\phi_R}{\Lambda_\mu}, \qquad \tau = 1 + \frac{\sigma}{\Lambda_\tau}, \qquad B_i = \mathcal{O}(v/c),$$

считая $|\phi_R|/\Lambda_\mu$, $|\sigma|/\Lambda_\tau$, $|B_i| \ll 1$ и сохраняя первый порядок по градиентам $\partial \mu$, $\partial \tau$, ∂B . Получающиеся $Scale-Clock\ Relativistic\ Equations\ (SCRE)$ — это стандартные релятивистские волновые уравнения с заменами

$$m \to m \mu(x), \qquad \partial_t \to D_t \equiv \tau(x) (\partial_t + B_i(x) \partial_i),$$

при неизменных пространственных производных ∂_i (см. §4.4).

6.1 Скаляр (Клейн–Гордон): масса \leftrightarrow масштаб, время \leftrightarrow темп

Для комплексного скаляра X с массой m_X лагранжиан (§4.4) даёт

$$D_t^2 X - \nabla^2 X + m_X^2 \mu^2 X = 0, \qquad D_t = \tau (\partial_t + B_i \partial_i). \tag{34}$$

На плоской волне $\sim e^{-i\omega t + i\mathbf{k}\cdot\mathbf{x}}$:

$$\left[\tau(\omega - \mathbf{B} \cdot \mathbf{k})\right]^2 = k^2 + m_X^2 \mu^2. \tag{35}$$

В лабораторной системе ($\mathbf{B} = 0$):

$$\omega^{2} = \frac{k^{2} + m_{X}^{2} \mu^{2}}{\tau^{2}}, \qquad v_{\text{ph}} = \frac{\omega}{k} = \frac{1}{\tau} \sqrt{1 + \frac{m_{X}^{2} \mu^{2}}{k^{2}}}, \qquad v_{\text{gr}} = \frac{\partial \omega}{\partial k} = \frac{1}{\tau} \frac{k}{\sqrt{k^{2} + m_{X}^{2} \mu^{2}}}.$$
 (36)

Таким образом, μ перенастраивает эффективную массу, а τ — шкалу времени динамики.

6.2 Фермионы (Дирак/Вейль/Майорана): спинорная согласованность, СРТ

Для фермиона Дирака ψ :

$$[i\gamma^0 D_t + i\gamma^i \partial_i - m_f \mu] \psi = 0, \qquad D_t = \tau (\partial_t + B_i \partial_i). \tag{37}$$

Квадратируя оператор (или на плоской волне) получаем ту же дисперсию:

$$\left[\tau(\omega - \mathbf{B} \cdot \mathbf{k})\right]^2 = k^2 + m_f^2 \mu^2,\tag{38}$$

что исключает спин-зависимые «пятые силы» и сохраняет эквивалентность на 1PN-уровне.

Хиральные поля. Для безмассовых спиноров замена $\partial_t \to D_t$ даёт $\tau^2(\omega - \mathbf{B} \cdot \mathbf{k})^2 = k^2$, светоподобные характеристики относительно ds_{obs}^2 (§5.2).

Майорановские массы. Термы $m_M \mu \, \psi^T C \psi + \text{h.c.}$ совместимы с СРТ и калибровками СМ; μ — общая масштабная «ручка» для массовых параметров.

6.3 Векторы (Максвелл/Прока): «оптика гравитации», показатель среды

Максвелл. На однородном фоне ($\nabla \mu = \nabla \tau = 0, B_i = {\rm const}$) уравнения Максвелла приводят к дисперсии

$$\omega \simeq \frac{\tau}{\mu} |\mathbf{k}| + \tau \, \mathbf{B} \cdot \hat{\mathbf{k}} \quad \Rightarrow \quad v_{\rm ph} = \frac{\omega}{|\mathbf{k}|} \simeq \frac{\tau}{\mu}, \qquad n \equiv \frac{c}{v_{\rm ph}} = \frac{\mu}{\tau},$$
 (39)

а добавка $\propto \mathbf{B} \cdot \hat{\mathbf{k}}$ — это «дрейф» среды (гравитомагнетизм). Следовательно, *оптика гравитации* в нашем подходе — оптика в слабонеоднородной среде с

$$n(\mathbf{x}) = \frac{\mu(\mathbf{x})}{\tau(\mathbf{x})},\tag{40}$$

из которой выводятся линзирование и задержка Шапиро (см. §8).

Прока. Для массивного вектора A_{α} с массой m_V :

$$D_t^2 A_i - \nabla^2 A_i + m_V^2 \mu^2 A_i - \partial_i (D_t A_0 + \partial_j A_j) = 0, \tag{41}$$

и при калибровке $\partial_i A_i + D_t A_0 = 0$ дисперсия

$$\left[\tau(\omega - \mathbf{B} \cdot \mathbf{k})\right]^2 = k^2 + m_V^2 \mu^2 \tag{42}$$

совпадает с общей формой; продольная степень свободы корректна при знаках кинетики §4.6.

6.4 Спин 3/2 (Рарита-Швингер): консистентность и ограничения

Лагранжиан Рариты-Швингера с «минимальными заменами»

$$\mathcal{L}_{3/2} = \bar{\psi}_{\mu} \gamma^{\mu\nu\rho} D_{\nu} \psi_{\rho} - m_{3/2} \mu \, \bar{\psi}_{\mu} \gamma^{\mu\nu} \psi_{\nu}, \qquad D_{\nu} = (D_t, \partial_i), \tag{43}$$

при слабых градиентах $\partial \mu$, $\partial \tau$ удовлетворяет стандартным условиям $\gamma_{\mu}\psi^{\mu}=0$, $\partial_{\mu}\psi^{\mu}\approx0$. Так как фон задаётся скалярами μ , τ (и слабым дрейфом B_{i}), отсутствуют ЕМ-тензорные куплинги, ведущие к патологии Вело–Цванцигера; главная часть оператора гиперболична, а характеристические конусы совпадают с нулевыми конусами $ds_{\rm obs}^{2}$ (§5.2). Для массивного случая остаются 2s+1=4 физических поляризации; прочие удаляются субсидиарными связями.

Ограничения применимости. Сильные неоднородности $\partial \mu$, $\partial \tau$ могут нарушать точные субсидиарные условия за пределами линейного порядка — это естественный предел EFT; условия §4.6 необходимы для отсутствия призраков/градиентных неустойчивостей.

6.5 Эквивалентность: универсальность деформаций, отсутствие селективной «пятой силы»

Все спины (0, 1/2, 1, 3/2) подчиняются одной и той же структуре деформаций:

$$m \to m \,\mu(x), \qquad \partial_t \to D_t = \tau(\partial_t + B_i \partial_i),$$

что ведёт к единому дисперсионному правилу

$$\tau^2 \left(\omega - \mathbf{B} \cdot \mathbf{k}\right)^2 = k^2 + m_{\text{eff}}^2, \qquad m_{\text{eff}} = m \,\mu \tag{44}$$

(для безмассовых полей m=0). Отсюда:

- **Нет селективной «пятой силы».** Куплинги композиционно-независимы и универсальны ⇒ нулевой параметр Этвёша на 1PN и совпадение с ОТО в стандартных тестах (§7–§8).
- Единая оптика. Для света $n = \mu/\tau$, а для материи геодезические совпадают с траекториями «наблюдаемой метрики» (§5.2); преломление, задержка Шапиро и прецессии воспроизводятся на 1PN.
- Каузальность и унитарность. Характеристики SCRE совпадают с нулевыми конусами $ds_{\rm obs}^2$; $\tau>0$ фиксирует «стрелу времени», а положительные кинетические члены (§4.6) исключают призраков.

Итак, линеаризованные $\mu\tau$ -версии волновых уравнений дают универсальный, калибровочносовместимый и причинный слабополевой предел, совпадающий с ОТО в проверенных областях и задающий основу для феноменологии сильных полей (линзирование, GW-поляризации, QNM) в последующих разделах.

6.6 Квантование волн: операторы и пропагатор гравитона

В линейной теории тензорное возмущение представляется разложением по плоским волнам:

$$h_{ab}(x) = \sum_{\lambda = +, \times} \int \frac{d^3k}{(2\pi)^3} \frac{1}{2\omega_k} \left[a_k(\lambda) \, \epsilon_{ab}(\lambda) \, e^{-ik \cdot x} + \text{h.c.} \right], \tag{45}$$

где $\epsilon_{ab}(\lambda)$ — поперечные бесследовые поляризаторы, а $\omega_k=c\,|k|$. Канонические коммутаторы

$$\left[a_k(\lambda), a_{k'}^{\dagger}(\lambda')\right] = (2\pi)^3 \delta^{(3)}(k - k') \,\delta_{\lambda\lambda'} \tag{46}$$

обеспечивают микрокаузацию относительно «наблюдаемого» светового конуса (§17).

Пропагатор безмассовой тензорной моды в Фурье-представлении принимается в поперечно-трассировочной калибровке и имеет стандартный проектор на спин-2 подпространство, так что правила Фейнмана для обмена гравитонами с источниками $T_{\mu\nu}$ совпадают с привычными в линейной GR. Скалярная примесь s квантуется как свободное скалярное поле с подавленным куплингом $\propto \kappa_b$.

7 Слабополевой предел: полный PPN-анализ из лагранжиана

Мы свяжем формализм §4–§5 с наблюдаемыми метрическими коэффициентами в постньютоновском (PPN) разложении и покажем, что в первом PN-порядке теория совпадает с OTO:

$$\gamma = 1,$$
 $\beta = 1,$ $\alpha_i = \xi = \zeta_i = 0.$

Далее извлечём ограничения на возможные отклонения профилей μ, τ, B_i из классических тестов (Cassini, LLR, VLBI, GP B/LAGEOS).

7.1 Разложения μ, τ, B_i по ньютоновскому потенциалу и скоростям

Пусть U(x,t) — ньютонов потенциал источника, v — характерная скорость масс. В слабом поле $\epsilon \sim U/c^2 \sim v^2/c^2 \ll 1$ разлагаем

$$\mu(x,t) = 1 + a_1 \frac{U}{c^2} + a_2 \frac{U^2}{c^4} + \mathcal{O}(\epsilon^3), \tag{47}$$

$$\tau(x,t) = 1 + b_1 \frac{U}{c^2} + b_2 \frac{U^2}{c^4} + \mathcal{O}(\epsilon^3), \tag{48}$$

$$B_i(x,t) = \frac{b_V}{c^3} V_i + \frac{b_W}{c^3} W_i + \mathcal{O}(\epsilon^{5/2}), \tag{49}$$

где V_i, W_i — стандартные PPN-векторные потенциалы. Коэффициенты $(a_1, a_2, b_1, b_2, b_V, b_W)$ фиксируются вариацией действия (§4, §5) и калибровкой к «наблюдаемой» метрике (§5.2):

$$ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i \, dx^i dt + \mu^2 \delta_{ij} \, dx^i dx^j. \tag{50}$$

Требование совпадения с ОТО в 1PN даёт

$$a_1 = +1, \quad a_2 = 0; \qquad b_1 = -1, \quad b_2 = \frac{1}{2}; \qquad b_V = -4, \quad b_W = -\frac{1}{2}$$
 (51)

Отсюда компоненты «наблюдаемой» метрики:

$$g_{00}^{(\text{obs})} = -\tau^2 = -\left(1 - \frac{2U}{c^2} + \frac{2U^2}{c^4}\right) + \mathcal{O}(c^{-6}),$$
 (52)

$$g_{ij}^{(\text{obs})} = \mu^2 \delta_{ij} = \left(1 + \frac{2U}{c^2}\right) \delta_{ij} + \mathcal{O}(c^{-4}),$$
 (53)

$$g_{0i}^{(\text{obs})} = \tau^2 B_i = -\frac{4}{c^3} V_i - \frac{1}{2c^3} W_i + \mathcal{O}(c^{-5}),$$
 (54)

что совпадает со стандартной PPN-формой GR (калибровка Уилла) на уровне 1PN.

7.2 Вариация по $B_i \Rightarrow$ уравнение для g_{0i} (frame-dragging)

Из \mathcal{L}_B (§4.4) и «минимальных замен» (§4.4) вариация по B_i в калибровке $\partial_i B_i = 0$ даёт

$$\nabla^2 B_i = -\kappa T^{0i} + \mathcal{O}(\epsilon^{5/2}), \qquad T^{0i} \simeq \rho v^i.$$
 (55)

Выбор нормировки κ/M_B^2 так, чтобы $b_V=-4$ и $b_W=-\frac{1}{2}$, приводит к

$$g_{0i}^{(\text{obs})} = \tau^2 B_i = -\frac{4}{c^3} V_i - \frac{1}{2c^3} W_i$$
, (56)

что воспроизводит перетаскивание инерциальных систем (Lense-Thirring) GR в 1PN.

7.3 Карта к $U, \Phi_{1..4}, V_i, W_i$; значения $\gamma, \beta, \alpha_i, \xi, \zeta_i$

Сравнивая $g_{\mu\nu}^{({
m obs})}$ с общей PPN-формой:

$$g_{00} = -1 + \frac{2U}{c^2} - \frac{2\beta U^2}{c^4} + \frac{2}{c^4} (\Phi_1 + \Phi_2 + \Phi_3 + 3\Phi_4) + \cdots,$$
 (57)

$$g_{ij} = \left(1 + \frac{2\gamma U}{c^2}\right)\delta_{ij} + \cdots, \tag{58}$$

$$g_{0i} = -\frac{1}{c^3} \left[\frac{1}{2} (4\gamma + 3 + \alpha_1 - \alpha_2) V_i + \frac{1}{2} (1 + \alpha_2) W_i \right] + \cdots,$$
 (59)

получаем РРN-параметры нашей теории:

$$\gamma = 1, \qquad \beta = 1, \qquad \alpha_{1,2,3} = 0, \qquad \xi = 0, \qquad \zeta_{1,2,3,4} = 0$$
 (60)

Тем самым: (i) пространственная кривизна на единицу массы (γ) и нелинейность суперпозиции (β) совпадают с GR; (ii) предпочтительные-системные параметры α_i и параметры несохранения импульса/энергии ζ_i , ξ равны нулю, как в метрических теориях без предпочтительной системы; (iii) коэффициенты при $\Phi_{1..4}$, V_i , W_i совпадают с GR, что важно для Шапиро-задержки, прецессии перицентра и frame-dragging.

7.4 Сверка с Cassini, LLR, VLBI, GP B/LAGEOS: численные допуски и границы параметров

Так как $\gamma=\beta=1$ и $\alpha_i=\xi=\zeta_i=0$, все классические тесты на уровне 1PN выполняются автоматически. Их точность даёт допуски на отклонения от калибровочных значений коэффициентов $(a_1,a_2,b_1,b_2,b_V,b_W)$. Введём

$$\delta a_1 \equiv a_1 - 1$$
, $\delta b_1 \equiv b_1 + 1$, $\delta b_2 \equiv b_2 - \frac{1}{2}$, $\delta b_V \equiv b_V + 4$, $\delta b_W \equiv b_W + \frac{1}{2}$.

Тогда:

- Cassini (Шапиро-задержка): $|\gamma 1|2 \times 10^{-5} \Rightarrow |\delta a_1 + \delta b_1|2 \times 10^{-5}$.
- LLR (параметр Нордтведта): $|\beta-1|10^{-4} \Rightarrow |\delta b_2|10^{-4}$ (с учётом квадратичных комбинаций a_1, b_1).
- VLBI: уточняет ограничение на γ до $\sim 10^{-4}$ по независимым трассам \Rightarrow совместные допуски на $\delta a_1, \delta b_1$.
- GP-B, LAGEOS (frame-dragging): согласие с GR на уровне нескольких процентов \Rightarrow $|\delta b_V|$, $|\delta b_W|$ few% (нормировка гравито-магнитного сектора κ/M_B^2 фиксируется до таких процентов).

Суммарно,

$$|\delta a_1|,\ |\delta b_1|10^{-5}-10^{-4}, \qquad |\delta b_2|10^{-4}, \qquad |\delta b_V|,\ |\delta b_W|$$
несколько %.

Эти допуски совместимы с естественными значениями лагранжевых параметров (§4.3) и подтверждают, что $\mu\tau$ -подход сохраняет проверенную феноменологию Солнечной системы. Ненулевые отличия ожидаются лишь во втором PN и/или в сильнополевых режимах — предмет следующих разделов (оптика, GW-поляризации, QNM, S-звёзды).

8 Свет и время в гравитационном поле (наблюдаемые тесты)

В этом разделе применяем « $\mu\tau$ -Максвелл» и «наблюдаемую метрику» (§5) к ключевым эффектам: линзированию, задержке Шапиро, гравитационному красному смещению и прецессии перицентра. В 1РN-порядке наша теория совпадает с ОТО; далее выпишем контролируемые 2РN-поправки в терминах коэффициентов разложения μ , τ , B_i (§7).

8.1 Линзирование в $\mu\tau$ -Максвелле (угол, тонкие поправки)

В $\mu \tau$ -формулировке свет распространяется как в слабонеоднородной среде с эффективным показателем

$$n(\mathbf{x}) = \frac{\mu(\mathbf{x})}{\tau(\mathbf{x})}. (61)$$

Для статического сферически-симметричного источника с ньютоновским потенциалом U(r) = GM/r используем разложения (§7.1)

$$\mu = 1 + a_1 \frac{U}{c^2} + a_2 \frac{U^2}{c^4}, \qquad \tau = 1 + b_1 \frac{U}{c^2} + b_2 \frac{U^2}{c^4},$$
 (62)

и получаем (до $\mathcal{O}(c^{-4})$)

$$n = 1 + \underbrace{(a_1 - b_1)}_{=2} \frac{U}{c^2} + \underbrace{[a_2 + (b_1^2 - b_2) - a_1 b_1]}_{=3/2} \frac{U^2}{c^4} + \mathcal{O}(c^{-6}), \tag{63}$$

где численные значения коэффициентов зафиксированы PPN-калибровкой (§7.1): $a_1=+1,\ b_1=-1,\ a_2=0,\ b_2=\frac{1}{2}.$

Угол отклонения луча с импакт-параметром b определяется «оптической» формулой

$$\alpha = 2 \int_{-\infty}^{+\infty} \partial_{\perp} (n-1) \, dz. \tag{64}$$

Интегрируя последовательно члены $\propto U$ и $\propto U^2$ вдоль ненарушенной прямой (погрешность $\mathcal{O}(c^{-6})$), получаем

$$\alpha = \frac{4GM}{bc^2} + \frac{15\pi}{4} \frac{G^2 M^2}{b^2 c^4} + \mathcal{O}\left(\frac{G^3 M^3}{b^3 c^6}\right)$$
 (65)

— т.е. в 1PN и 2PN порядках коэффициенты совпадают с результатом Шварцшильда в изотропной калибровке. Любые отличия возможны лишь при изменении a_2, b_2 от калиброванных значений (§7.4).

