Vision Transformers: Architecture,
Attention Mechanisms, and Perspectives
for Computer Vision Development

Abstract

This paper presents a comprehensive analysis of Vision Transformers (ViT) architecture as a
paradigm for image analysis based on the self-attention mechanism. We investigate the
theoretical foundations of adapting transformers to two-dimensional data, analyze the
effectiveness of various image patching strategies, and examine critical factors influencing
training quality. Special attention is devoted to comparing ViT with traditional convolutional
neural networks and identifying optimal application scenarios. The work contains original
analysis of local and global adaptation mechanisms in transformers, and proposes directions
for further research in learning efficiency and interpretability.
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1. Introduction

The revolution in natural language processing brought about by the self-attention
mechanism and the transformer architecture (Vaswani et al., 2017) has led to parallel
developments in computer vision. However, the direct application of transformers to images
requires fundamentally new approaches, since images possess substantially different
characteristics from text: two-dimensional spatial structure, high pixel dimensionality, and
localized correlation patterns.

Vision Transformer (ViT), introduced by Dosovitskiy et al. (2021), demonstrated that a pure
transformer architecture without convolutional layers can achieve competitive results on
image classification tasks provided sufficient data for pretraining. This discovery had
profound implications: it showed that local pixel relationships are not a rigid requirement for
visual information processing.

1.1 Research Motivation
Despite the growing popularity of ViT, several under-explored aspects remain:

1. Mechanisms that enable transformers to learn local patterns without built-in
convolutional inductive bias
2. Optimal patching strategies for various image types and tasks



3. The role of large-scale pretraining in ViT's generalization ability to small datasets
4. Interpretability of attention matrices in the context of visual analysis

2. Theoretical Foundations of Vision Transformers

2.1 Adapting the Self-Attention Mechanism to Images

The classical self-attention mechanism is defined as:

Attention(Q, K, V) = softmax(QKAT / Vd_k)V

where Q (queries), K (keys), V (values) are obtained from input representations through
linear transformations.

The key innovation of ViT lies in reformulating the input image as a sequence of fixed
patches. For an image of size H x W x C and patch size P x P, the image is transformed into
a sequence of N = (H x W) / P2 patches. Each patch is "flattened" into a vector of
dimensionality D = P? x C, which is then linearly projected into a D-dimensional embedding
space.

This transformation is critical: it allows the transformer to process visual information as a
discrete symbolic sequence, analogous to text tokens. However, unlike text, visual patches
contain rich low-level information, enabling the model to learn hierarchical representations.

2.2 Positional Encoding in Two-Dimensional Space

The standard ViT approach employs one-dimensional positional encoding based on
sinusoidal functions despite the two-dimensional structure of images. This can be viewed as
a loss of information about spatial topology.

However, empirical observations show that the model can successfully recover
two-dimensional relationships through the self-attention mechanism. Patches that are
spatially close in the image naturally receive high attention weights from each other.

Alternative approaches, such as 2D positional encodings (e.g., based on Cartesian
coordinates), have shown mixed results and require further investigation regarding their
practical effectiveness.

2.3 Hybrid Architectures: CNN + Transformer

A parallel development direction is the integration of convolutional layers with transformers.
In the hybrid approach, initial convolutional layers serve as a feature extractor before the
transformer:

e CNN provides built-in spatial inductive bias



e Transformer captures long-range dependencies between features

Such architectures often demonstrate improved training efficiency compared to pure
transformers, especially on limited datasets.

3. Architectural Components and Variations

3.1 Patching and Attention Window Size
The patch size P represents a critical hyperparameter:

e Large patches (P 2 32): Reduce the number of tokens, decrease computational
complexity, but may miss local details

e Small patches (P < 16): Preserve fine details, require more memory and
computational resources

e Adaptive patching: A potential approach where patch size varies depending on
local image complexity

Research shows that optimal patch size depends on:

1. Dataset size for pretraining
2. Target resolution of input images
3. Task specificity (classification, segmentation, detection)

3.2 Multi-Head Attention in Visual Analysis Context

ViT employs multi-head attention (MHA) with typical head counts h = 8 or 12. Analysis of
attention matrices shows that different heads specialize in different types of interactions:

e Some heads focus attention on nearby patches (local attention)
e Others capture global patterns and relationships between distant regions
e Specialized heads identify semantically meaningful areas

This internal division of labor allows the architecture to automatically balance local and
global representations.

3.3 Normalization and Activation Layers

ViT uses LayerNorm before attention and MLP blocks (pre-norm architecture), unlike
post-norm in the original transformer. The pre-norm configuration provides better training
stability for deep networks and reduces the need for complex training regimes (warmup).

4. Training and Convergence



4.1 Data Requirements
A critical distinction between ViT and CNN lies in data scale requirements:

CNN (e.g., ResNet): Can efficiently train on ImageNet (~1.3M images) due to built-in spatial
inductive bias.

VIT: Requires significantly more data (>14M images, JFT-300M) to achieve superior results.
However, with appropriate regularization techniques (distillation, augmentation), ViT can
adapt to smaller datasets.

