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This work reveals previously hidden structural features of Maxwell’s equations that emerge when the Lorentz
force is embedded into their flux formulation, exposing motional and rotational contributions to the field of an
elementary charge. These modifications extend the field–source relationship to encompass phenomena beyond
the standard static Coulomb case. We demonstrate this by deriving the magnetic field of a rotating spherical
charge distribution, where magnetic charge appears not as a monopole but as an emergent quantity producing a
dipole-like field. The same configuration generates a distinct component opposing the Coulomb field, arising
purely from rotation. Building on these results, we formulate a force–flux law analogous to Gauss’s electric
flux relation, but with force replacing field. Owing to its units, this law permits direct replacement of electric
charge and constants with other charge types—magnetic, gravitational, or inertial—while preserving the force
magnitude for a given separation. The result is a compact, nonrelativistic framework that retains Maxwell’s
geometric elegance while extending its scope to unified static-field interactions.
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I. INTRODUCTION

The quest to unify nature’s fundamental forces has long
been guided by the interplay of experiment and theory. Fara-
day’s investigations into electromagnetic induction [1] laid
the groundwork for linking electricity and magnetism, driven
by his conviction in the unity of physical phenomena. He
also speculated on possible ties between electromagnetism and
gravity—early, though inconclusive, explorations that foreshad-
owed later unification attempts [2]. Maxwell transformed this
vision into a coherent framework [3], uniting electricity and
magnetism, predicting the wave nature of light, and establish-
ing a paradigm central to classical field theory. His concise,
geometric formulation continues to inspire extensions from
fluid dynamics to gravitation. Adaptations of Maxwellian struc-
ture to gravitational theory include gravito-electromagnetism
[4, 9, 12, 18] and models from linearized general relativity.
Classical analogies, such as the Heaviside equations [4] and
scalar–vector–tensor models [6, 11], capture aspects of this cor-
respondence, while historical surveys [15] and modern propos-
als [14] explore deeper structural links. Most, however, rely on
relativistic assumptions, limiting their scope in static or purely
classical regimes. Here we present a classical, nonrelativistic
framework unifying electrostatic, magnetostatic, gravitational,
and inertial interactions in a common form. Embedding the
Lorentz force into Maxwell’s flux representation introduces
structural extensions that integrate motional effects into the
field–source relationship. Applied to a rotating spherical charge,
the method yields a dipole-like emergent magnetic charge and
a secondary field opposing the Coulomb term—both set by
geometry and motion. Building on this, we employ a force–flux
relation, analogous to Gauss’s law but expressed in terms of
force, whose dimensional form (N·m2) enables substitution of
magnetic, gravitational, or inertial charges while preserving
force magnitude. This dual development—uncovering hidden
geometries and establishing a force–flux route—offers a com-
pact, nonrelativistic approach that retains Maxwell’s elegance
while extending its scope to unified static-field interactions.

The search for such extensions parallels the historical pursuit
of magnetic monopoles as theoretical constructs and unifying
elements. Dirac’s quantization condition [5] inspired grand
unified monopole solutions [7, 8] and modern duality-based
approaches [10], while reviews [16, 17, 19] summarize theory
and experiments. Laboratory analogues have demonstrated
monopole-like configurations in synthetic magnetic fields [13].
The framework developed here remains strictly classical, avoids
quantum or relativistic premises, and reveals latent symmetries
linking electromagnetic, gravitational, and inertial phenomena.

II. MAXWELL EQUATIONS AND STRUCTURAL
EXTENSIONS

Maxwell’s equations form the foundation of classical field
theory, providing a unified framework that connects fields to
their sources—charge and current distributions—and governs
how time-varying fields induce one another. In integral form,
they reveal the geometric and physical relationships among
fields, fluxes, and sources. With appropriate substitutions of
constants and source variables, they can be generalized to
describe arbitrary charge types 𝑞𝑇 and 𝑞𝑇 ′ , each associated
with characteristic permittivity 𝜀𝑇0 and permeability 𝜇𝑇 ′

0
. The

fields ®𝐸𝑇 and ®𝐵𝑇 ′ are then interpreted as those generated by
such sources—electric, magnetic, gravitational, or inertial,
depending on context:∮

𝜕𝑉

®𝐸𝑇 · 𝑑 ®𝐴 =
1
𝜀𝑇0

∫
𝑉

𝜌𝑇 𝑑𝑉, (1)∮
𝜕𝑉

®𝐵𝑇 ′ · 𝑑 ®𝐴 = 0, (2)∮
𝜕𝑆

®𝐸𝑇 · 𝑑 ®ℓ = − 𝑑

𝑑𝑡

∫
𝑆

®𝐵𝑇 ′ · 𝑑 ®𝐴, (3)∮
𝜕𝑆

®𝐵𝑇 ′ · 𝑑 ®ℓ = 𝜇𝑇 ′
0

∫
𝑆

®𝐽𝑇 · 𝑑 ®𝐴 + 𝜇𝑇 ′
0
𝜀𝑇0

𝑑

𝑑𝑡

∫
𝑆

®𝐸𝑇 · 𝑑 ®𝐴. (4)
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These relations capture the coupling between fields and
sources for both static and dynamic conditions. However,
when charges or media move—especially with intrinsic ro-
tation—additional structural terms are required to represent
physical effects absent in the standard formulation.