8.2 Задержка Шапиро и гравитационное красное смещение (до второго порядка)

Задержка Шапиро. Фазовая скорость $v_{\rm ph}=c/n$. Дополнительное время прохождения вдоль траектории L равно

$$\Delta t = \frac{1}{c} \int_{L} (n-1) \, dl. \tag{66}$$

Подставляя $n-1=\frac{2U}{c^2}+\frac{3}{2}\frac{U^2}{c^4}$ и интегрируя вдоль ненарушенного пути с импакт-параметром b, получаем

$$\Delta t = \frac{2GM}{c^3} \ln\left(\frac{4r_E r_R}{b^2}\right) + \frac{3\pi}{2} \frac{G^2 M^2}{b c^5} + \mathcal{O}\left(\frac{G^3 M^3}{b^2 c^7}\right)$$
 (67)

где r_E, r_R — расстояния от источника (массы M) до приёмника и излучателя. Первый логарифмический член — классическая формула Шапиро при $\gamma=1$; второй — 2PN-поправка, совпадающая с GR при наших $a_2=0, b_2=\frac{1}{2}$.

Гравитационное красное смещение. В $\mu \tau$ -подходе частота фотона масштабируется как $\nu \propto \tau$. Для испускания в точке A и приёма в B:

$$\frac{\nu_B}{\nu_A} = \frac{\tau_A}{\tau_B}.\tag{68}$$

C разложением $au = 1 - \frac{U}{c^2} + \frac{1}{2} \frac{U^2}{c^4}$ до второго порядка имеем

$$z \equiv \frac{\nu_A - \nu_B}{\nu_B} = \frac{U_A - U_B}{c^2} + \frac{U_A^2 - U_B^2}{2c^4} + \mathcal{O}(c^{-6})$$
 (69)

— т.е. 1PN и 2PN члены совпадают со стандартным предсказанием GR при калиброванных b_2 .

8.3 Прецессия перицентра (Меркурий, S-звёзды); сравнение с ОТО

Используя наблюдаемую метрику (§5.2) с коэффициентами из §7.1, уравнения движения пробной частицы на квазикеплеровой орбите дают стандартный 1PN-сдвиг перицентра за оборот:

$$\Delta \varpi_{1\text{PN}} = \frac{6\pi GM}{a(1 - e^2)c^2} \tag{70}$$

где a — большая полуось, e — эксцентриситет. Это совпадает с GR и описывает как прецессию Меркурия, так и средний сдвиг перицентра у звёзд S2/S62/S4714/S4716 при достаточно большом перицентре.

На 2PN-уровне сдвиг можно параметризовать через $\epsilon \equiv GM/[a(1-e^2)c^2]$:

$$\Delta \varpi = \Delta \varpi_{1PN} \left[1 + \kappa_{2PN} \epsilon + \mathcal{O}(\epsilon^2) \right], \tag{71}$$

где $\kappa_{2\text{PN}}$ зависит от 2PN-частей g_{00}, g_{ij} , т.е. в нашей записи — от (a_2, b_2) . Для калиброванных значений $\kappa_{2\text{PN}}$ совпадает с изотропным результатом GR; возможные отклонения появляются только при $|\delta b_2|, |\delta a_2| \neq 0$ и для Меркурия лежат ниже текущей чувствительности $(10^{-3}$ доли 1PN-члена). Для S-звёзд у Sgr A* 2PN-коррекция масштабируется как $\sim \epsilon$ с $\epsilon \sim 10^{-3}$ – 10^{-2} при перицентрах $100~R_s$; с текущей астрометрией это на границе обнаружения, поэтому именно S-орбиты дают перспективный тест на $\delta a_2, \delta b_2$ (§14).

Вывод раздела.

- Линзирование: $\alpha = \frac{4GM}{bc^2} + \frac{15\pi}{4} \frac{G^2M^2}{b^2c^4} + \dots$ совпадение с ОТО до 2PN.
- Задержка Шапиро: стандартный логарифм (Cassini) и 2PN-член $\propto (GM)^2/(bc^5)$ с GR-коэффициентом при $a_2=0, b_2=\frac{1}{2}$.
- **Красное смещение:** 1PN и 2PN совпадают с GR для наших коэффициентов.
- Прецессия перицентра: 1PN как в GR; 2PN-отклонения зависят от (a_2, b_2) и проверяются на S-звёздах.

Тем самым, $\mu\tau$ -подход сохраняет все классические оптические и орбитальные проверки в Солнечной системе и предсказывает измеримые (хотя и малые) 2PN-отличия в сильнополевых режимах, что задаёт программу наблюдательных тестов в \$13-\$14.

9 Чёрные дыры и сильные поля

В сильнополевом режиме $\mu(x), \tau(x)$ перестают быть малым возмущением и определяют динамику «наблюдаемой» каузальной структуры через

$$ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i dx^i dt + \mu^2 \delta_{ij} dx^i dx^j$$
(72)

(см. также §5.2). Ниже описываем: (i) радиальные профили μ, τ для статической чёрной дыры, (ii) механизм стабилизации сильного поля через «сброс масштаба» в мнимый сектор, (iii) судьбу непродолжаемых геодезических в $\mu\tau$ -языке и (iv) разрешение парадокса информации.

9.1 Внешняя область, горизонт, внутренняя область: эволюция масштаба и «часов»

Рассмотрим стационарно-симметричный случай невращающейся чёрной дыры (для определённости; вне 1PN-поправок $B_i = 0$). Пусть r — радиальная координата плоского фона.

Внешняя область $(r \gg r_s)$. Как и в §7.1:

$$\mu(r) \simeq 1 + \frac{GM}{rc^2}, \qquad \tau(r) \simeq 1 - \frac{GM}{rc^2} + \frac{1}{2} \frac{G^2 M^2}{r^2 c^4},$$
 (73)

так что «оптика гравитации» задаётся

$$n(r) = \frac{\mu}{\tau} \simeq 1 + \frac{2GM}{rc^2} + \frac{3}{2} \frac{G^2 M^2}{r^2 c^4}.$$
 (74)

Горизонт. Операциональный горизонт определяется условием

$$\tau(r_h) = 0. (75)$$

Вблизи r_h поведение часов доминирует над масштабом: $n(r) \to \infty,$ а для радиальных нулевых кривых

$$\frac{dr}{dt} = \pm c \frac{\tau}{\mu} \longrightarrow 0, \tag{76}$$

т.е. для внешнего наблюдателя луч «замирает» у горизонта, хотя собственное время инфаллера остаётся конечным.

Внутренняя область $(r < r_h)$. $\tau(r)$ снова становится положительной, но ориентация оператора потока времени

$$D_t = \tau \,\partial_t \tag{77}$$

противоположна Killing-времени внешнего стационара: процессы внутри отсчитывают фазы и энергии относительно обратной ориентации времени наружного наблюдателя. Одновременно $\mu(r)$ растёт, усиливая граничные эффекты $\S 9.2$.

Физическая картина. В $\mu\tau$ -описании «перестановка пространственной и временной осей» интериора GR реализуется через нулевой уровень τ (горизонт) и смену ориентации D_t при сохранении $\tau > 0$, что обеспечивает корректную задачу Коши и гиперболичность (§4.6).

9.2 «Сброс масштаба» в мнимую часть: конечность величин и устойчивость

При $r \to 0$ рост $\mu(r)$ увеличивает «эффективные размеры/массы» состояний. Если бы весь рост оставался на реальном слое R, плотности энергии и инварианты из $\mathcal{L}_{\mu\tau}$ росли бы без ограничения. Этого не происходит из-за граничного обмена с мнимым сектором I:

- На интерфейсах Σ (толщина ℓ_*) действует граничный терм $\mathcal{L}_{\text{bdry}}$ (§4.4), который индуцирует поверхностные токи масштаба и энергии j_{surf}^{ν} .
- Закон сохранения принимает вид

$$\partial_{\mu} T_{(R)}^{\mu\nu} + \delta_{\Sigma} j_{\text{surf}}^{\nu} = 0, \tag{78}$$

так что избыточный вклад $\propto \mu^2$ канализуется в I при достижении порога $\mu \geq \mu_{\rm th}$.

• Конструктивно

$$j_{\text{surf}}^{\nu} \sim \tilde{g} \Theta(\mu - \mu_{\text{th}}) \frac{\mu - \mu_{\text{th}}}{\ell_{\star}} n_{\Sigma}^{\nu}, \tag{79}$$

где $\tilde{g} \sim g/\ell_*$ — безразмерный эффективный куплинг, n_Σ^{ν} — нормаль к Σ .

Следствия. Конечность: плотности $T_{00}^{(R)}$, инварианты из $V(\mu,\tau)$ и $(\partial\mu)^2$ ограничиваются величиной порядка $\sim \mu_{\rm th}^2 \Lambda_\mu^2$ (с точными коэффициентами из формы V). Устойчивость: включение оттока при $\mu \geq \mu_{\rm th}$, линейного по $(\mu - \mu_{\rm th})$ на масштабе ℓ_* , ведёт к релаксации к стационарному профилю без δ -пиков. Обратная связь: накопленные в I энергия/масштаб создают через Σ эффективный потенциал на множестве R_j , который на больших r проявляется как «тёмная масса» с ядром K(r) (см. §11).

Таким образом, сингулярность заменяется регулярной областью с активным граничным обменом, а наблюдаемая динамика остаётся конечной и гиперболической.

К скоплениям. Поскольку «сброс масштаба» в мнимый сектор усиливается в окрестностях ВН, интегральная DM-подсистема в скоплениях трекингуется популяцией чёрных дыр (включая IMBH/Stellar ВН в галактиках). В динамических событиях (вроде Пули) это даёт баллистическое поведение DM-каркаса, тогда как горячий газ тормозится — источник оффсета масс.

9.3 Непродолжаемые геодезические: $\mu \tau$ -интерпретация и физический смысл

В GR геодезики, достигая сингулярности, непродолжаемы. В $\mu\tau$ -подходе:

- 1. Траектории на R определяются вариацией действия с метрикой $ds_{\rm obs}^2$; при $\mu \to \mu_{\rm th}$ включается граничный обмен, и мировая линия достигает Σ за конечное собственное время.
- 2. Далее возможны два сценария:
 - Продолжение в расширенном пространстве $R \oplus I$: мировая линия непрерывно переходит в I (с сохранением энергии-импульса и нормали), эволюция унитарна.
 - Эффективная отраженная/рассеянная динамика: часть амплитуды возвращается в R (возможные «эха»), часть уходит в I.

Определим $\mu\tau$ -полноту: решение полно, если собственный параметр вдоль мировой линии не ограничен сверху при эволюции в $R \oplus I$ с граничным законом на Σ . При условиях §4.6 ($\tau > 0$, гиперболичность, конечные токи на ℓ_*) решения $\mu\tau$ -полны, хотя проекция на один только R может «заканчиваться» на Σ . Частичное отражение на Σ порождает слабые GW-«эха» при кольцевании (см. §10), контролируемые параметрами \tilde{q} , ℓ_* .

9.4 Парадокс информации: каналы через мнимый сектор и восстановимость

Классический парадокс (термализация излучения Хокинга при «исчезновении» носителя) снимается тем, что:

• Полная динамика описывается действием на $R \oplus I$ с граничным термом $\mathcal{L}_{\mathrm{bdry}}.$

- Унитарность реализована на расширенном пространстве состояний: эволюционный оператор U(t) унитарен при включении каналов $R \leftrightarrow I$.
- «Термальность» раннего излучения результат трассировки по I (и по невидимым степеням на Σ); по мере эволюции каналы обратной связи возвращают информацию в R (тонкие корреляции и спектральные отклонения, подавленные $\propto \tilde{g}^2$).

Качественно кривая Пейджа реализуется так: на ранних стадиях энтропия излучения растёт (трассировка по I); на времени $t_{\text{Page}} \sim t_{\text{Page}}(\tilde{g}, \ell_*, V)$ достигает максимума, затем убывает по мере «утечки» корреляций обратно в R. Малая, но конечная проницаемость Σ ведёт к небольшим спектральным отклонениям от идеального плана и к запаздывающим GW-«эхам» в звоне — оба сигнала количественно прогнозируемы при заданных \tilde{g}, ℓ_* (см. §10).

Итог. В $\mu\tau$ -подходе сингулярности заменены регулярной граничной динамикой на интерфейсах $R \leftrightarrow I$; геодезическая неполнота исчезает в расширенном пространстве состояний, а информационный поток замыкается благодаря юнитарному граничному обмену. Это сохраняет каузальность и согласуется со слабополевой феноменологией, предсказывая тонкие, но проверяемые сильнополевые эффекты (GW-эха, слабые спектральные отклонения, корреляции позднего излучения).

10 Гравитационные волны

Гравитационные возмущения описываем как малые колебания полей

$$\mu = 1 + \frac{\phi_R}{\Lambda_\mu}, \qquad \tau = 1 + \frac{\sigma}{\Lambda_\tau}, \qquad B_i = b_i, \tag{80}$$

на фоне $(\mu, \tau, B_i) = (1, 1, 0)$. Связь с измеряемыми величинами задаёт «наблюдаемую» линию элемента (§5):

$$ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i dx^i dt + \mu^2 \delta_{ij} dx^i dx^j,$$
(81)

поэтому линейные возмущения метрики, доступные детекторам, имеют вид

$$\delta g_{00} = -\frac{2\sigma}{\Lambda_{\tau}}, \qquad \delta g_{0i} = b_i, \qquad \delta g_{ij} = \frac{2\phi_R}{\Lambda_{\mu}} \, \delta_{ij} \, (+ \, \text{калибровочные члены}).$$
 (82)

Ниже выписываем моды, поляризации и закон излучения.

10.1 Скалярная гравитонная мода (мнимый сектор): возбуждение и поток энергии

Кинетика $\mathcal{L}_{\mu\tau}$ (§4.4) даёт в волновой зоне (вакуум, далеко от источников)

$$\phi_R = 0, \qquad \sigma = 0, \qquad \partial_i b_i = 0, \qquad b_i = 0, \quad \text{где } \equiv \frac{\partial_t^2}{c^2} - \nabla^2.$$
 (83)

Линейная комбинация

$$\psi_b \equiv \alpha_\mu \frac{\phi_R}{\Lambda_\mu} + \alpha_\tau \frac{\sigma}{\Lambda_\tau} \tag{84}$$

описывает скалярную («дыхательную») моду: она порождает изотропное растяжение $\propto \delta_{ij}$ в плоскости, перпендикулярной лучу. Эта мода связана с мнимым сектором через граничный терм $\mathcal{L}_{\text{bdry}}$ (§4.4): он допускает слабую «подпитку» скалярной волны при прохождении через интерфейсы $R \leftrightarrow I$, не нарушая причинности (толщина ℓ_*).

Плотность потока энергии волн из нётеровского T_{00} (усреднение по периоду $\langle \cdot \rangle$) имеет вид

$$F_{\rm GW} = \frac{c^3}{32\pi G_N} \left\langle \dot{h}_+^2 + \dot{h}_\times^2 \right\rangle + \frac{c^3}{8\pi G_N} \kappa_b \left\langle \dot{\psi}_b^2 \right\rangle, \tag{85}$$

где $h_{+,\times}$ — тензорная часть δg_{ij} в ТТ-представлении, «точка» — ∂_t , G_N — ньютоновская константа (зафиксирована слабополевыми тестами, §7), а $\kappa_b \ll 1$ — эффективная (безразмерная) сила скалярного канала, зависящая от $\Lambda_{\mu,\tau}$ и \tilde{g} (куплинга границы). При $\kappa_b \to 0$ поток совпадает с GR.

10.2 Поляризации $(+, \times$ и слабая «дыхательная»); отклик детекторов

Комбинации b_i и производных от ϕ_R , σ образуют калибровочно-инвариантную тензорную переменную $h_{ij}^{\rm TT}$, удовлетворяющую $h_{ij}^{\rm TT}=0$ в волновой зоне и разложению на две тензорные поляризации $(+,\times)$ с теми же проекционными тензорами, что в GR. Одновременно изотропная составляющая ∞ δ_{ij} задаётся скаляром ψ_b и даёт слабую «дыхательную» поляризацию. Полный набор $-(+,\times,b)$, где b-мода подавлена коэффициентом κ_b .

Интерферометр с ортогональными плечами e_1, e_2 откликается как

$$h(t) = \frac{1}{2} \left(\mathbf{e}_1 \otimes \mathbf{e}_1 - \mathbf{e}_2 \otimes \mathbf{e}_2 \right) : h_{ij}^{\mathrm{TT}} + \frac{1}{2} F_b(\hat{\mathbf{n}}) \psi_b, \tag{86}$$

где $\hat{\mathbf{n}}$ — направление прихода, F_b — изотропный по азимуту шаблон для «дыхания». Для земной сети: (i) антенные диаграммы для +, \times совпадают с GR; (ii) разрешимость скалярной примеси определяется κ_b и геометрией сети. Пульсарные тайминг-массивы и мультимессенджерные события дают дополнительные ограничения на κ_b .

10.3 Излучение бинаров: баланс энергии; совпадение с GR на квадрупольном уровне

Из \mathcal{L}_B и «минимальных замен» (§4.4) следует, что источником тензорной волны является квадрупольная комбинация потока импульса и плотности энергии, как и в GR. В волновой зоне

$$h_{ij}^{\rm TT}(t, \mathbf{x}) = \frac{2G_N}{c^4 R} \ddot{Q}_{ij}^{\rm TT}(t - R/c) + \dots,$$
 (87)

а квадрупольное правило энергии принимает вид

$$\frac{dE}{dt}\Big|_{tens} = -\frac{G_N}{5c^5} \left\langle \ddot{Q}_{ij} \ddot{Q}_{ij} \right\rangle, \tag{88}$$

что в точности совпадает с GR. Отсюда — тот же ведущий закон эволюции орбиты и -5/3-показатель «чирпа».

Скалярный канал, благодаря универсальности куплингов (нет композиционно-зависимой «зарядки» источников), не даёт дипольного излучения для двойных систем; ведущий вклад появляется не ниже квадрупольного:

$$\frac{dE}{dt}\Big|_{ccal} = -\kappa_b \frac{G_N}{5c^5} \left\langle \ddot{\mathcal{Q}}^2 \right\rangle + \dots,$$
(89)

где Q — скалярный квадруполь (с весами от μ, τ). Поскольку $\kappa_b \ll 1$, вклад подавлен и согласуется с наблюдениями тесных двойных (от тайминга пульсаров до LIGO/Virgo/KAGRA); возможные отличия передаются в тонкие ПН-поправки к фазе.

10.4 Кольцевание (QNM) чёрных дыр: прогноз сдвигов частот и затухания

После слияния компактных объектов возбуждаются квазинормальные моды (QNM). В $\mu\tau$ -подходе их спектр чувствителен к двум новшествам:

- 1. Граничная динамика на интерфейсе Σ (толщина ℓ_* , куплинг \tilde{g}) вблизи операционного горизонта $\tau(r_h)=0$ (§9): эквивалент слабой эффективной отражательности $\mathcal{R}\sim \tilde{g}^2$ на расстоянии $\sim \ell_*$ от горизонта.
- 2. Слабая скалярная мода ψ_b , возбуждаемая совместно с тензорной.

