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Введение

В 1953 году в журнале «Nature» опубликовано фундаментальное открытие Ф. Крика и

Д.  Уотсона  о  структуре  дезоксирибонуклеиновой  кислоты  (ДНК),  являющейся  носителем

наследственного кода клетки. Стало известно, что ДНК состоит из двух равнозначных цепей.

Такая структура обеспечивает резерв надежности, так как в случае поломки (разрыва одной

из цепей) вторая используется как матрица для восстановления целостности с соблюдением

точной  последовательности  азотистых  оснований.  Несопоставимо  сложнее  развиваются

процессы  репарации  в  случае  разрыва  обеих  цепей  ДНК,  которые  могут  возникать  в

результате  воздействия  различных  эндогенных  и  экзогенных  факторов  (радиационное

воздействие,  химические  соединения  и  др.).  На  пути  изучения  этих  процессов  основной

методической  трудностью  становится  поиск  надежного  метода  определения  двунитевых

разрывов (ДР) ДНК. С 1973 года были предложены различные способы определения ДР ДНК,

основанные на изменении физико-химических характеристик ДНК: метод гель-фильтрации

[1], метод седиментации или ультрацентрифугирование в нейтральном градиенте сахарозы

[2], метод пульс гель электрофореза [3], метод электрофореза ДНК единичных клеток (ДНК-

комет) [4]. Однако чувствительность этих методов крайне низка (в зависимости от метода от

нескольких Гр и даже десятков Гр) [5]. Для решения этой проблемы начиная с 1998 г активно

развиваются технологии непрямого анализа ДР ДНК, основанные на иммуноцитохимическом

анализе  количества  динамических  микроструктур,  образующихся  в  местах  репарации  ДР

ДНК  и  состоящих  из  белков,  участвующих  в  репарации  этих  повреждений  [5].  Эти

микроструктуры   получили  название  фокусы  (англ.  foci).  Наибольшее  развитие  получил

иммуноцитохимический   анализ  фокусов  фосфорилированного  корового  гистона  Н2АX

(γН2АХ).  Количественный  анализ  фокусов  γH2AX  в  настоящее  время  считается  самым

чувствительным методом анализа репарации ДР ДНК и позволяет детектировать увеличение

количества сайтов репарации ДР ДНК при дозах облучения всего в несколько мЗв [6].

Общая характеристика гистона Н2АХ

В 1998 году было опубликовано сообщение Rogakou E.P  et al. о том, что в клетках в

первую  минуту  после  воздействия  рентгеновского  излучения  на  месте  образования  ДР

появляются фосфорилированные формы корового гистона H2AX [7].

H2AX является членом семейства гистонов H2A, одного из пяти семейств гистонов,

которые участвуют в упаковке и организации ДНК в хроматине. 

Как и многие клеточные белки, гистон Н2АХ подвергается ряду химических реакций.

Он может быть ацетилирован по лизину-5  [8,  9];  биотинилирован по лизину-9 и -13  [10];



убиквитилирован по лизину-119 [9] и фосфорилирован по серину-1[8] и -139 [7], а также по

тирозину-142 [11].

При этом отмечено, что лишь некоторые реакции имеют значение при образовании ДР

ДНК  [12].  К  примеру,  в  обычных  условиях  (без  воздействия  повреждающих  факторов)

фосфорилирование  Н2АХ  происходит  по  тирозину-142,  а  при  появлении  ДР  ДНК

моментально  запускается  его  дефосфорилирование,  которое  в  свою  очередь,  является

предпосылкой  для  фосфорилирования  Н2АХ  по  серину-139.  Когда  происходит

фосфорилирование  Н2АХ  по  тирозину-142,  сродство  серина-139  к  факторам  ответа  на

повреждение ДНК (MDC1, MRE11 и Rad50) значительно снижается и происходит связывание

с  проапоптотическим  фактором  JNK1.  В  этой  связи  было  высказано  предположение,  что

статус  фосфорилирования   по  тирозину-142  является  определяющим  фактором  судьбы

клетки после повреждения ДНК [11].

Кроме  того,  убиквитилирование  H2AX  по  лизину-119  с  его  предшествующим

ацетилированием  по  лизину-5  способствуют  высвобождению  H2AX  из  хроматина  под

действием комплекса Tip60 и UBC13 после образования ДР ДНК, вызванных ионизирующим

излучением,  в  результате  чего,  изменяется  структура  хроматина,  и  ДР  становятся  более

доступными для белков репарации [9]. 