A classic case is the Faraday disc (homopolar generator),
where motion of charges through a static magnetic field pro-
duces an electromotive force (emf) not accounted for by 𝜕 ®𝐵/𝜕𝑡
alone in Eq. (3). Such behavior is more completely described
by a Lorentz-type force on a charge 𝑞𝑇 :

®𝐹𝑇𝑇 ′ = 𝑞𝑇
( ®𝐸𝑇 + ®𝑢 × ®𝐵𝑇 ′

)
, (5)

where ®𝑢 is the velocity of the charge relative to ®𝐵𝑇 ′ . The
induced circulation along a closed contour is then

E𝑇𝑇 ′ =

∮
𝜕𝑆

( ®𝐸𝑇 + ®𝑢 × ®𝐵𝑇 ′
)
· 𝑑 ®ℓ, (6)

leading to the generalized Faraday induction law:∮
𝜕𝑆

( ®𝐸𝑇 + ®𝑢 × ®𝐵𝑇 ′
)
· 𝑑 ®ℓ = − 𝑑

𝑑𝑡

∫
𝑆

®𝐵𝑇 ′ · 𝑑 ®𝐴. (7)

The right-hand side represents the total time derivative of
the generalized magnetic flux ®𝐵𝑇 ′ through a time-dependent
surface 𝑆(𝑡), encompassing both intrinsic field variation (trans-
former effect) and flux change due to surface motion (motional
induction). The term ®𝑢 × ®𝐵𝑇 ′ is critical for systems such as
the Faraday disc, where the emf arises purely from kinematic
interaction with a static field.

A geometric criterion for motional induction is

®𝑢(®𝑟) ∦ ®𝐵𝑇 ′ (®𝑟) ⇒ ®𝑢(®𝑟) × ®𝐵𝑇 ′ (®𝑟) ≠ ®0 for some ®𝑟 ∈ R,

where R denotes a region occupied by the medium. This
reflects the need to cross field lines to generate motional emf.

If the source distribution undergoes intrinsic rotation, the
resulting velocity-dependent term modifies the static field. In
such cases the total field can be written as

®𝐸𝑇𝑇 ′ = ®𝐸𝑇 ± ®𝑢 × ®𝐵𝑇 ′ = −∇𝜙𝑇 ± ®𝑢 × ®𝐵𝑇 ′ , (8)

where 𝜙𝑇 is the potential for the given charge type. Although
®𝐸𝑇𝑇 ′ may not satisfy Gauss’s law in its original form, it can still
be evaluated via a flux relation under appropriate symmetry or
motion constraints:∮

𝜕𝑉

®𝐸𝑇𝑇 ′ · 𝑑 ®𝐴 =

∮
𝜕𝑉

(
− ∇𝜙𝑇 ± ®𝑢 × ®𝐵𝑇 ′

)
· 𝑑 ®𝐴

=
1
𝜀𝑇0

∫
𝑉

𝜌𝑇 𝑑𝑉, (9)

where 𝜌𝑇 may include both static and motion-induced contri-
butions.

A further extension follows from considering the flux of the
force field itself. Starting from∮

𝜕𝑉

®𝐸𝑇 · 𝑑 ®𝐴 =
1
𝜀𝑇0

∫
𝑉

𝜌𝑇 𝑑𝑉,

multiplication by 𝑞𝑇 gives the flux of the Coulomb-like force
®𝐹𝑇 = 𝑞𝑇 ®𝐸𝑇 : ∮

𝜕𝑉

®𝐹𝑇 · 𝑑 ®𝐴 = 𝑞𝑇

∮
𝜕𝑉

®𝐸𝑇 · 𝑑 ®𝐴

=
𝑞𝑇

𝜀𝑇0

∫
𝑉

𝜌𝑇 𝑑𝑉. (10)

If the enclosed distribution consists entirely of type-𝑞𝑇 charges,∫
𝑉

𝜌𝑇 𝑑𝑉 = 𝑞𝑇 ⇒
∮
𝜕𝑉

®𝐹𝑇 · 𝑑 ®𝐴 =
𝑞2
𝑇

𝜀𝑇0

. (11)

Eq. (11) quantifies the total force on a type-𝑞𝑇 charge due
to an enclosed distribution of like-sign charges. Although
structurally analogous to Gauss’s law, it is not a new field
equation but a scaled form of the source–field relation. The
resulting quantity has units of N · m2 (or J · m), independent
of the interaction type, underscoring the generality of the
formulation.

In combination, these results extend the Maxwellian struc-
ture to incorporate motional effects and force–flux relations,
providing a framework to analyze how intrinsic motion modifies
field–source interactions and yields new categories of effective
charges emerging from geometry.

III. MAGNETIC FIELD OF A ROTATING CHARGED
SPHERE

The structural extensions introduced in the preceding section
enable direct treatment of sources with intrinsic motion, where
the velocity-dependent term ®𝑢 × ®𝐵𝑇 ′ modifies the conventional
field–source relation. As a concrete example, we now examine
a uniformly charged solid sphere of radius 𝑅 and total charge 𝑞,
rotating with constant angular velocity ®𝜔 = 𝜔𝑧, as illustrated
in Fig. 1. In the rotating frame the charge distribution is
static; however, its azimuthal motion produces a steady current
density, which in turn generates a magnetic field. Our goal is
to determine the magnetic induction ®𝐵(®𝑟) for 𝑟 ≥ 𝑅 using the
Biot–Savart law in spherical coordinates, without introducing
the magnetic dipole moment as an ansatz.

The uniform volume charge density is

𝜌 =
𝑞

4
3𝜋𝑅

3
. (12)

Each volume element moves with velocity ®𝑢 = ®𝜔 × ®𝑟 ′, giving a
current density

®𝐽 (®𝑟 ′) = 𝜌 ( ®𝜔 × ®𝑟 ′) = 𝜌𝜔𝑟 ′ sin 𝜃′ 𝜙′. (13)

The Biot–Savart law gives the magnetic field at an observa-
tion point ®𝑟:

®𝐵(®𝑟) = 𝜇0
4𝜋

∫ ®𝐽 (®𝑟 ′) × (®𝑟 − ®𝑟 ′)
|®𝑟 − ®𝑟 ′ |3

𝑑3𝑟 ′. (14)
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To simplify the evaluation, we first compute the field along
the 𝑧-axis, where axial symmetry ensures that only the 𝑧-
component is nonzero. The source point ®𝑟 ′ is expressed in
spherical coordinates as

®𝑟 ′ = 𝑟 ′ (sin 𝜃′ cos 𝜙′, sin 𝜃′ sin 𝜙′, cos 𝜃′), (15)

with volume element

𝑑3𝑟 ′ = 𝑟 ′2 sin 𝜃′ 𝑑𝑟 ′ 𝑑𝜃′ 𝑑𝜙′. (16)

Substituting into the Biot–Savart expression and exploiting
symmetry, the axial component becomes

𝐵𝑧 (𝑟) =
𝜇0𝜌𝜔

2

∫ 𝑅

0

∫ 𝜋

0

𝑟 ′3 sin3 𝜃′

(𝑟2 − 2𝑟𝑟 ′ cos 𝜃′ + 𝑟 ′2)3/2 𝑑𝜃′ 𝑑𝑟 ′.