Для главной тензорной моды $(\ell, m, n) = (2, 2, 0)$ частота и затухание получают поправки

$$\frac{\delta f_{220}}{f_{220}^{\text{GR}}} \sim \mathcal{O}\left(\frac{\ell_*}{r_s}\right) + \mathcal{O}(\tilde{g}^2), \qquad \frac{\delta \tau_{220}}{\tau_{220}^{\text{GR}}} \sim \mathcal{O}\left(\frac{\ell_*}{r_s}\right) + \mathcal{O}(\tilde{g}^2), \tag{90}$$

где $r_s=2GM/c^2$. При $\ell_*/r_s\ll 1$ и $\tilde{g}\ll 1$ сдвиги малы, но принципиально наблюдаемы для прецизионных звонов (LIGO A+/ET/LISA). Дополнительно возможна цепочка «эхо» с интервалом

$$\Delta t_{\rm echo} \approx 2 \left| r_*(r_h + \varepsilon) \right| \sim 2 r_s \ln \frac{r_s}{\ell_*},$$
 (91)

если эффективная отражательность $\mathcal{R} \neq 0$; амплитуда эха $\propto \mathcal{R}$ и быстро убывает.

Скалярная мода ψ_b возбуждает слабое «дыхательное» кольцевание с частотами, близкими к сферически-симметричным (s-моды) возмущениям. Её вклад мал ($\propto \kappa_b$), но даёт коррелированные тонкости в позднем звоне и потенциал для поляризационных тестов.

10.5 Гравитонная картина излучения и кольцевания

Квадрупольное излучение компактной двойной системы интерпретируется как когерентная эмиссия гравитонов поляризаций +, ×; ведущий закон потери энергии совпадает с предсказаниями GR.

Вблизи горизонта граничный слой real \leftrightarrow imag с конечной толщиной ℓ^* и «проницаемостью» \tilde{g} модифицирует эффективное внутреннее условие задачи рассеяния: это проявляется как малые сдвиги резонансных частот и затуханий QNM и, при $|\tilde{g}| > 0$, как частично отражённые «эхо».

На языке квазичастиц это соответствует слабому смешиванию тензорных состояний с поверхностными модами интерфейса; величины эффектов пропорциональны ℓ^*/r_s и \tilde{g}^2 (см. §10, §16).

Итог раздела. В волновой зоне тензорные моды $(+,\times)$ удовлетворяют той же волновой динамике и квадрупольному закону излучения, что в GR; скорость распространения c — та же. Появляется слабая скалярная «дыхательная» поляризация, подавленная $\kappa_b \ll 1$, без дипольного излучения благодаря универсальности куплингов. Кольцевание чёрных дыр почти GR-ово; малые сдвиги $\propto \ell_*/r_s$, \tilde{g}^2 и возможные эхо задают чёткие тесты для будущих детекторов. Эти результаты консистентны с PPN-совпадением (§7) и сильнополевой регуляризацией (§9) и переводятся в измеримые предсказания.

11 Тёмная материя

В $\mu\tau$ -подходе «тёмная» гравитация возникает не из новых частиц, а как эффективный вклад от мнимого сектора и граничных интерфейсов Σ (§3, §4.4). На малых масштабах (окрестности чёрных дыр, ВН) это даёт локальные шлейфы с резким спадом плотности; на галактических — свёрточный отклик ядра K(r) на барионные источники, приводящий к квазиизотермическим гало и плоским кривым вращения.

11.1 Локальные «шлейфы» вокруг ВН: $\rho(r) \sim r^{-4},$ насыщение enclosed-массы

Механизм «сброса масштаба» (§9) включает поверхностные токи на Σ вблизи операционного горизонта $\tau(r_h)=0$ и перенос части энерго-масштаба в мнимую часть кванта. Возвратная обратная связь на реальном слое R проявляется как добавочный потенциал, эквивалентный «тёмной» плотности $\rho_{\rm DM}(r)$. Для одиночной ВН в стационарном режиме решение уравнения баланса потоков даёт универсальный асимптотический профиль

$$\rho_{\text{shroud}}(r) = \frac{A}{r^4} \qquad (r \gg r_c), \tag{92}$$

где A — константа, определяемая локальной проницаемостью интерфейсов \tilde{g} , порогом $\mu_{\rm th}$ и микросрезом ℓ_* ; $r_c \sim \max(\ell_*, \varepsilon r_s)$ — радиус, где включается стационарный граничный поток.

Насыщение массы. Включённая масса «шлейфа» внутри R конечна:

$$M_{\text{shroud}}(< R) = \int_{r_c}^{R} 4\pi r'^2 \frac{A}{r'^4} dr' = 4\pi A \left(\frac{1}{r_c} - \frac{1}{R}\right) \xrightarrow{R \to \infty} \frac{4\pi A}{r_c}.$$
 (93)

То есть вклад локального «шлейфа» насыщается и остаётся $\ll M_{\rm BH}$ при разумных A/r_c . Поэтому для S-звёзд у Sgr A* и для орбит в нескольких десятках—сотнях r_s дополнительная масса пренебрежимо мала и не искажает 1PN-феноменологию, сохраняя соответствие наблюдениям.

11.2 Галактические гало: ядро свёртки K(r), квазиизотермический профиль, плоские кривые вращения

На больших масштабах совокупность интерфейсов $\{\Sigma\}$ задаёт средний свёрточный отклик мнимого сектора на барионную массу:

$$\Phi_{\text{eff}}(\mathbf{x}) = \Phi_{\text{bar}}(\mathbf{x}) + G \int d^3 x' K(|\mathbf{x} - \mathbf{x}'|) \, \rho_{\text{bar}}(\mathbf{x}'), \qquad \rho_{\text{DM}}(\mathbf{x}) = \int d^3 x' K(|\mathbf{x} - \mathbf{x}'|) \, \rho_{\text{bar}}(\mathbf{x}'). \tag{94}$$

Форма ядра определяется статистикой пересечений $I \to R$, их толщиной ℓ_* и порогом $\mu_{\rm th}$. Минимальная двухпараметрическая аппроксимация, одновременно обеспечивающая квази-изотермические гало и плоские кривые вращения, — «псевдо-изотермическое» ядро

$$K(r) = \frac{\kappa}{4\pi} \frac{1}{r^2 + r_c^2},\tag{95}$$

где r_c — масштаб «ядра» (связан с ℓ_* и типичной толщиной интерфейсов), κ — безразмерная интенсивность обратной связи (функция $\tilde{g}, \mu_{\rm th}$). Для точечного барионного источника массы M это даёт

$$\rho_{\rm DM}(r) = \frac{\kappa M}{4\pi} \, \frac{1}{r^2 + r_c^2},\tag{96}$$

т.е. $\rho_{\rm DM} \propto r^{-2}$ на $r \gg r_c$ (изотермический хвост) и плато на rr_c . Вложенная масса

$$M_{\rm DM}(< R) = \kappa M \left[R - r_c \arctan(R/r_c) \right]$$
 (97)

растёт $\propto R$ при $R \gg r_c$, отчего круговая скорость

$$v_{\rm circ}^2(R) = \frac{G M_{\rm tot}(\langle R)}{R} \longrightarrow G \kappa M \quad (R \gg r_c)$$
 (98)

становится асимптотически постоянной — плоские кривые вращения. Для протяжённых дисков свёртка с тем же K(r) приводит к знакомому квазиизотермическому профилю гало:

$$\rho_{\text{halo}}(r) \simeq \frac{\rho_0}{1 + (r/r_c)^2}, \qquad v_{\text{flat}}^2 \simeq 4\pi G \,\rho_0 \,r_c^2, \tag{99}$$

где ρ_0 и r_c — эффективные ядро и масштаб, выражающиеся через $\kappa, \ell_*, \tilde{g}$ и распределение барионов.

Физический смысл параметров. κ — интегральная «прозрачность/отклик» сети Σ (возвращаемая доля потока масштаба); r_c — средняя «толщина/радиус корреляции» интерфейсов в реальном слое. Их умеренные значения естественно дают квазиплоские кривые вращения без введения новых частиц.

11.3 Согласование с Млечным Путём: локальная плотность, слабое линзирование, спутники

(i) Локальная плотность. Для Млечного Пути с $v_{\rm flat} \approx 230~{\rm km}\,{\rm s}^{-1}$ получаем

$$\rho_0 r_c^2 = \frac{v_{\text{flat}}^2}{4\pi G} \Rightarrow \rho_0 \simeq 9.8 \times 10^6 \frac{M_{\odot}}{\text{kpc}^3} \left(\frac{10 \text{ kpc}}{r_c}\right)^2.$$
(100)

При $r_c \sim 10~{\rm kpc}$ это даёт $\rho_0 \sim 9.8 \times 10^6~M_\odot/{\rm kpc}^3 \approx 9.8 \times 10^{-3}~M_\odot/{\rm pc}^3 \approx 0.4~{\rm GeV\,cm}^{-3}$ — каноническому диапазону локальной тёмной материи в окрестности Солнца. Тем самым выбор (κ, r_c) в разумном коридоре согласуется с кинематикой МW-диска и локальными ограничениями.

(ii) Слабое линзирование. Проекция квазиизотермического гало даёт поверхностную плотность $\Sigma(R)$ с $\Sigma \propto R^{-1}$ на $R \gg r_c$; касательное сдвиг-среднее

$$\gamma_t(R) \propto \Sigma(\langle R) - \Sigma(R) \propto R^{-1}$$
 (101)

согласуется с наблюдаемой степенью наклона профилей слабого линзирования для L_* -галактик и Млечного Пути. Нормировка γ_t фиксирует комбинацию $\rho_0 r_c$ и согласуется с той же парой параметров, что и кривые вращения — общая подгонка возможна в двух параметрах.

- (iii) Спутники и внутренние наклоны. Наличие ядра $r_c \sim$ несколько-десяток кпк смягчает центральные наклоны потенциала, облегчая согласование скоростей дисперсии карликовых спутников и смягчая «too-big-to-fail» напряжения, характерные для строго NFW-профилей. В $\mu\tau$ -картине это напрямую связано с конечной толщиной интерфейсов ℓ_* и проницаемостью \tilde{g} : оба параметра одновременно контролируют r_c и нормировку κ .
- (iv) Кейс: скопление Пуля (1E 0657–56). В -подходе DM-сигнал в скоплениях это свёрточный отклик K(r), привязанный к чёрным дырам и компактным остаткам. При столкновении субкластеров «мнимо-геометрическая» масса, ассоциированная с популяцией ВН, декуплируется от барионного газа (тормозимого ударом) и следует траекториям компактных систем, формируя максимум линзирующей массы, смещённый от рентгеновского газа. Тем самым естественно воспроизводятся наблюдаемые оффсеты линзирования без введения свободной холодной материи как отдельного поля.

Итог раздела. Вокруг одиночной ВН $\mu\tau$ -обратная связь формирует локальный «шлейф» $\rho \propto r^{-4}$ с насыщающейся массой — эффект динамически безопасен и совместим с орбитальной феноменологией. На галактических масштабах свёрточный отклик K(r) с двумя параметрами (κ, r_c) рождает квазиизотермические гало и плоские кривые вращения без введения новой материи. Для Млечного Пути те же (κ, r_c) согласуют локальную плотность, слабое линзирование и динамику спутников. Таким образом, тёмная материя в $\mu\tau$ -подходе — это эффективная геометрическая проекция мнимого сектора на реальный слой, естественным образом воспроизводящая ключевые наблюдательные свойства гало.

12 Тёмная энергия и космология

Ключевая идея фоновой (FRW-подобной) космологии $\mu \tau$ -подхода: наблюдатель оперирует эффективной линией элемента

$$ds_{\text{obs}}^2 = -\tau^2(a) c^2 dt^2 + \mu^2(a) a^2(t) d\mathbf{x}^2, \tag{102}$$

так что «наблюдаемый» масштабный фактор и время равны

$$a_{\text{obs}}(t) = \mu(a) a(t), \qquad dt_{\text{obs}} = \tau(a) dt. \tag{103}$$

Отсюда «наблюдаемая» скорость расширения

$$H_{\rm obs}(a) \equiv \frac{1}{a_{\rm obs}} \frac{da_{\rm obs}}{dt_{\rm obs}} = \frac{1}{\tau} \left(H + \frac{\dot{\mu}}{\mu} \right), \qquad H \equiv \frac{\dot{a}}{a}.$$
 (104)

Поля $\mu(a)$, $\tau(a)$ удовлетворяют фоновым уравнениям Эйлера—Лагранжа (§4.4) с источниками от средних плотностей материи/излучения и медленной кинетикой, «перепривязывая» локальные часы и линейки и создавая эффективный тёмно-энергетический вклад в $H_{\rm obs}$.

12.1 $\Lambda_{\rm eff}$ как сумма вакуумной и «роста квантов»

Фоновая плотность «тёмной энергии» складывается из двух компонент:

$$\rho_{\Lambda}^{\text{eff}}(a) = \underbrace{V_0}_{\text{вакуум из } L_{\mu\tau}} + \underbrace{\rho_{\text{growth}}(a)}_{\text{рост реального объёма, §3}}.$$
(105)

Вакуумная часть V_0 . Это постоянный вклад потенциала $V(\mu, \tau)$ (§4.4); «истинная» космологическая константа $\Lambda_{\rm grav} = 8\pi G \, V_0/c^4$.

Рост реального объёма $\rho_{\text{growth}}(a)$. Порождение новых квантов и перекрытия их мнимых частей с реальным слоем (§3) ведут себя как однородная, слабо эволюирующая компонента с

$$w_{\text{growth}}(a) \equiv \frac{p_{\text{growth}}}{\rho_{\text{growth}}} \simeq -1 + \varepsilon(a), \qquad |\varepsilon(a)| \ll 1,$$
 (106)

где $\varepsilon(a)$ контролируется статистикой интерфейсов Σ (параметры r_c, \tilde{g}, ℓ_*). Удобная параметризация:

$$\rho_{\text{growth}}(a) = \rho_{\text{growth},0} a^{-3(1+w_0+w_a)} \exp[-3w_a(1-a)], \qquad (w_0 \approx -1, |w_a| \ll 1).$$
 (107)

Тогда $\Lambda_{\rm eff} \equiv 8\pi G\, \rho_{\Lambda}^{\rm eff}/c^4$ есть сумма постоянной и слабо эволю
ирующей частей.

12.2 Фон H(a) с $\mu(a), \tau(a)$; медленная эволюция w(a)

Стандартные уравнения Фридмана для «голо-FRW» расширения a(t):

$$H^{2}(a) = \frac{8\pi G}{3} \left(\rho_{m} a^{-3} + \rho_{r} a^{-4} + \rho_{\Lambda}^{\text{eff}}(a) \right) - \frac{k}{a^{2}}.$$
 (108)

Наблюдается

$$H_{\rm obs}(a) = \frac{H + \dot{\mu}/\mu}{\tau}.\tag{109}$$

Для медленных фонов $\mu = 1 + \delta_{\mu}(a)$, $\tau = 1 + \delta_{\tau}(a)$ с $|\delta_{\mu,\tau}| \ll 1$ и $|d\delta/d \ln a| \ll 1$:

$$H_{\text{obs}}(a) \simeq H(a) \left[1 - \delta_{\tau}(a) \right] + \frac{d \ln \mu}{dt}. \tag{110}$$

Эквивалентно — переопределение эффективного EoS тёмной энергии:

$$w_{\text{eff}}(a) \equiv -1 + \varepsilon(a) + \frac{2}{3} \frac{d \ln \mu}{d \ln a} - \frac{2}{3} \frac{d \ln \tau}{d \ln a},\tag{111}$$

где две последние « μ/ au -скобки» — чисто μau -эффект (даже при строго постоянной $ho_{\rm growth}$). Внутренняя динамика определяется

$$\ddot{\phi}_R + 3H\dot{\phi}_R + V_u' = S_\mu(a), \qquad \ddot{\sigma} + 3H\dot{\sigma} + V_\tau' = S_\tau(a),$$
 (112)

с источниками $S_{\mu,\tau}$ (средние кинетики материи/излучения; §4.4). В квазистационарном режиме $d \ln \mu/d \ln a$, $d \ln \tau/d \ln a$ и $\varepsilon(a)$ малы, сохраняя близость к Λ CDM.

12.3 ISW, рост структур, линейные возмущения

Поздний ISW. Температурный сдвиг СМВ

$$\left. \frac{\Delta T}{T} \right|_{\text{ISW}} = 2 \int_{\eta_*}^{\eta_0} \Phi'(\eta, \hat{n}) \, d\eta \tag{113}$$

чувствителен к эволюции гравитационного потенциала Ф. В $\mu \tau$ -подходе линзирующая «оптика» определяется

$$\Xi(a) \equiv \frac{d}{d\ln a} \ln\left(\frac{\mu}{\tau}\right),\tag{114}$$

поскольку показатель среды $n = \mu/\tau$. При $|\Xi| \ll 1$ добавка к позднему ISW порядка $\mathcal{O}(\Xi)$.

Рост структур. Для субгоризонтальных мод $\delta \equiv \delta \rho_m/\rho_m$:

$$\delta'' + \left(2 + \frac{H'}{H} + D(a)\right)\delta' - \frac{3}{2}\Omega_m(a)\frac{G_{\text{eff}}(a)}{G}\delta = 0, \qquad (' \equiv d/d\ln a),$$
 (115)

где

$$D(a) \simeq -\frac{d \ln \tau}{d \ln a}, \qquad \frac{G_{\text{eff}}}{G} \simeq 1 + \mathcal{O}\left(\frac{d \ln \mu}{d \ln a}\right).$$
 (116)

То есть «часы» (τ) модифицируют эффективное трение, а «длина» (μ) — субдоминантно источник. В пределе $\mu = \tau = 1$ восстановлена Λ CDM. Наблюдательный контроль дают $f\sigma_8(a)$ (RSD) и WL; текущие данные допускают |D|неск. $\times 10^{-2}$ при z1.

Линзирование. Комбинация $\Phi + \Psi$ в слабом линзировании чувствительна к $n = \mu/\tau$; первые поправки к спектру космического сдвига-линзирования

$$\Delta C_{\ell}^{\kappa} \propto \int dz \,\Xi(a) \,W(z)$$
 (117)

(с весом W) остаются процентов при $|\Xi|10^{-2}$.

12.4 Совместимость с CMB/BAO/SN; схема численного фита

Используем стандартный стек: CMB (TTTEEE+lensing), BAO, SNe Ia, RSD, WL. Достаточно двух уровней модификаций.

Фон. Заменить $H(a) \to H_{\rm obs}(a)$ и параметризовать

$$\{\Omega_m, \Omega_b h^2, H_0, n_s, A_s, \tau_{\rm reio}\} \cup \{\Omega_{\Lambda,0}^{\rm grav}, w_0, w_a\} \cup \{\varepsilon_\mu \equiv d \ln \mu / d \ln a, \ \varepsilon_\tau \equiv d \ln \tau / d \ln a\},$$
 с приорами $|w_0 + 1|, |w_a|, |\varepsilon_{\mu,\tau}| \ll 1.$ (118)

Линейные возмущения. В CAMB/CLASS достаточно ввести

$$w_{\text{eff}}(a) = -1 + w_0 + w_a(1 - a) + \frac{2}{3}(\varepsilon_\mu - \varepsilon_\tau), \tag{119}$$

и модифицировать трение $D(a)\simeq -\varepsilon_{\tau}$ в уравнении роста. Для линзирования/ISW — включить $\Xi(a)=\varepsilon_{\mu}-\varepsilon_{\tau}$ в проекционные ядра.

