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Реферат 

Синдром поликистоза яичников (СПЯ) часто сочетается с хроническим 

окислительным стрессом, нарушающим инсулиновую сигнализацию и 

оогенез. 

Цель исследования: Систематизировать микроРНК, непосредственно 

регулирующие гены окислительного стресса при СПЯ. 

Методы: Анализ публикаций за последние 25 лет для сопоставления 

мишеней микроРНК с путями антиоксидантной защиты с использованием 

баз данных: HMDD, PCOSKB и miRTargetLink 2.0. 

Результаты: miR-145 подавляет пролиферацию гранулѐзных клеток, 

ингибируя сигнальный путь IRS1/MAPK-ERK; miR-16 воздействует на 

PDCD4 и подавляет апоптоз; miR-323-3p регулирует гены IGF1/PDCD4; 

miR-324-3p регулирует пролиферацию и апоптоз в гранулезных клетках 

посредством воздействия на ген WNT2B; miR-222 подавляет экспрессию 

SOD2; miR-27a участвует в фолликулогенезе, регулирует ген Nrf2; miR-93 

подавляет активность антиоксидантного гена  NFE2L2 и стимулирует 

апоптоз; miR-21 участвует в развитии фолликулов и стероидогенезе, 

усиливает продукцию активных форм кислорода  и  подавляет активность 

SOD2 и SOD3. 

Заключение: Показано, что miR-145; miR-323-3p; miR-324-3p; 

miR-146a;  miR-93 и miR-21 могут служить 

диагностическими/прогностическими маркерами и мишенями терапии СПЯ, 



что в конечном итоге может улучшить фертильность, метаболическое 

здоровье и качество жизни у женщин с СПЯ. 
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ABSTRACT 

Polycystic ovary syndrome (PCOS) is often associated with chronic oxidative 

stress, which impairs insulin signaling and oogenesis. 

Study objective: To systematize microRNAs that directly regulate oxidative stress 

genes in PCOS. 



Methods: Analysis of publications over the past 25 years to correlate microRNA 

targets with antioxidant defense pathways using the HMDD, PCOSKB, and 

miRTargetLink 2.0 databases. 

Results: miR-145 suppresses granulosa cell proliferation by inhibiting the 

IRS1/MAPK ERK signaling pathway; miR-16 affects PDCD4 and suppresses 

apoptosis; miR 323 3p regulates IGF1/PDCD4 genes; miR-324-3p regulates 

proliferation and apoptosis in granulosa cells by affecting the WNT2B gene; miR 

222 suppresses SOD2 expression; miR-27a is involved in folliculogenesis, 

regulates the Nrf2 gene; miR-93 suppresses the activity of the antioxidant gene 

NFE2L2 and stimulates apoptosis; miR-21 is involved in follicle development and 

steroidogenesis, enhances the production of reactive oxygen species and 

suppresses the activity of SOD2 and SOD3. 

Conclusion: It has been shown that miR-145; miR-323-3p; miR-324-3p; miR-

146a; miR-93 and miR-21 can serve as diagnostic/prognostic markers and targets 

for PCOS therapy, which ultimately may improve fertility, metabolic health and 

quality of life in women with PCOS. 
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Введение: 

Синдром поликистозных яичников (СПЯ) — распространѐнное 

заболевание, поражающее 6–20% женщин репродуктивного возраста и 

являющееся причиной множества случаев женского бесплодия. Для 

диагностики СПЯ необходимо наличие как минимум двух из следующих 

признаков: гиперандрогении, олиго- или ановуляции, а также поликистозной 

морфологии яичников по данным УЗИ [1]. Симптомы СПЯ включают 

гирсутизм, акне, нарушения менструального цикла и субфертильность, часто 

сочетающиеся с метаболическими нарушениями, такими как 

инсулинорезистентность и ожирение [2,3].  Окислительный стресс (ОС) 