For 𝑟 ≥ 𝑅, the field point lies outside the source, and the
leading term of a multipole expansion yields the dominant
contribution. Evaluating the integral and substituting for 𝜌

gives

𝐵𝑧 (𝑟) =
𝜇0𝑞𝑅

2𝜔

4𝜋𝑟3 . (17)

By spherical symmetry, this generalizes to arbitrary polar angle
𝜃:

®𝐵(𝑟, 𝜃) = 𝜇0𝑞𝑅
2𝜔

4𝜋𝑟3
(
2 cos 𝜃 𝑟 + sin 𝜃 𝜃

)
, 𝑟 ≥ 𝑅. (18)

This is the exact dipolar field of the rotating sphere, obtained
without assuming a point dipole.

Applying Gauss’s law for magnetism,∮
𝜕𝑉

®𝐵 · 𝑑 ®𝐴 = 0,

confirms that no net magnetic charge is present, in agreement
with ∇ · ®𝐵 = 0. The total flux through a sphere of radius 𝑟 is
zero:

𝑑 ®𝐴 = 𝑟 𝑟2 sin 𝜃 𝑑𝜃 𝑑𝜙, (19)

Φ𝐵 =

∫ 2𝜋

0

∫ 𝜋

0
𝐵𝑟 (𝑟, 𝜃) 𝑟2 sin 𝜃 𝑑𝜃 𝑑𝜙 = 0, (20)

since ∫ 𝜋

0
cos 𝜃 sin 𝜃 𝑑𝜃 = 0. (21)

Although the net flux vanishes, the hemispherical contribu-
tions are nonzero:

Φ𝑁 =
𝜇0𝑞𝑅

2𝜔

2𝑟
, (22)

Φ𝑆 = − 𝜇0𝑞𝑅
2𝜔

2𝑟
, (23)

suggesting the presence of oppositely signed effective flux
sources at the poles. These may be expressed as effective
magnetic charges:

𝑞𝑁
𝑚 =

Φ𝑁

𝜇0
=

𝑞𝑅2𝜔

2𝑟
, (24)

𝑞𝑆𝑚 =
Φ𝑆

𝜇0
= −𝑞𝑅2𝜔

2𝑟
. (25)

Their sum,

𝑞eff
𝑚 = 𝑞𝑁

𝑚 + 𝑞𝑆𝑚 = 0, (26)

is consistent with the solenoidal constraint.
These effective quantities arise from the rotational motion

of the source rather than from fundamental monopoles. For
comparison, a static uniformly charged sphere can be viewed
as the sum of two hemispherical charges 𝑞/2 + 𝑞/2 = 𝑞. In the
rotating case,

𝑞𝑚𝑚 = ±𝑞𝑅2𝜔

2𝑟
, (27)

which leads to a convenient expression for the total magnitude
of the effective magnetic charge:

𝑞𝑚 = 𝑞𝑚𝑚 + 𝑞𝑚𝑚 =
𝑞𝑅2𝜔

𝑟
. (28)

This representation compactly encodes the dipole-like struc-
ture without implying isolated monopoles. The field can be
written as

®𝐵(𝑟, 𝜃) = 𝜇0𝑞𝑚

4𝜋𝑟2
(
2 cos 𝜃 𝑟 + sin 𝜃 𝜃

)
, 𝑟 ≥ 𝑅, (29)

where 𝑞𝑚 is the emergent magnetic quantity associated with
rotation. For macroscopic systems, 𝑞𝑚 depends on 𝑟; for
an elementary particle, the same structure may be expressed
in terms of a constant emergent magnetic charge 𝑞𝑚 = 𝑞 𝑐.
The formal derivation of 𝑞𝑚 is presented in the next sections,
providing a geometric interpretation of distributed-motion field
structures consistent with Maxwell’s equations.

IV. CROSS-COUPLED CONTRIBUTIONS TO THE TOTAL
ELECTRIC FIELD

The rotating charged sphere analyzed in the previous section
generates a magnetic field whose structure admits an effective
description in terms of emergent magnetic charges. Within the
extended Maxwellian framework, such rotation can also pro-
duce an additional electric field through a velocity–field cross
coupling. This mechanism parallels the Faraday disc (homopo-
lar generator), where motion through a spatially structured but
temporally constant magnetic field induces an electromotive
response. In a rotating continuous charge distribution, the
tangential velocity interacts with the self-generated magnetic
field to yield an extra electric field component, modifying the
total field experienced by the system.
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The total electric field ®𝐸𝑇𝑇 ′ can be expressed as the sum of
a static Coulomb field and a cross-coupled, motion-induced
field:

®𝐸𝑐𝑐𝑐 (®𝑟) = ®𝐸𝑐 (®𝑟) + ®𝐸𝑐𝑐 (®𝑟) = −∇𝜙(®𝑟) ± 𝑘 ®𝑢 × ®𝐵(®𝑟),

where ®𝑢 = 𝜔𝑅 sin 𝜃 𝜙 is the tangential velocity of the rotating
distribution on the surface. The sign reflects the sense of
rotation: in macroscopic systems it can be externally chosen,
whereas in elementary particles such as the electron it is fixed
by internal structure and energy considerations. For generality,
the cross-coupled term is written as

