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Hidden Geometries in Maxwell’s Equations and a Force—-Flux Route to Unified Static Fields
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This work reveals previously hidden structural features of Maxwell’s equations that emerge when the Lorentz
force is embedded into their flux formulation, exposing motional and rotational contributions to the field of an
elementary charge. These modifications extend the field—source relationship to encompass phenomena beyond
the standard static Coulomb case. We demonstrate this by deriving the magnetic field of a rotating spherical
charge distribution, where magnetic charge appears not as a monopole but as an emergent quantity producing a
dipole-like field. The same configuration generates a distinct component opposing the Coulomb field, arising
purely from rotation. Building on these results, we formulate a force—flux law analogous to Gauss’s electric
flux relation, but with force replacing field. Owing to its units, this law permits direct replacement of electric
charge and constants with other charge types—magnetic, gravitational, or inertial—while preserving the force
magnitude for a given separation. The result is a compact, nonrelativistic framework that retains Maxwell’s
geometric elegance while extending its scope to unified static-field interactions.
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I. INTRODUCTION

The quest to unify nature’s fundamental forces has long
been guided by the interplay of experiment and theory. Fara-
day’s investigations into electromagnetic induction [1] laid
the groundwork for linking electricity and magnetism, driven
by his conviction in the unity of physical phenomena. He
also speculated on possible ties between electromagnetism and
gravity—early, though inconclusive, explorations that foreshad-
owed later unification attempts [2]. Maxwell transformed this
vision into a coherent framework [3], uniting electricity and
magnetism, predicting the wave nature of light, and establish-
ing a paradigm central to classical field theory. His concise,
geometric formulation continues to inspire extensions from
fluid dynamics to gravitation. Adaptations of Maxwellian struc-
ture to gravitational theory include gravito-electromagnetism
[4, 9, 12, 18] and models from linearized general relativity.
Classical analogies, such as the Heaviside equations [4] and
scalar—vector—tensor models [6, 11], capture aspects of this cor-
respondence, while historical surveys [15] and modern propos-
als [14] explore deeper structural links. Most, however, rely on
relativistic assumptions, limiting their scope in static or purely
classical regimes. Here we present a classical, nonrelativistic
framework unifying electrostatic, magnetostatic, gravitational,
and inertial interactions in a common form. Embedding the
Lorentz force into Maxwell’s flux representation introduces
structural extensions that integrate motional effects into the
field—source relationship. Applied to arotating spherical charge,
the method yields a dipole-like emergent magnetic charge and
a secondary field opposing the Coulomb term—both set by
geometry and motion. Building on this, we employ a force—flux
relation, analogous to Gauss’s law but expressed in terms of
force, whose dimensional form (N-m?2) enables substitution of
magnetic, gravitational, or inertial charges while preserving
force magnitude. This dual development—uncovering hidden
geometries and establishing a force—flux route—offers a com-
pact, nonrelativistic approach that retains Maxwell’s elegance
while extending its scope to unified static-field interactions.

The search for such extensions parallels the historical pursuit
of magnetic monopoles as theoretical constructs and unifying
elements. Dirac’s quantization condition [5] inspired grand
unified monopole solutions [7, 8] and modern duality-based
approaches [10], while reviews [16, 17, 19] summarize theory
and experiments. Laboratory analogues have demonstrated
monopole-like configurations in synthetic magnetic fields [13].
The framework developed here remains strictly classical, avoids
quantum or relativistic premises, and reveals latent symmetries
linking electromagnetic, gravitational, and inertial phenomena.

II. MAXWELL EQUATIONS AND STRUCTURAL
EXTENSIONS

Maxwell’s equations form the foundation of classical field
theory, providing a unified framework that connects fields to
their sources—charge and current distributions—and governs
how time-varying fields induce one another. In integral form,
they reveal the geometric and physical relationships among
fields, fluxes, and sources. With appropriate substitutions of
constants and source variables, they can be generalized to
describe arbitrary charge types gr and g7+, each associated
with characteristic permittivity e, and permeability uqy. The

fields Er and By~ are then interpreted as those generated by
such sources—electric, magnetic, gravitational, or inertial,
depending on context:
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These relations capture the coupling between fields and
sources for both static and dynamic conditions. However,
when charges or media move—especially with intrinsic ro-
tation—additional structural terms are required to represent
physical effects absent in the standard formulation.

