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Abstract

Dirac magnetic monopoles are hypothetical elemen-
tary particles. By assuming their existence one
can explain the quantization of electric charge, the
August Kundt experiment, and the conservation of
baryon and lepton number.

Here I present a new nomenclature where I rede-
fine isospin and hypercharge. By doing so I explain
baryon and lepton number conservation as an effect
of the electric-magnetic duality and the U(1)× U(1)
gauge symmetry of quantum electromagnetodynam-
ics. By using this method I predict the quantum
numbers of an octet of magnetic monopoles. Another
surprising result is that both leptons and quarks have
nonzero magnetic isospin, a new quantum number.

Moreover I show that Dirac magnetic monopoles
can form low-mass bound states which are analogous
to mesons, baryons, atoms, and molecules. I point
out that these bound states could be the major com-
ponent of cold dark matter.

The PandaX Collaboration reported an excess of
4.3 events above the background in the PandaX-4T
experiment. The best fit for this excess was obtained
for a WIMP mass of 6 GeV. Here I show that
both the mass and the interaction cross-section are
compatible with bound states of Dirac magnetic
monopoles.

Keywords:
Einstein-Cartan theory, energy-momentum tensor,
Lorentz transformations, gauge invariance, quantum
field theories, magnetic monopoles, running coupling
constant, weak energy condition, isospin, hyper-
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PACS numbers:
11.30.Hv Flavor symmetries
11.30.Ly Other internal and higher symmetries
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1 Introduction

This paper presents radically new physical ideas
which are far beyond the mainstream. In order to
be understandable to students and physicists, I will
start at a very elementary level. This paper is or-
ganized as follows. I will start with the two- and
three-dimensional rotations of non-relativistic classi-
cal mechanics (ch. 2.2). I will continue with the
spin rotations of non-relativistic quantum mechanics
(ch. 2.3). This will be followed by the global Lorentz
transformations of special relativity (ch. 2.4). This
will be combined to the spin rotations of relativistic
quantum mechanics (ch. 2.5). By analogy, this is
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applied to the local gauge transformations of quan-
tum electrodynamics, quantum flavordynamics, and
quantum chromodynamics (ch. 2.6). This is followed
by the local Lorentz transformations of general rela-
tivity (ch. 2.7). I show that general relativity is not
a generalization of special relativity (ch. 2.8). More-
over general relativity requires a symmetric energy-
momentum tensor in contrast to quantum field the-
ory which requires an asymmetric energy-momentum
tensor. I show that both conditions can be satis-
fied if general relativity is extended to a (quantum)
Einstein-Cartan theory which requires torsion as a
gauge field and spin as a charge (ch. 2.8). This is
analogous to isospin which is a pure quantum num-
ber in quantum mechanics, but the source of a gauge
field in quantum field theory (ch. 2.9).

Now I continue with radically new physical ideas.
The reasons are that the standard theory of particle
physics can explain neither the quantization of elec-
tric charge nor the conservation of baryon and lep-
ton number. I will show that quantum field theories
which include Dirac magnetic monopoles can explain
both. I start with a simple proof of the famous Dirac
quantization condition (ch. 3.2). I continue with a
formulation of the quantum field theory of electric
and magnetic charges (ideas in ch. 3.3, formalism in
ch. 3.4). I suggest a desktop experiment to test this
theory (ch. 3.5). By using the weak energy condi-
tion I show that the magnetic coupling constant and
the fine-structure constant become of order unity at
the Planck scale (ch. 3.7). This argumentation sug-
gests that elementary magnetic monopoles have rest
masses of the order of the Planck mass (ch. 3.7).

I will continue by generalizing the electric-magnetic
duality for the weak and strong interactions (ch. 4).
I regard strong and weak isospin (ch. 4.1) and ar-
gue why I am unhappy with these textbook defini-
tions (ch. 4.2). I make a new definition of both
isospin and hypercharge (ch. 4.3). By doing so I
find that both baryon and lepton number are associ-
ated with hypercharge (ch. 4.4). I recall the electric-
magnetic duality of ch. 3.3 (ch. 4.5) and extend it to
the weak and strong interactions (ch. 4.6). By do-
ing so I can explain the conservation of both baryon
and lepton number (ch. 4.7). This procedure al-
lows the determination of the quantum numbers of

both the fermionic and bosonic elementary magnetic
monopoles (ch. 4.8).

Leptons and quarks are bound to mesons, baryons,
and atoms. I argue that chromomagnetic magnetic
monopoles (called hanselons) are bound to analogous
states (ch. 5.2), and I define their properties (ch.
5.3). Atoms of Dirac magnetic monopoles which con-
sist of one gretelon and three hanselons could be the
WIMP constituents of cold dark matter, because this
can explain why there are much more baryons than
anti-baryons in the universe, although the baryon
number of the universe should be zero (ch. 5.4). By
using this argumentation, I calculate the rest mass of
the lightest bound state of Dirac magnetic monopoles
(ch. 6.2) and its interaction cross-section with con-
ventional matter (ch. 6.3). I argue that these WIMP
bound states of Dirac magnetic monopoles have al-
ready been observed by the PandaX experiment for
the search for dark matter WIMPs (ch. 6.5). I
finish by pointing out that bound states of Dirac
magnetic monopoles can be easily distinguished from
other WIMP and dark matter candidates by examin-
ing their quantum numbers (ch. 6.6).

2 Standard Theory of Particle
Physics

2.1 Introduction

I will present my argumentation in a didactic way.
So I will start at a very elementary level. If not de-
noted otherwise then Latin indices run from 1 to 3,
Greek indices run from 0 to 3. I will use the Einstein
summation convention, where it is summed over all
indices which appear twice. Moreover I will use the
natural units

h̄ = c = ε0 = 1 (1)

where h̄ = h/2π denotes the reduced Planck con-
stant, c the speed of light, and ε0 the electric field
constant. Inner indices of matrices will be dropped.

I examine the groups which underly classical me-
chanics, non-relativistic quantum mechanics, special
relativity, relativistic quantum mechanics, quantum
electrodynamics, quantum flavourdynamics, quan-
tum chromodynamics, and general relativity. This
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examination includes the rotations SO(2) and SO(3),
the Pauli algebra, the Lorentz transformations, the
Dirac algebra, and the U(1), SU(2), and SU(3) gauge
transformations. I argue that general relativity must
be generalized to Einstein-Cartan theory, so that
Dirac spinors can be described within the framework
of gravitation theory.

2.2 Classical Mechanics

The space of classical mechanics is described by the
three-dimensional Euclidian space. The scalar prod-
uct of the three-vectors ai and bi is given by

a · b = δijaibj (2)

where
δij = diag (1, 1, 1) (3)

denotes the Kronecker symbol. The vector product
is given by

(a× b)k = εijkaibj (4)

where εijk denotes the totally anti-symmetric Levi-
Civita symbol. The square of the infinitesimal line
element is given by

ds2 = δijdxidxj (5)

where dxi denotes the infinitesimal coordinate differ-
ence of the two space-points xi and yi

dxi = lim
yi→xi

(yi − xi) (6)

A rotation R around the rotation angle ϕ in the two-
dimensional subspace is described by the orthogonal
rotation group SO(2)

R = exp(−iϕD)

=

(
cosϕ − sinϕ
sinϕ cosϕ

)
∈ SO(2) (7)

where, because of the Euler equation

e−iϕ = cosϕ− i sinϕ (8)

the generator of the rotation is

D =

(
0 −i
i 0

)
(9)

A rotation R around the rotation angle ϕi in the
three-dimensional space is described by the rotation
group SO(3)

R = exp(−iϕiDi) ∈ SO(3) (10)

where the generators Di of the rotation satisfy the
commutator relation

[Di, Dj ] = iεijkDk (11)

A representation of the generators of the SO(3) group
is

D1 =

 0 0 0
0 0 −i
0 i 0

 (12)

D2 =

 0 0 i
0 0 0
−i 0 0

 (13)

D3 =

 0 −i 0
i 0 0
0 0 0

 (14)

Note that the number of generators of the orthogonal
groups is given by

dim SO(n) = n(n− 1)/2 (15)

and that the generators of SO(n) are Hermitean.