®𝐸𝑐𝑐 (®𝑟) = ± 𝑘 ®𝑢 × ®𝐵(®𝑟), (30)

where 𝑘 is a context-dependent constant: 𝑘 = 1 for macro-
scopic systems, and 𝑘 = 3

2 for elementary particles, as will
be shown from flux constraints. Decomposing the field as
®𝐵(®𝑟) = 𝐵𝑟 (𝑟, 𝜃) 𝑟 + 𝐵𝜃 (𝑟, 𝜃) 𝜃, and using 𝜙 × 𝑟 = 𝜃 and
𝜙 × 𝜃 = −𝑟, we find for ±𝑘 ®𝑢 × ®𝐵(®𝑟) that only the radial
component contributes to the quantity of interest, yielding

𝐸𝑐𝑐,𝑟 (𝑟, 𝜃) = ±𝑘 · 𝜔𝑅 sin 𝜃 · 𝐵𝜃 (𝑟, 𝜃), (31)

with

𝐵𝜃 (𝑟, 𝜃) =
𝜇0𝑞𝑅

2𝜔

4𝜋𝑟3 sin 𝜃, (32)

leading to

𝐸𝑐𝑐,𝑟 (𝑟, 𝜃) = ±𝑘 · 𝜇0𝑞𝑅
3𝜔2

4𝜋𝑟3 sin2 𝜃. (33)

The contribution to the total electric flux is obtained from
Gauss’s law:

Φ𝑐𝑐𝑐 =

∮
𝜕𝑉

®𝐸𝑇𝑇 ′ · 𝑑 ®𝐴 =

∮
𝜕𝑉

(
−∇𝜙 + ®𝐸𝑐𝑐

)
· 𝑑 ®𝐴. (34)

Over a spherical surface, only the radial components contribute:

Φ𝑐𝑐𝑐 =

∫ 2𝜋

0

∫ 𝜋

0

(
𝐸𝑐,𝑟 (𝑟, 𝜃) + 𝐸𝑐𝑐,𝑟 (𝑟, 𝜃)

)
𝑟2 sin 𝜃 𝑑𝜃 𝑑𝜙.

The Coulomb term gives∮
𝜕𝑉

®𝐸𝑐 · 𝑑 ®𝐴 =
𝑞

𝜀0
. (35)

For the cross-coupled term:

Φ𝑐𝑐 = ±𝑘 · 𝜇0𝑞𝑅
3𝜔2

4𝜋𝑟

∫ 2𝜋

0
𝑑𝜙

∫ 𝜋

0
sin3 𝜃 𝑑𝜃 = ±2𝑘𝜇0𝑞𝑅

3𝜔2

3𝑟
.

Thus, the total flux is

Φ𝑐𝑐𝑐 =
𝑞

𝜀0
± 2𝑘𝜇0𝑞𝑅

3𝜔2

3𝑟
. (36)

When the induced field opposes the Coulomb field, as for the
electron, the sign is negative and the effective field is reduced:

®𝐸𝑐𝑐𝑐 = −∇𝜙 − 𝑘 ®𝑢 × ®𝐵(𝑟, 𝜃), (37)

Φ𝑐𝑐𝑐 =
𝑞

𝜀0
− 2𝑘𝜇0𝑞𝑅

3𝜔2

3𝑟
. (38)

ω⃗

x

y

z

r

ϕ

θ

q

u⃗

B⃗(r⃗)

E⃗cc(r⃗)

E⃗c(r⃗)

FIG. 1. Field structure of a rotating charge distribution. Rotation
generates a dipolar magnetic field and a cross-coupled electric field
®𝐸𝑐𝑐 that opposes the static Coulomb field ®𝐸𝑐 , yielding a screened
effective charge (original charge in red, partially obscured by the purple
screening field). This effect parallels the Faraday disc, where motion
through a stationary magnetic field induces an electric response.

This reduction acts as a screening effect, lowering the observable
electric field without altering the intrinsic charge.

The physical plausibility of this configuration can be assessed
from energy considerations. The total electric field energy is

𝑈 =
1
2
𝜀0

∫
| ®𝐸tot (®𝑟, 𝑡) |2 𝑑3𝑟, (39)

with time derivative

𝑑𝑈

𝑑𝑡
= 𝜀0

∫
®𝐸tot ·

𝜕 ®𝐸tot
𝜕𝑡

𝑑3𝑟. (40)

For steady rotation, ®𝐸𝑐 is static and time variation arises solely
from ®𝐸𝑐𝑐 (𝑡):

𝜕 ®𝐸tot
𝜕𝑡

= ±𝜕 ®𝐸𝑐𝑐

𝜕𝑡
. (41)

Substituting gives

𝑑𝑈

𝑑𝑡
= ±𝜀0

∫
( ®𝐸𝑐 ± ®𝐸𝑐𝑐) ·

𝜕 ®𝐸𝑐𝑐

𝜕𝑡
𝑑3𝑟. (42)

In the screening case ( ®𝐸tot = ®𝐸𝑐 − ®𝐸𝑐𝑐):

𝑑𝑈

𝑑𝑡
= −𝜀0

∫
( ®𝐸𝑐 − ®𝐸𝑐𝑐) ·

𝜕 ®𝐸𝑐𝑐

𝜕𝑡
𝑑3𝑟. (43)

In steady state, 𝜕 ®𝐸𝑐𝑐/𝜕𝑡 = 0, so

𝑑𝑈

𝑑𝑡
= 0. (44)
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In the additive case ( ®𝐸tot = ®𝐸𝑐 + ®𝐸𝑐𝑐):

𝑑𝑈

𝑑𝑡
= 𝜀0

∫
( ®𝐸𝑐 + ®𝐸𝑐𝑐) ·

𝜕 ®𝐸𝑐𝑐

𝜕𝑡
𝑑3𝑟. (45)

Again, for equilibrium

𝑑𝑈

𝑑𝑡
= 0, (46)

but the total field energy becomes

𝑈 = 𝑈𝑐 +𝑈𝑐𝑐 +𝑈int, (47)

where

𝑈int = 𝜀0

∫
®𝐸𝑐 · ®𝐸𝑐𝑐 𝑑

3𝑟 (48)

is generally positive, giving𝑈 > 𝑈𝑐. For an isolated elementary
charge, this implies an unphysical energy surplus unless external
work is supplied.