Центральным звеном многочисленных сигнальных путей, активируемых в ответ на ДР

ДНК,  является  фосфорилирование  гистона  H2АX по  серину-139.  Присоединение  фосфата

происходит  к  кислороду  серина  в  гамма-положении,  поэтому  модифицированная  форма

широко упоминается  как γH2AX. Обнаружено,  что  γH2AX концентрируется  в  течение 20

секунд с момента образования ДР ДНК на расстояние до 2 Мб от места повреждения  [7] и

после  иммуноцитохимического  окрашивания  проявляется  в  виде  ярких  точек,  вследствие

чего они получили название фокусов белков репарации. В настоящее время признано, что

каждый фокус γH2AX представляет собой сайт репарации одиночных или множественных

ДР ДНК [13] в результате которого фосфорилируется около 2000 молекул Н2АХ [14]. 

Природа спонтанных (фоновых) фокусов γH2AX

В  клетках  всегда  присутствует  фоновый  уровень  фокусов  фосфорилированного

гистона  H2AX.  Для  каждого  вида  и  линии  клеток  уровень  спонтанных  фокусов  γH2AX

является  в  определенной  мере  стационарной  характеристикой  [15,  16].  Так,  уровень

спонтанных фокусов γH2AX в ядрах фибробластов человека меняется в пределах от 0,2 до 2,6

фокусов/ядро  [17].  Поскольку  фокус γH2AX маркирует  ДР  ДНК, то  объяснением

существенного различия (в 5-50 раз) в количестве фоновых фокусов γH2AX можно считать



коллапс репликативной вилки в S-фазе клеточного цикла. Еще одной причиной возрастания

числа фокусов  γH2AX могут быть  повреждения ДНК на концевых участках  хромосом или

теломерах в процессе старения клеток [18].  Так, в результате многих циклов деления, когда

клетка проходит через  S-фазу, теломерная ДНК становится короче на 100-150 нуклеотидов,

поскольку  во  время  репликации  ДНК  невозможно  точное  копирование  са́мых  концов

теломерной  ДНК и,  в  результате,  остаются  очень  короткие  теломеры,  которые  не  могут

эффективно  защищать  концы  хромосомальной  ДНК.  Так,  Herbig U.  et al.  (2006)  было

показано,  что  более  80%  стареющих  фибробластов  бабуина  имели  фокусы  γH2AX,

индуцированные  дисфункцией  теломер  [19].  Кроме  того,  для  каждой  линии  клеток,

характерно  определенное  количество  повреждений  ДНК,  ассоциированных  с  теломерами

[20]. 

Важно отметить, что значение фонового уровня фокусов γH2AX не зависит от доли

белка H2AX в пуле гистона H2A, включающего все его варианты (H2A1, H2A2, H2A-Bbd,

H2AX и  H2AZ), в составе нуклеосом. По данным  Rogakou E.P.  et al. (1998) в нормальных

фибробластах человека около 10% H2AX присутствует в пуле гистона  H2A, 2% H2AX от

общего количества H2A в лимфоцитах и HeLa клетках и до 25% в опухолевой клеточной

линии глиомы человека (SF268)  [7]. В то же время в работе  Markova E.  et al. (2007) было

установлено, что в опухолевых клетках линии HeLa количество спонтанных фокусов γH2AX

и значительно выше, чем в нормальных клетках (фибробласты линии VH-10) [21]. 

Наибольшее влияние на фоновый уровень фокусов γH2AX в клеточной популяции, по

данным  MacPhail S.H.  et al.  (2003),  оказывает распределение клеток по клеточному циклу

[15]. Costes S. et al. (2006) подтвердили этот феномен на фибробластах человека линии HCA-2

и показали, что около 11% ядер необлученных (контрольных) клеток содержат спонтанные

фокусы  γН2АХ,  причем  из  них  доля  пролиферирующих  клеток  составляла  9,2%,  а

непролиферирующих  -  1,5%.  Кроме  того,  были  выявлены  качественные  (по  размерам)  и

количественные  различия  в  образовании  спонтанных фокусов  γН2АХ.  Пролиферирующие

клетки содержали мелкие фокусы γН2АХ и их количество колебалось в пределах от 1 до 69 в

ядре. В непролиферирующих клетках наблюдались крупные фокусы γН2АХ и их количество

было весьма незначительно - от 1 до 4 в ядре  [22].  Годом ранее на большом количестве

клеточных  линий  McManus K.  и  Hendzel  M.  (2005)  установили,  что  крупные  фокусы

фосфорилированного  белка  H2AX проявляют  существенную  солокализацию  с

репарационными белками, в то время как, солокализация между мелкими фокусами γH2AX и

белками репарации практически отсутствовала [23]. Выявленная  McManus K. и Hendzel  M.