2.3 Non-Relativistic Quantum Me-
chanics

Classical angular momentum is continuous. In quan-
tum physics orbital angular momentum is quantized
in units of h̄ and intrinsic spin is quantized in units of
h̄/2. Intrinsic spin is described by the unitary group
SU(2). Its generators are the three Pauli matrices σi.
An often used representation of the Pauli matrices is

σ1 =

(
0 1
1 0

)
(16)

σ2 =

(
0 −i
i 0

)
(17)

σ3 =

(
1 0
0 −1

)
(18)
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The commutator of the group SU(2) is given by

[σi, σj ] = 2iεijkσk (19)

The groups SU(2) and SO(3) are local isomorphic for
angles 0 ≤ ϕ < 2π where the group SU(2) is covered
by the group SO(3). Note also that the commutators
eq. (11) and eq. (19) differ by a factor of two. The
anti-commutator is

{σi, σj} = 2δij (20)

The multiplication of two three-vectors ai and bi is
given by

(σ · a)(σ · b) = (σiai)(σjbj)

= (δij + iεijkσk)aibj

= a · b+ iσ · (a× b) (21)

According to non-relativistic quantum mechanics
both spin and isospin are invariant under global
transformations of the group SU(2). If Ψ denotes a
two-component Pauli-spinor, ϕi the three-component
rotation angle vector, σi the Pauli matrices, and x a
space-time point, then

Ψ′(x) = exp(−iϕiσi/2)Ψ(x) (22)

If Ψ denotes a two-component iso-spinor, ϕi the
three-component phase vector, and τi the Pauli ma-
trices, then

Ψ′(x) = exp(−iϕiτi/2)Ψ(x) (23)

2.4 Special Relativity

The special theory of relativity is invariant under the
semi-simple Poincare group. The parameters of its
translational part are time and three-position. The
parameters of its rotational part are the rotation
angle three-vector and the three-component Lorentz
boost.

The scalar product of the two four-vectors aµ and
bµ is given by

a · b = gµνa
µbν (24)

where gµν denotes the metric tensor. It is

gµν = gµν (25)

gµν = gν
µ = δµν = diag (1, 1, 1, 1) (26)

In Minkowski coordinates the metric tensor is repre-
sented by

gµν = diag (1,−1,−1,−1) (27)

The square of the infinitesimal line element is given
by

ds2 = gµνdx
µdxν (28)

where dxµ denotes the infinitesimal coordinate differ-
ence of the two space-time points xµ and yµ

dxµ = lim
yµ→xµ

(yµ − xµ) (29)

A rotation around the z-axis by the rotation angle ϕ
is given by

aµν =


1 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 1

 (30)

A Lorentz boost along the x-axis by the speed v is
given by

aµν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 (31)

where

β = v/c (32)

γ = 1/
√

1− v2/c2 (33)

In general, a Lorentz transformation aµν of a four-
position xµ is given by

x′µ = aµνx
ν (34)

The Lorentz transformation of a four-derivative ∂µ =
∂/∂xµ is given by

∂′µ = aµ
ν∂ν (35)

Finally, a Lorentz transformation around the param-
eter ωαβ is given by

aµν = exp

(
1

2
ωαβI

αβ

)µ
ν

∈ O(1, 3) (36)
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where a representation of the six generators of the
Lorentz group SO(1, 3) is

I10 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (37)

I20 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 (38)

I30 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 (39)

I13 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 (40)

I23 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 (41)

I12 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (42)

2.5 Relativistic Quantum Mechanics

The group which underlies the kinematics of relativis-
tic quantum mechanics and relativistic quantum field
theory is the Poincare group. Isospin is invariant un-
der global transformations of the group SU(2). The
generators are the three Pauli matrices τi. The three
Pauli matrices σi of spin are generalized by the four
Dirac matrices γµ. An often used representation of
the Dirac matrices is

γ0 =

(
1 0
0 −1

)
(43)

γi =

(
0 σi
−σi 0

)
(44)

It is

γ0 = γ0 (45)

γi = −γi (46)

The commutator is

[γµ, γν ] = −2iσµν (47)

which is the definition of the generalized Dirac ma-
trices σµν . The anti-commutator gives

{γµ, γν} = 2gµν (48)

By using the representation eqs. (43) and (44) of the
Dirac matrices and the representation eqs. (16), (17)
and (18) of the Pauli matrices, the anti-commutator
gives the representation eq. (27) of the metric tensor
in Minkowski coordinates. Moreover it is

γ5 = γ5 = −iγ0γ1γ2γ3 (49)

The multiplication of two four-vectors aµ and bµ is
given by

(γ · a)(γ · b) = (γµa
µ)(γνb

ν)

= (gµν − iσµν)aµbν (50)

The Lorentz transformation of a four-component spin
1/2 Dirac spinor field Ψ(x) is given by

Ψ′(x′) = exp

(
− i

4
σµν

(
1

2
ωαβI

αβ

)µν)
Ψ(x) (51)

which is a generalization of eq. (36) which considers
both the Lorentz transformation of the elementary
particle and its intrinsic spin.

2.6 Relativistic Quantum Field The-
ory

Quantum electrodynamics describes invariance un-
der local transformations in the gauge group U(1).
If Ψ describes a four-component Dirac spinor, x a
space-time point, e the elementary electric charge, ϕ
the gauge phase, Dµ the covariant derivative, ∂µ the
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partial four-derivative, and Aµ the electromagnetic
four-potential, then the gauge transformation is

Ψ′(x) = exp(−ieϕ(x))Ψ(x) (52)

iDµ = i∂µ − eAµ(x) (53)

A′µ(x) = Aµ(x)− ∂µϕ(x) (54)

Note that U(1) and SO(2) are isomorphic.
Quantum flavordynamics describes invariance un-

der local transformations in the gauge group SU(2)×
U(1). If Ψ denotes an eight-component iso-spinor
Dirac spinor, x a space-time point, g the weak cou-
pling constant, ϕi the three-component gauge phase
isovector, τi the Pauli matrices, and W i

µ the weak
isovector four-potentials, then the gauge transforma-
tions of the SU(2) part are

Ψ′(x) = exp(−igϕi(x)τi/2)Ψ(x) (55)

iDµ = i∂µ −
g

2
W i
µ(x)τi (56)

W ′µi (x) = Wµ
i (x)− ∂µϕi(x)

−gεijkϕj(x)Wµ
k (x) (57)

Quantum chromodynamics describes invariance
under local transformations in the gauge group
SU(3). If Ψ denotes a twelve-component colour-
vector Dirac spinor, x a space-time point, g the
strong coupling constant, ϕi the eight-component
gauge phase vector, λi the eight Gell-Mann matri-
ces, and Giµ the eight gluon four-potentials, then the
gauge transformations are

Ψ′(x) = exp(−igϕi(x)λi/2)Ψ(x) (58)

iDµ = i∂µ −
g

2
Giµ(x)λi (59)

G′µi (x) = Gµi (x)− ∂µϕi(x)

−gfijkϕj(x)Gµk(x) (60)

where the indices i, j, k run from 1 to 8.
A representation of the Gell-Mann matrices is

λ1 =

 0 1 0
1 0 0
0 0 0

 (61)

λ2 =

 0 −i 0
i 0 0
0 0 0

 (62)

λ3 =

 1 0 0
0 −1 0
0 0 0

 (63)

λ4 =

 0 0 1
0 0 0
1 0 0

 (64)

λ5 =

 0 0 −i
0 0 0
i 0 0

 (65)

λ6 =

 0 0 0
0 0 1
0 1 0

 (66)

λ7 =

 0 0 0
0 0 −i
0 i 0

 (67)

λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 (68)

The commutator of the Gell-Mann matrices is

[λi, λj ] = 2ifijkλk (69)

and the anti-commutator is

{λi, λj} =
4

3
δij + 2dijkλk (70)

Note that the number of the generators of the unitary
groups is given by

dim SU(n) = n2 − 1 (71)

and that the generators of the SU(n) groups are Her-
mitean.

According to relativistic quantum mechanics
and relativistic quantum field theory, the energy-
momentum tensor Σµν of a Dirac spinor Ψ is asym-
metric

Σµν(x) = −1

2

((
DµΨ̄(x)

)
γνΨ(x)

)
+

1

2

(
Ψ̄(x)γνDµΨ(x)

)
(72)

where the covariant derivative Dµ is given by the
equations (53), (56) and (59).
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2.7 General Relativity

The general theory of relativity describes invariance
under arbitrary curvilinear transformations. It is in-
variant under local transformations in the Lorentz
group SO(1, 3). The Lorentz boosts depend on the
four-position xµ. Note that the Poincare group
which underlies special relativity has ten generators,
whereas the Lorentz group which underlies general
relativity has only six generators. Therefore general
relativity is not a generalization of special relativity.