4.2 Learning Dynamics of Transformers
The VIT training process is characterized by excellent convergence properties:

1. Smooth loss dynamics: Transformers demonstrate smoother learning curves
compared to CNNs

2. Two-phase dynamics: Initially, the model learns to distribute attention, then
specializes attention weights

3. Late overfitting: ViT exhibits less tendency for rapid overfitting with proper
regularization

4.3 Optimization Techniques
Successful VIiT training requires special approaches:

AdamW optimizer: Outperforms SGD through adaptive learning rates
Warmup phase: Gradual increase of learning rate during the first 10K-40K steps
stabilizes training

e Stochastic depth: Random dropping of entire transformer blocks during training
improves regularization

e Data augmentation: RandAugment, Mixup, CutMix are critical with limited data

5. Comparison with CNN: Trade-off Analysis

Aspect CNN Vision Transformer
Locality Built-in Learned
Memory Complexity O(n) O(n?)
Data Requirements Small (~100K) Large (>1M)
Global Context Requires Depth  Present from Start

Interpretability Filters, Gradients Attention Matrices



High-Resolution Efficient Requires Optimization
Inference

6. Mechanisms of Local Learning in Transformers

One of the most intriguing questions is: how does ViT learn local features without built-in
convolution?

6.1 Convergent Attention Hypothesis

Our observations suggest that in early layers of ViT, a property emerges that can be called
"convergent attention": neighboring patches receive elevated attention weights. This occurs
not by design, but as a result of optimization.

The mechanism operates as follows:

1. Weight initialization leads to relatively uniform attention distribution
2. Gradient descent stimulates the model to focus attention on neighborhoods
3. By the end of training, early layers develop explicit local attention patterns

6.2 Feature Hierarchy in Transformers

Unlike CNNs where hierarchy is explicitly coded through pooling, ViT develops hierarchy
through preferential attention:

e Layers 1-4: Focus on low-level patterns (edges, textures)
e Layers 5-8: Combine local features into more complex structures
e Layers 9-12: Work with semantic concepts and global relationships

7. Applications and Extensions of Vision Transformers

7.1 Semantic Segmentation Task

SETR (Segmentation Transformer) demonstrates straightforward extension of ViT to dense
prediction tasks. The key innovation is using a linear decoder on transformer tokens to
restore spatial resolution.

7.2 Object Detection

DETR (Detection Transformer) reformulates object detection as a transformer "set
prediction” task. Instead of tree-based NMS (non-maximum suppression), the model directly
predicts a set of objects through self-attention mechanisms.



7.3 Tracking and Video Analysis
Extending ViT to video requires modeling temporal dependencies. Approaches include:

e Three-dimensional patches (patches across space and time)
e Separate encoding of space and time
e Masked autoencoding in spatiotemporal domain

8. Original Research Directions

8.1 Adaptive Attention Complexity

We propose a method where self-attention complexity adaptively varies based on input
image or region complexity. Low-complexity images can be processed with fewer attention
tokens, while complex regions receive more detailed processing.

8.2 Spectral Analysis of Attention Matrices

Applying spectral analysis to attention matrices can reveal the hidden structure of how the
model encodes spatial relationships. Analysis of eigenvalues and eigenvectors of attention
matrices can reveal hierarchical organizational principles.

8.3 Cross-Modal Transferability

Understanding how knowledge obtained from image classification transfers to other
modalities (video, 3D, point clouds) can provide valuable insights into the universality of
transformer representations.

9. Computational Aspects and Optimization

9.1 Linear Attention Complexity

Standard self-attention has quadratic complexity O(n?) with respect to sequence length. For
large images, this becomes a bottleneck. Several approaches have been proposed:

Linear Transformers: Using kernel approximations to reduce complexity to O(n)
Local Window Attention: Attention only to patches in a local window (Swin
Transformer)

e Linearized Attention: Reformulating attention as matrix multiplication

9.2 Quantization and Distillation

For deploying ViT on mobile devices:



e Knowledge Distillation: Training smaller ViT on outputs of larger ViT
e Weight Quantization: Reducing weight precision (int8) with minimal quality loss
e Attention Pruning: Removing attention heads with lowest significance

10. Open Questions and Future Directions

10.1 Interpretability

Despite some progress, complete understanding of mechanisms through which ViT
processes information remains unclear. More sophisticated methods for analyzing internal
representations are needed.

10.2 Data Efficiency

The main challenge for practical ViT application is the need for large datasets. Research into
improving "data efficiency" through self-supervised learning, semi-supervised learning, and
transfer learning remains an active area.

10.3 Universal Architectures

Future perspectives point toward the development of unified architectures capable of
processing multiple modalities (images, text, audio, video) through a single self-attention
mechanism.

11. Conclusion

Vision Transformers represent a paradigmatic shift in computer vision, demonstrating that
attention-based architectures can rival and surpass traditional convolution-based
approaches.

Key contributions of this work include:

1. Systematic analysis of adapting transformers to visual data and mechanisms
ensuring their effectiveness

2. Clarification of the role of patching and positional encoding in the 2D context

3. Investigation of learning dynamics and data requirements for successful ViT
application

4. Survey of architectural extensions and applications beyond image classification

5. Identification of open problems and future research directions

Despite remaining challenges in interpretability and data requirements, Vision Transformers
have undoubtedly transformed the landscape of computer vision. Further research into
underlying mechanisms promises new breakthroughs in machine learning.
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