(2005) закономерность хорошо согласовывалась с ранее опубликованной работой  Rogakou

Е.P.  et al (1999)  в  том,  что  мелкие фокусы  γН2АХ присущи митотическим клеткам из-за

большего  уплотнения  в  них  хроматина,  препятствующего  транспорту  ферментов  к

репарируемым структурам-мишеням в ДНК [14]. 

Образование фокусов γH2AX в облученных клетках

Повреждения ДНК, появившиеся в результате воздействия ионизирующего излучения

на клетки, вызывают образование микроскопически видимых агрегатов ядерных белков, то

есть  радиационно-индуцированных  фокусов  (РИФ).  Эти  фокусы  представляют  собой

скопления белков, которые образуются в области ДР ДНК после воздействия ионизирующего

излучения. Rogakou E.P. et al. (1998) удалось зарегистрировать индукцию γH2AX даже через

20 сек после γ-облучения клеток яичников китайского хомячка (линии  CHO)  [7]..  Причем

половина  от  максимальных  значений  достигалась  за  первую  минуту,  а  максимум

регистрировали  к  10-ой  мин.  Этот  максимум РИФ  γH2AX сохранялся  30  мин,  а  затем  в

течение  нескольких  часов  происходило  уменьшение  количества  γH2AX  до  контрольных

значений  [7].  Близкие  результаты  получены  Rogakou E.  P et al.  (1999)  на  нормальных

фибробластах  кожи  индийского  мунтжака  (Muntiacus  muntjak)  [14].  Через  1  мин  после

воздействия γ- излучения в дозе 600 мГр появлялись мелкие фокусы γH2AX. Через 9 мин

после  облучения  они  становились  более  яркими  и  крупными,  и  достигали  максимальной

яркости и размера через 30 мин после облучения  [14]. Эти данные свидетельствуют о том,

что  в  начале  фосфорилируются  молекулы  H2AX  вблизи  участка  ДР  ДНК,  а  позднее

включаются молекулы на более удаленных расстояниях от места повреждения ДНК. В работе

Lobrich M. et al. (2010) было отмечено, что максимальное число фокусов γН2АХ формируется

через  3  мин  после  воздействия  ИИ,  но  подсчет  затруднен  в  это  время  из-за  их  малых

размеров [6]. 

Costes S.V.  et al.  (2006)  установили,  что  размеры  и  количество  радиационно-

индуцированных  фокусов  различаются  в  зависимости  от  дозы  и  продолжительности

облучения,  а  также  исследуемого  белка.  После  облучения  фибробластов  человека  линии

НСА2  в  дозе,  равной  или  превышающей  300  мГр,  не  удалось  обнаружить  изменений  в

размере РИФ в течение 2-х часов. Резкое увеличение размера РИФ по сравнению с контролем

регистрировалось после снижения дозы до 100 мГр [22]. 

В связи с этим возникает вопрос о форме зависимости количества РИФ  γH2AX от

дозы  облучения.  В  настоящее  время  принято  считать  линейной  зависимость  количества

фокусов  γH2AX  от  дозы  ИИ.  В  2003  году  Rothkamm K.  и  Lobrich M.,  пользуясь



иммуноцитохимическим методом, установили линейную зависимость числа фокусов γH2AX

при дозах облучения от 1 до 2000 мГр [13]. Прямую зависимость количества фокусов γH2AX

от дозы облучения в диапазоне 10-3000 мГр обнаружили  Costes S.V.  et al.  [22], а  позднее

Asaithamby A. и Chen D. J. (2009) подтвердили для диапазона   5-1000 мГр [24]. В 2006 году

Mahrhofer Н. et al. также отметили линейную закономерность количества фокусов γH2AX от

дозы облучения на 10-ти нормальных и опухолевых клеточных линиях, применив большие

дозы (1000–4000 мГр) [25]. Прямая  зависимость количества фокусов от дозы ИИ в диапазоне

10-5000 мГр была установлена также для двух белков маркеров ДР ДНК (γH2AX и 53ВР1)  в

исследовании Markova E. et al (2007) [21].