The scalar product of the four-vectors aµ and bµ is
given by

a · b = gµν(x)aµbν (73)

where the metric tensor gµν depends on the space-
time point x. The square of the infinitesimal line
element is

ds2 = gµν(x)dxµdxν (74)

The local Lorentz transformation is

aµν(x) = exp

(
1

2
ωαβ(x)Iαβ

)µ
ν

(75)

which is a generalization of eq. (36).
When a four-vector Cα is parallely displaced from

the four-position xµ to the four-position xµ + dxµ,
then it changes according to the prescription

dCα = −Γαµν(x)Cνdxµ (76)

This is the definition of the four-position-dependent
affine connection Γαµν . According to general relativity
it has only a symmetric part

{}αµν(x) =
1

2

(
Γαµν(x) + Γανµ(x)

)
(77)

which is named Christoffel symbol. The Riemann
curvature tensor is given by

Rλµνκ(x) = ∂κΓλµν(x)− ∂νΓλµκ(x)

+Γαµν(x)Γλκα(x)− Γαµκ(x)Γλνα(x)

(78)

By contraction one gets the Ricci tensor

Rµν(x) = Rλµλν(x) (79)

and the Ricci scalar

R(x) = Rµµ(x) (80)

The Einstein field equations are

Rµν(x)− 1

2
gµν(x)R(x) = κΣµν(x) (81)

where

κ = −8πG (82)

denotes the Einstein field constant and Σµν the
energy-momentum tensor.

Since the affine connection (Christoffel symbol) is
symmetric it follows that the energy-momentum ten-
sor of general relativity is symmetric. This is in
contrast to the asymmetric energy-momentum tensor
of a Dirac spinor of relativistic quantum mechanics.
This means that a Dirac spinor cannot be described
by the geometry that underlies general relativity.

2.8 Einstein-Cartan Theory

Einstein-Cartan theory is a generalization of general
relativity, because within the framework of this the-
ory the anti-symmetric part of the affine connection
which is named Cartan’s torsion tensor

Tαµν(x) =
1

2

(
Γαµν(x)− Γανµ(x)

)
(83)

is nonzero. In contrast to the Christoffel symbol the
torsion tensor transforms as a tensor under arbitrary
curvilinear transformations. Cartan’s torsion tensor
is related to the spin tensor by

Tαµν(x) = κταµν(x) (84)

where κ = −8πG denotes the Einstein field constant
known from general relativity.

The Dirac spinor can be described by the geometry
that underlies Einstein-Cartan theory, because this
theory describes an asymmetric affine connection and
therefore an asymmetric energy-momentum tensor.

Einstein-Cartan theory is invariant under local
transformations of the Poincare group. So Einstein-
Cartan theory is a generalization of special relativity.
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In quantum Einstein-Cartan theory the local
Lorentz gauge transformation of a Dirac spinor field
Ψ is given by

Ψ′(x′) = exp

(
− i

4
σµν

(
1

2
ωαβ(x)Iαβ

)µν)
Ψ(x)

(85)
This equation is a combination of eqs. (51) and (75).

2.9 Conclusion

I argued that the general theory of relativity must be
generalized by the Einstein-Cartan theory, because
the asymmetric energy-momentum tensor of relativis-
tic quantum mechanics requires the existence of an
asymmetric affine connection and therefore the exis-
tence of a nonzero torsion tensor. Moreover I pointed
out that spin is the source of a gauge field which is
associated with Cartan’s torsion. This is analogous
to the situation of isospin which is a pure quantum
number in quantum mechanics, but the source of the
weak gauge field in quantum flavourdynamics.

3 Dynamics of Magnetic
Monopoles

3.1 Introduction

In 1904 Thomson [1] has shown that the angular mo-
mentum generated by the Lorentz force between an
electric charge and a magnetic charge is independent
of their distance. As intrinsic spin and orbital angular
momentum are quantized in units of (half-)integers
times the reduced Planck constant h̄, Dirac [2] con-
cluded in 1931, that these conditions can be satis-
fied only if both electric charge and magnetic charge
appear in discrete units only. Since then textbooks
tell us that the coupling constant of Dirac magnetic
monopoles is 34.259. Here I show that this conclusion
is not correct. Electric charge appears not in multi-
ples of the positron charge e, but in multiples of the
quark charge e/3. At zero temperature the coupling
constant of Dirac magnetic monopoles is 308.331. By
using the weak energy condition I show that this cou-
pling is a running coupling constant and becomes
smaller than 0.5 at the Planck temperature.

3.2 Classical Dirac Magnetic
Monopoles

I will use the natural units

h̄ = c = ε0 = 1 (86)

where h̄ = h/2π denotes the reduced Planck con-
stant, c the speed of light, and ε0 the electric field
constant.

The electric field strength generated by an electric
charge Q resting in the center of the coordinate frame
is

E =
Q

4πr2
r̂ (87)

where r̂ ≡ r/r denotes the unit position vector, r the
position vector, and r ≡ ‖r‖ its absolute value.

By analogy, the magnetic field strength generated
by a magnetic charge q resting in the center of the
coordinate frame is

B =
q

4πr2
r̂ (88)

In the classical (non-quantum mechanical) case the
Lorentz force on a moving electric charge Q in the
static magnetic field generated by a resting magnetic
charge q is

mr̈ = Qṙ×B (89)

Here ṙ ≡ ∂tr is the speed of the electric charge and
r̈ ≡ ∂tṙ = ∂2t r is its acceleration. The rest mass of
the electric charge is denoted by m. The rest mass
of the magnetic charge is assumed to be much larger
(infinity) than that of the electric charge, so that the
magnetic charge can rest in the center of the coordi-
nate frame.

By using

∂tr̂ = ∂t
(
r/
√
r · r

)
=

rṙ−
(

1
2r2ṙ · r

)
r

r2

=
r2ṙ− (ṙ · r)r

r3

=
r× (ṙ× r)

r3
(90)

the orbital angular momentum
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L ≡ r×mṙ (91)

of the electric charge generated by the Lorentz force
gives

∂t L = L̇ = r×mr̈

= Qr×
(
ṙ× qr

4πr3

)
=

Qq

4π
∂tr̂ (92)

Subtraction gives

0 = ∂t

(
L− Qq

4π
r̂

)
(93)

Total angular momentum J is the sum of orbital an-
gular momentum L and intrinsic spin S,

J = L + S (94)

Moreover it is conserved,

0 = ∂tJ = ∂t(L + S) (95)

Comparison of equations (8) and (10) gives

S = −Qq
4π

r̂ (96)

Intrinsic spin is quantized in units of half-integers
times the reduced Planck constant,

‖S‖ =
n

2
(97)

where n denotes an arbitrary integer. Hence,

Qq = 2πn (98)

This is the Dirac quantization condition. It requires
that Q and q cannot have arbitrary values.

In the days of Dirac [2], that is in 1931, quarks
were not known. So he assumed that electric charge
is quantized in units of the positron charge e. There-
fore he assumed the unit magnetic charge g′ so as to
satisfy

eg′ = 2π (99)

By using the Sommerfeld fine-structure constant

αE ≡
e2

4π
' 1

137.036
(100)

this gives the coupling constant

g′2

4π
=

1

4π

(
2π

e

)2

=
1

4αE
' 34.259 (101)

However, since the prediction [3] and observation [4,
5] of quarks we know that electric charge is quantized
in units of e/3. Hence, the unit magnetic charge g is
given by

e

3
g = 2π (102)

This gives the magnetic coupling constant

αM ≡
g2

4π
=

1

4π

(
6π

e

)2

=
9

4αE
' 308.331 (103)

3.3 The Model

The quantization of electric charge is well-known
since the discovery of the proton in 1919. This re-
markable observation remained unexplained within
the framework of quantum electrodynamics.

Further quantized charges have been established.
The group SU(2) of the weak interaction explains the
quantization of isospin, and the group SU(3) of the
strong interaction explains the quantization of colour
charge.

For this reason I propose the analogy postulate:
The quantization of electric charge results from the
underlying group structure of the electromagnetic
interaction. Hence, I will require neither quan-
tum gravity (electric charge as a topological quan-
tum number, nor spontaneous symmetry breaking
(monopoles of soliton type), nor unification with
other forces (charge quantization resulting from the
group structure underlying grand unified theories).