We conclude that the screening configuration is energetically
consistent, whereas the additive case contradicts conservation.
For elementary particles with intrinsic rotation—such as spin or
internal charge circulation—the physically viable configuration
is therefore

®𝐸tot = ®𝐸𝑐𝑐𝑐 = ®𝐸𝑐 − ®𝐸𝑐𝑐 . (49)

V. EXTENDED ELECTRIC FIELD OF ELEMENTARY
CHARGED PARTICLES

The cross-coupled mechanism derived previously not only
alters the macroscopic field of a rotating distribution but can
also be applied to the intrinsic dynamics of elementary charges.
For such particles, internal rotational motion generates a self-
interaction between the tangential velocity and the associated
magnetic field, producing a persistent screening of the elec-
trostatic field. In this section, we adapt the formulation to the
microscopic scale and determine the corresponding parameters
for an individual charged particle.

For an elementary particle, the total electric field is written
as

®𝐸𝑐𝑐𝑐 = −∇𝜙 − 𝑘 ®𝑢 × ®𝐵(𝑟, 𝜃),

®𝑢 = 𝜔𝑅 sin 𝜃 𝜙, 𝑞𝑚 =
𝑞𝑅2𝜔

𝑟
,

®𝐵(𝑟, 𝜃) = 𝜇0𝑞𝑚

4𝜋𝑟2
(
2 cos 𝜃 𝑟 + sin 𝜃 𝜃

)
, 𝑟 ≥ 𝑅,

Φ𝑐𝑐𝑐 =
𝑞

𝜀0
− 2𝑘𝜇0𝑞𝑅

3𝜔2

3𝑟
.

Here 𝑅 is replaced by the classical charge radius 𝑟𝑐; for
the electron, 𝑟𝑐 = 𝑟𝑒. The tangential velocity satisfies the
relativistic constraint 𝜔𝑟𝑐 = 𝑐.

The screening effect reaches its maximal strength when the
net electric flux at the particle surface (𝑟 = 𝑟𝑐) is zero, which
fixes 𝑘 through

Φ𝑐𝑐𝑐 = 0 ⇒ 𝑞

𝜀0
− 2𝑘𝜇0𝑞𝑐

2𝑟𝑐
3𝑟

= 0 ⇒ 𝑘 =
3
2
. (50)

To eliminate explicit dependence on 𝑟𝑐, we use its known
expression

𝑟𝑐 =
𝑞2

4𝜋𝜀0𝑚𝑐2 . (51)

The quantity 𝑞𝑚, representing the dipole-like magnetic
source term, becomes

𝑞𝑚 =
𝑞𝑅2𝜔

𝑟
= 𝑞𝑐

𝑟𝑐

𝑟
= 𝑞𝑐

𝑞2

4𝜋𝜀0𝑚𝑐2𝑟
, (52)

𝑞𝑚 = 𝑞𝑚
𝑞2

4𝜋𝜀0𝑚𝑐2𝑟
, (53)

where 𝑞𝑚 is the magnetic counterpart of the electric charge, co-
located (𝑟 = 𝑟𝑐) with the particle’s charge distribution. It is not
a monopole but an emergent attribute arising from the particle’s
intrinsic rotation. The term 𝑞2

4𝜋𝜀0𝑚𝑐2𝑟
acts as a radial scaling

factor that decreases with distance, reducing the influence of
𝑞𝑚 in 𝑞𝑚 as 𝑟 increases.

The resulting extended electric field for an elementary
charged particle is

®𝐸𝑐𝑐𝑐 = −∇𝜙 − 3
2
®𝑢 × ®𝐵(𝑟, 𝜃), (54)

®𝑢 = 𝑐 sin 𝜃 𝜙, 𝑞𝑚 = 𝑞𝑚
𝑞2

4𝜋𝜀0𝑚𝑐2𝑟
, (55)

®𝐵(𝑟, 𝜃) = 𝜇0𝑞𝑚

4𝜋𝑟2
(
2 cos 𝜃 𝑟 + sin 𝜃 𝜃

)
, 𝑟 ≥ 𝑟𝑐, (56)

®𝐸𝑐𝑐𝑐 = ®𝐸𝑐 − ®𝐸𝑐𝑐 =
𝑞

4𝜋𝜀0

®𝑟
|®𝑟 |3

− 𝑞3

16𝜋2𝜀2
0𝑚𝑐2

®𝑟
|®𝑟 |4

, (57)

®𝐸𝑐 = −∇𝜙 =
𝑞

4𝜋𝜀0

®𝑟
|®𝑟 |3

, (58)

®𝐸𝑐𝑐 =
3
2
®𝑢 × ®𝐵(𝑟, 𝜃) = 𝑞3

16𝜋2𝜀2
0𝑚𝑐2

®𝑟
|®𝑟 |4

. (59)

VI. EMERGENT CHARGES AND DIMENSIONAL
SYMMETRY IN CLASSICAL FORCE LAWS

The extended field description for elementary charges nat-
urally invites comparison with other interaction domains. If
the structural link between field coupling constants and wave
propagation speed observed in electromagnetism also applies to
gravity and inertia, then analogous formulations should emerge
across these systems.