Алгоритм. (i) Фит расстояний $D_A(z), D_L(z)$ по SN/BAO \Rightarrow постериоры для $(w_0, w_a, \varepsilon_\mu - \varepsilon_\tau)$; (ii) добавление CMB (θ_*) и CMB-lensing \Rightarrow жёсткие ограничения на (H_0, Ω_m) и ранний фон (ранняя доля $\rho_{\Lambda}^{\text{eff}}$ несколько % на рекомбинации); (iii) добавление $f\sigma_8$ и WL \Rightarrow пределы на ε_τ (через D) и Ξ .

Ожидаемые допуски (консервативно).

$$|w_0 + 1|, |w_a|0.1, |\varepsilon_\mu|, |\varepsilon_\tau|10^{-2}$$
 (21), (120)

совместимы с PPN/Солнечной системой (§5.3) и допускают тонкие, но наблюдаемые космологические отклонения (поздний ISW, сдвиги в $f\sigma_8$, WL).

12.5 Ранняя Вселенная и бариогенез из топологии

В горячей плазме ранних эпох связи между слоями A и B усиливаются: квазичастицы многократно пересекают граничные области Σ , и возникают эффективные «утечки» барионного числа с асимметрией ε_{Σ} (топологический аналог СР-нарушения). Элементарная кинетическая схема для барионных чисел n_B^A и n_B^B имеет вид:

$$\dot{n}_B^A + 3Hn_B^A = -\Gamma_\Sigma (n_B^A - n_B^B) + \varepsilon_\Sigma \Gamma_\Sigma n_*, \tag{121}$$

$$\dot{n}_B^B + 3Hn_B^B = -\Gamma_{\Sigma}(n_B^B - n_B^A) - \varepsilon_{\Sigma} \Gamma_{\Sigma} n_*, \tag{122}$$

где n_* — плотность релевантных носителей. При «заморозке» $\Gamma_\Sigma \sim H$ асимметрия

$$\eta_B \equiv \frac{n_B^A - n_B^B}{n_\gamma} \sim \varepsilon_\Sigma \left(\frac{\Gamma_\Sigma}{H}\right)_{\text{freeze}} \times \mathcal{O}(10^{-2} - 10^{-1}),$$
(123)

что даёт корректный порядок $\eta_B \sim 10^{-10}$ при умеренных ε_Σ и $\Gamma_\Sigma/H.$

Совместимость с BBN/CMB обеспечивается малостью остаточного вклада «антислоя» и отсутствием долговременных аномальных релятивистских степеней свободы. Возможные следствия — слабый первичный гравитационно-волновой фон и тонкие анизотропии, зависящие от истории Σ .

Итог. Эффективная тёмная энергия $\Lambda_{\rm eff}$ имеет двойную природу: вакуумный вклад лагранжиана и вклад от роста квантов пространства (топологического происхождения). Наблюдаемая экспансия описывается $H_{\rm obs} = (H + \dot{\mu}/\mu)/\tau$; медленные вариации μ, τ дают $w_{\rm eff}(a) \approx -1 + \mathcal{O}(10^{-2})$ по (111). Линейные возмущения получают минимальные поправки: дополнительное «трение» роста через τ и слабую «оптику» через μ/τ . Стандартный стек CMB/BAO/SN/RSD/WL позволяет совместно подогнать ($w_0, w_a, \varepsilon_\mu, \varepsilon_\tau$) при сохранении строгих локальных тестов.

13 Мультимессенджер-подписи

Мы формализуем измеряемую разность времён прихода электромагнитного (EM) и гравитационноволнового (GW) сигналов при космологических пролётах через гравитационные структуры. В $\mu\tau$ -подходе свет распространяется в эффективной среде с показателем $n=\mu/\tau$, тогда как GW-тензоры распространяются со скоростью c и испытывают те же ньютоновские потенциалы через τ и B_i . Для разрешения наблюдаемой секундной шкалы задержек вводим параметр универсальности куплинга для GW:

 $n_{\rm gw} \equiv 1 + \xi_{\rm gw} \frac{2U}{c^2} + \mathcal{O}(c^{-4}),$ (124)

где U — гравитационный потенциал вдоль трассы (включая гало источника, приёмника и ЛСС). В GR-совпадающей калибровке $\xi_{\rm gw}=1$: ЕМ и GW испытывают одинаковую «гравитационную оптику», и чисто геометрическая задержка совпадает. Любое $(1-\xi_{\rm gw})\neq 0$ даёт интегральную разность времён прихода.

13.1 Интегральная задержка EM относительно GW на космологических трассах

В наблюдаемых единицах $(dt_{\rm obs} = \tau \, dt)$ время пролёта для ЕМ-фотона:

$$t_{\rm EM} = \frac{1}{c} \int_{\rm LOS} n_{\rm em}(x) \, dl, \qquad n_{\rm em} = \frac{\mu}{\tau} = 1 + \frac{2U}{c^2} + \frac{3U^2}{2c^4} + \cdots$$
 (125)

Для GW:

$$t_{\rm GW} = \frac{1}{c} \int_{\rm LOS} n_{\rm gw}(x) \, dl = \frac{1}{c} \int_{\rm LOS} \left[1 + \xi_{\rm gw} \frac{2U}{c^2} + \cdots \right] dl.$$
 (126)

Искомая геометрическая (трассовая) разность

$$\Delta t_{\text{geom}} \equiv t_{\text{EM}} - t_{\text{GW}} = \frac{1}{c} \int_{\text{LOS}} \left[(1 - \xi_{\text{gw}}) \frac{2U}{c^2} + \frac{3}{2} \frac{U^2}{c^4} + \cdots \right] dl.$$
 (127)

Первый член ($\propto U/c^2$) пропорционален отклонению универсальности ($1-\xi_{\rm gw}$), второй — общая 2PN-поправка $\sim (GM/bc^2)^2$. Для одиночного сферического потенциала с импакт-параметром b:

$$\Delta t_{\text{geom}} \simeq (1 - \xi_{\text{gw}}) \frac{2GM}{c^3} \ln \frac{4r_E r_R}{b^2} + \mathcal{O}\left(\frac{G^2 M^2}{bc^5}\right),$$
 (128)

где r_E, r_R — расстояния от массы до точек входа/выхода трассы.

Космологическое расширение. Для источника на z_s удобно ввести усреднённый по небесной сфере потенциал ЛСС $\overline{U}(z)$, тогда

$$\Delta t_{\text{geom}} \simeq (1 - \xi_{\text{gw}}) \int_0^{z_s} \frac{dz}{H_{\text{obs}}(z)} \frac{2\overline{U}(z)}{c^3} (1 + z), \tag{129}$$

где вклад доминируют окрестности массивных гало источника и приёмника; ЛСС даёт добавку того же знака, но меньшую.

13.2 Сценарии типа GW170817: вклад гало источника и приёмника

Для близких событий (стандартные сирены на $D \sim 10$ –100 Мпк) разность удобно разложить:

$$\Delta t_{\text{geom}} \simeq (1 - \xi_{\text{gw}}) \left[\Delta t_{\text{host}} + \Delta t_{\text{LSS}} + \Delta t_{\text{MW}} \right],$$
 (130)

с оценками шапировского вида для каждого гало

$$\Delta t_{\rm halo} \simeq \frac{2GM_{\rm halo}}{c^3} \ln \frac{4 \, r_{\rm in} \, r_{\rm out}}{b^2} \,. \tag{131}$$

Для гало Млечного Пути ($M_{\rm MW} \sim 10^{12} M_{\odot}$, $b \sim 8{\rm -}50$ кпк) абсолютная шапировская задержка ЕМ-сигнала составляет $\sim 10^7{\rm -}10^8$ с (недели–годы), но в GR она одинакова для ЕМ и GW и потому отменяется. В $\mu\tau$ -подходе нет отмены только в доле ($1-\xi_{\rm gw}$):

$$\Delta t_{\text{geom}}^{\text{MW}} \sim (1 - \xi_{\text{gw}}) \times 10^{7-8} \text{ s.}$$
 (132)

Чтобы согласовать наблюдаемую секундную шкалу (как в GW170817), требуется

$$|1 - \xi_{\rm gw}| \ 10^{-7} - 10^{-8},$$
 (133)

т.е. универсальность гравитационной «оптики» для GW и EM подтверждается с высокой точностью: $\xi_{\rm gw}=1\pm\mathcal{O}(10^{-7})$. Аналогичную по порядку оценку даёт гало источника ($M_{\rm host}\sim10^{11-12}M_{\odot}$), а ЛСС добавляет субдоминантный вклад (доли от галактических слагаемых при малых D).

13.3 Карты ожидаемых задержек по небесной сфере

Доминирование вклада гало приёмника ведёт к анизотропной карте $\Delta t_{\text{geom}}(\hat{n})$, зависящей от импакт-параметра $b(\hat{n})$ трассы в потенциале Млечного Пути:

$$\Delta t_{\text{geom}}(\hat{n}) \approx (1 - \xi_{\text{gw}}) \frac{2GM_{\text{MW}}}{c^3} \ln \frac{4 \, r_{\text{out}}(\hat{n}) \, r_{\text{in}}}{b^2(\hat{n})} + (1 - \xi_{\text{gw}}) \sum_{\text{LSS}} \frac{2GM_i}{c^3} \ln \frac{4 \, r_i r_i'}{b_i^2}. \tag{134}$$

Характеристики: максимумы — вдоль Галактической плоскости/центра (минимальные b); минимумы — на высоких галактических широтах; ЛСС добавляет крупноугловые вариации (направления на ближайшие скопления).

Процедура построения. (i) фиксировать $\xi_{\rm gw}$ (например, $\xi_{\rm gw} = 1$ и $\xi_{\rm gw} = 1 \pm 10^{-7}$ для тестов чувствительности); (ii) использовать модель потенциала МW (диск+балдж+гало) для расчёта $b(\hat{n})$ и логарифмического фактора; (iii) добавить каталог ЛСС (Местная группа, близкие скопления) как дискретную сумму; (iv) табулировать $\Delta t_{\rm geom}(\hat{n})$ на HEALPix-сфере.

Ожидаемые амплитуды. При $|1 - \xi_{\rm gw}| = 10^{-7}$:

$$\Delta t_{\text{geom}}(\hat{n}) \sim 0.1-5 \text{ s}, \tag{135}$$

с максимумами вдоль плоскости Галактики и умеренными добавками в направлениях на ближайшие скопления.

Итог. Мультимессенджерные задержки в $\mu\tau$ -подходе описываются линией-интегралом по потенциалу вдоль трассы; ведущий член $\propto (1-\xi_{\rm gw})\,U/c^2$. События типа GW170817 требуют $|1-\xi_{\rm gw}|10^{-7}-10^{-8}$, т.е. универсальность гравитационной оптики для GW и EM подтверждается с высокой точностью. Карты $\Delta t_{\rm geom}(\hat{n})$ анизотропны из-за геометрии MW и ближайших структур и пригодны для планирования/анализа будущих наблюдений.

14 S-звёзды у Sgr A*: сильнополевые проверки

Мы используем $\mu\tau$ -формализм для строгой подгонки орбит «S-звёзд» вокруг Sgr A* и извлечения ограничений на (i) 2PN-поправки к GR, индуцируемые μ , τ (коэффициенты a_2 , b_2 из §5.3), и (ii) дополнительный ньютонов вклад от «шлейфа» ВН и галактического гало. Ниже задаём данные/методику, аналитические формы поправок и схему совместной оценки вместе с массой ВН.

14.1 Данные (S2, S62, S4714, S4716) и методология подгонки

Набор наблюдений. Астрометрия $(\alpha(t), \delta(t))$ с типичной точностью ~ 10 – $100~\mu as;$ радиальные скорости $v_{los}(t)$ из спектроскопии (перицентры); межинструментальная кросс-калибровка нулей/масштабов

Список звёзд. S2 (эталонный 1PN-сдвиг перицентра); S62, S4714, S4716 (более малые перицентры в единицах R_s , критичны для 2PN и «шлейфа»).

Параметры модели. ВН-ядро: (M_{\bullet}, r_0, v_0) ; для звезды j: $(a, e, i, \Omega, \omega, T_0)_j$; $\mu\tau$ -сильное поле: $\delta a_2 \equiv a_2 - 0$, $\delta b_2 \equiv b_2 - \frac{1}{2}$ (см. §5.3); тёмная масса: локальный «шлейф» $\rho_{\rm shroud}(r) = A \, r^{-4}$ с отсечкой r_c ; гладкое гало: свёртка с ядром K(r), параметризованная $(\kappa, r_{c, \rm halo})$ — в центральных 0.05 рс практически невлиятельна (ставим строгие приоры). Фито-систематики: нули, масштаб, поворот поля, доп. ошибки.

Инференция. Максимум правдоподобия + МСМС/Нестед-семплинг. Правдоподобие

$$\mathcal{L} \propto \exp\left[-\frac{1}{2} \sum_{k} \left(\Delta \alpha_{k} \ \Delta \delta_{k} \ \Delta v_{k}\right) \mathbf{C}_{k}^{-1} \begin{pmatrix} \Delta \alpha_{k} \\ \Delta \delta_{k} \\ \Delta v_{k} \end{pmatrix}\right], \tag{136}$$

где модельные предсказания (α, δ, v) получаем численно из уравнений движения в «наблюдаемой метрике», включая GR-1PN + $\mu\tau$ -2PN + ньютоновскую массу $\rho_{\rm DM}$.

14.2 $\mu \tau$ -поправки к прецессиям и перицентрам; прогноз ближайших перицентров

(A) Орбитальные сдвиги: аналитика. Для квазикеплеровой орбиты с полуосью a, эксцентриситетом e и полупараметром $p=a(1-e^2)$ введём

$$\epsilon \equiv \frac{GM_{\bullet}}{pc^2} = \frac{R_s}{2p}, \qquad R_s = \frac{2GM_{\bullet}}{c^2}.$$
(137)

Стандартный 1PN-сдвиг перицентра совпадает с GR:

$$\Delta\omega_{1\text{PN}} = 6\pi\epsilon = \frac{3\pi R_s}{p}.$$
 (138)

2PN-поправка параметризуется $\delta a_2, \delta b_2$:

$$\Delta\omega_{2\text{PN}} = \kappa_{2\text{PN}}^{(\text{GR})}(e) \,\epsilon^2 + \underbrace{\left(c_\mu \,\delta a_2 + c_\tau \,\delta b_2\right)}_{\equiv \delta \kappa_{2\text{PN}}} \epsilon^2, \tag{139}$$

где $\kappa_{\text{2PN}}^{(\text{GR})}(e)$ — известная GR-функция, $c_{\mu}, c_{\tau} = \mathcal{O}(1)$ — веса $\mu \tau$ -вклада. Ньютоновская «тёмная масса». Профиль $\rho \propto r^{-4}$ даёт ретроградную поправку

$$\Delta \omega_{\rm DM} \approx -\pi \frac{d}{d \ln r} \left(\frac{M_{\rm DM}(< r)}{M_{\bullet}} \right) \bigg|_{r=a} \sim -\pi \frac{4\pi A}{M_{\bullet}} \frac{r_c}{a},$$
 (140)

т.е. быстро убывающую и обычно « 2PN на масштабах S-орбит.

Итог на оборот:

$$\Delta\omega \simeq \underbrace{6\pi\epsilon}_{\text{GR 1PN}} + \underbrace{\left[\kappa_{\text{2PN}}^{(\text{GR)}} + \delta\kappa_{\text{2PN}}\right]\epsilon^{2}}_{\mu\tau\text{-2PN}} + \underbrace{\Delta\omega_{\text{DM}}}_{\text{ньютон.}}.$$
(141)

(B) Временные маркеры перицентра и красные смещения. Сдвиг аргумента перицентра порождает сдвиг эпохи ближайшего перицентра

$$\Delta T_{\rm peri} \simeq \frac{\Delta \omega}{2\pi} P,$$
 (142)

где P — орбитальный период. Гравитационный компонент спектрального смещения в перицентре остаётся GR-эквивалентным до 1PN; 2PN-слагаемые дают $\mathcal{O}(\epsilon^2)$ -отклонения в форме $v_{\text{los}}(t)$.

- (C) Прогнозы (без дат). Постериоры $\{\Delta T_{\rm peri}, \Delta \omega\}$ на ближайший оборот получаем маргинализацией по $(M_{\bullet}, \delta a_2, \delta b_2, A, r_c)$. Чувствительность:
 - S2: $\epsilon \sim 10^{-3} \Rightarrow 2 \text{PN} \sim 10^{-6} 10^{-5}$ рад/орбиту на границе текущей астрометрии; «шлейф» ещё меньше.
 - S62/S4714/S4716: меньший $p/R_s \Rightarrow 2 \text{PN} \propto \epsilon^2$ растёт; при перицентрах $10^2 10^3 \, R_s \, \mu \tau$ -2PN становится измеримым совместно с $v_{\text{los}}(t)$.

14.3 Совместная оценка с массой ВН и профилем гало; статистика согласия

(A) Совместная подгонка «масса-2PN-тёмная масса». Единый вектор параметров

$$\Theta = \{ M_{\bullet}, \ \delta a_2, \ \delta b_2, \ A, \ r_c, \ \kappa, \ r_{c,\text{halo}}, \ \text{систематики} \}.$$
 (143)

Дегенерации: M_{\bullet} и δb_2 частично коррелируют через $g_{00}^{(\mathrm{2PN})}$; «шлейф» (A, r_c) антискоррелирован с δa_2 в апсидальной динамике. Pазрешение: многоорбитальная подгонка с различными e, p нерицентровые v_{los} .

- (В) Параметры согласия и тесты модели.
 - **PPN-совпадение:** приоры $|\delta a_2|, |\delta b_2| \ll 1$ (§5.3); проверяем стремление постериора к нулю.
 - Отсутствие лишней массы: $M_{\rm DM}(<10^3R_s)\ll 10^{-3}M_{\bullet}$ (следует из $\rho\propto r^{-4}$).
 - Goodness-of-fit: χ^2/dof , PPC, байес-фактор против «чистой GR» ($\delta a_2=\delta b_2=0,\,A=0$).
- (C) Ожидаемые пределы. При текущей точности (S2) и ожидаемых перицентрах более тесных орбит:

$$|\delta b_2|, |\delta a_2| \ 10^{-2} - 10^{-1} \ ($$
по отдельности), $\Sigma \Rightarrow$ улучшение в 2–3 × . (144)

Для «шлейфа»:

$$\frac{4\pi A r_c}{M_{\bullet}} \quad 10^{-3} \quad \Rightarrow \quad \Delta\omega_{\rm DM} \quad 10^{-3} \,\Delta\omega_{\rm 1PN}. \tag{145}$$

Итог раздела. Мы задали воспроизводимую процедуру, которая объединяет астрометрию и спектроскопию S-звёзд в «наблюдаемой метрике» $\mu\tau$, отделяет GR-1PN от $\mu\tau$ -2PN и ньютоновых вкладов «тёмной массы», и выдаёт прогнозируемые маркеры (сдвиг эпохи перицентра, малые 2PN-перекосы в $v_{\rm los}$) для S62/S4714/S4716. Совместная подгонка нескольких звёзд минимизирует вырождения и обеспечивает наилучшие ограничения на ($\delta a_2, \delta b_2$), подтверждая GR-эквивалентность на 1PN и открывая путь к обнаружению тонких $\mu\tau$ -эффектов в сильном поле.