The electromagnetic angular momentum generated
by the Lorentz force in a system consisting of a mag-
netic monopole and an electric charge is independent
of their separation. Angular momentum is quantized
in units of h̄/2, where h̄ = h/2π denotes the re-
duced Planck constant. This condition can be sat-
isfied only if both electric and magnetic charge are

9



quantized. This is the famous Dirac quantization
condition eg = h, where e and g denote unit elec-
tric and unit magnetic charge.

Magnetic monopoles were discussed long before
this finding. The motivation was to describe elec-
tric and magnetic fields equivalently by symmetrized
Maxwell equations. I will elevate this to the symme-
try postulate: The fundamental equations of the elec-
tromagnetic interaction describe electric and mag-
netic charges, electric and magnetic field strengths,
and electric and magnetic potentials equivalently.

Dirac was the first to write down these sym-
metrized Maxwell equations.

Let Jµ = (P,J) denote the electric four-current
and jµ = (ρ, j) the magnetic four-current. The
well-known four-potential of the electric photon is
Aµ = (Φ,A). The four-potential of the magnetic
photon is aµ = (ϕ,a). Expressed in three-vectors the
symmetrized Maxwell equations read,

∇ ·E = P (104)

∇ ·B = ρ (105)

∇×E = −j− ∂tB (106)

∇×B = +J + ∂tE (107)

and the relations between field strengths and poten-
tials are

E = −∇Φ− ∂tA−∇× a (108)

B = −∇ϕ− ∂ta +∇×A. (109)

The second four-potential is required not only by
the symmetry postulate, but also by the proven im-
possibility to construct a manifestly covariant one-
potential model of quantum electromagnetodynam-
ics.

Although only one of the suggested two-potential
models explicitely states the possibility of the exis-
tence of a magnetic photon, the other two-potential
models were eventually considered as two-photon
models.

Any viable two-photon concept of magnetic
monopoles has to satisfy the following conditions.

(i) In the absence of both magnetic charges and the
magnetic photon field, the model has to regain the
U(1) gauge symmetry of quantum electrodynamics.

(ii) In the absence of both electric charges and the
photon field, the symmetry postulate requires the
model to yield the U ′(1) gauge symmetry of quan-
tum magnetodynamics.

(iii) The gauge group has to be Abelian, be-
cause the photon carries neither electric nor magnetic
charge. Because of the symmetry postulate also the
magnetic photon has to be neutral.

(iv) The gauge group may not be simple, because
quantum electromagnetodynamics includes the two
coupling constants αE = e2/4π and αM = g2/4π.

The only gauge group that satisfies these four con-
ditions is the group U(1)× U ′(1).

A two-photon model has already been suggested by
Salam. According to his model the photon couples
via vector coupling with leptons and hadrons, but
not with monopoles. The magnetic photon couples
via vector coupling with monopoles and via tensor
coupling with hadrons, but not with leptons.

This model came under severe criticism. Although
positron and proton have the same electric charge and
no magnetic charge, the model can discriminate them
(i. e. leptons and hadrons). For this reason Salam’s
model does not generate the Lorentz force between
electric charge and monopole. As a consequence, it
does not satisfy the powerful Dirac quantization con-
dition.

This problem can be overcome by the following ar-
gumentation. Salam considered the tensor coupling
of the hadron-monopole system as derivative cou-
pling. This kind of coupling is well-known from me-
son theory where vector mesons are able to interact
with baryons via both vector and tensor coupling.
However, derivative coupling is possible only where
the particles are composite. Hence, Salam’s model
includes no interaction between lepton and magnetic
photon. – I emphasize the correctness of the inter-
pretation of tensor coupling as derivative coupling in
meson theory.

To generate the Lorentz force between electric and
magnetic charges we have to introduce a new kind of
tensor coupling. This is required also, because here
we have two kinds of interacting charges (electric and
magnetic).

The Coulomb force between two (unit) electric
charges is e2/4πr2 Because of the symmetry pos-
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tulate the magnetic force between two (unit) mag-
netic charges is g2/4πr2 And the Lorentz force be-
tween (unit) electric and (unit) magnetic charge is
egv/4πr2, where v denotes the relative velocity of
the two charges.

This suggests the introduction of velocity coupling:
(i) The photon couples via vector coupling with

electric charges.
(ii) The magnetic photon couples via vector cou-

pling with magnetic charges.
(iii) The photon couples via tensor coupling with

magnetic charges. In contrast to meson theory, how-
ever, the uµ of tensor coupling, σµνuν , has to be in-
terpreted as a four-velocity (velocity coupling).

(iv) The magnetic photon couples via tensor cou-
pling (interpreted as velocity coupling instead of
derivative coupling) with electric charges.

In the case of the interacting monopole-electric
charge system the exchanged boson (either photon or
magnetic photon) is virtual and the four-velocity of
velocity coupling is the relative four-velocity between
the charges.

Charged quanta are required to emit and absorb
the same bosons as real (on-mass-shell) particles as
those virtual (off-mass-shell) bosons via whom they
interact with other charged quanta. This is because
the Feynman rules are symmetric with respect to vir-
tual and real particles.

In the case of emission and absorption reactions of
real bosons, uµ cannot be interpreted as a relative
four velocity between charged quanta in the initial
state, as there is only one charged quantum present.
As a consequence, uµ has to be interpreted as the
absolute four-velocity of the initial charged quantum.

In contrast to general belief an absolute rest frame
is not forbidden. Instead, a number of reasons sup-
port its existence.

The absolute rest frame required for the abso-
lute velocity is defined by the comoving frame of
relativistic cosmology. This is the center-of-mass
frame of all the masses within the observable universe
(Hubble sphere), the frame which shows an isotropic
redshift-distance relation (defined by the Hubble ef-
fect, where contributions of the optical Doppler effect
are isotropic). The absolute velocity of the sun has
been measured by the dipole anisotropy of the cosmic

microwave background radiation. Its value is v = 370
km/s.

3.4 Formalism

The Lagrangian for a spin 1/2 fermion field Ψ of rest
mass m0, electric charge Q, and magnetic charge q
within an electromagnetic field can be constructed as
follows. By using the tensors

Fµν ≡ ∂µAν − ∂νAµ (110)

fµν ≡ ∂µaν − ∂νaµ (111)

the Lagrangian of the Dirac fermion within the elec-
tromagnetic field reads,

L = −1

4
FµνF

µν − 1

4
fµνf

µν + Ψ̄iγµ∂µΨ−m0Ψ̄Ψ

−QΨ̄γµΨAµ − qΨ̄γµΨaµ

+QΨ̄γ5σµνuνΨaµ + qΨ̄γ5σµνuνΨAµ. (112)

By using the Euler-Lagrange equations we obtain the
Dirac equation

(iγµ∂µ −m0)Ψ = (QγµAµ + qγµaµ −Qγ5σµνuνaµ
−qγ5σµνuνAµ)Ψ. (113)

By introducing the four-currents

Jµ = QΨ̄γµΨ− qΨ̄γ5σµνuνΨ (114)

jµ = qΨ̄γµΨ−QΨ̄γ5σµνuνΨ (115)

the Euler-Lagrange equations yield the two Maxwell
equations

Jµ = ∂νF
νµ = ∂2Aµ − ∂µ∂νAν (116)

jµ = ∂νf
νµ = ∂2aµ − ∂µ∂νaν . (117)

Evidently, the two Maxwell equations are invariant
under the U(1)× U ′(1) gauge transformations

Aµ → Aµ − ∂µΛ (118)

aµ → aµ − ∂µλ. (119)

Furthermore, the four-currents satisfy the continuity
equations

0 = ∂µJ
µ = ∂µj

µ. (120)
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The electric and magnetic field are related to the ten-
sors above by

Ei = F i0 − 1

2
εijkfjk (121)

Bi = f i0 +
1

2
εijkFjk. (122)

Finally, the Lorentz force is

Kµ = Q(Fµν+
1

2
εµν%σf%σ)uν+q(fµν−1

2
εµν%σF%σ)uν ,

(123)
where εµν%σ denotes the totally antisymmetric ten-
sor. This formula for the Lorentz force is rather triv-
ial for the classical theory. Non-trivial is that this
formula can be applied to the quantum field theory.
This becomes possible because of the introduction of
the velocity coupling which includes a velocity oper-
ator and allows the definition of a force operator.

3.5 Suggested Experiment

I suggest an experiment to test my theory by search-
ing for the magnetic photon rays which are emitted
by all conventional light sources and detectable by
conventional light detectors (such as the human eye,
photo diodes, and photomultiplier tubes).