A classic case is the Faraday disc (homopolar generator),
where motion of charges through a static magnetic field pro-
duces an electromotive force (emf) not accounted for by 4B /Ot
alone in Eq. (3). Such behavior is more completely described
by a Lorentz-type force on a charge g7:

Frp = QT(ET +i X ET'), (5)

where ii is the velocity of the charge relative to Br. The
induced circulation along a closed contour is then

-

Erpr = 75 (Er +ii x Br+) - df, (6)
oS

leading to the generalized Faraday induction law:

- N - - d - -
é (ET+MXBTI) 'de—E/BT/ -dA. (7)
S S

The right-hand side represents the total time derivative of
the generalized magnetic flux By through a time-dependent
surface S(r), encompassing both intrinsic field variation (trans-
former effect) and flux change due to surface motion (motional
induction). The term i X By is critical for systems such as
the Faraday disc, where the emf arises purely from kinematic
interaction with a static field.

A geometric criterion for motional induction is

i(F) f B (7)) = @(F)xBp(F)#0 forsomeF e R,
where R denotes a region occupied by the medium. This
reflects the need to cross field lines to generate motional emf.

If the source distribution undergoes intrinsic rotation, the
resulting velocity-dependent term modifies the static field. In
such cases the total field can be written as

ETT’ = ET + i X ET’ = —V¢T +i X ETI, (8)

where ¢ is the potential for the given charge type. Although
Erp may not satisfy Gauss’s law in its original form, it can still
be evaluated via a flux relation under appropriate symmetry or
motion constraints:

f ETTf-dA)Z‘% (—V¢Tiﬁ><§7‘r)-d;
v [7)%

1
L / prdv, ©)
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where pr may include both static and motion-induced contri-
butions.

A further extension follows from considering the flux of the
force field itself. Starting from

N S 1
7{ ET-dAz—/pTdV,
A% €Ty Jv

multiplication by g7 gives the flux of the Coulomb-like force

Fr =qrEt:
%‘ ﬁT~dX=qu§ EﬂTdA>
ov 2%

9T [ rav. (10)

€y Jv

If the enclosed distribution consists entirely of type-gr charges,

2
/pTdV:qT = Frodadi=2T
\% A% €1

Eq. (11) quantifies the total force on a type-gr charge due
to an enclosed distribution of like-sign charges. Although
structurally analogous to Gauss’s law, it is not a new field
equation but a scaled form of the source—field relation. The
resulting quantity has units of N - m? (or J - m), independent
of the interaction type, underscoring the generality of the
formulation.

In combination, these results extend the Maxwellian struc-
ture to incorporate motional effects and force—flux relations,
providing a framework to analyze how intrinsic motion modifies
field—source interactions and yields new categories of effective
charges emerging from geometry.

III. MAGNETIC FIELD OF A ROTATING CHARGED
SPHERE

The structural extensions introduced in the preceding section
enable direct treatment of sources_)with intrinsic motion, where
the velocity-dependent term i X By» modifies the conventional
field—source relation. As a concrete example, we now examine
a uniformly charged solid sphere of radius R and total charge ¢,
rotating with constant angular velocity @ = w?, as illustrated
in Fig. 1. In the rotating frame the charge distribution is
static; however, its azimuthal motion produces a steady current
density, which in turn generates a magnetic field. Our goal is
to determine the magnetic induction E(?) for r > R using the
Biot—Savart law in spherical coordinates, without introducing
the magnetic dipole moment as an ansatz.

The uniform volume charge density is

q

—_— (12)
%ITR3

p:

Each volume element moves with velocity & = @ X ¥/, giving a
current density

J(7) = p(&x7) = pwr sing’ §. (13)

The Biot—Savart law gives the magnetic field at an observa-
tion point 7:

B() = @/ JE) X T =7 g3, (14)

4n |7 =73



To simplify the evaluation, we first compute the field along
the z-axis, where axial symmetry ensures that only the z-
component is nonzero. The source point 7 is expressed in
spherical coordinates as

7 =r'(sinf cos¢’, sin@’ sin¢’, cos§’), (15)
with volume element
A =r*sin@’ dr’ do’ d¢’. (16)

Substituting into the Biot—Savart expression and exploiting
symmetry, the axial component becomes