Вместе  с  тем  появились  исследования,  в  которых  не  подтверждается  линейная

зависимость  между  дозой  облучения  и  образованием  РИФ  γH2AX.  Авторы  описывают

формирование  плато  по  ходу  зависимости  «доза-эффект»  и  объясняют  его  проявлением

баланса между одновременно происходящими в клетках процессами индукции и репарации

ДР ДНК [26, 27]. Аналогично, в исследовании зависимости «доза-эффект» с другим маркером

ДР  ДНК  -  белком  53BP1  было  показано,  что  количество  радиационно-индуцированных

фокусов не пропорционально дозе облучения [28]. Так, выход фокусов при облучении в дозах

100  мГр  и  1000  мГр  составил  73  фокус/клетка/Гр  и  28  фокус/клетка/Гр,  соответственно.

Повышенный  уровень  фокусов  белка  53BP1  при  облучении  в  малых  дозах  может  быть

обусловлен  тем,  что  при  небольшом  количестве  ДР  даже  незначительный  вклад

дополнительных  ДР  образующихся,  например,  при  коллапсе  репликативных  вилок

оксидативными повреждениями ДНК  [29], является значимым для расчета относительного

выхода фокусов. 

Установлено,  что  процесс  репарации  ДР  ДНК  начинается  с  реакции

фосфорилирования  гистона  H2AX,  роль  которого  заключается  в  привлечении  белков

репарации  к  месту  разрыва  ДНК,  и  зависит  от  активности  киназ  семейства

фосфатидилинозитол-3-киназ,  а  именно,  ataxia telangiectasia mutated (АТМ)  (продукт  гена,

связанного с наследственным синдромом атаксии-телеангиэктазии),  ataxia telangiectasia and

Rad3-related (ATR)  (АТМ-  и  Rad3-родственная  киназа),  а  также  ДНК-зависимой

протеинкиназы (ДНК-ПК) [30].

Существует несколько представлений об участии киназ в репарации ДР ДНК. В 2000

году  в  работе   Paull T.T.  et al.,  выполненной  на  клетках,  подвергнутых  рентгеновскому

облучению, была показана прямая зависимость между низким уровнем АТМ и существенным

снижением выхода фокусов γH2AX [31]. Через год результаты, полученные в исследованиях



Burma S.  et al.  (2001),  позволили  однозначно  определить  АТМ  как  основную  киназу,

участвующую в фосфорилировании H2AX. Авторы предположили, что она является одной из

самых  ранних  киназ,  которая  активируется  в  ответе  клетки  на  образование  ДР  ДНК.  В

случаях отсутствия АТМ некоторое количество гистона Н2АХ фосфорилируется  ДНК-ПК

[32].  Процесс  фосфорилирования  гистона  Н2АХ  в  хроматине  иллюстрирует  рисунок,

адаптированный из работы  Stucki M.  et al.  [33]. В 2005 году  Peng Y.  et al.   показали, что

дефицит в клетках ДНК-ПК проявляется снижением активности АТМ, что в свою очередь

сказывается на уменьшении фосфорилирования Н2АХ [34]. Этот  феномен был подтвержден

позднее в исследованиях Shrivastav М. et al. (2009) [35]. Результаты, полученные An J.  et al.

(2010) также свидетельствуют о том, что ДНК-ПК играет не менее важную роль, чем АТМ в

фосфорилировании  H2AX.  Обе  киназы  функционально  дополняют  друг  друга  во  время

фосфорилирования H2AX в ответ на повреждение ДНК, вызванное ИИ  [36]. Так, в работе

Flassig R.J.  et al.  отмечено,  что фосфорилирование гистона Н2АХ происходит в две фазы:

вначале  под  действием  киназы  ДНК-ПК,  а  позднее  при  участии  АТМ.  Такое  двухфазное

фосфорилирование Н2АХ способствует поддержанию сигнала о наличии повреждения ДНК

для надежного его обнаружения [37].

Участие киназы АТR в образовании γH2AX установлено Ward I.M. и Chen J. (2001) при

возникновении двойных разрывов нити  ДНК в результате  коллапса  репликативных вилок

[38]. Следует отметить, что при репарации радиационно-индуцированных ДР ДНК вслед за

активацией АТМ и образованием одноцепочечной ДНК запускается активация АТR [39].