определяется как  нарушение равновесия с между продукцией свободных 

радикалов и   уровнем антиоксидантной защиты. Предыдущие исследования 

показали повышенные уровни маркеров ОС и сниженную антиоксидантную 

способность у пациенток с СПЯ [4]. Повышенный ОС при СПЯ вызван 

множеством факторов, включая персистирующую гипергликемию и 

гиперинсулинемию и хроническое воспаление. Было высказано, что ОС 

играет важную роль в патологии СПЯ поскольку он усугубляет 

инсулинорезистентность, нарушая сигнальные пути инсулина, и может 

стимулировать клетки яичников вырабатывать избыточное количество 

андрогенов [5]. Кроме того, ОС нарушает нормальный фолликулогенез, 

повреждая ооциты и гранулезные клетки, тем самым предотвращая 

созревание фолликулов и овуляцию [6]. 

МикроРНК – небольшие некодирующие молекулы РНК, которые выполняют 

функцию ключевых посттранскрипционных регуляторов экспрессии генов. 

МикроРНК связываются с целевыми последовательностями мРНК генов , 

что приводит к подавлению трансляции или деградации мРНК [7]. 

Нарушение функций микроРНК было изучено при разных заболеваниях, 

включая метаболические и репродуктивные нарушения. Несколько 

исследований показывают, что микроРНК, непосредственно нацеленные на 



гены, ассоциированные с ОС, играют ключевую роль в патофизиологии 

СПЯ. Например, было показано, что miR-128, экспрессия которой 

повышается при СПЯ, воздействует на антиоксидантный ген SIRT1, 

способствуя дисфункции гранулезных клеток [8].  

Цель данного обзора — установить роль генов, ассоциированных с ОС, 

в развитии СПЯ, а затем подробно описать роль микроРНК, регулирующих 

эти гены, при СПЯ. Кроме того, в данной статье будет рассмотрен потенциал 

этих микроРНК в качестве диагностических биомаркеров и терапевтических 

мишеней СПЯ. 

Методы  

Мы провели систематический поиск исследований, опубликованных в 

период с 2000 по 2025 год, в PubMed, Scopus, Web of Science, eLIBRARY и 

Google Scholar   и  в базах данных:  HMDD (the Human microRNA Disease 

Database,http://www.cuilab.cn/hmdd),  PCOSKB (A KnowledgeBase on genes, 

diseases, ontology terms and biochemical pathways associated with PolyCystic 

Ovary Syndrome,  https://pcoskb.bicnirrh.res.in/mirna.php) и  miRTargetLink 2.0 

(https://ccb-compute.cs.uni-saarland.de/mirtargetlink2/). 

Ключевые слова: СПЯ, окислительный стресс, гены антиоксидантов, 

has-mir ; miRNA, микро РНК.  

 

Роль микроРНК в патогенезе СПЯ 

Многочисленными исследованиями показано, что изменения уровня 

микроРНК вносят существенный вклад в развитие ряда патологий, включая 

метаболические синдромы [9]. В нескольких исследованиях был изучен 

профиль микроРНК в гранулезных клетках и фолликулярной жидкости у 

женщин с СПЯ однако ассоциация между микроРНК и СПЯ до конца не 

изучена [10]. Согласно базе данных HMDD (the Human microRNA Disease 

Database), в предыдущих исследованиях 238 микроРНК были изучены при 

СПЯ. Среди этих, только четыре микроРНК показали прямую 

http://www.cuilab.cn/hmdd
https://pcoskb.bicnirrh.res.in/mirna.php
https://ccb-compute.cs.uni-saarland.de/mirtargetlink2/


этиологическую роль в развитии заболевания (таблица 1). Предложенные в 

научной литературе роли miR-145, miR-16, miR-323-3p и miR-324-3p при 

СПЯ наглядно представлены на рисунке 1.  

 

Таблица 1 – микроРНК участвующие  в развитии СПЯ по данным базы 

данных HMDD 

МикроРНК Механизм действия при СПЯ Ссылка 

hsa-miR-145 

miR-145 отрицательно регулирует пролиферацию 

клеток посредством нацеливания на ген 

субстрата инсулинового рецептора 1 (IRS1) в 

гранулезных клетках у пациентов с СПЯ. 