R b/d 3 ind o
Hopw r’>sin” 6 .,
B,(r) = de’ dr’.
() 2 ,/0 ,/0 (r2 = 2rr' cos 0 +r'%)3/2

For r > R, the field point lies outside the source, and the
leading term of a multipole expansion yields the dominant
contribution. Evaluating the integral and substituting for p
gives

HogR*w

B.(r) = 4xr3

a7)
By spherical symmetry, this generalizes to arbitrary polar angle
0:

2

B(r,6) = Y (2cos@7 +sin0f), r>R. (18

4nr3

This is the exact dipolar field of the rotating sphere, obtained
without assuming a point dipole.
Applying Gauss’s law for magnetism,

f B-dA =0,
ov

confirms that no net magnetic charge is present, in agreement

with V - B = 0. The total flux through a sphere of radius r is
Zero:

dA =7 r*sin6 do dg, (19)
2 s
Op = / / B.(r,0) r*sin0dod¢ =0,  (20)
0 0
since

/ cos@sinf db = 0. 201
0

Although the net flux vanishes, the hemispherical contribu-
tions are nonzero:

R%w
T (22)
R%w
D = —’%, (23)

suggesting the presence of oppositely signed effective flux
sources at the poles. These may be expressed as effective
magnetic charges:

Gh = i_]: = qiiw, (24)
R L) (25)
Ho 2r
Their sum,
A = Gm +Gm =0, (26)

is consistent with the solenoidal constraint.

These effective quantities arise from the rotational motion
of the source rather than from fundamental monopoles. For
comparison, a static uniformly charged sphere can be viewed
as the sum of two hemispherical charges ¢/2 + g/2 = g. In the
rotating case,

qua)
2r

~m _
Qm_i

27)

which leads to a convenient expression for the total magnitude
of the effective magnetic charge:

~m , ~m

dm =qm +dm

R2
-4t (28)

This representation compactly encodes the dipole-like struc-
ture without implying isolated monopoles. The field can be
written as

,qum

E(r, 6) = 4rr2

(2cos@7+sinfd), r>R, (29)
where g, is the emergent magnetic quantity associated with
rotation. For macroscopic systems, G, depends on r; for
an elementary particle, the same structure may be expressed
in terms of a constant emergent magnetic charge g,, = g c.
The formal derivation of ¢, is presented in the next sections,
providing a geometric interpretation of distributed-motion field
structures consistent with Maxwell’s equations.

IV. CROSS-COUPLED CONTRIBUTIONS TO THE TOTAL
ELECTRIC FIELD

The rotating charged sphere analyzed in the previous section
generates a magnetic field whose structure admits an effective
description in terms of emergent magnetic charges. Within the
extended Maxwellian framework, such rotation can also pro-
duce an additional electric field through a velocity—field cross
coupling. This mechanism parallels the Faraday disc (homopo-
lar generator), where motion through a spatially structured but
temporally constant magnetic field induces an electromotive
response. In a rotating continuous charge distribution, the
tangential velocity interacts with the self-generated magnetic
field to yield an extra electric field component, modifying the
total field experienced by the system.



The total electric field ETT/ can be expressed as the sum of
a static Coulomb field and a cross-coupled, motion-induced
field:

Ecce(F) = Ec(F) +Ece(F) = —V¢(F) + kii x B(F),

where ii = wR sin 6 ¢ is the tangential velocity of the rotating
distribution on the surface. The sign reflects the sense of
rotation: in macroscopic systems it can be externally chosen,
whereas in elementary particles such as the electron it is fixed
by internal structure and energy considerations. For generality,
the cross-coupled term is written as

E.o(F) = +kii x B(7), (30)

where k is a context-dependent constant: k = 1 for macro-
scopic systems, and k = % for elementary particles, as will
be shown from flux constraints. Decomposing the field as
B(7) = B,(r,0)7 + By(r,0) 6, and using ¢ x # = 6 and

é x 6 = —#, we find for +kii x B(7) that only the radial
component contributes to the quantity of interest, yielding
Eccr(r,0) =tk - wRsin@ - By(r,0), (31)
with
R2
Bo(r,0) = F297 @ ing, (32)
4773
leading to
Hog R w?