15 Параметры модели и статистическая идентифицируемость

Мы суммируем набор свободных параметров $\mu\tau$ -подхода, вводим естественные приоры и обсуждаем вырожденности. Затем показываем, как совместный анализ (PPN-тесты, S-звёзды, GW, линзирование, космология) идентифицирует комбинации параметров и задаёт прогноз точности будущих измерений.

15.1 Набор параметров: $\Lambda_{\mu}, \Lambda_{\tau}, m_{\mu}, m_{\tau}, \lambda, \tilde{g}, \ell_{\star}, r_{c}, \rho_{0}$

Поля и «микро»-параметры (лагранжиан). Масштабные поля:

$$\mu(x) = 1 + \phi_R/\Lambda_{\mu}, \qquad \tau(x) = 1 + \sigma/\Lambda_{\tau}.$$

Массы и самодействие: m_{μ}, m_{τ} (квадратичные члены $m^2\phi^2/2$), $\lambda = \{\lambda_{\mu}, \lambda_{\tau}, \lambda_{\times}\}$ (четвёртые степени, где λ_{\times} — смешивание). Граничная связь с мнимым сектором: \tilde{g} — безразмерная «проницаемость» интерфейсов $R \leftrightarrow I$. Толщина интерфейса: ℓ_{\star} — физическая толщина граничного слоя (УФ-срез EFT).

Псевдометрические коэффициенты слабого поля (§5.2, §5.3). В базовой калибровке, дающей PPN-совпадение с GR:

$$a_1 = +1, \quad a_2 = 0, \qquad b_1 = -1, \quad b_2 = \frac{1}{2},$$

а отклонения $\delta a_2 \equiv a_2 - 0$, $\delta b_2 \equiv b_2 - \frac{1}{2}$ параметризуют 2PN-физику сильных полей.

Волновой сектор (§10). $\kappa_b \ll 1$ — эффективная «сила» скалярной дыхательной моды (функция $\Lambda_{\mu,\tau}$ и \tilde{g}). $\xi_{\rm gw}$ — параметр универсальности «гравитационной оптики» для GW (в GR-калибровке $\xi_{\rm gw}=1$).

«Тёмная материя» как обратная связь (§11). Локальный шлейф ВН: амплитуда A в $\rho_{\rm shroud}(r)=A/r^4$ с отсечкой $r_c^{\rm sh}\sim \max(\ell_\star,\varepsilon R_s)$. Галактические гало: ядро свёртки $K(r)=\frac{\kappa}{4\pi}\frac{1}{r^2+r_c^2}$ \Rightarrow квазиизотермический профиль $\rho_{\rm halo}\simeq \rho_0/(1+(r/r_c)^2)$ с $\rho_0 r_c^2=v_{\rm flat}^2/(4\pi G)$. Параметры гало: (κ,r_c) или эквивалентно (ρ_0,r_c) .

Космология (§12). Эффективные фоновые дрейфы $\varepsilon_{\mu} \equiv d \ln \mu/d \ln a$, $\varepsilon_{\tau} \equiv d \ln \tau/d \ln a$ (обычно 10^{-2}), и параметры роста квантов пространства в $\rho_{\text{growth}}(a)$: $(w_0 \approx -1, w_a \approx 0)$.

Физически обоснованные ограничения (стабильность/причинность). $m_{\mu,\tau}^2 \ge 0; \ \lambda_{\mu,\tau} > 0; \ \lambda_{\times} > -\lambda_{\mu}\lambda_{\tau}$ (ограниченность снизу); $\ell_{\star} > 0$ и $\ell_{\star}/R_s \ll 1$ для астрофизических ВН; $\tau > 0$ (гиперболичность).

15.2 Приоры, вырожденности и методы инференции

Приоры (широкие, но физически мотивированные).

- **РРN-совпадение:** $|a_1-1|, |b_1+1|10^{-5}, |b_2-\frac{1}{2}|10^{-4}$ (гауссовы приоры).
- **GW-универсальность:** $|1 \xi_{\rm gw}| 10^{-7}$ (мультимессенджер).
- Скалярная поляризация: $\kappa_b \ge 0$ с лог-равномерной плотностью на $[10^{-6}, 10^{-1}]$.
- Интерфейсы: $\tilde{g} \in [0,1); \ \ell_{\star}/R_s \in [10^{-12},10^{-3}].$
- Гало: $r_c \in [1, 30]$ kpc; узкий гаусс по $\rho_0 r_c^2 = v_{\rm flat}^2/(4\pi G)$.
- Космология: $|\varepsilon_{\mu,\tau}|10^{-2}$, $|w_0+1|$, $|w_a|0.1$.

Ключевые вырожденности (и их развязка).

- *S-звёзды:* $M_{\bullet} \leftrightarrow \delta b_2$ (оба входят в $g_{00}^{(2\text{PN})}$); $\delta a_2 \leftrightarrow (A/r_c)$ (оба влияют на апсидальную динамику). **Развязка:** многоорбитальная подгонка с разными e,p + перицентровые $v_{\text{los}}(t)$ (§14).
- Γ ало: $\rho_0 \leftrightarrow r_c$ (фиксируется комбинацией $\rho_0 r_c^2$ из $v_{\rm flat}$); М/L барионов $\leftrightarrow \rho_0$. Развязка: вращение + слабое линзирование + барионные профили.
- Космология: $H_0 \leftrightarrow (\varepsilon_{\mu} \varepsilon_{\tau})$ в H_{obs} ; $w(a) \leftrightarrow \varepsilon_{\mu,\tau}$ в $w_{\text{eff}}(a)$. Развязка: СМВ θ_{\star} + ВАО (дистанции), RSD/WL (рост).
- GW: $(\ell_{\star}/R_s) \leftrightarrow \tilde{g}$ (оба задают «эхо»/сдвиги QNM). **Развязка:** многочастотные звоны (разные ℓ, n) и стековка событий.

Fisher/MCMC/nested-sampling. Для набора данных d со вектором наблюдений \mathbf{y}_d и моделью $\mathbf{m}(\Theta)$:

$$F_{ij}^{(d)} = \sum_{\alpha,\beta} \frac{\partial m_{\alpha}}{\partial \theta_i} (C^{-1})_{\alpha\beta} \frac{\partial m_{\beta}}{\partial \theta_j}, \qquad \sigma(\theta_i) \simeq \sqrt{(F^{-1})_{ii}}.$$

Полный лог-правдоподобие:

 $\ln \mathcal{L}_{\rm tot} = \ln \mathcal{L}_{\rm PPN} + \ln \mathcal{L}_{\rm S-stars} + \ln \mathcal{L}_{\rm GW} + \ln \mathcal{L}_{\rm RC/WL} + \ln \mathcal{L}_{\rm CMB/BAO/SN/RSD}.$

Используем МСМС для постерйоров и nested-sampling для байес-факторов B (сравнение с «чистой GR»: $\delta a_2 = \delta b_2 = \kappa_b = 0, \ \tilde{g} = 0$).

Идентифицируемые комбинации. $(\rho_0 r_c^2)$ — из $v_{\rm flat}$; $(\tilde{g}^2/\ell_{\star})$ — из амплитуды «эхо»; $(\delta a_2, \delta b_2)$ — из 2PN-сдвигов S-звёзд; $(\varepsilon_{\mu} - \varepsilon_{\tau})$ — из ISW/WL; $1 - \xi_{\rm gw}$ — из мультимессенджерных задержек.

15.3 Совместные контуры и прогностическая мощность экспериментов Матрица чувствительности (качественная).

Класс данных	Основные параметры	Типичные пределы
PPN (Cassini, LLR, VLBI, GP-B/LAGEOS)	$a_1,b_1,b_2\ (\gamma,\beta)$	фиксируют 1PN на $10^{-5}-10^{-4}$
S-звёзды (GRAVITY/ELT)	$\delta a_2, \delta b_2; A/r_c; M_{\bullet}$	$\sigma(\delta a_2), \sigma(\delta b_2) \sim 10^{-2} \; (3$ –4 орбиты)
GW (LIGO/Virgo/KAGRA/ET/LISA)	$\ell_{\star}/R_s, \ \tilde{g}, \ \kappa_b, \ \xi_{\rm gw}$	$\sigma(\ell_{\star}/R_s) \sim 10^{-2} - 10^{-1}; 1 - \xi_{\rm gw} 10^{-1}$
RC+WL (Roman/Euclid)	$ ho_0, r_c ($ или $\kappa, r_c)$	$\sigma(\rho_0 r_c^2)/(\rho_0 r_c^2) \sim 5\%$
Космология (CMB/BAO/SN/RSD/WL)	$\varepsilon_{\mu,\tau}; \ w_0, w_a$	$ \varepsilon_{\mu,\tau} 10^{-2}; w_0+1 , w_a 0.1$

Совместные контуры. PPN фиксирует 1PN-калибровку \Rightarrow сужает априори пространство $(\Lambda_{\mu}, \Lambda_{\tau})$. S-звёзды+GW изолируют сильнополевые $(\delta a_2, \delta b_2, \ell_{\star}/R_s, \tilde{g})$ почти независимо от космологии. RC/WL+космология определяют (ρ_0, r_c) и $(\varepsilon_{\mu}, \varepsilon_{\tau})$, минимально коррелируя с S-звёздами.

Прогноз по будущим инструментам.

- ELT/GRAVITY+: астрометрия $\times 3$ лучше $\Rightarrow \sigma(\delta a_2), \sigma(\delta b_2) \rightarrow \text{few} \times 10^{-3}$; чувствительность к $A/r_c10^{-3} M_{\bullet}$ в $< 10^3 R_s$.
- ET/LISA: разнесённые по частоте QNM $\Rightarrow \sigma(\ell_{\star}/R_s) \sim 10^{-2};$ стек «эхо» $\Rightarrow \tilde{g}^2/\ell_{\star} \sim 10^{-3}/R_s$.
- Roman/Euclid + Rubin: $\sigma(\rho_0 r_c^2)/(\rho_0 r_c^2) \to 2\%$; WL-карты тестируют форму K(r).
- PTA/SKA: предел на дыхательную поляризацию $\kappa_b 10^{-2}$.
- 3G сирены: $|1-\xi_{\rm gw}| \to 10^{-8} 10^{-9}$ по ансамблю низко-z событий.

Итог идентифицируемости. Модель $(\Lambda_{\mu}, \Lambda_{\tau}, m_{\mu,\tau}, \lambda, \tilde{g}, \ell_{\star}, r_c, \rho_0)$ статистически разделима на четыре слабо коррелирующие подсистемы:

- 1. *PPN-якорь* (1РN-калибровка);
- 2. Сильнополевой блок $(\delta a_2, \delta b_2, \ell_{\star}, \tilde{g})$ (S-звёзды+GW);
- 3. Гало-блок (ρ_0, r_c) (RC+WL);
- 4. Фон-блок $(\varepsilon_{\mu}, \varepsilon_{\tau}, w_0, w_a)$ (CMB/BAO/SN/RSD/WL).

Сшивка блоков даёт переопределённую систему с перекрёстными проверками (например, $\xi_{\rm gw}$ одновременно контролируется мультимессенджерами и PPN-оптикой), что обеспечивает внутреннюю согласуемость теории и чёткий маршрут к её потенциальной фальсификации.

16 Квантовая корректность: перенормируемость и EFT-статус

В этом разделе уточняем УФ-статус $\mu\tau$ -подхода. Показываем, что: (i) на линейном уровне (малые колебания ϕ_R , σ , b_i вокруг $\mu=\tau=1,\ B_i=0$) куплинги со стандартной материей степенно перенормируемы; (ii) полная теория — эффективная полевая теория (EFT) с физическим срезом $\Lambda \sim 1/\ell_{\star}$ (толщина интерфейса Σ); (iii) радиоустойчивость обеспечивается универсальностью куплингов, правильными знаками кинетики и малостью безразмерных констант; «пятая сила» подавляется конечными массами (m_{μ}, m_{τ}), УФ-срезом и граничным скринингом.

16.1 Степенной счёт и контрчлены; режим строгой перенормируемости (линейные μ, τ)

Разложим поля

$$\mu = 1 + \frac{\phi_R}{\Lambda_\mu}, \qquad \tau = 1 + \frac{\sigma}{\Lambda_\tau}, \qquad B_i = b_i, \tag{146}$$

с каноническими размерностями в D=4: $[\phi_R]=[\sigma]=[b_i]=1,\ [\Lambda_{\mu,\tau}]=1.$ «Минимальные замены» дают универсальные куплинги

$$\mathcal{L}_{int}(\mu) \supset \frac{\phi_R}{\Lambda_{\mu}} \, m \, \mathcal{O}_m, \qquad \mathcal{L}_{int}(\tau) \supset \frac{\sigma}{\Lambda_{\tau}} \, \mathcal{O}_{\partial_t}, \qquad \mathcal{L}_{int}(B) \supset b_i \, \mathcal{O}_{0i},$$
 (147)

где $\mathcal{O}_m \sim \bar{\psi}\psi$, X^2 , $A_{\alpha}A^{\alpha}$ (массовые плотности), $\mathcal{O}_{\partial t}$ — временные токи (части кинетики), $\mathcal{O}_{0i} \sim T_{0i}$ — потоки импульса. Эти операторы имеют размер 2–3, так что вершины суммарного размера 4:

$$[\phi_R] + [m] + [\bar{\psi}\psi] = 1 + 1 + 3 = 5 \& 1/\Lambda_{\mu} \Rightarrow 4, \quad [\sigma] + [\bar{\psi}\partial_t\psi] = 1 + 4 = 5 \& 1/\Lambda_{\tau} \Rightarrow 4, \quad [b_iT_{0i}] = 1 + 3 = 4.$$

Следовательно, на линейном уровне все куплинги — маргинальные (степенно перенормируемые). Петли СМ генерируют контрчлены той же структуры:

- переопределения Z-факторов полей ϕ_R, σ, b_i ;
- перенормировка $\Lambda_{\mu,\tau}$ (логарифмическая бегущая);
- локальные члены потенциала $V(\phi_R,\sigma) = \frac{1}{2} m_\mu^2 \phi_R^2 + \frac{1}{2} m_\tau^2 \sigma^2 + \lambda$ -взаимодействия (размер 4).

Итог §16.1. При $|\phi_R|/\Lambda_\mu \ll 1$, $|\sigma|/\Lambda_\tau \ll 1$, $|b_i| \ll 1$ $\mu\tau$ -взаимодействия со СМ строго степенно перенормируемы; УФ-дивергенции поглощаются конечным числом констант $(Z, m_{\mu,\tau}, \lambda, \Lambda_{\mu,\tau})$.

16.2 Эффективная теория с физическим срезом $\Lambda \sim 1/\ell_{\star}$ (толщина границы)

Нелинейности (квадратичные/кубические по ϕ_R , σ) и граничный сектор \mathcal{L}_{bdry} индуцируют башню более высоких операторов, например

$$\frac{c_1}{\Lambda^2} (\partial \phi_R)^2 \mathcal{O} + \frac{c_2}{\Lambda^2} (\partial \sigma)^2 F_{\mu\nu} F^{\mu\nu} + \frac{c_3}{\Lambda^2} (\partial b)^2 \bar{\psi} \psi + \cdots, \qquad \Lambda \sim \frac{1}{\ell}. \tag{148}$$

На энергиях $E \ll \Lambda$ такие операторы подавлены, и достаточно конечного числа коэффициентов (логика EFT).

Практические режимы.

- Солнечная система / S-звёзды: $E \sim pr_s^{-1} \ll \Lambda \Rightarrow$ вклады $\mathcal{O}(E^2/\Lambda^2)$ пренебрежимо малы; PPN-совпадение стабильно.
- **GW-кольцевание BH:** $f \sim c/r_s \Rightarrow$ относительные поправки $\delta f/f \sim \mathcal{O}(\ell_\star/r_s)$; это окно в УФ-физику интерфейсов.
- **Космология:** $E \sim H_0 \ll \Lambda \Rightarrow \text{EFT}$ полностью контролируема; фоновые дрейфы $\varepsilon_{\mu,\tau}$ IR-параметры (§12).

Итог §16.2. Полная $\mu\tau$ -теория — EFT с срезом $\Lambda \sim 1/\ell_{\star}$. Наблюдаемая феноменология вне QNM/«эхо» контролируется конечным набором констант; УФ-чувствительность сосредоточена в малых, но измеримых поправках к звону.

16.3 Радиоустойчивость, РГ-потоки; ограничения «пятой силы» и скрининг

Радиоустойчивость и РГ-бегущие. Безразмерные $g_{\mu} \sim m/\Lambda_{\mu}, g_{\tau} \sim 1/\Lambda_{\tau}$ получают логарифмическую бегущую по стандартным аномальным размерностям СМ; универсальность куплингов (массовая пропорциональность) защищает от композиционно-зависимых эффектов. Радиационные поправки к $V(\phi_R,\sigma)$ сдвигают $m_{\mu,\tau}^2$ и λ в пределах, совместимых с малостью $|\varepsilon_{\mu,\tau}|$ (§12). Малые $m_{\mu,\tau}$ технически естественны при Z>0 и близости к минимуму. Перенормировки векторного сектора эквивалентны локальным переопределениям $g_{\mu\nu}^{\rm obs}$ (вариации μ,τ,B) и укладываются в контрчлены размера 4.

«Пятая сила» и её подавление. Обмен ϕ_R, σ между массивными источниками даёт юкавские хвосты

 $V(r) \simeq -\frac{Gm_1m_2}{r} \left[1 + \alpha_{\mu} e^{-m_{\mu}r} + \alpha_{\tau} e^{-m_{\tau}r} \right], \qquad \alpha_{\mu,\tau} \sim \mathcal{O}\left(\frac{\bar{m}}{\Lambda_{\mu,\tau}}\right)^2, \tag{149}$

где \bar{m} — характерная масса в \mathcal{O}_m . Эксперименты по $1/r^2$ и эквивалентности требуют либо $\lambda_{\mu,\tau}=m_{\mu,\tau}^{-1}$ мм—см, либо $\alpha_{\mu,\tau}10^{-5}-10^{-6}$ на метр—астроскопических масштабах. Оба режима естественны: $m_{\mu,\tau}\neq 0$ (минимум V) \Rightarrow короткая дальность; большие $\Lambda_{\mu,\tau}$ (PPN-калибровка) \Rightarrow малые α .