[11] 

hsa-miR-16 

miR-16 стимулирует пролиферацию гранулезных 

клеток и подавляет апоптоз посредством 

воздействия на ген белка программируемой 

клеточной смерти (PDCD4) при СПЯ 

[12] 

hsa-miR-323 

miR-323-3p регулирует стероидогенез и апоптоз 

клеток при СПЯ, воздействуя на ген 

инсулиноподобного фактора роста 1 (IGF1). 

[13] 

hsa-miR-324 
miR-324-3p играет роль при СПЯ посредством 

воздействия на ген WNT2B 
[14] 

 

 miR-145 

miR-145 участвует в регуляции сигнальных путей и основных клеточных 

процессов и  важную регуляторную роль в физиологии яичников, включая 

пролиферацию гранулезных клеток, отбор фолликулов и фолликулогенез 

[15]. Таким образом, изменения уровня экспрессии miR-145 в гранулезных 

клетках [16] может вносить существенный вклад в нарушения развития 

фолликулов при СПЯ. Повышенная экспрессия гена MIR145 ингибирует 



сигнальный путь митогенактивируемых протеинкиназ (MAPK)/ERK в 

гранулезных клетках. Также показано, что miR-145 может подавлять 

пролиферацию клеток, и этот механизм связан с подавлением экспрессии 

гена IRS1, что приводит к ингибированию сигнальных путей MAPK/ERK 

[17]. Кроме того, высокие концентрации инсулина снижают экспрессию 

MIR145, регулируя образование белка IRS-1 и стимулируя пролиферацию 

клеток [11]. Некоторые исследования связывают miR-145 с ключевыми 

метаболическими осложнениями, такими как инсулинорезистентность и 

ожирение [18], что позволяет считать его  перспективным маркером 

метаболических и репродуктивных дисфункций, связанных с СПЯ. 

 miR-16 

Zhao и соавт. продемонстрировали, что уровень miR-16 в сыворотке был 

значительно ниже у пациенток с тяжѐлой формой синдрома 

гиперстимуляции яичников (СГЯ), по сравнению с пациентками лѐгкого СГЯ 

или без него [19]. Fu и соавт. обнаружили, что экспрессия miR-16 была ниже 

в тканях яичников и сыворотке крови пациенток с СПЯ. Было высказано 

предположение, что высокий уровень тестостерона при СПЯ влияет на 

фолликулогенез, снижая экспрессию MIR16 и повышая экспрессию 

программируемой клеточной смерти 4 (PDCD4), что приводит к увеличению 

гибели клеток и снижению пролиферации [12]. Высокий уровень PDCD-4 

приводит к увеличению количества клеток в фазах G0 и G1 и в то же время к 

уменьшению количества клеток в фазе S [20]  ( рис.1).  

 miR-323-3p 

Wang и соавторы (2019) обнаружили, что уровни miR-323-3p были снижены 

в клетках кумулюса у пациентов с СПЯ по сравнению с контрольной 

группой. Они предположили, что miR-323-3p, модифицируя генетическую 

экспрессию гена IGF1, регулирует стероидогенез и активность клеток 

кумулюса, что играет важную роль в развитии СПЯ [13]. Несколько 



исследований показали, что IGF-1 может играть значительную роль в 

процессе развития фолликулов miR-323-3p стимулирует пролиферацию 

клеток и подавляет апоптоз в клетках кумулюса [21].  Zhao и соавт. провели 

исследование in vivo и обнаружили другую генетическую мишень miR-323-

3p при СПЯ, помимо IGF1 – гена PDCD4. Повышение miR-323-3p облегчало 

течение СПЯ, подавляя апоптоз клеток кумулюса посредством воздействия 

на PDCD4 [22].  

miR-324-3p 

Уровень miR-324-3p в сыворотке пациенток с СПЯ значимо ниже по 

сравнению с контрольной группой [23]. Было обнаружено, что экспрессия 

miR-324-3p в тканях яичников крыс с СПЯ была снижена [14]. Кроме того, 

эксперименты in vitro дополнительно прояснили, что miR-324-3p может 

регулировать пролиферацию и апоптоз гранулезных клеток посредством 

воздействия на ген WNT2B, таким образом играя важную роль в СПЯ [14]. 