Ece,(r,0) = £k - sin? 6. (33)
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The contribution to the total electric flux is obtained from
Gauss’s law:

Deee = 7{ Erp -dA = 7{ (—V¢+Ecc) “dA. (34
ov oV

Over a spherical surface, only the radial components contribute:

2n s
Dppe = / / (Ec.r(r,0) + Ece r(r,0)) r*sin0 d6 dg.
0 0

The Coulomb term gives

7{ Eo-dAi=42 (35)
v &0
For the cross-coupled term:
R3 2 2 2k R3 2
@, = +k- LY / d¢/ sin® 6 d = + HAT Y
4rr 3r
Thus, the total flux is
2kpog R w?
Dece = i L (36)

£0 3r

When the induced field opposes the Coulomb field, as for the
electron, the sign is negative and the effective field is reduced:

Ecce ==V — kii x B(r,0), (37)
2k pog R3w?
@ = 4q _ L. (38)
&0 3r

FIG. 1. Field structure of a rotating charge distribution. Rotation
generates a dipolar magnetic field and a cross-coupled electric field
E.c that opposes the static Coulomb field EL, yielding a screened
effective charge (original charge in red, partially obscured by the purple
screening field). This effect parallels the Faraday disc, where motion
through a stationary magnetic field induces an electric response.

This reduction acts as a screening effect, lowering the observable
electric field without altering the intrinsic charge.

The physical plausibility of this configuration can be assessed
from energy considerations. The total electric field energy is

1 S
U=se0 [ a0 dr, (39)
with time derivative
dU . OE
— =€ / Er - a;"‘ &r. (40)

For steady rotation, E. is static and time variation arises solely
from E..(1):

aE_:tot aE-:cc
—— =t 41
ot * ot “h
Substituting gives
U s = OEc
— == Ec.+Ec)- °r. 42
i 80/( Frakatd 42)

In the screening case (Ewor = Ec — ECC):

dUu L o OE..
— == E.—Ec..) —< d&*r. 43
. 80/( ) o 4T (43)

In steady state, chc/at =0, so
au

== (44)



In the additive case (Emt = EC + ECC):

dU . - . OE
o= sof(Ec +Ecc) - at“ d’r. (45)
Again, for equilibrium
du
— =0, 46
7 (46)
but the total field energy becomes
U= Uc + Ucc + Uint’ (47)
where
Uin = €0 / Ec-Eced'r (48)

is generally positive, giving U > U,. For anisolated elementary
charge, this implies an unphysical energy surplus unless external
work is supplied.

We conclude that the screening configuration is energetically
consistent, whereas the additive case contradicts conservation.
For elementary particles with intrinsic rotation—such as spin or
internal charge circulation—the physically viable configuration
is therefore

- -

Etot =FEcce = Ec - Ecc. (49)

V. EXTENDED ELECTRIC FIELD OF ELEMENTARY
CHARGED PARTICLES

The cross-coupled mechanism derived previously not only
alters the macroscopic field of a rotating distribution but can
also be applied to the intrinsic dynamics of elementary charges.
For such particles, internal rotational motion generates a self-
interaction between the tangential velocity and the associated
magnetic field, producing a persistent screening of the elec-
trostatic field. In this section, we adapt the formulation to the
microscopic scale and determine the corresponding parameters
for an individual charged particle.

For an elementary particle, the total electric field is written
as

Ecce = -V¢ — kii X B(r,0),

- .. _  qRo
u=wRsnbo, g,= ,
.
B(r.0) = Y™ (2cos@ 7 +sin06), r>R,
drr?

q 2kpogR’w?
¢CCC = - 5. -
&0 3r

Here R is replaced by the classical charge radius r; for
the electron, . = r.. The tangential velocity satisfies the
relativistic constraint wr. = c.

The screening effect reaches its maximal strength when the
net electric flux at the particle surface (r = r.) is zero, which
fixes k through
q  2kpogcire

q)ccc =0 = —_—

3
= k=—-.
- 3 0= > (50)

To eliminate explicit dependence on r., we use its known
expression

2
_ q
re

== 51
4neomc? Gh

The quantity §,,, representing the dipole-like magnetic
source term, becomes

R2 2
gn=T" =gl —ge—LT (52)
r r 4ngomce?r
2
Gm = _ 53
qm (’Im 471'5()mc2r ( )

where ¢,, is the magnetic counterpart of the electric charge, co-

located (r = r.) with the particle’s charge distribution. It is not

a monopole but an emergent attribute arising from the particle’s

intrinsic rotation. The term ;—-—— acts as a radial scaling
. . mEeEYMer X K

factor that decreases with distance, reducing the influence of

gm 1n g, as r increases.