Illuminate a metal film of thickness between 100
and 1000 nanometers by a laser beam and place a de-
tector (avalanche diode or photomultiplier tube) be-
hind the metal film. My theory predicts that the laser
emits both electric and magnetic photons and that
the detector detects both kinds of photon. The inter-
action cross-section of a magnetic photon is smaller
by a factor of 560,000 to 780,000 with respect to the
interaction cross-section of an electric photon of the
same energy for quantum physical effects such as in-
duced emission and the photoelectric effect. Clas-
sical electrodynamics predicts that the metal film
absorbs the conventional photons (Einstein’s elec-
tric photons) completely, the penetration depth (skin
depth) is 2 to 7 nanometers, depending only on the
frequency of the laser light and the electric conductiv-
ity of the metal film. My theory predicts that a high
percentage of the Salam magnetic photons penetrates
the metal film. The penetration depth is predicted

to be 100 to 500 nanometers, depending only on the
same frequency of the electric and magnetic photons
of the laser beam and the electric conductivity (which
has to be divided by a factor of c/v = 750 to 880) of
the metal film. – Note that mirrors and metal films
do not reflect electric and magnetic photons in the
same way, because of the factor 750 to 880 by which
the conductivity has to be divided.

3.6 Non-Classical Dirac Magnetic
Monopoles

Because of the introduction of the Lorentz force,
the calculation above was made for classical (non-
quantum mechanical) objects with electric and mag-
netic charge. However, since 1997 I am argueing [6,
7] that the quantum field theoretical interaction be-
tween electric and magnetic charges requires the in-
troduction of a velocity operator which allows the
definition of a Lorentz force. So the calculation above
is valid also for the quantum physical case.

More precisely, the introduction of the velocity op-
erator requires the existence of absolute speed which
is defined by the finite light cone generated by the
Hubble effect. The velocity operator is therefore an
effect not only of quantum field theory, but also of
gravitation theory. The velocity operator is therefore
an effect of quantum gravity.

Moreover the calculation above gives the Dirac
quantization condition only if equation (88) is used.
It requires that both the Einstein electric photon [8]
and the Salam magnetic photon [9] have zero rest
mass. A massive magnetic photon would require a
Yukawa potential whose exponential term would de-
stroy the Dirac quantization condition.

3.7 Running Coupling Constant

In chapter 4.8 I will predict the existence of elemen-
tary fermions with magnetic charge q = g (called
hanselons and gretelons) and also with q = 2g
(gretelons). The binding energy of two gretelons with
opposite magnetic charge ±2g which are separated by
the distance r would become quite large,

Eb = − q2

4πr
= − (2g)2

4πr
(124)
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The total energy of two bound gretelons would be

E 'M1 +M2 +
1

r
− g2

πr
− GM1M2

r
(125)

whereM1 andM2 are the rest masses of the gretelons,
1/r is their zero point energy given by the uncertainty
principle, −g2/πr is their magnetic binding energy,
and−GM1M2/r is their gravitational binding energy.
G denotes the Newtonian gravitational constant.

The weak energy condition states that there cannot
exist any negative energy densities. Hence, E ≥ 0.
Moreover the rest masses of elementary particles can-
not be larger than the Planck mass MP = G−1/2,
because otherwise their Schwarzschild radius would
become larger than the Planck length lP = 1/MP =
G1/2. Hence,

0 ≤ E ≤ 2MP +
1

r
− g2

πr
− GMPMP

r
(126)

In principle, the mutual distance of the two (elemen-
tary) gretelons can become as small as the Planck
length,

r ≥ lP = 1/MP (127)

Hence, in the case r = 1/MP it is

0 ≤ E ≤ 2MP −
g2

π
MP = MP

(
2− g2

π

)
(128)

This can be satisfied only if

αM (r = lP ) =
g2(r)

4π
≤ 1

2
(129)

Hence, αM (r) must be a running coupling constant.
It must decrease with distance and increase with en-
ergy. – That αE(r) is a running coupling constant is
known since the work of Gell-Mann and Low in 1954
[10].

3.8 Summary

By using the quark hypothesis I have shown that at
zero temperature the magnetic coupling constant is
as high as 308.331. By using the weak energy con-
dition and applying it on a system of two bound
magnetic charges, I have shown that the magnetic
coupling is a running coupling constant and becomes
smaller than 0.5 at the Planck scale.

4 Elementary Magnetic
Monopoles

4.1 Strong and Weak Isospin

According to the conventional nomenclature pre-
sented in textbooks, up and down quark have strong
isospin, whereas all the other elementary fermions
have zero strong isospin.

All the left-handed quarks and leptons have weak
isospin, whereas all the right-handed quarks and lep-
tons have zero weak isospin. There are no right-
handed neutrinos.

4.2 Criticism of Textbook Nomencla-
ture

There exist three left-handed fermion octets.
(i) The first octet consists of three up quarks, three

down quarks, electron, and electron-neutrino.
(ii) The second octet consists of three charm

quarks, three strange quarks, muon, and muon-
neutrino.

(iii) The third octet consists of three top quarks,
three bottom quarks, tauon, and tau-neutrino.

The first octet includes three strong isospin dou-
blets, whereas the other octets include no strong
isospin doublets. The three octets are not described
equivalently.

All the left-handed fermion octets include four
weak isospin doublets. The three right-handed
fermion septets include no weak isospin doublets.
Left-handed and right-handed fermions are not de-
scribed equivalently.

4.3 New Nomenclature

In order to describe both left-handed and right-
handed fermions and the three octets equivalently,
I will suggest a new definition of isospin, so that all
the leptons and quarks have isospin partners and that
all the octets consist of four isospin doublets.

(i) The isospin partner of the up quark is the down
quark.

(ii) The isospin partner of the charm quark is the
strange quark.
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(iii) The isospin partner of the top quark is the
bottom quark.

(iv) The isospin partner of the charged lepton is its
corresponding neutrino.

A consequence of this redefinition is that right-
handed neutrinos must exist.

Each quark exists in three chromoelectric colors.
So each of the three fermion octets consists of four
isospin doublets.

If Q denotes electric charge in units of the positron
charge e, I3 denotes the third component of isospin,
and Y denotes hypercharge, then the Gell-Mann-
Nishijima equation reads

Q = I3 + Y/2 (130)

If B denotes baryon number and L denotes lepton
number, then:

(i) For quarks we get Y = B. The famous equation
Y = B+S for strange quarks is valid only for strong
isospin, but not here.

(ii) For leptons we get Y = −L.

(iii) For fermions we get in general

Y = B − L (131)

The quantum numbers of the elementary particles are
then:

(i) Up, charm, and top quark have Q = +2/3,
I3 = +1/2, and Y = +1/3.

(ii) Down, strange, and bottom quark have Q =
−1/3, I3 = −1/2, and Y = +1/3.

(iii) Electron-neutrino, muon-neutrino, and tau-
neutrino have Q = 0, I3 = +1/2, and Y = −1.

(iv) Electron, muon, and tauon have Q = −1, I3 =
−1/2, and Y = −1.

(v) Each of the three families of leptons has its own
lepton number. Because of neutrino-oscillations, only
their sum L can be conserved.

(vi) Each of the three families of quarks has its
own baryon number. Because of Kobayashi-Maskawa
mixing [11], only their sum B can be conserved.

According to this redefinition, isospin is conserved
as long as both electric charge and hypercharge are
conserved.

4.4 Baryon and Lepton Number

Quantum electrodynamics (QED) associates the
U(1)Q gauge symmetry with electric charge Q.
Quantum flavordynamics (QFD) [12, 13] describes a
SU(2)I × U(1)Y gauge symmetry, where SU(2)I is
associated with isospin and U(1)Y with hypercharge.
A rotation by the Weinberg angle ΘW transforms the
third part Wµ

3 of the gauge field associated with the
SU(2)I group and the gauge field Bµ associated with
the U(1)Y group into the gauge field Aµ associated
with the photon of QED and the gauge field Zµ as-
sociated with the Z boson,

Aµ = Bµ cos ΘW +Wµ
3 sin ΘW (132)

Zµ = −Bµ sin ΘW +Wµ
3 cos ΘW (133)

For the quantum numbers this rotation is described
by the Gell-Mann-Nishijima equation.

The U(1)Y gauge symmetry describes hypercharge
Y = B − L, so B − L should be conserved. How-
ever, both baryon number B and lepton number L
are conserved independently. So one would expect
that B is associated with a U(1) gauge symmetry
and that L is associated with another U(1) gauge
symmetry. Hence, there should exist a U(1) × U(1)
gauge symmetry.

