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Abstract

Legacy software systems remain the backbone of critical industries such as
banking, healthcare, and logistics, yet they pose significant risks due to technical
debt, security vulnerabilities, and a shortage of developers skilled in outdated
languages (e.g., COBOL, Fortran). A paradigm shift is emerging with the
application of Large Language Models (LLMs) and Generative Al (GenAl) to
automate the modernization process. This paper investigates how GenAl agents
can autonomously analyze, document, and refactor legacy codebases into modern
microservices architectures. Unlike traditional transpilers, Al-driven approaches
utilize semantic understanding to preserve business logic while optimizing
performance. Preliminary studies indicate that GenAl-assisted migration can
reduce project timelines by 40% and testing overhead by 30%. However,
challenges such as "hallucinations" in code generation and data privacy concerns
remain. This study synthesizes current research to provide a comprehensive
overview of Al-enabled software modernization.
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Introduction

Digital transformation is often stalled by the reliance on monolithic legacy
systems. Maintaining these systems is costly and inefficient, yet rewriting them
from scratch is fraught with operational risk. Traditional automated tools often fail
to capture the nuances of business logic embedded in decades-old code. The advent
of Generative Al, specifically models trained on vast repositories of code (such as
Codex, StarCoder, and Llama 3), offers a novel solution. By treating code
migration not as a translation task but as a semantic reconstruction task, Al tools
can now suggest architecture improvements during the migration process. This
paper explores the transition from manual rewriting to Al-augmented
modernization, highlighting the efficiency gains and the shift towards "human-in-
the-loop" verification workflows.

AI Mechanisms for Code Modernization

The integration of Al into software engineering workflows transforms
modernization through three key mechanisms:

1. Code Understanding and Documentation: Before = migration,
understanding the "spaghetti code" is crucial. LLMs can ingest legacy files



and generate natural language documentation, explaining complex logic to
modern developers.

2. Automated Refactoring and Translation: AI models go beyond syntax
translation. They can identify design patterns in languages like COBOL and
map them to object-oriented patterns in Java or Python, effectively
modernizing the architecture while porting the code.

3. Test Case Generation: One of the biggest risks in migration is regression.
Generative Al can automatically generate unit tests for the original legacy
code and ensure the new modernized code passes the same logic gates,
guaranteeing functional equivalence.

Challenges and Implementation Considerations

Despite the potential, deploying Al for critical infrastructure migration
involves hurdles. Accuracy and Reliability: LLMs can produce syntactically
correct but logically flawed code (hallucinations). Rigorous automated testing
frameworks are required. Security and Privacy: Uploading proprietary banking or
medical code to public AI models poses data leakage risks, necessitating the use of
on-premise or private cloud LLMs. Complexity Window: Current LLMs have
context window limits, making it difficult to process massive monolithic
applications as a whole; strategies for modularizing the input are essential.

Conclusion

The application of Generative Al in legacy system modernization represents
a significant leap forward in software engineering. By automating the tedious
aspects of documentation, translation, and testing, organizations can unlock the
value trapped in old systems. While human oversight remains essential to mitigate
Al errors, the synergy between expert developers and Al agents is defining the
future of enterprise IT sustainability.
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