The resulting extended electric field for an elementary
charged particle is

ﬁ 3. -
Ecee = _V¢ - Eu X B(r’ 9): (54)
R q°
i=csinb¢, Gm=qn———, (55)
4rgomce?r
- _ luoqm ~ . A
B(r,0) = =—= (2cos 07 +sinf), r>re.,  (56)
4nr?
Browm B Bope 9T T sy
cce c cc 47T80 I’—;|3 1671'28%}%02 |}—;|4’
qg 7
E.=-Vo¢ = — 58
¢ ¢ dreg |F)3 (58)
- 3, - > i
Ee=-uxB(r,0) = ————=. 59
2 (r ) 167r2<9(2)mc2 7|4 o9

VI. EMERGENT CHARGES AND DIMENSIONAL
SYMMETRY IN CLASSICAL FORCE LAWS

The extended field description for elementary charges nat-
urally invites comparison with other interaction domains. If
the structural link between field coupling constants and wave
propagation speed observed in electromagnetism also applies to
gravity and inertia, then analogous formulations should emerge
across these systems.

In electromagnetism, the vacuum constants define the speed
of light:

S (60)
EoMo

Extending this symmetry to an arbitrary interaction with charge
type g and coupling constants &7;, ugy; gives

1 1
= = : (61)
ELHT,  EgoMip




where g, and y;, represent the gravitational permittivity and
inertial permeability, respectively.
For the gravitational analogy, we take

-10 -1 2
£g, = 47G = 8.38717x 10 J/(kg-m ) ‘m, (62

from which

| 2
iy = — 1.32661 x 107 (kg-m— -s) /T-m. (63)

C"€g

follows directly.
The generalized force—flux relation for a Coulomb-like field,

2
- - q
f F-dA=-L,
ov &Tp
retains its form for electric, magnetic, gravitational, and iner-

tial sources. Incorporating the coupling constants and their
connection through c yields

2 2 2
qr 2 _ 4de 2 _ g 2
—_— = ’ , = — = = — = Uu;\q;, 64
on K1y = = Hodm o Higq; (64)

qT = £qTC =  gm = £q¢.C, ¢; = xqgC. (65)

Evaluating the magnetic analogue:

g =+qe = +1.60217663 x 107 J/V, (66)
Gm = £qec = £4.8032x 1071 ) - m/V - s. (67)

For the gravitational analogue producing the same force mag-
nitude at a fixed separation,

_ Eg0 _ ~18 -1
Qe = £qer| =22 = £1.55935 x 1078 T /kg-m™", (68
£0

and for the inertial analogue,
qi = £qgc = +4.67481 x 1071°T - m/kg-m™" -5, (69)

These results indicate that a Coulomb-type force law can be
written for electromagnetic, gravitational, or inertial interac-
tions by selecting the corresponding charge—constant pair. Al-
though the physical interpretation of the fields differs—electric
induction, gravitational acceleration, or inertial resistance—the
integral structure is identical, reflecting a dimensional symme-
try that extends beyond electromagnetism.

VII. FIELD EQUIVALENCE VIA GAUSS LAW FOR THE
DISPLACEMENT FIELD

The dimensional symmetries established above can be ex-
pressed directly in the language of displacement fields. In
electromagnetism, Gauss’s law for the electric displacement
field relates the flux through a closed surface to the enclosed
free charge:

7{ D - dA = gree, D = gE. (70)
ov

This form applies both to macroscopic systems—such as
charged conductors with surface free charge—and to elementary
particles, whose far-field behavior matches that of a Coulomb
source.

The same structure may be applied to gravity by defining a
gravitational displacement field

D¢ = g4, Ec, (71)

with E¢ as the gravitational field analogue. Using the gravita-
tional—electric charge equivalence

the gravitational and electric displacement fluxes are related by
S > Eg0 - -
‘7{ Dg-dA=+,|— Dpg - dA, (72)
ov €0 Jov

where 135 = sol_:?. .
Substituting DG = &g Eg and simplifying gives

Eo==+ |22F, (73)
€go

showing that 5(; has units of acceleration (m/s2 or N/kg).
Multiplying Eq. (73) by &g, yields

D¢ = +E+[E08g,, (74)

identifying gravitational acceleration with the gravitational
displacement field rather than Eg itself. This parallels Gauss’s
law in electrostatics, with both interactions sharing a flux-based
geometric structure.