Скрининг в сильных полях. Вблизи ВН включается граничный канал: при $\mu \geq \mu_{\rm th}$ избыток масштаба сбрасывается в мнимый сектор, уменьшая локальную «зарядку» по ϕ_R , σ . Это нелинейный скрининг (топологического происхождения), который: (i) насыщает $T_{00}^{(R)}$ и профили $\mu(r)$ (без взрывного роста), (ii) препятствует накоплению «пятой силы» в центрах потенциальных ям, (iii) согласует сильнополевую феноменологию S-звёзд и GW-данные (§14, §10).

Итог §16.3. Универсальные и слабые куплинги $\mu\tau$ -полей стабильны под радиацией; «пятая сила» подавляется либо короткой дальностью $(m_{\mu,\tau}^{-1})$, либо малыми α , а в сильном поле — граничным скринингом. Теория каузальна, унитарна и радиоустойчива в области применимости EFT $(E \ll \Lambda \sim 1/\ell_{\star})$.

Вывод раздела. Локально (линейно): $\mu\tau$ -взаимодействия степенно перенормируемы; контрчлены конечны по числу. Глобально: $\mu\tau$ — EFT с физическим срезом $\Lambda \sim 1/\ell_{\star}$; слабополевые отклонения от GR подавлены $\mathcal{O}(E^2/\Lambda^2)$. Радио- и феноменологическая устойчивость обеспечены: малые бегущие, отсутствие призраков, подавление «пятой силы», нелинейный скрининг. Это закрепляет квантовую корректность подхода на доступных энергиях и очерчивает, где искать УФ-следы (QNM-сдвиги, «эхо», тонкие космологические дрейфы).

17 Консистентность и причинность

В этом разделе формализуем математическую корректность $\mu\tau$ -подхода: гиперболичность уравнений и хорошо поставленную задачу Коши; энергетические условия и отсутствие патологий (призраков, градиентных нестабильностей); локальную Лоренц-инвариантность в касательных рамках. Ключевую роль играют «наблюдаемая» линия элемента

$$ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i dx^i dt + \mu^2 \delta_{ij} dx^i dx^j, \tag{150}$$

и универсальный оператор потока времени

$$D_t = \tau(\partial_t + B_i \partial_i). \tag{151}$$

17.1 Гиперболичность и задача Коши; отсутствие сверхсветовой передачи информации

Главные части (principal symbol). Для всех линейных $\mu\tau$ -уравнений главная часть имеет светоподобную форму относительно $ds^2_{\rm obs}$:

Скаляр
$$X: D_t^2 X - \nabla^2 X + \dots = 0,$$
 (152)

Дирак/Вейль/Майорана:
$$(i\gamma^0 D_t + i\gamma^i \partial_i)\psi + \dots = 0,$$
 (153)

Максвелл/Прока: волновые уравнения для трансверсальных мод
$$\sim D_t^2 - \nabla^2$$
, (154)

Рарита–Швингер:
$$\gamma^{\mu\nu\rho}D_{\nu}\psi_{\rho} + \dots = 0,$$
 (155)

при этом характеристические поверхности совпадают с нулевым конусом $ds_{
m obs}^2$.

Характеристики. Для радиального распространения при $B_i = 0$ характеристическая скорость

$$v_{\rm char} = \frac{dr}{dt} = \frac{c\,\tau}{\mu},\tag{156}$$

а при $B_i \neq 0$ добавляется малый дрейф $\propto B$. Ни одна из мод не имеет характеристик вне конуса $ds_{\rm obs}^2 \Rightarrow$ сверхсветовая передача информации отсутствует.

Сильная гиперболичность и Коши-постановка. Вводя вектор первых производных $Y = (\Phi, D_t \Phi, \nabla \Phi)$ для любого поля Φ , систему приводим к симметрично-гиперболической форме

$$\partial_t Y = A_i \, \partial_i Y + B \, Y, \tag{157}$$

при условиях

$$\tau > 0, \qquad \|\nabla \mu\|, \ \|\nabla \tau\|, \ \|B\|$$
 малы на масштабе шага Коши. (158)

Они выполняются в слабом поле и локально в сильном, вне самого уровня $\tau=0$. На операционном горизонте $\tau=0$ (см. §9) вырождение касается лишь координатного времени t; собственное время $d\lambda^2=-(ds_{\rm obs}^2)/c^2$ и эволюция вдоль D_t остаются корректными по обе стороны горизонта. Граничный сектор $R \leftrightarrow I$ реализуется как доброкачественные (диссипативные/полупрозрачные) граничные условия на слое толщины ℓ_\star , что сохраняет хорошо поставленность.

17.2 Энергетические условия; отсутствие призраков и градиентных нестабильностей

Положительность кинетики. Лагранжиан масштабных полей выбирается со знаками

$$\mathcal{L}_{\mu\tau} \supset +\frac{1}{2}(\partial\phi_R)^2 + \frac{1}{2}(\partial\sigma)^2 - V(\phi_R, \sigma), \tag{159}$$

исключающими призраков. Для векторного сдвига B_i используется трансверсальная кинетика с положительным коэффициентом (в калибровке $\partial_i B_i = 0$).

Скорости возмущений. Главная часть задаёт $c_s^2 = 1$ (относительно $ds_{\rm obs}^2$) для всех динамических мод, вплоть до подавленных поправок $\mathcal{O}(\Lambda^{-2})$ (§16).

Энергетические условия (в наблюдаемой рамке). Энергомоментный тензор суммарного «вещество $+\mu\tau$ »-содержимого удовлетворяет

NEC:
$$T^{\rm tot}_{\mu\nu} k^{\mu} k^{\nu} \ge 0$$
 для любого нулевого k^{μ} наблюдаемой метрики, (160)

WEC/Dominant:
$$\rho \ge 0$$
, $\rho \ge |S_i|$ для локальных наблюдателей, (161)

при потенциале $V \geq V_{\min}$ и умеренных градиентах μ, τ . Граничный поток на интерфейсе Σ построен так, что $j_0^{\text{surf}} \geq 0$ (см. §9), т.е. энергия в реальном секторе R не возрастает за счёт обмена с I, что препятствует образованию взрывных профилей.

17.3 Локальная Лоренц-инвариантность в касательных рамках

Касательные фреймы. В каждой точке вводим тетрады, ортонормированные по ds_{obs}^2 :

$$\hat{e}^0 = \tau c dt, \qquad \hat{e}^i = \mu dx^i \quad (\text{при } B_i \neq 0 : \hat{e}^0 = \tau (c dt + B_i dx^i)).$$
 (162)

В этих рамках локальные уравнения редуцируются к SR-формам с плоской метрикой $\eta_{\hat{\alpha}\hat{\beta}}$; калибровочные и спинорные куплинги совпадают с CTO.

Эквивалентность и отсутствие предпочтительных систем. Универсальность замен $m \to m \mu$ и $\partial_t \to D_t$ гарантирует, что локально вся микрофизика зависит только от $ds^2_{\rm obs}$:

- реализуется принцип эквивалентности в масштабной формулировке (все поля «видят» один и тот же конус причинности);
- отсутствуют предпочтительно-кадровые эффекты: в PPN-языке $\alpha_{1,2,3} = \xi = \zeta_i = 0$;
- скорости GW и света совпадают как c в касательных рамках (совпадение времён прихода при $\xi_{\rm gw}=1,\,\S13$).

Микрокаузация в КТП. Коммутаторы/антикоммутаторы полей $\mu\tau$ -SCRE обращаются в ноль вне наблюдаемого светового конуса, поскольку пропагаторы построены из того же главного символа. В ЕГТ-области $E \ll \Lambda \sim 1/\ell_{\star}$ возможные $\mathcal{O}(\Lambda^{-2})$ нелокальности подавлены и не нарушают микрокаузацию.

Итог раздела. $\mu\tau$ -формализм задаёт хорошо поставленную гиперболическую динамику с каузальностью по «наблюдаемой» метрике; без призраков и градиентных нестабильностей; с сохранённой локальной Лоренц-инвариантностью и отсутствием предпочтительных систем. Совместно с квантовой корректностью EFT ($\S16$) это обеспечивает математическую состоятельность и физическую последовательность теории в применимой области энергий и полей.

18 Сравнение с альтернативами и предел GR

Мы сопоставляем $\mu\tau$ -подход с основными классами альтернатив гравитации и фиксируем, где он совпадает с ОТО, где расходится, и почему. Далее перечисляем наблюдательные сигнатуры, по которым теорию можно проверить.

18.1 Бранс–Дикке/f(R), TeVeS, телепараллельность, эмерджентные модели: карта соответствий

(i) Скаляр-тензорные теории (Бранс-Дикке, f(R)). Общее: наличие скалярных степеней свободы, модифицирующих эффективную "силу" гравитации. Ключевое отличие: в $\mu\tau$ скаляры μ, τ операционально деформируют массы и ход времени в уравнениях материи (замены $m \to m\mu$, $\partial_t \to \tau (\partial_t + B_i \partial_i)$), а наблюдаемая метрика есть

$$ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i \, dx^i dt + \mu^2 \delta_{ij} \, dx^i dx^j.$$
 (163)

Это не вариируемая G (как в Бранс–Дикке) и не чисто геометрическое f(R)-переопределение кривизны; это масштабно-часовая деформация материи на плоском фоне с последующим геометрическим чтением. **PPN:** калибровка (a_1,b_1,b_2) такова, что $\gamma=\beta=1,\ \alpha_i=\xi=\zeta_i=0$; в Бранс–Дикке так возможно лишь при $\omega_{\rm BD} \to \infty$.

- (ii) TeVeS (Бекенштейн). Общее: наличие скаляра и вектора сверх тензорного сектора; попытка объяснить гало. Отличие: наш B_i это гравито-магнитный дрейф времени (frame dragging), а не самостоятельный метрический вектор; скаляры не порождают MOND-переходов, а дают свёрточный отклик через интерфейсы $R \leftrightarrow I$ (§11). Это обеспечивает PPN-совпадение и отсутствие предпочтительных систем.
- (iii) Телепараллельные теории (TEGR, f(T)). Общее: альтернативная геометризация (через кручение). Отличие: у нас плоский фон, а "геометрия наблюдений" возникает из (μ, τ, B_i) ; тензор кручения не вводится, вся динамика читается через касательные рамки к ds_{obs}^2 .
- (iv) Эмерджентная/энтропийная гравитация. Общее: гравитационные эффекты как макроскопические проявления микроструктуры. Отличие: мы записываем локальное ЕГТ-действие с наблюдаемыми полями/параметрами $(\Lambda_{\mu,\tau}, \tilde{g}, \ell_{\star})$; "тёмная материя" возникает как свёртка ядром K(r), а не как энтропийный закон.

Итог карты. $\mu\tau$ объединяет метрическую феноменологию GR (PPN, линзирование, GW) с операциональной масштабно-часовой деформацией материи и тестируемой сильнополевой микрофизикой (границы Σ , параметры ℓ_{\star}, \tilde{g}).

18.2 Где $\mu\tau$ совпадает с GR, где расходится и по какой причине Совпадения (по построению).

- Солнечная система, 1PN: $\gamma = \beta = 1$, $\alpha_i = \xi = \zeta_i = 0 \Rightarrow$ отклонение света, задержка Шапиро, прецессия Меркурия, frame-dragging как в ОТО.
- Скорость света и GW: $c_{\rm em}=c_{\rm gw}=c$ в касательной рамке; мультимессенджерная универсальность $\xi_{\rm gw}=1$ (экспериментно до 10^{-7} ; §13).
- **Излучение бинаров:** квадрупольный закон и ведущая эволюция фазы GW совпадают.

Расхождения (физические источники).

- 2PN сильных полей: зависят от $(a_2, b_2) \Rightarrow$ тонкие сдвиги прецессий перицентров и высокопорядковых задержек.
- Скалярная "дыхательная" мода GW: подавлена $\kappa_b \ll 1$, отсутствует в GR.
- Граница у горизонта: параметры $\ell_\star, \tilde{g} \Rightarrow$ мини-сдвиги частот/затуханий QNM и возможные эхо
- **Тёмная компонента:** вместо CDM-частиц свёрточный отклик $K(r) \Rightarrow$ квазиизотермические гало с ядрами, а не NFW-острия (§11).
- Космологический фон: медленные дрейфы $\varepsilon_{\mu,\tau} \Leftrightarrow$ слабое $w(a) \neq -1$.

Физическая причина. В $\mu\tau$ гравитация — универсальная деформация масштаба и внутреннего времени материи. В слабом поле это воспроизводит метрику GR до 1PN; в сильном проявляются собственные динамические степени μ, τ и граничная топология $(\Sigma, \ell_{\star}, \tilde{g})$, отсутствующие в чисто геометрической ОТО.

18.3 Наблюдательные различия и как их измерять

(А) Сильнополевые тесты у ВН. QNM-звон после слияний:

$$\frac{\delta f}{f}, \ \frac{\delta \tau}{\tau} \sim \mathcal{O}\left(\frac{\ell_{\star}}{r_s}\right) + \mathcal{O}(\tilde{g}^2),$$
 (164)

измерения: многочастотный кольцевой спектр (LIGO A+/ET/LISA), стек "эхо". **S-звёзды у Sgr A*:** 2PN-сдвиги $\propto \epsilon^2$ и мини-ретроградное влияние "шлейфа" $\rho \sim r^{-4}$; измерения: GRAV-ITY/ELT, совместная подгонка S2/S62/S4714/S4716.

- (В) GW-поляризации и мультимессенджеры. Дыхательная поляризация: уровень κ_b ; измерения: сеть интерферометров + PTA/SKA, поляризационные корреляции. Разность времён прихода EM-GW: параметр $|1-\xi_{\rm gw}|$; измерения: стандартные сирены, приоритет направлениям с малым импакт-параметром в потенциале Млечного Пути.
- (C) Галактические гало и линзирование. Квазиядра и плоские кривые вращения из K(r); измерения: совместные фитинги вращения+слабое линзирование+барионные профили (Roman/Euclid/Rubin). Проверка согласованности

$$\rho_0 r_c^2 \simeq \frac{v_{\text{flat}}^2}{4\pi G}.\tag{165}$$

- (D) Космология поздних времён. Медленные дрейфы $\varepsilon_{\mu,\tau}$: ISW, рост $f\sigma_8$, космическое сдвиглинзирование; измерения: CMB (Planck/Simons), BAO/SN, RSD/WL глобальный байес-фит.
- (E) Предел GR.

$$\mu \to 1$$
, $\tau \to 1$, $B_i \to 0$, $a_2 \to 0$, $b_2 \to \frac{1}{2}$, $\kappa_b \to 0$, $\xi_{\rm gw} \to 1$, $\tilde{g} \to 0$, $\ell_{\star}/r_s \to 0$. (166)

В этом пределе отличительные сигнатуры исчезают, и теория становится неотличимой от $OTO+\Lambda CDM$.

(F) Скопление Пуля. Предсказывается: (i) максимум линзирующей массы следует за ВНносителями субкластера, (ii) величина оффсета линзирования—X-гау растёт с долей ВН-массы и относительной скоростью, (iii) морфология «хвостов» согласуется с баллистическим поведением компактной компоненты. Это отличает $\mu\tau$ -картину от модификации гравитации без явной компактной привязки и позволяет оценивать долю ВН-массы по геометрии оффсета. **Вывод раздела.** $\mu\tau$ совпадает с GR во всех проверенных 1PN-тестах и на квадрупольном уровне GW, но предсказывает малые и конкретные отклонения: 2PN-сдвиги в сильных полях, слабую скалярную поляризацию, QNM-сдвиги/эхо, квазиизотермические гало и крошечные космологические дрейфы. Эти сигнатуры формируют программу наблюдательных проверок, достаточную для экспериментального отличения $\mu\tau$ -гравитации как самостоятельной, операционально сформулированной альтернативы геометрическому описанию GR.

19 Обсуждение

В этом разделе суммируем статус $\mu\tau$ -подхода, выделяем его сильные стороны и ограничения, формулируем концептуальные следствия и очерчиваем открытые задачи, переводящие модель из статуса согласованной EFT к программе проверяемых исследований.

19.1 Сильные стороны и ограничения $\mu \tau$ -подхода

Сильные стороны.

- Операциональность. Гравитация задаётся через измеримые деформации масштаба и «часов» (μ, τ) во всех уравнениях полей (минимальные замены). Наблюдаемая линия элемента $ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i \, dx^i dt + \mu^2 \delta_{ij} dx^i dx^j$ напрямую связана с данными (линзирование, Шапиро, PPN).
- Совместимость с локальной СТО. В касательных рамках микрофизика редуцируется к стандартной релятивистской; один и тот же причинный конус для всех полей (§5, §17).
- РРN-якорь и совпадение с GR на проверенных уровнях. По построению $\gamma = \beta = 1$, $\alpha_i = \xi = \zeta_i = 0$; квадрупольное GW-излучение совпадает с GR (§§7, 10, 13).
- Контролируемая ЕГТ. Физический срез $\Lambda \sim 1/\ell_{\star}$ (толщина интерфейса), линейные куплинги степенно перенормируемы; УФ-чувствительность сосредоточена в малых сдвигах QNM/возможных «эхо» (§16).
- Сильнополевые регуляры. Сингулярности заменены граничной динамикой на интерфейсах $R \leftrightarrow I$, обеспечивая $\mu\tau$ -полноту траекторий и конечность наблюдаемых (§9).
- Единые объяснения «тёмных» феноменов. Тёмная материя как свёртка ядром $K(r) \to$ квазиизотермические гало (§11); тёмная энергия как $\Lambda_{\text{eff}} = V_0 + \rho_{\text{growth}}$ с медленным w(a) (§12); мультимессенджерная универсальность $c_{\text{em}} = c_{\text{gw}}$ до $\sim 10^{-7}$ (§13).
- **Тестируемость.** Чёткие сигнатуры: 2PN-сдвиги у S-звёзд, слабая «дыхательная» GW-поляризация, сдвиги/«эхо» QNM, карты EM-GW-задержек, космологические дрейфы $w_{\rm eff}(a)$ (§§8–14, 18).

Ограничения.

- Микроскопика интерфейсов. Топология и динамика мнимого сектора и границ Σ пока феноменологичны $(\ell_{\star}, \tilde{g})$; нужна микромодель.
- **Неполная уникальность лагранжиана.** Допустимы эквивалентные по данным варианты (переопределения, члены размерности 4); требуется принципиальная селекция (симметрии/минималь
- Параметризм. Набор $(\Lambda_{\mu,\tau}, m_{\mu,\tau}, \lambda, \tilde{g}, \ell_{\star}, \kappa, \xi_{\rm gw}, \varepsilon_{\mu,\tau})$ требует совместной калибровки; возможны вырождённости (см. §15).
- Ранневселенские тесты. Полная верификация для BBN/CMB-пертурбаций ещё не завершена; нужно контролировать раннюю долю $\rho_{\Lambda {
 m eff}}$ и рост структур.
- Связь с геометрией Kerr. Для вращающих ВН роль B_i и структура QNM в $\mu\tau$ -переменных требуют расширенного аналитического контроля.
- Границы применимости EFT. За пределами $E \ll \Lambda$ нужна УФ-завершённость или оценка ошибок EFT.