В  опубликованных  исследованиях  называются  разные  сроки  появления

фосфорилированного  белка Н2АХ и  его  максимального  проявления,  при  этом активность

киназ играет решающую роль в фосфорилировании Н2АХ. Так, в исследованиях An J. et al.

(2010), использовавших для облучения дозу 4 Гр, увеличение автофосфорилирования ДНК-

ПК,  а  также  фосфорилирование  белка  Н2АХ  регистрировали  в  первые  15-60  мин  после

образования  ДР  ДНК  [36].  По  данным  Abramenkovs A.  и  Stenerlöw B.  (2017)  оценка

изменения количества фосфорилированной ДНК-ПК дает лучшее представление о репарации

ДР ДНК в первые 30 мин после индукции повреждения, чем анализ фокусов γH2AX [40]. В

плане  оценки  значимости  киназ  интересно  сообщение  Suzuki K.  et al.  (2006),  которые

отметили,  что  фокусы  фосфорилированной  киназы  АТМ  (рАТМ)  являются  лучшим

биологическим  маркером  радиационно-индуцированных   ДР  ДНК,  чем  фокусы  γH2AX

особенно  при  воздействии  ИИ в  диапазоне  малых доз  (до  100  мГр)  [41].  Фокусы рАТМ

хорошо солокализиются с фокусами γH2AX. Результаты этой солоколизации согласуются с



основной ролью АТМ в раннем распознавании ДР ДНК. Так, в исследованиях Bakkenist C.J. и

Kastan M.B.  (2003)   зарегистрирован  максимальный  уровень  рАТМ  через  5  мин  после

воздействия ИИ в дозе 0,5 Гр [42]. Kitagawa R. и Kastan M.B. (2005) продолжив исследование,

уточнили,  что   при  дозе  облучения  0,5  Гр  в  клетке  фосфорилируется  более  50%  АТМ

быстрее, чем за 5 мин [43]. В исследовании  Yamauchi М.  et al. на нормальных диплоидных

клетках  человека  линии  HE49  было  обнаружено  много  мелких  фокусов  рАТМ  (36,9

фокус/клетка)  через 15 мин после облучения в дозе 1 Гр. Их количество уменьшилось до

контрольных значений через 24 ч  [44]. Используя несинхронизированные клетки человека,

подвергнутые облучению в дозах широкого диапазона (0,1 -  1 Гр),  Suzuki K.  et al.  (2006)

регистрировали через 30 мин максимальное число фокусов рАТМ (50 фокус/клетка/Гр) при

фоновом  количестве  0,2  фокуса  на  клетку  [41].  Если  в  качестве  модели  исследования

использовали  фибробласты  кожи  линии  GM38,  а  регистрацию  результатов  проводили  с

использованием проточной цитометрии, то максимум рАТМ выявлялся через 2 ч при дозе

облучения 0,5 Гр [45].

Влияние структуры хроматина на образование и деградацию радиационно-

индуцированных фокусов γH2AX

Белки хроматина,  изменяя способ укладки ДНК, способны регулировать процесс ее

репарации.  Так, было показано,  что репарация ДНК от ДР происходит с более медленной

кинетикой в  гетерохроматине,  чем в эухроматине  [46]. Для эффективной репарации ДНК

необходима  релаксация  структуры  хроматина,  поскольку  конденсированный  хроматин  не

дает возможности распространения фосфорилированного H2AX в ответ на повреждение ДНК

[47].  Cowell I.  G.  et al.  (2007) показали,  что  фосфорилирование Н2АХ по серину-139-му

различается  в  зависимости  от  степени  конденсации  хроматина  и   происходит

преимущественно  в  эухроматине  [48].  Kruhlak M.  et al.  (2006),  применив  электронную

микроскопию,  обнаружили  уменьшение  плотности  хроматина  на  30-40%  в  регионах,

расположенных  по  обе  стороны  от  ДР  ДНК  [49].  Плотность  уменьшалась  за  счет  АТФ-

зависимого  ремоделирования  хроматина  первичными  сенсорами  ДР  ДНК  (комплексом

Rad17-RFC,  состоящим  из  Rad17  и  четырех  небольших  субъединиц  репликативного

комплекса RFC (RFC2, RFC3, RFC4, RFC5) и комплексом 9-1-1, включающим RAD9, HUS1 и

RAD1)  [50]. Изменения структуры хроматина, как показали   Bakkenist C.  J. и  Kastan M.  B.