 

Рисунок 1 – Роль miR-145, miR-16, miR-323-3p и miR-324-3p в патогенезе СПЯ.  

IRS1:ген субстрата инсулинового рецептора 1; MAPK/ERK: сигнальный путь 

митогенактивируемых протеинкиназ; PDCD4: ген программируемой клеточной смерти 4; 



IGF1:ген инсулиноподобного фактора роста 1; WNT2B: ген члена 2B семейства WNT; 

BRD3: ген белка, содержащего бромодомены 3 

 

МикроРНК и окислительный стресс 

Окислительный стресс может влиять на уровни экспрессии многих 

микроРНК, и, наоборот, микроРНК могут регулировать экспрессию генов, 

связанных с окислительно-восстановительными процессами, и изменять 

ключевые компоненты клеточного антиоксидантного аппарата, воздействуя 

на гены, участвующие в путях продукции и детоксикации активных форм 

кислорода (АФК) [4,7]. Роль микроРНК в окислительно-восстановительном 

статусе включает их регуляторное воздействие на различные гены, 

связанные с продукцией АФК, антиоксидантами и системами репарации [24].  

Образование АФК метаболическими ферментами, такими как НАДФН-

оксидазы (NOX), представляет собой один важный источник окислительного 

стресса [25]. Предыдущие исследования показали повышенную экспрессию 

гена NOX2 вследствие сверхэкспрессии miR-34a [26] и miR-322 [27]. Другие 

miRNA вызывают ингибирование NOX2 или ослабление активности NOX4. 

miR-124-5p напрямую связывается с NOX2.  Пролиноксидаза (POX) — это 

фермент внутренней мембраны митохондрий, который опосредует 

пролиновый цикл, обеспечивая транспорт окислительно-восстановительных 

компонентов между митохондриями и цитозолем [25]. POX является 

мишенью miR-23b, и была отмечена отрицательная корреляция между 

экспрессией miR-23b и белка POX [28]. 

Число микроРНК, мишенями которых являются антиоксидантные ферменты, 

продолжает расширяться в различных экспериментальных моделях. 

МикроРНК, регулирующие генетическую экспрессию основных генов 

антиоксидантов по данным базы данных miRTargetLink 2.0 [29], показаны на 

рисунке 2. Недавние исследования показывают, что гены 

супероксиддисмутазы (SOD) регулируются различными микроРНК. 



Например, было обнаружено, что miR-206 регулирует экспрессию SOD1 [30], 

а miR-212 подавляет SOD2 [31]. Экспрессия гена каталазы (CAT) подавляется 

miR-30b [32], miR-146a  и miR-551b [33]. Кроме того, микроРНК 

рассматриваются как потенциальные регуляторы экспрессии генов 

глутатионпероксидазы (GPX) [34].  Глутатион-S-трансферазы (GST) 

представляют собой мультигенное семейство ферментов фазы II 

детоксикации ксенобиотиков. Одним из высококонсервативных классов 

цитоплазматических GST является глутатион-S-трансфераза pi (GSTP1), 

которая защищает клетки от цитотоксических и канцерогенных агентов. 

Показано, что miR-133-a/b, miR-153-1/2, miR-590-3p/5p и miR-144 имеют 

специфические целевые сайты на 3′UTR гена GSTP1 [35]. Другим ключевым 

антиоксидантным ферментом является параоксоназа 1 (PON1). Она связана с 

неблагоприятными последствиями для здоровья, такими как сердечно-

сосудистые заболевания и другие нарушения обмена веществ. Показано, что  

miR-616-39 является регуляторной микроРНК, которая напрямую 

воздействует на ген PON1 [36]. Различные микроРНК могут ингибировать 

(miR-93) или активировать (miR-200a, miR-7, miR-455) сигнальный путь Nrf2 

[25]. 