In electromagnetism, the vacuum constants define the speed
of light:

𝑐2 =
1

𝜀0𝜇0
. (60)

Extending this symmetry to an arbitrary interaction with charge
type 𝑞𝑇 and coupling constants 𝜀𝑇0 , 𝜇𝑇 ′

0
gives

𝑐2 =
1

𝜀𝑇0𝜇𝑇 ′
0

=
1

𝜀𝑔0𝜇𝑖0
, (61)
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where 𝜀𝑔0 and 𝜇𝑖0 represent the gravitational permittivity and
inertial permeability, respectively.

For the gravitational analogy, we take

𝜀𝑔0 = 4𝜋𝐺 = 8.38717 × 10−10 J/
(
kg · m−1

)2
· m, (62)

from which

𝜇𝑖0 =
1

𝑐2𝜀𝑔0

= 1.32661 × 10−8
(
kg · m−1 · s

)2
/J · m. (63)

follows directly.
The generalized force–flux relation for a Coulomb-like field,∮

𝜕𝑉

®𝐹 · 𝑑 ®𝐴 =
𝑞2
𝑇

𝜀𝑇0

,

retains its form for electric, magnetic, gravitational, and iner-
tial sources. Incorporating the coupling constants and their
connection through 𝑐 yields

𝑞2
𝑇

𝜀𝑇0

= 𝜇𝑇 ′
0
𝑞2
𝑇 ′ =

𝑞2
𝑒

𝜀0
= 𝜇0𝑞

2
𝑚 =

𝑞2
𝑔

𝜀𝑔0

= 𝜇𝑖0𝑞
2
𝑖 , (64)

𝑞𝑇 ′ = ±𝑞𝑇𝑐 ⇒ 𝑞𝑚 = ±𝑞𝑒𝑐, 𝑞𝑖 = ±𝑞𝑔𝑐. (65)

Evaluating the magnetic analogue:

𝑞 = ±𝑞𝑒 = ±1.60217663 × 10−19 J/V, (66)
𝑞𝑚 = ±𝑞𝑒𝑐 = ±4.8032 × 10−11 J · m/V · s. (67)

For the gravitational analogue producing the same force mag-
nitude at a fixed separation,

𝑞𝑔 = ±𝑞𝑒
√︂

𝜀𝑔0

𝜀0
= ±1.55935 × 10−18 J/kg · m−1, (68)

and for the inertial analogue,

𝑞𝑖 = ±𝑞𝑔𝑐 = ±4.67481 × 10−10 J · m/kg · m−1 · s. (69)

These results indicate that a Coulomb-type force law can be
written for electromagnetic, gravitational, or inertial interac-
tions by selecting the corresponding charge–constant pair. Al-
though the physical interpretation of the fields differs—electric
induction, gravitational acceleration, or inertial resistance—the
integral structure is identical, reflecting a dimensional symme-
try that extends beyond electromagnetism.

VII. FIELD EQUIVALENCE VIA GAUSS LAW FOR THE
DISPLACEMENT FIELD

The dimensional symmetries established above can be ex-
pressed directly in the language of displacement fields. In
electromagnetism, Gauss’s law for the electric displacement
field relates the flux through a closed surface to the enclosed
free charge: ∮

𝜕𝑉

®𝐷 · 𝑑 ®𝐴 = 𝑞free, ®𝐷 = 𝜀0 ®𝐸. (70)

This form applies both to macroscopic systems—such as
charged conductors with surface free charge—and to elementary
particles, whose far-field behavior matches that of a Coulomb
source.

The same structure may be applied to gravity by defining a
gravitational displacement field

®𝐷𝐺 = 𝜀𝑔0
®𝐸𝐺 , (71)

with ®𝐸𝐺 as the gravitational field analogue. Using the gravita-
tional–electric charge equivalence

𝑞𝑔 = ±𝑞𝑒
√︂

𝜀𝑔0

𝜀0
,

the gravitational and electric displacement fluxes are related by∮
𝜕𝑉

®𝐷𝐺 · 𝑑 ®𝐴 = ±
√︂

𝜀𝑔0

𝜀0

∮
𝜕𝑉

®𝐷𝐸 · 𝑑 ®𝐴, (72)

where ®𝐷𝐸 = 𝜀0 ®𝐸 .
Substituting ®𝐷𝐺 = 𝜀𝑔0

®𝐸𝐺 and simplifying gives

®𝐸𝐺 = ±
√︂

𝜀0
𝜀𝑔0

®𝐸, (73)

showing that ®𝐷𝐺 has units of acceleration (m/s2 or N/kg).
Multiplying Eq. (73) by 𝜀𝑔0 yields

®𝐷𝐺 = ± ®𝐸√𝜀0𝜀𝑔0 , (74)

identifying gravitational acceleration with the gravitational
displacement field rather than ®𝐸𝐺 itself. This parallels Gauss’s
law in electrostatics, with both interactions sharing a flux-based
geometric structure.

To illustrate the scale of the coupling, consider the electric
field in vacuum required for 𝐷𝐺 = 9.81 N/kg:

𝐸 =
𝐷𝐺√
𝜀0𝜀𝑔0

, 𝐷𝐸 = 𝜀0𝐸, (75)

𝐸 = 1.13838 × 1011 V/m, 𝐷𝐸 = 1.0079 J/V · m2. (76)

This enormous value highlights the relative weakness of gravity
despite the formal analogy.