4.5 Electric-Magnetic Duality

Quantum electromagnetodynamics (QEMD) [6, 7]
was suggested in order to describe electricity and
magnetism equivalently. This theory includes both
electric charge Q and magnetic charge q. Quanta
which have nonzero magnetic charge are called Dirac
magnetic monopoles [2]. Quanta which have both
nonzero electric charge and nonzero magnetic charge
are called Schwinger dyons [14]. The gauge bosons of
QEMD are the photon (now called Einstein electric
photon [8]) and the new Salam magnetic photon [9].
The gauge group is U(1)Q × U(1)q.

4.6 Generalized Electric-Magnetic
Duality

The introduction of magnetic charges and the mag-
netic photon makes it necessary to generalize the
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standard theory of particle physics.
QFD will be generalized by a new theory which is

described by a SU(2)I × U(1)Y × SU(2)M × U(1)X
gauge symmetry. The eight gauge bosons are the
electric photon, the two W bosons, the Z boson, and
the new magnetic photon, the two new isomagnetic
W bosons, and the new isomagnetic Z boson.

A rotation by the isomagnetic Weinberg angle ΘM

transforms the third part wµ3 of the gauge field as-
sociated with the SU(2)M group and the gauge field
bµ associated with the U(1)X group into the gauge
field aµ associated with the magnetic photon and the
gauge field zµ associated with the isomagnetic Z bo-
son,

aµ = bµ cos ΘM + wµ3 sin ΘM (134)

zµ = −bµ sin ΘM + wµ3 cos ΘM (135)

For the quantum numbers this rotation is described
by the magnetic Gell-Mann-Nishijima equation

q = M3 +X/2 (136)

where q denotes magnetic charge in units of the unit
magnetic charge m, M3 denotes the third component
of magnetic isospin, and X the herewith new intro-
duced hypocharge.

I argued in earlier papers [6, 7] that quantum chro-
modynamics (QCD) [15, 16] will be generalized by a
new theory which is described by a SU(3) × SU(3)
gauge symmetry. The associated charges are chromo-
electric color and the new chromomagnetic color. The
associated gauge bosons are the eight chromoelectric
gluons and the eight new chromomagnetic gluons.

4.7 Hypocharge

In section 4.4 I suggested a U(1)× U(1) gauge sym-
metry which is associated with baryon number B and
lepton number L. Because of Y = B−L it is reason-
able to associate this gauge symmetry with hyper-
charge Y and hypocharge X, thus U(1)Y × U(1)X .
Because of the two Gell-Mann-Nishijima equations
and the two Weinberg angles ΘW and ΘM this sym-
metry can be transformed into the U(1)Q × U(1)q
gauge symmetry of QEMD.

Now the task is to find out how X depends on B
and L.

Let us start with the ansatz

X = aB + bL (137)

where a and b are hitherto unknown real numbers.
Quarks have q = 0, B = 1/3, and L = 0. So they
have X 6= 0 and therefore M3 6= 0. Leptons have
q = 0, B = 0, and L = 1. So they have X 6= 0 and
therefore M3 6= 0. The gauge group associated with
M3 is SU(2). So it is reasonable that both leptons
and quarks have M3 = ±1/2 and therefore X = ±1.
This can be satisfied only if a = ±3 and b = ±1.

The total electric charge, isospin, chromoelectric
color, and hypercharge of each of the three conven-
tional fermion octets is zero.

For symmetry reasons it is reasonable to assume
that fermionic magnetic monopoles exist in octets
and that the total magnetic charge, magnetic isospin,
chromomagnetic color, and hypocharge of each of the
magnetic fermion octets is zero.

Let us use the following nomenclature. Hanselons
are elementary magnetic fermions with nonzero chro-
momagnetic color. Gretelons are elementary mag-
netic fermions with zero chromomagnetic color.

In this case each magnetic fermion octet consists
of three hanselons, one gretelon, and their respec-
tive isomagnetic partner, thus six hanselons and two
gretelons.

The conditions

(i) a = ±3 and b = ±1

(ii) Q = 0 and Y = B − L 6= 0 and therefore I3 =
±1/2 and therefore Y = ±1 for magnetic monopoles

(iii) zero total hypocharge of the octet

can be satisfied if each hanselon has L = 1 and
B = 0 and each gretelon has B = 1 and L = 0, hence
a = 3, b = −1, and

X = 3B − L (138)

By using Y = B − L we get

B = (X − Y )/2 (139)

L = (X − 3Y )/2 (140)
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4.8 Predicted Quantum Numbers of
Particles

The conventional and new quanta have the following
quantum numbers.

(i) Up, charm, and top quark have Q = +2/3,
I3 = +1/2, B = +1/3, L = 0, Y = +1/3, X =
+1, M3 = −1/2, q = 0, chromoelectric color, no
chromomagnetic color.

(ii) Down, strange, and bottom quark have Q =
−1/3, I3 = −1/2, B = +1/3, L = 0, Y = +1/3,
X = +1, M3 = −1/2, q = 0, chromoelectric color, no
chromomagnetic color.

(iii) Electron, muon, and tauon have Q = −1,
I3 = −1/2, B = 0, L = +1, Y = −1, X = −1,
M3 = +1/2, q = 0, no chromoelectric color, no chro-
momagnetic color.

(iv) Electron-neutrino, muon-neutrino, and tau-
neutrino have Q = 0, I3 = +1/2, B = 0, L = +1,
Y = −1, X = −1, M3 = +1/2, q = 0, no chromo-
electric color, no chromomagnetic color.

(v) Electric photon and magnetic photon have Q =
q = I3 = M3 = B = L = X = Y = 0, no chromoelec-
tric color, no chromomagnetic color. Their rest mass
must be zero in order to satisfy the Dirac quantiza-
tion condition.

(vi) Chromoelectric gluons have chromoelectric
color and are otherwise neutral.

(vii) Chromomagnetic gluons have chromomag-
netic color and are otherwise neutral.

(viii) W bosons have Q = ±1 and I3 = ±1 and are
otherwise neutral.

(ix) Isomagnetic W bosons have q = ±1 and M3 =
±1 and are otherwise neutral.

(x) Z boson and isomagnetic Z boson are neutral.
(xi) Hanselons have chromomagnetic color, no

chromoelectric color, B = 0, L = +1, X = −1,
Y = −1, Q = 0, I3 = +1/2, (M3 = +1/2 and q = 0
or M3 = −1/2 and q = −1).

(xii) Gretelons have no chromomagnetic color, no
chromoelectric color, B = +1, L = 0, X = +3, Y =
+1, Q = 0, I3 = −1/2, (M3 = +1/2 and q = +2 or
M3 = −1/2 and q = +1).

(xiii) The quantum numbers of the antiparticles
corresponding to the particles (i)–(iv) and (xi)–(xii)
have the opposite sign. Antileptons and antiquarks

are the isomagnetic partners of leptons and quarks.
Antihanselons and antigretelons are the isospin part-
ners of hanselons and gretelons.

(xiv) Higgs boson and magnetic Higgs boson are
neutral. Their spin is zero.

(xv) It is sin2 ΘW ' 0.23, so one can assume that
sin2 ΘM is also of order unity. The relation between
positron charge e and weak coupling constant gW is
e = gW sin ΘW . The relation between unit magnetic
charge m and magnetic weak coupling constant gM
is m = gM sin ΘM . The Dirac quantization condition
is em = 2π (where h̄ = c = ε0 = 1), hence

gM =
m

sin ΘM
=

2π

e sin ΘM

=
2π

gW sin ΘW sin ΘM
> 1 (141)

All the quarks and leptons have nonzero magnetic
isospin M3. Since magnetic isospin has not yet been
observed, this can only mean that the rest masses of
the isomagnetic W and Z bosons are larger than 100
GeV.

(xvi) All the leptons, quarks, hanselons, and
gretelons have spin 1/2. All the 12 conventional and
all the 12 new gauge bosons have spin 1 and negative
parity. Higgs boson and magnetic Higgs boson have
spin 0 and positive parity.

(xvii) All the leptons, quarks, hanselons, and
gretelons have nonzero isospin. It is therefore
possible to create hanselon-antihanselon pairs and
gretelon-antigretelon pairs via neutral currents. One
possibility is electron-positron scattering

e−e+ → Z0 → GḠ (142)

(xviii) With regard to isospin all the leptons,
quarks, hanselons, and gretelons are (iso-)dyons, be-
cause they have both isospin and magnetic isospin.

