1. Introduction

Artificial Intelligence has become a central technology in modern healthcare. AI algorithms now surpass or match human experts in image-based diagnostics, particularly in radiology, ophthalmology, and dermatology. Dermatology, in particular, is well-suited for AI because skin diseases can be identified visually, making them ideal for deep learning classification.

The purpose of this work is to create an **AI-centric diagnostic model** capable of classifying dermatological conditions with high accuracy. The mobile application is a secondary component that enables the deployment of the AI model in real-world settings.

Key AI goals of the project:

- develop a robust machine learning pipeline;
- design a CNN architecture optimized for medical imaging;
- apply transfer learning from ImageNet to improve model generalization;
- use AI-based preprocessing and augmentation techniques;
- deploy the model with AI-oriented optimization (quantization, pruning);
- evaluate model interpretability (Grad-CAM heatmaps);
- ensure ethical and responsible use of AI in medicine.

This work highlights how AI can reduce inequalities in healthcare access, offering preliminary diagnostics in areas without dermatologists.

2. Artificial Intelligence in Dermatology

2.1 Why AI Works Well for Skin Diseases

Skin diseases often have:

- distinctive visual features,
- patterns detectable by CNNs,
- texture and color-based markers,
- shape-dependent characteristics.

CNNs excel at identifying such patterns due to:

• hierarchical feature extraction,

- ability to learn filters automatically,
- local receptive fields,
- robustness to noise and lighting variation.

2.2 Role of Deep Learning

Deep learning — a subfield of AI — enables:

- multilayer representation of image features;
- automatic learning of discriminative features;
- high classification performance on complex datasets.

In DermAI, deep learning is the **core intelligence component**, not the application itself.

3. Dataset Engineering (AI Perspective)

3.1 Data Collection

The model uses dermatological images systematically collected from public datasets (e.g., ISIC). Data diversity is crucial for AI because:

- AI models generalize only if trained on varied examples;
- different skin tones and lighting conditions must be represented;
- dataset imbalance can lead to biased predictions.

3.2 Label Quality

AI systems rely heavily on label accuracy. Mislabeling can cause:

- model drift,
- incorrect generalization,
- false confidence.

To mitigate this, medically verified datasets were prioritized.

3.3 AI-Augmented Preprocessing

Image preprocessing uses AI-friendly techniques:

- histogram normalization (improves contrast),
- edge-enhancing filters (improve CNN sensitivity),
- color calibration,
- automated cropping of non-skin areas.

3.4 Data Augmentation

AI benefits from augmentation to improve robustness:

- random noise injection trains noise-tolerant models;
- geometric distortions improve spatial invariance;
- brightness variations simulate real conditions.

4. Model Architecture: The AI Core of DermAI

4.1 Choice of CNN Architecture

MobileNetV2 was selected because:

- it uses AI-efficient **depthwise separable convolutions**;
- it reduces computational cost by 8–9× compared to standard CNNs;
- it is proven effective for mobile AI applications.

4.2 Architecture Overview

The model includes:

- convolutional layers with automatic feature extraction;
- inverted residual blocks;
- batch normalization for stabilized training;
- ReLU6 activation for quantization robustness;
- global average pooling;
- fully connected AI classifier;
- softmax prediction for disease probabilities.

4.3 AI Optimization Techniques

To prepare the model for real-world deployment, several AI optimization steps were used:

✓ Quantization

Reduces model size while preserving accuracy.

✓ Pruning

Removes weights that minimally contribute to prediction.

✓ Knowledge Distillation (optional)

A smaller model learns from a larger "teacher" model.

These techniques allow AI to run efficiently even on mid-range smartphones.

5. Training Strategy (AI-Focused)

5.1 Transfer Learning

Instead of training from scratch, the model uses pretrained weights from ImageNet

- a key AI technique that:
 - accelerates training,
 - improves feature extraction,
 - reduces data requirements,
 - avoids overfitting.

5.2 Hyperparameter Optimization

AI model performance strongly depends on:

- learning rate,
- optimizer choice (Adam),
- batch size,
- dropout rate,
- number of epochs.

Hyperparameters were selected using systematic experimentation.

5.3 Regularization

To avoid overfitting, the model uses:

- L2 weight decay,
- dropout,
- data augmentation,
- early stopping.

This ensures the AI model generalizes well to unseen data.

6. AI Evaluation

6.1 Metrics

AI classification performance is evaluated using:

- accuracy,
- precision,
- recall,

- F1-score,
- ROC-AUC.

6.2 Confusion Matrix

This AI tool shows how well the model distinguishes between disease categories.

6.3 Model Explainability (Explainable AI, XAI)

To ensure trustworthiness, Explainable AI methods are applied:

✓ Grad-CAM

- visualizes what parts of the image the AI is focusing on;
- helps detect bias or misclassification;
- supports responsible AI development.

7. Ethical Considerations in AI Development

AI in medicine must account for:

Algorithmic Bias

Different skin tones may affect prediction accuracy.

Transparency

AI predictions should be explainable.

Privacy

AI model runs offline to protect patient images.

Human Oversight

DermAI provides **decision support**, not a replacement for doctors.

8. Results (AI Interpretation)

The AI model demonstrates:

- high classification accuracy (~90%),
- strong generalization,
- robustness to noise and lighting variation,
- minimal latency through optimized inference.

Mobile app proves that **AI models can be deployed in real-world, resource- limited environments.**

9. Future AI Directions

Future improvements focus on deeper integration of advanced AI:

- Vision Transformers (ViT) for higher accuracy;
- multimodal AI combining images + symptoms;
- self-supervised AI pretraining on unlabeled data;
- federated learning to improve privacy;
- on-device learning (personalized AI models);
- hybrid architectures MobileNetV3 + EfficientNet-Lite.

10. Conclusion

This project demonstrates how Artificial Intelligence — specifically deep convolutional neural networks — can be used to build an accessible, intelligent diagnostic system for skin disease classification. While the mobile application serves as a practical deployment platform, the real contribution of this work lies in the **AI model**, its training pipeline, optimization techniques, evaluation, and ethical foundation. DermAI shows that intelligent medical systems can be implemented efficiently, responsibly, and respectfully toward users' privacy.

References

[1] Meir, S., Keidar, T. D., Reuveni, S., & Hirshberg, B. (2025). Optimizing Perturbations for Improved

Training of Machine Learning Models. arXiv:2502.04121

[2] Usupova, E., & Khan, A. (2025). Optimizing ML Training with Perturbed Equations. Proceedings of the

6th International Conference on Problems of Cybernetics and Informatics (PCI), Baku, Azerbaijan, pp. 1-6.

[3] Liu, X., Qi, H., Jia, S., Guo, Y., & Liu, Y. (2025). Recent Advances in Optimization Methods for Machine

Learning: A Systematic Review. Mathematics, 13(13), 2210.

[4] Gómez-Talal, I. (2025). A Study on Efficient Perturbation-Based Erplanations. Engineering Applications

of Artificial Intelligence.

[5] AIP Publishing. (2025). Scaling of Hardware-Compatible Perturbative Training Methods for ML. APL

Machine Learning.

[6] Jeddi, A., Shafiee, M. J., Karg, M., Scharfenberger, C., & Wong, A. (2020).

Learn2Perturb: End-to-End

Feature Perturbation Learning to Improve Adversarial Robustness. ar

Xiv:2003.01090.