(2003), активировали киназу АТМ [42], которая, в свою очередь, взаимодействует с белком

КАР-1, создающим существенный барьер для репарации ДР ДНК в гетерохроматине, и, тем

самым,  киназа  АТМ  вызывает  релаксацию  хроматина  для  обеспечения  доступа  белков



репарации  к  месту  разрыва  [46].  По  данным  Ziv Y.  et al.  (2006)  АТМ-зависимое

фосфорилирование KAP-1 происходило в первые 30-60 мин после образования ДР ДНК [51].

Важно отметить, что ДР ДНК сохранялись в клетках, в которых фосфорилирование  KAP-1

киназой АТМ отсутствовало [52]. Аналогичные результаты были получены для маркера ДР -

белка γH2AX.  После облучения клеток в дозах 250-2000 мГр и ингибировании АТМ  доля

γH2AX, связанная  с  гетерохроматином,  составляла  60-70%,  в  то  время  как  при  активной

киназе АТМ была примерно 25% [46]. Таким образом, геометрия укладки ДНК в клетках и ее

связь с белками хроматина влияют на количественный выход радиационно-индуцированных

фокусов γH2AX.

Влияние фазы клеточного цикла на образование и деградацию радиационно-

индуцированных фокусов γH2AX 

Известно,  что  белок  H2AX после  образования  ДР  ДНК  фосфорилируется  во  всех

клетках,  находящихся в разных фазах клеточного цикла,  однако,  число фокусов γH2AX в

зависимости от фазы цикла заметно варьирует. К примеру, после облучения клеток γ-лучами

в дозе 2 Гр РИФ γH2AX образуются в большем количестве в S- и G2- фазах по сравнению с

G1  [53]. Аналогичная зависимость РИФ γH2AX от стадии, в которой находится клетка во

время облучения, была продемонстрирована в работе  Bee L. et al. (2013) при радиационном

воздействии на клетки  двух доз: 0,5 и 5 Гр [54]. Что касается клеток, находящихся в стадии

митоза, то по данным Markova E. et al. (2007), в них количество фокусов было статистически

значимо меньше, чем в клетках в стадии интерфазы [21]. 

Остаточные радиационно-индуцированные фокусы γH2AX

Как правило, максимальное количество фокусов γH2AX наблюдается примерно через

0,25-1  час  после  облучения  [55].  После  чего  количество  радиационно-индуцированных

фокусов уменьшается  экспоненциально,  но при этом даже через 24 часа после облучения

может сохраняться  небольшое количество фокусов.  Такие  фокусы в литературе  называют

остаточными (aнгл.  residual)  [56,  57].  В зависимости  от  дозы ИИ, от 10% до 70% клеток

содержат остаточные фокусы γH2AX через 24 ч после облучения  [58]. К этому времени их

количество составляет 5-10 % от максимального значения,  наблюдавшегося через 0,5 часа

после радиационного воздействия  [58].  После облучения покоящихся лимфоцитов в дозах

более 1000 мГр доля остаточных фокусов  γH2AX через 24 часа составляла 13%, а через 48

часов – 6,6% от наблюдавшихся через 30 мин после воздействия. 



Наряду с дозой радиационного воздействия на длительное пребывание в клетках РИФ

влияет  структура  хроматина.  Так,  ДР  ДНК,  локализованные  в  гетерохроматине,  могут

привести к длительному сохранению РИФ [46]. 

Существенный вклад в  количество остаточных фокусов  оказывает  фаза  клеточного

цикла, во время которой происходило радиационное воздействие. К примеру,  γ-облученные

покоящиеся клетки, восстановившие ДР, во время последующей репликации ДНК сохраняли

вторично  образованные  ДР  в  течение  более  длительного  периода  по  сравнению  с  ДР,

индуцированными первично [59]. Об этом же свидетельствуют исследования Alessio N. et al.

(2014),  установивших  наибольшее  количество  остаточных  фокусов  γH2AX в  покоящихся

мезенхимальных стволовых клетках костного мозга человека через 48 ч после облучения в

дозах 40-2000 мГр [60]. 