To illustrate the scale of the coupling, consider the electric
field in vacuum required for D = 9.81 N/kg:

E:

, DEg=¢gE, (75)
VEOEg

E=1.13838x10"'V/m, Dg=1.0079]/V-m?. (76)

This enormous value highlights the relative weakness of gravity
despite the formal analogy.

An analogous correspondence follows from the mag-
netic—inertial charge relation in Eq. (64):

Ho
Higd; = Hodp = qi=iqm,/;. (77)
io

The resulting flux equivalence between inertial and magnetic
displacement fields is

}5 By -di=x /ﬂj{ Dy -dA, (78)
oV Hiy J oV

with Dg = B/(uoc) = H/c and Dy = By/(uiyc) = Hi/c,
where H is an inertial analogue to the magnetic field.



From Eq. (78), the magnetic field needed to induce D; =
9.81m/s? is

yTE
H= CDI,/#—Z), B = c¢D+\Juopiy, (79)

H=302x10A/m(orJ/V-s-m), B=379.72T. (80)

As in the electric—gravitational case, the required field is excep-
tionally large, emphasizing that while the displacement-field
analogy preserves formal structure, the coupling strengths differ
greatly.

Because the framework is flux-based, these analogies ex-
tend from point particles to macroscopic systems—such as the
rotating charged spheres considered earlier—by substituting
alternative coupling constants without altering the underlying
Gauss-law form. This provides a unified geometric and di-
mensional description for electric, gravitational, magnetic, and
inertial interactions.

VIII. UNIFIED FIELD EQUATION

The flux-based analogies established in the displacement-
field framework can be extended to a single formulation that
applies uniformly across electric, magnetic, gravitational, and
inertial domains. Building on the structural extensions to
Maxwell’s equations and the emergent charge relations derived
from dimensional symmetry, we write the generalized static-
field equation for an arbitrary charge type (Fig. 2) in a form
parallel to the extended electric field:

R 3, -
Err = —V¢T - Eu X BT/(r, 9), (81)
e
i=csinf¢, G = qT/—TZ’ (82)
4ner,mcr
> Hr qr R
B(r,0) = ——- (2cos 07 +sin66), r=>rc, (83)
4rr
5o E g o_ 4r T a; 7
Erp =Ep—Ep = —+ L —, (84)

dreq, |7 167126%)mc2 |74’

= qr T
Er =-Vor = —, 85
T ér dmen 7P (85)
L 3. - a7
Ep = 2@ X Bp(r,0) = —2L T 86
=2 7 (r.6) dreq mc? [F|* (86)
S 3 S
= qr v qr r
Dpp=t v T 87
™7 4x 73 T 16n2eryme? 7| 87)

The formalism applies to specific interaction pairs by assign-
ing the appropriate charges and constants:

QT = iCIe’ QT' = iq}’n,

TT' =EM { €1, = €0, U1, = Ho> (88)
(PT = ¢’ BT’ =B
qr = xqg, 41 = x4q;,
TT' =GI { €1, = &> HT] = Hig> - 89)

o1 = dé,
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FIG. 2. Unified static-field representation. Comparison of the
electron’s total electromagnetic field Eg s and its gravitational dis-
placement field D ; within the unified formulation. At r = 1.12500 -
10719 m, the fields have magnitudes Egps = —1.13775 - 101 V/m
and DGy = —9.80475N/kg. Both arise from the same structural
equation with domain-specific coupling constants, illustrating the
geometric and dimensional symmetry between electromagnetic and
gravitoinertial interactions.

Choosing TT” = EM in Eq. (88) recovers the extended elec-
tric field of an elementary charged particle—such as the elec-
tron—or, more generally, its composite electromagnetic field
combining electric and emergent magnetic charges. Likewise,
TT’ = GI in Eq. (89) yields the extended gravitational field,
or composite gravitoinertial field, uniting gravitational and
emergent inertial charges.