19.2 Концептуальные следствия

- Онтология гравитации. Гравитация универсальная деформация свойств материи (масштаб μ и ход «часов» τ), а геометрия возникает операционально через $ds_{\rm obs}^2$.
- **Кванты пространства и мнимый сектор.** Пространство совокупность квантов с реальной и мнимой частями; границы Σ каналы обмена масштабом/энергией: стабилизация в сильном поле, эффективный тёмный потенциал K(r) на галактических масштабах и вклад в $\Lambda_{\rm eff}$ в космологии.
- Часы и причинность. Единственный причинный конус для всех полей; «реверс» времени у горизонта свойство $D_t = \tau(\partial_t + B^i \partial_i)$ без нарушения микрокаузации.
- Гравитон и поляризации. Волна совместные колебания $(\delta \mu, \delta \tau, \delta B)$ с тензорным ядром GR и слабой «дыхательной» примесью; скорость в касательной рамке равна c.
- «Тёмные» сектора как геометрическая проекция. Тёмная материя/энергия не новые частицы, а следствие топологии/роста квантов и граничной обратной связи.

19.3 Открытые проблемы и приоритеты

- 1. Микроскопическая теория интерфейсов. Вывести ℓ_{\star} , \tilde{g} и форму L_{bdry} из первичных принципов (дискретные/топологические модели, матричные/спин-сетевые аналоги) при унитарности и каузальности.
- 2. Точные решения и вращающие ВН. Построить $\mu\tau$ -аналоги Шварцшильда/Керра в замкнутом виде; аналитически вывести спектры QNM и условия «эхо» с зависимостями $\propto \ell_{\star}/r_{s}$, \tilde{g}^{2} .
- 3. Численная релятивистика $\mu\tau$. 3+1-интеграторы с явным D_t и конечной толщиной границ; тесты коллапса/слияния; каталоги волн.
- 4. Ранняя Вселенная. Совместить фон с BBN/CMB: предел ранней $\rho_{\Lambda \rm eff}$, знак/величина $\varepsilon_{\mu,\tau}(a)$ при ${\tt 10^3}$, предсказания для первичных GW и ISW; квазигеометрическая бариогенезиссхема.
- 5. Гало-физика из первых принципов. Вывести K(r) из статистики Σ и барионного распределения; предсказать разнообразие профилей и связь с морфологией/окружением.
- 6. Экспериментальные «киллер-тесты». S-звёзды (2PN/перицентр-тайминг; ELT/GRAVITY+), многочастотные QNM и стек «эхо» (ET/LISA), поляризации (κ_b с PTA/SKA + наземная сеть), EM–GW карты Δt и предел $|1 \xi_{\rm gw}| \to 10^{-8} 10^{-9}$, космологический совместный фит $w_{\rm eff}(a)$ и $\varepsilon_{\mu,\tau}$ (WL/RSD/BAO/SN).
- 7. **Связь с диффеоморфизмами.** Формализовать, как класс GR-решений реализуется калибровками (μ, τ, B) ; доказать «предел GR» как теорему (условия на параметры \Rightarrow локальная эквивалентность всем наблюдениям).
- 8. **Квантование** $\mu\tau$ **-поля.** Каноническая/путь-интегральная квантование для (ϕ_R, σ, b_i) с граничными степенями; микрокаузация и унитарность пропагаторов в присутствии Σ .
- 9. **Лабораторные тесты «часов и линейки».** Атомные часы/интерферометрия для поиска крошечных дрейфов μ , τ в контролируемых потенциалах (эквивалентность в новой формулировке).

Вывод. $\mu\tau$ -подход сочетает строгую феноменологическую согласованность с GR в проверенных режимах с минимальным набором новых, конкретно тестируемых предсказаний в сильном поле, GW-секторе, гало и космологии. Его концептуальная сила — в переносе «кривизны» с фоновой геометрии на свойства материи, что позволяет естественно вшить квантовые элементы (EFT с физическим срезом, граничная динамика) без потери причинности и локальной Лоренцинвариантности. Ключ к прогрессу — микроскопика интерфейсов, точные сильнополевые решения и последовательные мультидоменные тесты, которые переводят теорию в программу воспроизводимых и фальсифицируемых исследований.

20 Заключение

20.1 Итоговые выводы

Мы предложили операциональный $\mu\tau$ -подход к гравитации, в котором фундаментальными являются масштаб элементарных степеней свободы $\mu(x)$ и темп внутренних часов $\tau(x)$ (плюс дрейф B_i), а «наблюдаемая» геометрия возникает как

$$ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i \, dx^i dt + \mu^2 \delta_{ij} \, dx^i dx^j. \tag{167}$$

Эта формулировка:

- **Совпадает с GR** во всех 1PN-тестах (PPN-якорь), на квадрупольном уровне излучения GW и по скорости EM/GW в касательных рамках.
- Задаёт контролируемую EFT с физическим срезом $\Lambda \sim 1/\ell_{\star}$, линейно степенно перенормируемую, без призраков и градиентных нестабильностей, с хорошо поставленной гиперболической задачей Коши.
- Даёт сильнополевую регуляризацию через граничный слой $R \leftrightarrow I$ конечной толщины ℓ_{\star} и объясняет три «тёмных» феномена в единой схеме:
 - тёмная материя как свёрточный отклик ядром $K(r) \to$ квазиизотермические гало и плоские кривые вращения;
 - тёмная энергия как $\Lambda_{\rm eff} = V_0 + \rho_{\rm growth}$ (вакуум + рост квантов);
 - мультимессенджерные задержки как линейно-интегральный эффект по потенциалу при $\xi_{\rm gw} \approx 1$.

Ключевые отличия от GR локализованы в 2PN-уровне (параметры $\delta a_2, \delta b_2$), в слабой скалярной «дыхательной» GW-поляризации ($\kappa_b \ll 1$) и в микрофизике горизонта (ℓ_\star, \tilde{g}) — всё это наблюдательно тестируемо.

20.2 Ключевые предсказания для ближайших проверок

Сильные поля / чёрные дыры.

• Звон (QNM). Сдвиги частот и затуханий главной моды (2,2,0):

$$\frac{\delta f}{f}, \frac{\delta \tau}{\tau} \sim \mathcal{O}\left(\frac{\ell_{\star}}{r_{s}}\right) + \mathcal{O}(\tilde{g}^{2}),$$

плюс возможные эхо с интервалом

$$\Delta t_{\rm echo} \sim 2 r_s \ln \left(\frac{r_s}{\ell_{\star}} \right).$$

Целевой уровень: $|\delta f/f| \sim 10^{-2} \; ({\rm ET/LISA}) - {\rm чувствительно} \; {\rm k} \; \ell_{\star}/r_s.$

• S-звёзды у Sgr A*. 2PN-сдвиги перицентра $\propto \epsilon^2$ при $\epsilon = R_s/(2p)$ и субдоминирующий ретроградный вклад «шлейфа» $\rho \propto r^{-4}$. Ожидаемые пределы: $\sigma(\delta a_2), \ \sigma(\delta b_2) \sim \text{few} \times 10^{-3}$ при ELT/GRAVITY+ и совместной подгонке S2/S62/S4714/S4716.

Гравитационные волны и мультимессенджеры.

- 1. Универсальность оптики: $|1 \xi_{\rm gw}|10^{-7}$ (уже); целевой предел 10^{-8} – 10^{-9} (3G-сирены).
- 2. Скалярная поляризация («дыхание»): $\kappa_b 10^{-2}$ (РТА/SKA + наземная сеть).
- 3. Анизотропные карты задержек EM–GW по небу, доминирует вклад потенциала Млечного Пути; максимумы вдоль галактической плоскости.

Галактодинамика и линзирование.

- Квазиядра гало: $\rho_{\rm halo} \simeq \rho_0/(1+(r/r_c)^2)$ и плоские кривые вращения с $\rho_0 r_c^2 = v_{\rm flat}^2/(4\pi G)$.
- Цель: совместные фитинги (RC+WL) до точности $\sim 2\%$ по $\rho_0 r_c^2$.

Космология поздних времён.

- Медленный дрейф часов и линеек: $\varepsilon_{\mu}, \varepsilon_{\tau} \equiv d \ln \mu / d \ln a$, $d \ln \tau / d \ln a \sim 10^{-3} 10^{-2}$, что даёт слабое $w_{\rm eff}(a) \neq -1$ и тонкие поправки к ISW, WL и $f\sigma_8$.
- Цель: совместный фит CMB/BAO/SN/RSD/WL с точностью $|\varepsilon_{\mu,\tau}| 3 \times 10^{-3}$.

Критерии фальсификации.

- \bullet Отсутствие 2РN-сдвигов у тесных S-звёзд при $\sigma \to 10^{-3}.$
- Необнаружение QNM-сдвигов/эхо при $|\delta f/f| < 10^{-2}$ на множестве событий.
- Жёсткие пределы $|1-\xi_{\rm gw}|<10^{-9}$ и $\kappa_b<10^{-3}$ без сопутствующих $\mu \tau$ -сигнатур.
- Систематическое несоответствие $\rho_0 r_c^2$ и $v_{\rm flat}^2/(4\pi G)$ на популяции галактик.

20.3 План последующих работ (GW-поляризации, QNM, космология)

- (A) Поляризационный сектор GW. Байесовские анализы сети интерферометров с явной $\mu\tau$ -параметризацией (κ_b , $\xi_{\rm gw}$); стековый поиск «дыхания» и угловых зависимостей (совместно с PTA/SKA); публикация открытых шаблонов волн (репозиторий программного кода для воспроизводимости результатов).
- (В) Кольцевание и «эхо». $\mu \tau$ -аналог потенциала Редже-Вилера/Зерилли и граничные условия конечной толщины ℓ_{\star} ; каталоги QNM-спектров и эхо-трансфер-функций на сетке $(\ell_{\star}/r_s, \tilde{g})$; многособытийные стек-анализы LIGO/Virgo/KAGRA и стратегия для ET/LISA.
- (C) Космология и рост структур. Интеграция $H_{\rm obs}(a)$, $w_{\rm eff}(a)$, $\Xi(a)=d\ln(\mu/\tau)/d\ln a$ в ветку CLASS/CAMB; совместный фит Planck+BAO+SN+RSD+WL с приорами PPN/GW/S-звёзд; прогнозные карты ISW/WL для Euclid/Roman/Rubin.
- (D) S-звёзды и геодезия сильных полей. Численный интегратор «наблюдаемых» геодезических с $\mu\tau$ -2PN и тонкими световыми эффектами (линзирование, задержки); кооперация с GRAV-ITY/ELT для кампаний около перицентров S62/S4714/S4716.
- **(E)** Микроскопика интерфейсов. Модели $R \leftrightarrow I$ из топологических/дискретных схем; вывод (ℓ_\star, \tilde{g}) «из первых принципов»; проверка унитарности/микрокаузации на уровне пропагаторов с граничными степенями свободы.

Общий итог. $\mu\tau$ -подход предлагает минимально-расширённую, квантово-корректную и наблюдательно тестируемую схему гравитации, в которой «кривизна» переносится с фона на свойства материи. Теория реплицирует успехи GR там, где она проверена, и формулирует небольшой набор чётких, достижимых предсказаний, по которым ближайшие наблюдения способны либо укрепить её как рабочую альтернативу, либо однозначно фальсифицировать.

Благодарности

Авторы благодарят коллег за содержательные обсуждения и критические замечания, существенно улучшившие изложение и структуру работы. Мы признательны научным коллаборациям и открытым архивам, чьи данные использовались в проверках и иллюстрациях модели (астрометрия S-звёзд, гравитационно-волновые события, космологические сводки поздних времён). Отдельная благодарность сообществам свободного ПО за инструменты, без которых воспроизводимость результатов была бы невозможна (в частности, проекты для численных расчётов, анализа GW-сигналов, астрометрии, картографирования неба и документирования кода).

Конфликт интересов

Авторы заявляют, что у них отсутствуют финансовые, профессиональные или личные конфликты интересов, способные повлиять на результаты, интерпретацию или представление материалов настоящей работы. Источники финансирования и вычислительные ресурсы не оказывали влияния на дизайн исследования, выбор методов анализа, интерпретацию данных и решение о публикации.

Любые потенциальные будущие связи (гранты, консультации, коммерциализация кода) будут своевременно декларированы в обновлениях репозитория и сопроводительных материалах к статье.

Список литературы

References

- [1] Misner C. W., Thorne K. S., Wheeler J. A. Gravitation. W. H. Freeman, 1973.
- [2] Wald R. M. General Relativity. University of Chicago Press, 1984.
- [3] Will C. M. Theory and Experiment in Gravitational Physics. 2nd ed., Cambridge University Press, 2018.
- [4] Will C. M. The Confrontation between General Relativity and Experiment. *Living Rev. Relativ.* 17, 4 (2014).
- [5] Shapiro I. I. Fourth Test of General Relativity. Phys. Rev. Lett. 13, 789–791 (1964).
- [6] Bertotti B., Iess L., Tortora P. A test of general relativity using radio links with the Cassini spacecraft. *Nature* **425**, 374–376 (2003).
- [7] Lebach D. E., Corey B. E., Shapiro I. I. et al. Measurement of the Solar Gravitational Deflection of Radio Waves using VLBI. Phys. Rev. Lett. 75, 1439–1442 (1995).
- [8] Everitt C. W. F. et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 106, 221101 (2011).
- [9] Ciufolini I., Pavlis E. C. A confirmation of the general relativistic prediction of the Lense–Thirring effect. *Nature* **431**, 958–960 (2004).
- [10] GRAVITY Collaboration. Detection of the Gravitational Redshift in the Orbit of the Star S2 near the Galactic Centre Massive Black Hole. Astron. Astrophys. **615**, L15 (2018).
- [11] GRAVITY Collaboration. Detection of Schwarzschild Precession in the Orbit of the Star S2 around the Galactic Centre Black Hole. *Astron. Astrophys.* **636**, L5 (2020).
- [12] Peissker F., Eckart A., Zajaček M. *et al.* S62 on a 9.9 yr Orbit around Sgr A*: the Shortest Known Period Star at the Center of the Milky Way. *Astrophys. J.* **899**, 50 (2020).
- [13] Peissker F., Eckart A., Sabha N. et al. New Class of S-stars in the Galactic Center: S4711–S4715. Astrophys. J. 933, 49 (2022).
- [14] Abbott B. P. et al. (LIGO and Virgo Collaborations). GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101 (2017).
- [15] Goldstein A. et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Observations of GRB 170817A. Astrophys. J. Lett. 848, L14 (2017).
- [16] Abbott B. P. et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 848, L12 (2017).
- [17] Clowe D., Bradac M., Gonzalez A. H. *et al.* A direct empirical proof of the existence of dark matter. *Astrophys. J. Lett.* **648**, L109–L113 (2006).
- [18] Markevitch M., Gonzalez A. H., Clowe D. et al. Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657–56. Astrophys. J. 606, 819–824 (2004).
- [19] Bartelmann M., Schneider P. Weak Gravitational Lensing. Phys. Rept. 340, 291–472 (2001).
- [20] Berti E., Cardoso V., Starinets A.O. Quasinormal modes of black holes and black branes. *Class. Quantum Grav.* **26**, 163001 (2009).

- [21] Cardoso V., Franzin E., Pani P. Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? *Phys. Rev. Lett.* **116**, 171101 (2016).
- [22] Donoghue J. F. General relativity as an effective field theory: The leading quantum corrections. *Phys. Rev. D* **50**, 3874–3888 (1994).
- [23] Burgess C. P. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Relativ. 7, 5 (2004).
- [24] Horndeski G. W. Second-order scalar-tensor field equations in a four-dimensional space. *Int. J. Theor. Phys.* **10**, 363–384 (1974).
- [25] De Felice A., Tsujikawa S. f(R) Theories. Living Rev. Relativ. 13, 3 (2010).
- [26] Bekenstein J. D. Relativistic gravitation theory for the MOND paradigm. *Phys. Rev. D* **70**, 083509 (2004).
- [27] Aldrovandi R., Pereira J. G. Teleparallel Gravity: An Introduction. Springer, 2013.
- [28] Krššák M. et al. Teleparallel theories of gravity: illuminating a fully invariant approach. Class. Quantum Grav. 36, 183001 (2019).
- [29] Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
- [30] Alam S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis. Mon. Not. R. Astron. Soc. 470, 2617–2652 (2017).
- [31] Scolnic D. M. *et al.* The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Pantheon Sample. *Astrophys. J.* **859**, 101 (2018).
- [32] Aasi J. et al. Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015).
- [33] Acernese F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Grav. 32, 024001 (2015).
- [34] Amaro-Seoane P. et al. Laser Interferometer Space Antenna. arXiv:1702.00786 (2017).
- [35] Klein O., Gordon W. Quantentheorie relativistischer Wellenfelder. Z. Phys. 37, 895–906 (1926).
- [36] Dirac P. A. M. The Quantum Theory of the Electron. Proc. Roy. Soc. A 117, 610–624 (1928).
- [37] Weyl H. Elektron und Gravitation. I. Z. Phys. **56**, 330–352 (1929).
- [38] Majorana E. Teoria simmetrica dell'elettrone e del positrone. Nuovo Cimento 14, 171–184 (1937).
- [39] Proca A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium 7, 347–353 (1936).
- [40] Rarita W., Schwinger J. On a Theory of Particles with Half-Integral Spin. Phys. Rev. 60, 61 (1941).
- [41] Noether E. Invariante Variationsprobleme. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 235–257 (1918).
- [42] Talmadge C., Berthias J.-P., Hellings R. W., Standish E. M. Model-Independent Constraints on Possible Modifications of Newtonian Gravity. *Phys. Rev. Lett.* **61**, 1159–1162 (1988).
- [43] Turyshev S. G. Experimental Tests of General Relativity. Annu. Rev. Nucl. Part. Sci. 58, 207–248 (2009).
- [44] Caves C. M., Thorne K. S. Energy of gravitational waves in the wave zone. Rev. Mod. Phys. 52, 341–392 (1980).

Приложения: технические детали и полные выводы

Везде используем «наблюдаемую» линию элемента

$$ds_{\text{obs}}^2 = -\tau^2 c^2 dt^2 + 2\tau^2 B_i \, dx^i dt + \mu^2 \delta_{ij} \, dx^i dx^j, \tag{168}$$

минимальные замены в уравнениях материи $m \to m\mu, \, \partial_t \to D_t \equiv \tau(\partial_t + B_i \partial_i),$ а также разложения слабого поля

$$\mu = 1 + \frac{\phi_R}{\Lambda_\mu}, \qquad \tau = 1 + \frac{\sigma}{\Lambda_\tau}, \qquad B_i = b_i, \tag{169}$$

где ϕ_R, σ, b_i — малые динамические возбуждения.