Важным  фактором,  влияющим  на  уровень  остаточных  фокусов,  является

эффективность работы белков репарации и белковых фосфатаз  2A (PP2A) и  PP4, которые

ответственны за дефосфорилирование γH2AX [61, 62]. В работе Löbrich M. et al. (2010) было

показано, что клеточные линии, имеющие дефекты в белках репарации, сохраняют больше

ДР ДНК в течение 7 дней после облучения в дозах 3 и 80 Гр [6]. 

Существующая  оценка  прогностической  значимости  остаточных  фокусов

противоречива.  По  мнению  Banath,  J.P.  et al.  (2010),  присутствие  в  клетках  остаточных

фокусов  γH2AX или  RAD51  через  24  ч  после  облучения  свидетельствует  об  их

нежизнеспособности  [63].  Alessio N.  et at (2015)  в  исследованиях  на  мезенхимальных

стволовых  клетках  костного  мозга  человека  наблюдали  только  дозозависимое  снижение

жизнеспособности  (по  тесту  клоногенной  активности)  у  клеток,   имеющие  остаточные

фокусы. Облучение  клеток  в  дозе  2000 мГр по сравнению с  дозой  40 мГр приводило к

уменьшению роста колоний [60]. Оппонирующие результаты приведены Sak A. et al. (2005).

На 4-х клеточных линиях ими не выявлено корреляции между клоногенной выживаемостью и

долей клеток, которые сохраняли остаточные фокусы белков γH2AX после их облучения в

дозе 2 Гр [64]. Mahrhofer H. et al. (2006) на 10 нормальных и опухолевых клеточных линиях

также  не  обнаружили  связи  между  долей  клеток  с  долгоживущими  фокусами  γH2AX,

индуцированными ИИ в дозах 1-4 Гр, и их клоногенной активностью [25]. 

Недавно  с  использованием  «hockey  stick»  модели  показано  наличие  статистически

значимого  дозового  порога  для  остаточных  фокусов  γH2AX  через  24,  48  и  72  ч  после

облучения  фибробластов  кожи  человека  [57].  Рассчитанные  пороговые  дозы  близки  к



квазипороговой дозе Dq, характеризующей ширину плечевой области на кривой клоногенной

выживаемости облучённых фибробластов.

Таким  образом,  сведения  о  значении  остаточных  фокусов  в  облученных  клетках

неоднозначны. Приводятся доказательства в пользу как снижения жизнеспособности клеток,

в которых сохраняется большое и при том дозозависимое количество остаточных фокусов,

так и об отсутствии их заметного влияния на клоногенность клеток. 

Заключение

Анализ  литературы  позволил  убедиться  в  несомненных  достоинствах  и

информативности количественного анализа радиационно-индуцированных фокусов  γH2AX.

К  достоинствам  можно  отнести:  1)  крайне  высокую  чувствительность,  позволяющую

детектировать  эффекты  облучения  в  малых и  сверхмалых дозах;  2)  возможность  анализа

пространственного  распределения  сайтов  репарации  ДНК по  объему  каждого  клеточного

ядра;  3)  возможность  исследования  отклика  на  облучение  каждой  клетки  в

асинхронных/гетерогенных  клеточных  популяциях.  Однако  результаты,  полученные  с

использованием этого метода, требуют корректной интерпретации. Нужно четко понимать,

что количество и кинетика фокусов  γH2AX могут существенно отличаться от количества и

кинетики  пострадиационных  изменений  ДР  ДНК.  В  настоящее  время  метод  активно

используется  не только в радиобиологии,  но и в онкологии,  токсикологии,  фармакологии,

геронтологии и смежных областях науки. 
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Рисунок. Схема фосфорилирования Н2АХ (адаптировано из Stucki M. et al. [33])

MRN – Mre11-Rad50-Nbs1- репаративный комплекс, осуществляющий репарацию ДР ДНК

NBS1 – белок, кодируемый геном NBS, мутация в этом гене ассоциирована с наследственным

заболеванием Nijmegen Breakage Syndrome (синдром хромосомной неустойчивости 

Неймегена)

Rad50 – белок, принимающий участие в рекомбинации и рекомбинационной репарации 

гомологичных ДНК

MRE11 - белок, участвующий в гомологичной рекомбинации, поддержании длины теломер и

репарации ДР ДНК

MDC1 – белок, привлекающий в область ДР ДНК белки репарации
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