IX. FIELD QUANTITIES AND UNITS

The following is a summary of the field quantities, accompa-
nied by their respective units:

TABLE I. Field Quantities and Units (Part I)

Symbol Unit Symbol Unit
E [V/m] H [J/V-s-m]=[A/m]
Dg /v -m? B [V-s/m?]
€0 /V2-mll o [(V-5)*/T-m]
e /vl gm J-m/V-s]
TABLE II. Field Quantities and Units (Part II)
Symbol  Unit Symbol  Unit
Eg [kg-m_l/m] Hy [J/kg~m_1 -s-m]
Dg [J/kg~m_1 -m?] Bj [kg~m_1 -s/m?]
2 2
Ea 0/ (kg m) "l | g [(ke-m"-s) /3 m]
dg [J/kg-m~'] qi [J-m/kg-m~" 5]




X. FIELD-INDUCED MASS AND FORCE EFFECTS

The expressions linking electromagnetism to gravity and
inertia—assumed here by symmetry—can be generalized to ap-
ply across different media. In this broader formulation, the elec-
tromagnetic and gravito-inertial constants are complemented
by the medium’s relative permittivity €, and permeability g, .
Furthermore, instead of using the vacuum speed of light c,
one may substitute the group velocity u,, which in conductive
media is approximated by a diffusive-like expression. Thus,
the effective expressions for gravitational-like and inertia-like
acceleration (a) become:

a=Dg = =E &:+[608g,, (90)

B
a=Dj=+———<—. 1)
ug Hr V#O/’lio

Let us consider confined electromagnetic energy, such as a
standing wave, which can be modulated through an angular ve-
locity shift Aw. This applied shift gives rise to a force, initially
described by the radiation pressure relation F = %‘é—lt] An
equivalent formulation expresses this force in terms of the elec-
tromagnetic energy density wgy and the cross-sectional area

A through which the energy undergoes accelerated translation:

Fod w22 (92)
Wg

where w, denotes the base angular velocity.

The equivalent electromagnetic mass mgy can now be ex-
pressed by dividing the force by the corresponding acceleration
expressions introduced above:

2
WM ~ 208, E2 % —— (93)
HoHr
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Eq. (94) suggests that confined electromagnetic energy may
give rise to an effective mass that exhibits both inertial and
gravitational-like behavior—despite originating from a mass-
less configuration.

An insightful expression emerges for the electron or positron
when we set A = 4ﬂr§, E = im, ug =c,and &, = py, = 1.
Under these conditions, the electromagnetic mass becomes:

mpm =+A - FE

e

e A

mpy = FT—2e . 29 (95)
VE0Eg Wg

mg = F—L— = £1.85921 - 10~ kg. (96)
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By dividing m, by the Planck mass m, and squaring the
result, we obtain the fine-structure constant:

7
= € 7
4ngohic’ ©7
2
(@) - a. (98)
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XI. DISCUSSION

Embedding the Lorentz force into Maxwell’s flux form ex-
poses motional and rotational terms that are normally hidden
when force laws are treated separately from field equations.
In this view, a spinning charged sphere acquires an emergent
dipole-like magnetic charge and a rotation-induced electric
screening, both following directly from geometry. Such ef-
fects, while consistent with Maxwell’s equations, have been
overlooked because the flux form is rarely used as a foundation
for including source motion intrinsically. Beyond electromag-
netism, we construct a Gauss Force—Flux law by multiplying
Gauss’s field—flux relation by the corresponding charge type
gr. The resulting force flux has fixed units of N - m?, and
its closed-surface integral evaluates to q:‘} /e1,. The reference
to gr-independence pertains to the dimensional form, which
is the same for any interaction type. This fixed dimension-
ality enables direct substitution of electric parameters with
magnetic, gravitational, or inertial ones while preserving the
inverse-square force magnitude. In this way, the hidden motion—
field coupling found in electromagnetism extends naturally to
a broader class of static-field interactions, all within a purely
classical, geometric framework.

XII. CONCLUSION

The present formulation reveals latent geometric structure in
Maxwell’s theory and extends it through a charge-independent
(in units) force—flux relation to encompass magnetic, gravita-
tional, and inertial domains. While the integral of the force
flux depends on q% /&1, the fixed units of N - m? allow dif-
ferent charge types to be substituted directly without altering
the underlying inverse-square structure. This preserves the
compact elegance of the original equations while offering a
unified, nonrelativistic description of static interactions. This
perspective suggests that Maxwell’s framework is not merely
the grammar of electromagnetism, but a universal geometric
language for all inverse-square forces.
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