 

МикроРНК, регулирующие экспрессию генов окислительного стресса  

при СПЯ 

Среди микроРНК, регулирующих гены продукции активных форм кислорода 

(АФК) и гены антиоксидантов, шесть были изучены как связанные с СПЯ, 

согласно базе данных PCOSKB. В PCOSKB собрана и интегрирована 

информация о связанных с СПЯ генах, однонуклеотидных полиморфизмах 

(SNP), заболеваниях и путях развития, а также дополнительная справочная 

литература [37]. Поиск в базе данных привѐл к обнаружению 34 микроРНК, 

участвующих в патогенезе СПЯ, из которых MIR222, MIR27A, MIR146A, 

MIR93, и MIR21, как известно, непосредственно нацелены на гены, 



связанные с ОС. Роли данных микроРНК, регулирующих экспрессию генов 

ОС,  при СПЯ представлены на рисунке 3. 

 miR-222: 

MiR-222 может играть важную роль в патогенезе СПЯ, влияя на 

пролиферацию и апоптоз гранулезных клеток посредством воздействия на 

CDKN1B, кодирующий ингибитор циклин-зависимой киназы [37]. Более 

убедительные данные о роли miR-222 в развитии СПЯ показали еѐ 

потенциальную связь с чувствительностью к инсулину при СПЯ [38]. Было 

обнаружено, что эта miRNA участвует в нескольких патофизиологических 

процессах, связанных с СПЯ, таких как повышение уровня 

лютеинизирующего гормона (ЛГ) и глюкозы. miR-222-3p был особенно 

сильно экспрессирован у пациентов СПЯ с избыточным весом, а высокая 

экспрессия miR-222-3p предсказывала высокий риск диабетических и 

сердечно-сосудистых осложнений при СПЯ [39]. Как показано на рис.3, miR-

222-3p является регулятором гена SOD2.  Предсказано, что miR-222 

связывается с SOD2 целевой последовательностью (нуклеотиды 330–352 в 

3′-нетранслируемой области гена). Также подтверждено, что miR-222 

подавляет экспрессию гена SOD2 [40]. У пациенток с СПЯ наблюдалось 

статистически значимое снижение как средней активности СОД в сыворотке, 

так и активности СОД в фолликулярной жидкости. Активность СОД 

является клиническим параметром ОС при СПЯ [41].  

 



 

Рисунок 2 – МикроРНК, регулирующие генетическую экспрессию основных генов 

антиоксидантов  

База данных: miRTargetLink 2.0 (https://ccb-compute.cs.uni-saarland.de/mirtargetlink2/) 

(Параметры поиска в базе данных были настроены на отображение только строго 

проверенных микроРНК) 

 miR-27a: 

Развитие СПЯ коррелирует с повышением уровня miR-27a. Эта микроРНК 

была предложена в качестве маркера СПЯ с высокой чувствительностью и 

специфичностью [42]. miR-27a-3p участвует в фолликулогенезе, апоптозе 

клеток гранулезы и ранней дисфункции яичников [43].  Показано наличие 

нескольких генов-мишеней для miR-27a в гранулезных клетках при СПЯ. 

Например, ген SMAD5, который связан с инсулинорезистентностю у женщин 

с СПЯ [44]. Кроме того, miR-27a воздействует на гены цитокинов, включая 

интерлейкин-6 (IL6) и фактор некроза опухоли-альфа (TNFΑ), а также IL10, 

важнейший цитокин, регулирующий функцию яичников, miR-27a влияет на 

количество рецепторов эстрогена, которое, как известно, находится на более 

высоком уровне у пациентов с СПЯ [45].  miR-27a может напрямую 

регулировать ген Nrf2 (NFE2L2). Подавление активности miR-27a привело к 

https://ccb-compute.cs.uni-saarland.de/mirtargetlink2/


повышению уровня Nrf2, и в 3'UTR-области гена NFE2L2 имеется 

специфический сайт еѐ связывания [46].  

miR-146a: 