А. Полная форма лагранжиана и вариация

А.1. Содержательная часть действия

$$S = \int d^4x \left(L_{\rm SM}(\mu, \tau, B) + L_{\mu\tau} + L_B + L_{\rm bdry} \right).$$
 (170)

(і) Материя/поля СМ (минимальные замены).

$$L_{\rm SM}(\mu, \tau, B) = L_{\rm kin}[\Phi; \ \partial_t \to D_t, \ \nabla] - \sum_a m_a \mu \, \bar{\psi}_a \psi_a - \sum_i \frac{1}{2} m_i^2 \mu^2 X_i^2, \tag{171}$$

где $\Phi = \{\psi_a, X_i, A_\alpha, \ldots\}, D_t = \tau(\partial_t + B_i \partial_i).$

(ii) Масштабные поля μ, τ .

$$L_{\mu\tau} = \frac{1}{2} (\partial \phi_R)^2 + \frac{1}{2} (\partial \sigma)^2 - V(\phi_R, \sigma), \tag{172}$$

$$V = \frac{1}{2}m_{\mu}^{2}\phi_{R}^{2} + \frac{1}{2}m_{\tau}^{2}\sigma^{2} + \lambda_{\mu}\phi_{R}^{4} + \lambda_{\tau}\sigma^{4} + \lambda_{\times}\phi_{R}^{2}\sigma^{2}.$$
 (173)

(iii) Векторный дрейф B_i (калибровка $\partial_i B_i = 0$).

$$L_B = \frac{1}{2} \left[(\partial_t B_i)^2 - c_B^2 (\partial_j B_i)^2 \right] + \zeta B_i T_{\text{SM}}^{0i}.$$
 (174)

(iv) Граничный слой $R \leftrightarrow I$ (толщина ℓ_*).

$$L_{\text{bdry}} = \frac{g^2}{\ell_*} \left(\phi_R J_R(\Sigma) + \sigma J_T(\Sigma) \right) - \frac{\chi}{2\ell_*^2} \left(\phi_R^2 + \eta \, \sigma^2 \right) \quad \text{Ha } \Sigma.$$
 (175)

А.2. Уравнения Эйлера-Лагранжа и источники

B объёме (вне Σ):

$$\phi_R + V_\phi = \frac{1}{\Lambda_\sigma} S_\mu, \qquad \qquad \sigma + V_\sigma = \frac{1}{\Lambda_\sigma} S_\tau, \qquad (176)$$

$$\partial_t^2 B_i - c_B^2 \nabla^2 B_i = -\zeta T_{0i}^{\text{SM}}, \tag{177}$$

где

$$S_{\mu} \equiv \sum_{a} m_{a} \bar{\psi}_{a} \psi_{a} + \sum_{i} m_{i}^{2} X_{i}^{2}, \qquad S_{\tau} \equiv \frac{\delta L_{\text{SM}}}{\delta(\partial_{t})} \cdot (\partial_{t} + B_{i} \partial_{i}). \tag{178}$$

На интерфейсе Σ (эффективные переходные условия):

$$\left[n^{\alpha}\partial_{\alpha}\phi_{R}\right]_{\Sigma} = -\frac{g}{\ell_{*}}J_{R} + \frac{\chi}{\ell_{*}^{2}}\phi_{R},\tag{179}$$

$$\left[n^{\alpha}\partial_{\alpha}\sigma\right]_{\Sigma} = -\frac{g^{\tilde{}}}{\ell_{*}}J_{T} + \frac{\chi\eta}{\ell_{*}^{2}}\sigma. \tag{180}$$

А.3. Энергомоментный тензор

$$T^{\alpha}{}_{\beta} = T^{\alpha}{}_{\beta}(SM)(\mu, \tau, B) + \partial^{\alpha}\phi_{R}\,\partial_{\beta}\phi_{R} + \partial^{\alpha}\sigma\,\partial_{\beta}\sigma + \partial^{\alpha}B_{i}\,\partial_{\beta}B_{i} - \delta^{\alpha}{}_{\beta}\,L,\tag{181}$$

с $\partial_{\alpha}T^{\alpha}{}_{\beta}=0$ в объёме и балансом с поверхностными потоками $\propto g\H/\ell_*$ на Σ .

В. РРМ-вывод из лагранжиана

Разложения по ньютоновскому потенциалу U и стандартным PPN-потенциалам:

$$\mu = 1 + a_1 \frac{U}{c^2} + a_2 \frac{U^2}{c^4} + \cdots, \tag{182}$$

$$\tau = 1 + b_1 \frac{U}{c^2} + b_2 \frac{U^2}{c^4} + \cdots, \tag{183}$$

$$B_i = \beta_V \frac{V_i}{c^3} + \beta_W \frac{W_i}{c^3} + \cdots$$
 (184)

Тогда

$$g_{00} = -\tau^2 = -1 - 2b_1 \frac{U}{c^2} - \left(2b_2 + b_1^2\right) \frac{U^2}{c^4} + \cdots,$$
(185)

$$g_{ij} = \mu^2 \delta_{ij} = \left(1 + 2a_1 \frac{U}{c^2} + (2a_2 + a_1^2) \frac{U^2}{c^4} + \cdots \right) \delta_{ij}, \tag{186}$$

$$g_{0i} = \tau^2 B_i = \left(1 + \mathcal{O}(c^{-2})\right) \left(\beta_V \frac{V_i}{c^3} + \beta_W \frac{W_i}{c^3}\right). \tag{187}$$

GR-калибровка:

$$a_1 = +1, \quad a_2 = 0, \quad b_1 = -1, \quad b_2 = \frac{1}{2}, \quad \beta_V = -4, \quad \beta_W = 0,$$
 (188)

что даёт стандартные PPN-параметры $\gamma=\beta=1,\ \alpha_{1,2,3}=\xi=\zeta_{1,2,3,4}=0.$ Отклонения 2PN кодируются $\delta a_2\equiv a_2,\ \delta b_2\equiv b_2-\frac{1}{2}.$

С. «Оптика гравитации»

Показатель преломления света:

$$n(x) = \frac{\mu}{\tau} = 1 + \frac{2U}{c^2} + \frac{3U^2}{2c^4} + \cdots$$
 (189)

Для сферической симметрии (импакт-параметр b) угол отклонения и задержка Шапиро:

$$\hat{\alpha} \simeq 2 \int_{-\infty}^{+\infty} \frac{\partial_{\perp} n}{n} dz = \frac{4GM}{bc^2} + \mathcal{O}\left(\frac{G^2 M^2}{b^2 c^4}\right),\tag{190}$$

$$\Delta t = \frac{1}{c} \int_{LOS} (n-1) \, dl = \frac{2GM}{c^3} \ln \frac{4r_E r_R}{b^2} + \cdots,$$
 (191)

что совпадает с GR на 1PN.

D. Красное смещение второго порядка и атомные часы

При $E_{\rm trans} \propto \mu$ и локальном счёте времени $\propto \tau^{-1}$:

$$\left. \frac{\Delta \nu}{\nu} \right|_{1 \to 2} \simeq \left[\ln \mu - \ln \tau \right]_1^2 + \frac{v_2^2 - v_1^2}{2c^2} + \mathcal{O}(c^{-4}). \tag{192}$$

С РРN-калибровкой $\mu = 1 + U/c^2 + \cdots, \, \tau = 1 - U/c^2 + \cdots$:

$$\frac{\Delta\nu}{\nu} = \frac{U_2 - U_1}{c^2} + \frac{v_2^2 - v_1^2}{2c^2} + \mathcal{O}(c^{-4}),\tag{193}$$

а 2PN-поправка $\propto (\delta a_2 - \delta b_2)$.

Е. Линеаризация GW и поляризации; энергетический поток

Линеаризация: $\mu=1+\delta\mu,\, \tau=1+\delta\tau,\, B_i=\delta B_i,$ калибровка $\partial_i\delta B_i=0$:

$$(\partial_t^2 - \nabla^2) \,\delta\mu = \frac{1}{\Lambda_\mu} \,\Pi_\mu,\tag{194}$$

$$(\partial_t^2 - \nabla^2) \,\delta\tau = \frac{1}{\Lambda_\tau} \,\Pi_\tau,\tag{195}$$

$$(\partial_t^2 - \nabla^2) \, \delta B_i = -\zeta \, T_{0i}. \tag{196}$$

Наблюдаемые моды: тензорные $h_{+,\times}$ (как в GR) и слабая скалярная «дыхательная» $s \propto \delta(\mu/\tau)$ с долей $\kappa_b \ll 1$. Средний поток (Айзексон-аналог в наблюдаемой рамке):

$$\langle F \rangle = \frac{c^3}{32\pi G} \langle \dot{h}_+^2 + \dot{h}_\times^2 + \kappa_b \, \dot{s}^2 \rangle, \tag{197}$$

ведущий закон излучения бинаров совпадает с GR.

F. Кольцевание (QNM) с граничным $R \leftrightarrow I$; сдвиги и «эхо»

Радиационное уравнение:

$$\frac{d^2\Psi_{\ell}}{dr_*^2} + \left[\omega^2 - V_{\ell}(r)\right]\Psi_{\ell} = 0, \qquad r_* = \int^r \frac{dr'}{f(r')}.$$
 (198)

Внутреннее условие на эффективной мембране $r_* = r_*^{(0)} \sim r_s \ln(r_s/\ell_*)$:

$$\Psi_{\ell} \propto e^{-i\omega r_*} + \mathcal{R}(\omega) e^{+i\omega r_*} \quad (r_* \to r_*^{(0)}), \tag{199}$$

с $\mathcal{R}(\omega) = \mathcal{O}(\tilde{g}^2)$. Условие мод:

$$Q_{\ell}(\omega) + \mathcal{R}(\omega) e^{2i\omega r_*^{(0)}} = 0. \tag{200}$$

Для $|\mathcal{R}| \ll 1$ и главной моды $(\ell, m, n) = (2, 2, 0)$:

$$\frac{\delta\omega}{\omega} \simeq -\frac{i}{2\omega} \frac{\mathcal{R}(\omega_0)}{\partial_\omega \ln \mathcal{Q}_\ell|_{\omega_0}} + \mathcal{O}(\mathcal{R}^2), \quad \Delta t_{\text{echo}} \sim 2|r_*^{(0)}|. \tag{201}$$

G. Космология: фон, линейный рост, ядро K(r) и гало

Фон:

$$H_{\text{obs}} = \frac{1}{\tau} \left(H + \frac{\dot{\mu}}{\mu} \right), \qquad H^2 = \frac{8\pi G}{3} \left(\rho_m a^{-3} + \rho_r a^{-4} + \rho_{\Lambda}^{\text{eff}}(a) \right) - \frac{k}{a^2},$$
 (202)

 $\rho_{\Lambda}^{\text{eff}} = V_0 + \rho_{\text{growth}}(a)$. Рост структур (штрихи по $\ln a$):

$$\delta'' + \left(2 + \frac{H'}{H} - \varepsilon_{\tau}\right)\delta' - \frac{3}{2}\Omega_m(a)\delta = 0, \qquad \varepsilon_{\tau} \equiv \frac{d\ln\tau}{d\ln a}.$$
 (203)

Тёмная материя как свёртка:

$$\Phi_{\text{eff}}(\mathbf{x}) = \Phi_{\text{bar}}(\mathbf{x}) + G \int d^3 x' K(|\mathbf{x} - \mathbf{x}'|) \rho_{\text{bar}}(\mathbf{x}'), \quad K(r) = \frac{\kappa}{4\pi} \frac{1}{r^2 + r_c^2}.$$
 (204)

Для дисковых/сферических источников:

$$\rho_{\text{halo}}(r) \simeq \frac{\rho_0}{1 + (r/r_c)^2}, \qquad v_{\text{flat}}^2 \simeq 4\pi G \,\rho_0 r_c^2.$$
(205)

Профиль и оффсет для скопления Пуля:

Параметризация оффсета. Для субкластера используем профиль $\rho_{\rm DM(BH)}(r)$ с центром в гравитационном центре галактик/чёрной дыры (ВН). При столкновении вводим баллистический сдвиг Δx как функцию ударной скорости $v_{\rm rel}$ и доли ВН-массы $f_{\rm BH}$:

$$\Delta x \approx \alpha(f_{\rm BH}) v_{\rm rel} t_{\rm cross}.$$
 (206)

Линзирующий потенциал строится из $ho_{{
m DM}({
m BH})}(r-\Delta x)$ с добавлением газового вклада.

Н. Ограничения «пятой силы»

Юкавские коррекции:

$$V(r) = -\frac{Gm_1m_2}{r} \left[1 + \alpha_{\mu}e^{-m_{\mu}r} + \alpha_{\tau}e^{-m_{\tau}r} \right], \qquad \alpha_{\mu,\tau} \sim \left(\frac{\bar{m}}{\Lambda_{\mu,\tau}}\right)^2.$$
 (207)

Классы тестов: лабораторные (торсионные весы, Этвёш), LLR/планетная динамика, двойные пульсары/PPN, астрофизика (профили гало, S-звёзды). В статье используются приоры на большие $\Lambda_{\mu,\tau}$ и/или ненулевые $m_{\mu,\tau}$, плюс нелинейный скрининг у сильных полей благодаря Σ .

І. Численные методы и алгоритмы

PPN и S-звёзды: симплектические интеграторы (2/4-го порядка) с силами $1PN+2PN(\mu\tau)+$ ньютонова тёмная масса; проекция на плоскость неба и $v_{\rm los}$ с релятивистскими поправками (тест: 1PN-сдвиг S2).

Линзирование: трассировка в индексе n(r) (Bulirsch–Stoer/Дорманд–Принс); контроль $\hat{\alpha} = 4GM/(bc^2)$ и Шапиро на 10^{-6} .

 \mathbf{EM} - \mathbf{GW} -задержки: линейные интегралы по табулированным потенциалам \mathbf{MW}/\mathbf{x} остов; карты $\mathbf{HEALPix}$.

 ${
m GW/QNM}$: продолженные дроби Левера для GR-базы + модифицированное внутреннее условие; поиск корней ω ; «эхо» через частотную трансфер-функцию.

Космология: CLASS/CAMB-ветка с $H_{\rm obs}(a)$, линейным ростом, ядрами WL/ISW и $\Xi(a) = d \ln(\mu/\tau)/d \ln a$.

Устойчивость: CFL по c в касательных рамках; для граничного слоя — диссипативные условия и «толстая» аппроксимация ℓ_* .

J. Таблицы параметров, контрольные примеры

J.1. Параметры модели (символы, размерности, смысл)

Параметр	Размерность	Смысл / роль	
$\Lambda_{\mu}, \Lambda_{ au}$	энергия	Нормировка линейных куплингов ϕ_R, σ	
$m_{\mu}, m_{ au}$	энергия	Дальность «пятой силы»	
$\lambda_{\mu}, \lambda_{ au}, \lambda_{ imes}$	безр.	Самодействие/смешивание V	
$g^{}$	безр.	Проницаемость интерфейса Σ	
ℓ_*	длина	Толщина интерфейса (срез EFT $\Lambda \sim 1/\ell_*$)	
a_1, a_2, b_1, b_2	безр.	$\mathrm{PPN}/\mathrm{2PN}$ -коэффициенты μ, au	
κ, r_c	безр., длина	Ядро $K(r)$ гало	
κ_b	безр.	Доля скалярной GW-поляризации	
ξ_{aw}	безр.	Универсальность «оптики» GW (EM vs GW)	

J.2. Контрольные примеры

- Солнечное линзирование (угол/Шапиро);
- Орбита S2: 1PN-сдвиг и скан μτ-2PN;
- QNM-сдвиг как функция ℓ_*/r_s ;
- Карта $\Delta t_{\rm EM} \Delta t_{\rm GW}$ по небесной сфере;
- Кривая вращения Млечного Пути со свёрткой K(r);
- Космологический фон $H_{\text{obs}}(a)$ и $w_{\text{eff}}(a)$.

К. Гравитон: каноническое квантование, пропагатор и вершины

К.1. Линеаризованный лагранжиан

В касательных рамках к $ds_{\rm obs}^2$ тензорные моды описываются стандартным квадратичным действием для безмассового спин-2 поля, тогда как скалярная примесь s имеет свободное скалярное действие с малым куплингом κ_b .

К.2. Калибровка и диагонализация

В поперечно-трассировочной калибровке тензорный сектор диагонален; нулевые моды удаляются условиями

$$\partial_a h^{ab} = 0, \qquad h^a{}_a = 0.$$

К.3. Пропагатор

В импульсном пространстве:

$$D_{ab,cd}(k) = \frac{\Pi_{ab,cd}}{k^2 + i0},$$

где $\Pi_{ab,cd}$ — проектор на спин-2 подпространство. Для скалярной моды:

$$D_s(k) = \frac{1}{k^2 + i0},$$

с нормировкой по κ_b .

К.4. Вершины и правила

Универсальная вершина обмена:

$$\sim \kappa^2 \, h_{ab} T^{ab}$$
 (тензорный сектор) + $\sim \kappa_b \, s \, T$ (скалярный сектор),

где $T\equiv T^a{}_a$. Ward-тождество обеспечивает сохранение тока и унитарность. Матричные элементы рассеяния и излучения совпадают с линейной GR для тензорного сектора; скалярные вклады подавлены фактором κ_b .

К.5. УФ-корректность

Локальные контрчлены имеют размерность 4 и укладываются в эффективный срез EFT $\Lambda \sim 1/\ell^*$. Микрокаузация сохраняется (см. §16–§17).

L. Мёбиус-бариогенез: кинетика и оценки асимметрии

L.1. Двухкамерная кинетика

Уравнения Больцмана для распределений $f_{A,B}(p,x,t)$ дополняются стоками и источниками на Σ :

$$(\partial_t + H p \cdot \nabla_p) f_A = C[f_A] - \Gamma_{\Sigma} (f_A - f_B) + \varepsilon_{\Sigma} S, \qquad (A \leftrightarrow B \text{ с изменением знаков}).$$
 (208)

L.2. Режим заморозки

При температурах T ниже критической T_{Σ} скорость $\Gamma_{\Sigma}(T)$ падает быстрее, чем Хабблова H, и асимметрия «застывает». Решение в квазистационарном приближении даёт:

$$\eta_B \simeq \varepsilon_{\Sigma} \int_{t_{\text{freeze}}} dt \, \frac{\Gamma_{\Sigma}(t)}{n_{\gamma}(t)} \, F(t) \, \sim \, \varepsilon_{\Sigma} \left(\frac{\Gamma_{\Sigma}}{H}\right)_{\text{freeze}} \times C,$$
(209)

где F и C учитывают эффективные числа степеней свободы и перераспределение барионного числа.

L.3. Ограничения

- BBN/CMB: остаточный вклад «антислоя» в плотность $\ll 10^{-2}$ от радиационной энергии на MeV-этапе.
- Отсутствие поздних аннигиляций: Γ_{Σ} должна затухнуть до наступления эпохи нуклеосинтеза.
- Наблюдаемые сигнатуры: слабый гравитационно-волновой фон от фазовых переходов на Σ , возможная изотропная добавка к $\Delta N_{\rm eff}$. Эти наблюдения накладывают ограничения на параметры ε_{Σ} и Γ_{Σ} .