An analogous correspondence follows from the mag-
netic–inertial charge relation in Eq. (64):

𝜇𝑖0𝑞
2
𝑖 = 𝜇0𝑞

2
𝑚 ⇒ 𝑞𝑖 = ±𝑞𝑚

√︂
𝜇0
𝜇𝑖0

. (77)

The resulting flux equivalence between inertial and magnetic
displacement fields is∮

𝜕𝑉

®𝐷 𝐼 · 𝑑 ®𝐴 = ±
√︂

𝜇0
𝜇𝑖0

∮
𝜕𝑉

®𝐷𝐵 · 𝑑 ®𝐴, (78)

with ®𝐷𝐵 = ®𝐵/(𝜇0𝑐) = ®𝐻/𝑐 and ®𝐷 𝐼 = ®𝐵𝐼/(𝜇𝑖0𝑐) = ®𝐻𝐼/𝑐,
where ®𝐻𝐼 is an inertial analogue to the magnetic field.
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From Eq. (78), the magnetic field needed to induce 𝐷 𝐼 =

9.81𝑚/𝑠2 is

𝐻 = 𝑐𝐷 𝐼

√︂
𝜇𝑖0

𝜇0
, 𝐵 = 𝑐𝐷 𝐼

√
𝜇0𝜇𝑖0 , (79)

𝐻 = 3.02 × 108 A/m ( or J/V · s · m), 𝐵 = 379.72 T. (80)

As in the electric–gravitational case, the required field is excep-
tionally large, emphasizing that while the displacement-field
analogy preserves formal structure, the coupling strengths differ
greatly.

Because the framework is flux-based, these analogies ex-
tend from point particles to macroscopic systems—such as the
rotating charged spheres considered earlier—by substituting
alternative coupling constants without altering the underlying
Gauss-law form. This provides a unified geometric and di-
mensional description for electric, gravitational, magnetic, and
inertial interactions.

VIII. UNIFIED FIELD EQUATION

The flux-based analogies established in the displacement-
field framework can be extended to a single formulation that
applies uniformly across electric, magnetic, gravitational, and
inertial domains. Building on the structural extensions to
Maxwell’s equations and the emergent charge relations derived
from dimensional symmetry, we write the generalized static-
field equation for an arbitrary charge type (Fig. 2) in a form
parallel to the extended electric field:

®𝐸𝑇𝑇 ′ = −∇𝜙𝑇 − 3
2
®𝑢 × ®𝐵𝑇 ′ (𝑟, 𝜃), (81)

®𝑢 = 𝑐 sin 𝜃 𝜙, 𝑞𝑇 ′ = 𝑞𝑇 ′
𝑞2
𝑇

4𝜋𝜀𝑇0𝑚𝑐2𝑟
, (82)

®𝐵(𝑟, 𝜃) =
𝜇𝑇 ′

0
𝑞𝑇 ′

4𝜋𝑟2
(
2 cos 𝜃 𝑟 + sin 𝜃 𝜃

)
, 𝑟 ≥ 𝑟𝑐, (83)

®𝐸𝑇𝑇 ′ = ®𝐸𝑇 − ®𝐸𝑇 ′ =
𝑞𝑇

4𝜋𝜀𝑇0

®𝑟
|®𝑟 |3

−
𝑞3
𝑇

16𝜋2𝜀2
𝑇0
𝑚𝑐2

®𝑟
|®𝑟 |4

, (84)

®𝐸𝑇 = −∇𝜙𝑇 =
𝑞𝑇

4𝜋𝜀𝑇0

®𝑟
|®𝑟 |3

, (85)

®𝐸𝑇 ′ =
3
2
®𝑢 × ®𝐵𝑇 ′ (𝑟, 𝜃) =

𝑞3
𝑇

4𝜋𝜀2
𝑇0
𝑚𝑐2

®𝑟
|®𝑟 |4

, (86)

®𝐷𝑇𝑇 ′ =
𝑞𝑇

4𝜋
®𝑟
|®𝑟 |3

−
𝑞3
𝑇

16𝜋2𝜀𝑇0𝑚𝑐2
®𝑟
|®𝑟 |4

. (87)

The formalism applies to specific interaction pairs by assign-
ing the appropriate charges and constants:

𝑇𝑇 ′ = 𝐸𝑀


𝑞𝑇 = ±𝑞𝑒, 𝑞𝑇 ′ = ±𝑞𝑚,
𝜀𝑇0 = 𝜀0, 𝜇𝑇 ′

0
= 𝜇0,

𝜙𝑇 = 𝜙, 𝐵𝑇 ′ = 𝐵

, (88)

𝑇𝑇 ′ = 𝐺𝐼


𝑞𝑇 = ±𝑞𝑔, 𝑞𝑇 ′ = ±𝑞𝑖 ,
𝜀𝑇0 = 𝜀𝑔0 , 𝜇𝑇 ′

0
= 𝜇𝑖0 ,

𝜙𝑇 = 𝜙𝐺 , 𝐵𝑇 ′ = 𝐵𝐼

. (89)
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1

FIG. 2. Unified static-field representation. Comparison of the
electron’s total electromagnetic field 𝐸𝐸𝑀 and its gravitational dis-
placement field 𝐷𝐺𝐼 within the unified formulation. At 𝑟 = 1.12500 ·
10−10 m, the fields have magnitudes 𝐸𝐸𝑀 = −1.13775 · 1011 V/m
and 𝐷𝐺𝐼 = −9.80475 N/kg. Both arise from the same structural
equation with domain-specific coupling constants, illustrating the
geometric and dimensional symmetry between electromagnetic and
gravitoinertial interactions.

Choosing TT′ = EM in Eq. (88) recovers the extended elec-
tric field of an elementary charged particle—such as the elec-
tron—or, more generally, its composite electromagnetic field
combining electric and emergent magnetic charges. Likewise,
TT′ = GI in Eq. (89) yields the extended gravitational field,
or composite gravitoinertial field, uniting gravitational and
emergent inertial charges.