(xix) The magnetic Fermi constant has not yet
been determined. It is probable that its value is be-
tween those of the Fermi constant and the gravita-
tional constant.

(xx) The coupling constant associated with mag-
netic charge is larger than unity. The corresponding
binding energy would lead to negative energy densi-
ties for small distances. This violation of the weak
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energy condition can be prevented if the magnetic
coupling constant is a running coupling constant, be-
comes smaller for higher energies, and the rest masses
of the magnetic monopoles are of the order of the
Planck mass.

(xxi) A similar problem with magnetic isospin can
be solved if the rest masses of the isomagnetic W and
Z bosons are of the order of the Planck mass. This
suggests that the magnetic Fermi constant is of the
order of the gravitational constant.

(xxii) The magnetic analogue to the graviton is the
tordion. The gauge group is the Poincare group [17].
The magnetic analogue to mass is spin [7, 18]. The
spin of the graviton is 2, its rest mass is zero. The
spin of the tordion is 3, its rest mass is of the order
of the Planck mass [7, 18].

5 Composites of Magnetic
Monopoles

5.1 Introduction

Magnetic monopoles were suggested to describe elec-
tricity and magnetism equivalently. Dirac was able to
show that electric charge can appear only in discrete
units if magnetic charges exist [2]. I presented a very
simple proof for this Dirac quantization condition for
a special case (ch. 3.2). A manifestly covariant quan-
tum field theoretical description of Dirac magnetic
monopoles requires the existence of the Salam mag-
netic photon [9], as I have shown some time ago [6].
By using this concept, I argued [7] that August Kundt
has already observed an effect of the magnetic pho-
ton radiation [19]. I suggested a desktop experiment
to verify the magnetic photon (ch. 3.5).

A consistent formulation of quantum field theory
requires that the electric-magnetic duality is general-
ized to the other interactions.

This generalization requires the existence of new
bosons which I named isomagnetic W and Z bosons
and chromomagnetic gluons. I have shown that the
conservation of baryon and lepton number is a conse-
quence of this generalization. In the same chapter I
predicted the quantum numbers of both the fermionic
and bosonic Dirac magnetic monopoles (ch. 4).

Here I will show that Dirac magnetic monopoles
usually do not appear as free particles, but in bound
states. This is similar to quarks and leptons which
usually appear in bound states such as mesons,
baryons, atoms, and molecules.

5.2 Definitions and Nomenclature

The content of this paper is new to readers. So it is
necessary to list the new definitions and nomencla-
ture first.

(i) Hanselons are defined as elementary fermionic
Dirac magnetic monopoles with chromomagnetic
color. I will denote them by H.

(ii) Neutral hanselons are defined as hanselons with
zero magnetic charge q = 0. I will denote them by
N0.

(iii) Charged hanselons are defined as hanselons
with (negative) unit magnetic charge q = −g. I will
denote them by C−.

(iv) Gretelons are defined as elementary fermionic
Dirac magnetic monopoles with zero chromomagnetic
color. I will denote them by G.

(v) Single charged gretelons are defined as
gretelons with (positive) unit magnetic charge q =
+g. I will denote them by S+.

(vi) Double charged gretelons are defined as
gretelons with twice the (positive) unit magnetic
charge q = +2g. I will denote them by D++.

(vii) Red, green, and blue are defined as the chro-
moelectric colors of quarks and chromoelectric glu-
ons. They are denoted by r, g, and b.

(viii) Huey, dewey, and louie are defined as the
chromomagnetic colors of hanselons and chromomag-
netic gluons. I will denote them by h, d, and l. –
Huey, Dewey, and Louie are the nephews of the comic
figure Donald Duck. They look identical and differ
only by the color of their cap.

(ix) The octet of (the first generation of) fermionic
Dirac magnetic monopoles is therefore denoted as
N0
h , N0

d , N0
l , C−h , C−d , C−l , S+, and D++.

(x) A pairon is defined as a bound state of a
hanselon and an antihanselon. This is analogous to
the meson which is a bound state of a quark and an
antiquark. I will denote a pairon by P .
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(xi) A triplon is defined as a bound state of three
hanselons. This is analogous to the baryon which is a
bound state of three quarks. I will denote a triplon by
T . – In analogy to mesons and baryons, the hanselons
of pairons and triplons are bound together by virtual
chromomagnetic gluons.

(xii) Schwinger dyons [14] are defined as elemen-
tary particles which have both electric charge and
magnetic charge.

(xiii) Iso-dyons are defined as elementary parti-
cles which have both isospin and magnetic isospin.
All quarks, leptons, hanselons, and gretelons are iso-
dyons (ch. 4.8).

(xiv) Chromo-dyons are defined as elementary par-
ticles which have both chromoelectric color and chro-
momagnetic color.

(xv) Mass-spin-dyons are defined as elementary
particles which have both rest mass and spin. All
quarks, leptons, hanselons, gretelons, W and Z
bosons, isomagnetic W and Z bosons, and the tor-
dion are mass-spin dyons.

5.3 Bound States

At zero temperature the electric coupling constant is

αE = e2/4π ' 1/137.036 (143)

At zero temperature the magnetic coupling constant
is

αM = g2/4π ' 308.331 (144)

Both coupling constants are running coupling con-
stants and I expect that they become of order unity
at the Planck scale (Planck temperature) (ch. 3.7).

Nevertheless, the huge value of αM would lead to
negative energy densities unless the rest masses of the
free hanselons and gretelons are of the order of the
Planck mass (ch. 3.7).

Because of the large coupling constant the (nega-
tive) binding energies are expected to be huge. As
a consequence, the rest masses of chromomagneti-
cally neutral pairons and triplons can be expected
to be much smaller than the rest masses of their con-
stituents (hanselons).

Pairons and triplons are the analogues to mesons
and baryons. The nuclear force between baryons is

mediated by the exchange of virtual mesons. This
nuclear force is a remnant of the chromoelectric in-
teraction between quarks which is mediated by the
exchange of virtual chromoelectric gluons.

Analogously, one can expect a magnetic nuclear
force between triplons which is mediated by the ex-
change of virtual pairons. This force is a remnant
of the chromomagnetic interaction between hanselons
which is mediated by the exchange of virtual chromo-
magnetic gluons.

Baryons which consist of the first generation of
quarks (up and down) appear as isospin multiplets
which have nearly the same rest mass. Proton and
neutron have approximately the same rest mass. The
four Delta hyperons ∆++, ∆+, ∆0, and ∆− have ap-
proximately the same rest mass. This results from
the fact that the rest masses of their constituents (up
and down quarks) are much smaller than the energy
of the virtual chromoelectric gluons.

By contrast, the rest masses of the neutral hanselon
N0 and the charged hanselon C− (of the first gener-
ation of hanselons) can be quite different. This mass
difference might be larger than the energy of the vir-
tual chromomagnetic gluons.

So magnetic isospin multiplets of triplons need
not have approximately the same rest masses. The
multiplet T−−−, T−−, T−, T 0 of triplons consists
of the hanselons C−C−C−, C−C−N0, C−N0N0,
N0N0N0. The repulsive magnetic field between two
or more C− causes a large T−−− rest mass.

Because of the large coupling constant αM
hanselons, gretelons, and magnetically charged
pairons and triplons are unlikely to exist as free par-
ticles. They should be bound to magnetically neu-
tral atoms. Examples are T−−−S+D++, T−−D++,
T−−S+S+, T−S+, and T−T−D++. Because of the
large binding energies these atoms should be much
lighter than the pairons and triplons.

It would not be surprising if these atoms could be
bound to molecules. Because of the binding ener-
gies, these molecules should be lighter than the atoms
they consists of. It remains the task for future re-
searchers to find out the properties of this Dirac mag-
netic monopole chemistry.
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5.4 Cold Dark Matter

There appear to exist much more baryons than an-
tibaryons in the universe. So the baryon number of
the universe appears to be huge ( B ∼ 1078 within
the Hubble sphere).

However, hanselons have lepton number L = 1 and
gretelons have baryon number B = 1 (ch. 4.8). If
there exist more antigretelons than gretelons in the
universe, then the baryon number of the universe
could be zero.

This requires that there exist as many antigretelons
as baryons. The rest masses of free gretelons are ex-
pected to be of the order of the Planck mass (ch. 3.7,
ch. 4.8). So they should not exist as free particles
but be bound in atoms and molecules. Cosmolog-
ical observations set upper limits for the masses of
these atoms and molecules. The cold dark matter
[20] content of the universe is approximately 23% of
the critical mass of the universe, whereas the bary-
onic matter content is only 4% of the critical mass
of the universe. So if there are indeed as many anti-
gretelons as baryons, then the mass of the lightest
Dirac magnetic monopole atoms and molecules can-
not be more than 6 GeV per antigretelon which they
consist of. For example, if T−S+ is the lightest of
these atoms or molecules, then its mass would be 6
GeV.