Было установлено, что miR-146a в гранулезных клетках регулирует процесс 

апоптоза, воздействуя на киназу, ассоциированную с рецептором 

интерлейкина-1, и фактор 6, ассоциированный с рецептором фактора некроза 

опухоли [47]. Важность miR-146a для функционирования гранулезных 

клеток была отмечена и в другом исследовании, показывающем ассоциацию 

полиморфизма MIR146A с изменением экспрессии нескольких генов в 

гранулезных клетках [48]. Отмечено снижение уровня miR-146a в 

фолликулярной жидкости и ее повышение уровня  в крови пациенток с СПЯ 

[49]. Wang и соавт. (2014) показали, что повышенный уровень miR-146a 

ассоциирован со снижением экспрессии гена каталазы (CAT). С другой 

стороны, нокдаун miR-146a восстанавливает экспрессию, подавляет 

индукцию АФК и защищает от цитотоксичности [50]. У женщин с СПЯ 

снижение активности каталазы приводит к накоплению свободного O2 и 

пероксинитрита (ONOO-). Это приводит к нарушению функции яичников и 

повреждению ДНК.  

 miR-93: 

Chen и соавторы сообщили о повышенном уровне miR-93 у пациентов с 

СПЯ, а у пациентов с инсулинорезистентностью этот уровень был 

значительно выше, чем других. Они также продемонстрировали, что miR-93 

эффективно воздействует на экспрессию GLUT4 (транспортера глюкозы) и 

регулирует еѐ, что указывает на значительную роль miR-93 в развитии 

инсулинорезистентности при СПЯ [51]. MiR-93 реализует свой потенциал, 

подавляя активность защитного антиоксидантного регулирующего гена 

NFE2L2, воздействуя на определенные участки в его 3'-нетранслируемых 

областях и, таким образом, вызывая снижение уровня Nrf2 [52]. При СПЯ, 



уровень miR-93-5p повышается в гранулезных клетках. Это стимулирует 

апоптоз, а подавление miR-93-5p защищает от дисфункции яичников. 

Биологический анализ и последующие эксперименты показали, что miR-93-

5p негативно регулирует сигнальный путь NF-κB [53].  

 miR-21: 

Было обнаружено, что  miRNA-21 регулирует несколько генов, участвующих 

в функции яичников, включая гены, участвующие в развитии фолликулов и 

стероидогенезе [54]. Это позволяет предположить, что таргетирование 

miRNA-21 может быть потенциальной терапевтической стратегией для 

лечения СПЯ. mir-21 также регилирует гены, ассоциированные с 

окислительно-восстановительным статусом. Например, исследование 

мезенхимальных стволовых клеток показало, что miRNA-21 усиливает 

продукцию АФК через сигнальный путь MAPK и подавляет экспрессию 

SOD2 и SOD3 [55]. Это позволяет предположить, что еѐ роль в патогенезе 

СПЯ может быть связана с еѐ участием в механизмах, связанных с 

окислительным стрессом. 

 

 



Рисунок 3 – Роль miR-222-3p, miR-21, miR-146a, miR-27a, и miR-93 в патогенезе СПЯ.  

SOD2: ген супероксиддисмутазы 2; CAT: ген каталазы; NFE2L2: ген фактора транскрипции, 

родственного ядерному фактору эритроида 2 

 

Заключение 

МикроРНК широко изучались при СПЯ. В результате было высказано 

предположение о потенциальной роли многих микроРНК в патогенезе СПЯ. 

Однако механизмы, лежащие в основе их действия, до конца не изучены. 

Известно, что окислительный стресс способствует патогенезу СПЯ. В 

данном обзоре рассматриваются микроРНК, регулирующие гены, связанные 

с окислительно-восстановительным статусом, чтобы подчеркнуть их роль в 

развитии СПЯ. Упомянутые микроРНК могут служить потенциальными 

целями для будущих исследований, направленных на выявление новых 

биомаркеров СПЯ и, следовательно, на улучшение стратегий диагностики и 

лечения.  
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