IX. FIELD QUANTITIES AND UNITS

The following is a summary of the field quantities, accompa-
nied by their respective units:

TABLE I. Field Quantities and Units (Part I)

Symbol Unit Symbol Unit
𝐸 [V/m] 𝐻 [J/V · s · m] = [A/m]
𝐷𝐸 [J/V · m2] 𝐵 [V · s/m2]
𝜀0 [J/V2 · m] 𝜇0 [(V · s)2 /J · m]
𝑞𝑒 [J/V] 𝑞𝑚 [J · m/V · s ]

TABLE II. Field Quantities and Units (Part II)

Symbol Unit Symbol Unit
𝐸𝐺 [kg · m−1/m] 𝐻𝐼 [J/kg · m−1 · s · m]
𝐷𝐺 [J/kg · m−1 · m2] 𝐵𝐼 [kg · m−1 · s/m2]

𝜀𝑔0 [J/
(
kg · m−1

)2
· m] 𝜇𝑖0 [

(
kg · m−1 · s

)2
/J · m]

𝑞𝑔 [J/kg · m−1] 𝑞𝑖 [J · m/kg · m−1 · s]
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X. FIELD-INDUCED MASS AND FORCE EFFECTS

The expressions linking electromagnetism to gravity and
inertia—assumed here by symmetry—can be generalized to ap-
ply across different media. In this broader formulation, the elec-
tromagnetic and gravito-inertial constants are complemented
by the medium’s relative permittivity 𝜀𝑟 and permeability 𝜇𝑟 .
Furthermore, instead of using the vacuum speed of light 𝑐,
one may substitute the group velocity 𝑢𝑔, which in conductive
media is approximated by a diffusive-like expression. Thus,
the effective expressions for gravitational-like and inertia-like
acceleration (𝑎) become:

𝑎 = 𝐷𝐺 = ±𝐸 𝜀𝑟
√
𝜀0𝜀𝑔0 , (90)

𝑎 = 𝐷 𝐼 = ± 𝐵

𝑢𝑔 𝜇𝑟
√
𝜇0𝜇𝑖0

. (91)

Let us consider confined electromagnetic energy, such as a
standing wave, which can be modulated through an angular ve-
locity shift Δ𝜔. This applied shift gives rise to a force, initially
described by the radiation pressure relation 𝐹 = 1

𝑐
𝑑𝑈
𝑑𝑡

. An
equivalent formulation expresses this force in terms of the elec-
tromagnetic energy density 𝑤EM and the cross-sectional area
𝐴 through which the energy undergoes accelerated translation:

𝐹 = 𝐴 · 𝑤EM · Δ𝜔
𝜔𝑔

, (92)

where 𝜔𝑔 denotes the base angular velocity.
The equivalent electromagnetic mass 𝑚EM can now be ex-

pressed by dividing the force by the corresponding acceleration
expressions introduced above:

𝑤EM ≈ 𝜀0𝜀𝑟𝐸
2 ≈ 𝐵2

𝜇0𝜇𝑟
, (93)

𝑚EM = ±𝐴 · 𝐸
√︂

𝜀0
𝜀𝑔0

· Δ𝜔
𝜔𝑔

= ±𝐴 · 𝑢𝑔𝐵
√︂

𝜇𝑖0

𝜇0
· Δ𝜔
𝜔𝑔

. (94)

Eq. (94) suggests that confined electromagnetic energy may
give rise to an effective mass that exhibits both inertial and
gravitational-like behavior—despite originating from a mass-
less configuration.

An insightful expression emerges for the electron or positron
when we set 𝐴 = 4𝜋𝑟2

𝑒, 𝐸 = ∓ 𝑞𝑒

4𝜋𝜀0𝑟
2
𝑒

, 𝑢𝑔 = 𝑐, and 𝜀𝑟 = 𝜇𝑟 = 1.
Under these conditions, the electromagnetic mass becomes:

𝑚EM = ∓ 𝑞𝑒√
𝜀0𝜀𝑔0

· Δ𝜔
𝜔𝑔

, (95)

𝑚𝑔 = ∓ 𝑞𝑒√
𝜀0𝜀𝑔0

= ∓1.85921 · 10−9 kg. (96)

By dividing 𝑚𝑔 by the Planck mass 𝑚𝑝 and squaring the
result, we obtain the fine-structure constant:

𝛼 =
𝑞2
𝑒

4𝜋𝜀0ℏ𝑐
, (97)(

𝑚𝑔

𝑚𝑝

)2
= 𝛼. (98)

XI. DISCUSSION

Embedding the Lorentz force into Maxwell’s flux form ex-
poses motional and rotational terms that are normally hidden
when force laws are treated separately from field equations.
In this view, a spinning charged sphere acquires an emergent
dipole-like magnetic charge and a rotation-induced electric
screening, both following directly from geometry. Such ef-
fects, while consistent with Maxwell’s equations, have been
overlooked because the flux form is rarely used as a foundation
for including source motion intrinsically. Beyond electromag-
netism, we construct a Gauss Force–Flux law by multiplying
Gauss’s field–flux relation by the corresponding charge type
𝑞𝑇 . The resulting force flux has fixed units of N · m2, and
its closed-surface integral evaluates to 𝑞2

𝑇
/𝜀𝑇0 . The reference

to 𝑞𝑇 -independence pertains to the dimensional form, which
is the same for any interaction type. This fixed dimension-
ality enables direct substitution of electric parameters with
magnetic, gravitational, or inertial ones while preserving the
inverse-square force magnitude. In this way, the hidden motion–
field coupling found in electromagnetism extends naturally to
a broader class of static-field interactions, all within a purely
classical, geometric framework.

XII. CONCLUSION

The present formulation reveals latent geometric structure in
Maxwell’s theory and extends it through a charge-independent
(in units) force–flux relation to encompass magnetic, gravita-
tional, and inertial domains. While the integral of the force
flux depends on 𝑞2

𝑇
/𝜀𝑇0 , the fixed units of N · m2 allow dif-

ferent charge types to be substituted directly without altering
the underlying inverse-square structure. This preserves the
compact elegance of the original equations while offering a
unified, nonrelativistic description of static interactions. This
perspective suggests that Maxwell’s framework is not merely
the grammar of electromagnetism, but a universal geometric
language for all inverse-square forces.
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