5.5 Summary

In this chapter I have introduced new particles
(pairons and triplons) and I have introduced new
symbols for the hanselons and gretelons whose quan-
tum numbers I have determined in ch. 4. I have
shown that hanselons can form bound states (pairons
and triplons) which are analogues to mesons and
baryons. Moreover I have argued that triplons and
gretelons can form atoms and molecules. These
atoms and molecules may be the major component
of cold dark matter.

6 Dark Matter WIMPs

6.1 Introduction

In ch. 5 I have shown that Dirac magnetic monopoles
usually do not appear as free particles, but in bound
states. This is similar to quarks and leptons which
usually appear in bound states such as mesons,
baryons, atoms, and molecules.

Here I will calculate the mass and the interaction
cross-section of the lightest of these bound states of
Dirac magnetic monopoles (BSoDMM). I will show
that both are compatible with the excessive events
observed in the PandaX-4T experiment.

6.2 Mass of BSoDMM

I have shown that Dirac magnetic monopoles do not
appear as free elementary particles, but in bound
states. The lightest of these BSoDMM consists of
one anti-gretelon (with spin 1/2, isospin I3 = +1/2,
baryon number B = −1, and lepton number L = 0)
and one anti-triplon which itself consists of three anti-
hanselons (with spin 1/2, I3 = −1/2, B = 0, and
L = −1). As any orbital spin is an integer, the quan-
tum numbers of the lightest BSoDMM are therefore
I3 = −1, B = −1, L = −3, and integer spin.

Baryon number is conserved. So the total baryon
number of the universe should be zero. This can
be satisfied if there exist as many baryons as anti-
gretelons (and therefore BSoDMM) in the universe.
If these BSoDMM are the major component of cold
dark matter, then their rest mass is

mχ = mNΩc/Ωb (145)

Here

mN ' 0.938GeV/c2 (146)

is the mean mass of a baryon. Strictly, mN is the
ratio of the total mass of the atoms in the universe
to the number of the nucleons in the universe. It is in
essential a function of the mass of a hydrogen atom,
the mass of a helium atom, and the helium fraction
of the universe. Moreover

Ωc = 0.1200(12)h−2 (147)
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is the ratio of the cold dark matter mass density to
the critical mass density of the universe and

Ωb = 0.02237(15)h−2 (148)

is the ratio of the baryon mass density to the crit-
ical mass density of the universe, where h denotes
the Hubble constant in units of 100 km s−1Mpc−1.
Hence, the mass of a BSoDMM is

mχ = (5.03± 0.10)GeV/c2 (149)

6.3 Cross-Section of BSoDMM

BSoDMM have nonzero isospin. So they can interact
with conventional matter by the neutral current of
the weak interaction. BSoDMM are weakly interact-
ing massive particles (WIMPs).

The low-energy limit of the Weinberg-Salam theory
gives the ratio of the neutral current cross-section σZ
to the charged current cross-section σW of the elastic
scattering by the weak interaction,

σZ/σW '
1

2
− sin2 ΘW (150)

where the experimental value for the Weinberg angle
ΘW is

sin2 ΘW ' 0.23 (151)

In the same low-energy limit the cross-section is

σW =
4

π
G2
F p

2c2/(h̄c)4 (152)

Here

GF / (h̄c)3 ' 1.166× 10−5GeV−2 (153)

denotes the Fermi constant, where

h̄c ' 1.973× 10−14GeV cm (154)

c ' 2.998× 1010cm/s (155)

The square of the momentum of the BSoDMM of the
Galactic halo relative to a terrestrial laboratory is
given by

p2 = m2
χv

2 (156)

The velocity of the sun around the Galactic center is

v� = (233± 9)km/s (157)

As the BSoDMM of the Galactic halo have nonzero
velocity relative to the Galactic center, the mean
square v2 of the BSoDMM velocity is probably larger
than v2�, provided that the rotation velocity of the
Galactic halo is not too large.

Under the assumption that v2 = v2� the calculation
above gives

σW = (1.02± 0.15)× 10−42cm2 (158)

σZ = (2.7± 0.4)× 10−43cm2 (159)

σZ is the weak interaction cross-section of Galactic
halo BSoDMM with conventional matter in the ter-
restrial laboratory.

6.4 Prediction for a Xenon Target

The de Broglie wavelength of a BSoDMM of rest mass
mχ and speed v = v� is

λ =
2πh̄

mχv
' 3.171× 10−11cm (160)

Therefore, these BSoDMM interact rather with entire
atomic nuclei than with their individual constituents
(protons and neutrons). In atomic nuclei the isospins
of protons and neutrons partially compensate one an-
other. So the isospin of an atomic nucleus is propor-
tional to A− 2Z.

The atomic weight of xenon is A ' 131.29 and the
number of protons is Z = 54, so the isospin per mass
is proportional to

(A− 2Z)/A ' 0.1774 (161)

The number N of non-compensated neutrons in a
xenon target of mass M is

N 'M × 1.068× 1029/ton (162)

If t denotes the exposure time, then the number of
weak interactions between Galactic halo BSoDMM
and a xenon target of mass M is

n = σZv%Nt/mχ (163)
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where

% = (0.35± 0.05)(GeV/c2)cm−3 (164)

is the canonical value of the local dark matter density.
For an exposure

Mt = 1.54ton× year (165)

we get
n = 2.3± 0.8 (166)

expected events. (With regard to the uncertainties
of its derivation, the numerical value of n should not
be taken too seriously.)

6.5 Dark Matter WIMP Experiments

In 1977, Lee and Weinberg [21] suggested that the
cosmological dark matter consists of weakly inter-
acting massive particles (WIMPs). This idea found
much interest after Peebles [20] recognized that
WIMPs (and cold dark matter in general) are re-
quired by the gravitational instability theory for the
formation of the large-scale structure of the universe.

A number of research groups have used xenon tar-
gets in order to search for WIMPs.

The LUX-ZEPLIN Collaboration [22] had an ex-
posure of Mt ' 0.9 ton yr, but searched for masses
mχ ≥ 9 GeV/c2 only.

The XENON Collaboration [23] had an exposure
of Mt ' 1.09 ton yr, but searched for masses mχ ≥
6 GeV/c2 only.

The PandaX-4T Collaboration [24] had an expo-
sure of Mt ' 0.63 ton yr for its commissioning run.

It renamed as the PandaX Collaboration [25] and
had an exposure of Mt ' 1.54 ton yr for its com-
missioning run and its first science run combined.
They searched for masses mχ ≥ 5 GeV/c2. In-
deed they reported on an excess of n = 4.3 events
above the background with a best fit WIMP mass of
mχ ' 6 GeV/c2.

6.6 Outlook

My prediction of n = 2.3±0.8 dark matter BSoDMM
events with mass mχ = (5.03± 0.10)GeV/c2 is com-
patible with the PandaX observation of n = 4.3
WIMP events with mass mχ ' 6 GeV/c2.

The lightest BSoDMM have integer spin, isospin
I3 = −1, baryon number B = −1, and lepton number
L = −3. So they can be distinguished from other
hypothetical cold dark matter candidates.

(i) Heavy (sterile) neutrinos have spin ±1/2, I3 = 0
or I3 = ±1/2, B = 0, and L = ±1.

(ii) Neutralinos have spin ±1/2, I3 = 0, B = 0,
and L = 0.

(iii) Gravitinos have spin ±3/2, I3 = 0, B = 0, and
L = 0.

(iv) Z’ bosons have spin ±1, I3 = 0, B = 0, and
L = 0.

(v) Axions have spin 0, I3 = 0, B = 0, and L = 0.

6.7 Summary

I have shown that Dirac magnetic monopoles ap-
pear in bound states and that these bound states
have the quantum numbers isospin I3 = −1, baryon
number B = −1, lepton number L = −3, and inte-
ger spin. If they are the major components of cold
dark matter, then the mass of these bound states is
mχ = (5.03± 0.10)GeV/c2. I have argued that they
had already been observed by the PandaX Collab-
oration. By examining their spin and isospin, one
can distinguish these bound states of Dirac magnetic
monopoles from other WIMPs and dark matter can-
didates.
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