Intelligent Automation of Operating System Service
Management: A Bot-Driven Approach

Daniil Kondrashov
Kyrgyz-German Institute of Applied Informatics
Bishkek, Kyrgyzstan
dnccira@gmail.com

Abstract—Manual administration of background processes in
modern Operating Systems (OS) is a laborious task that often
leads to suboptimal system performance. This study introduces
an autonomous software agent designed to regulate, oversee,
and streamline OS services. By utilizing real-time monitoring
and algorithmic decision-making, the proposed solution ensures
efficient resource utilization. Additionally, the paper examines
the application of advanced code generation techniques and
algorithmic optimization strategies to maximize the reliability
and adaptability of the automation tool.

Index Terms—Service Orchestration, System Automation,
Python, Performance Tuning.

I. INTRODUCTION

Contemporary computing environments rely on a multitude
of background services to manage hardware interactions and
network protocols. For administrators and advanced users, the
selective enablement of these services is crucial for maintain-
ing system responsiveness. However, manual intervention is
time-consuming and inefficient.

To overcome these limitations, we propose an intelligent au-
tomation agent capable of managing OS services dynamically.
The primary objective is to develop a system that adjusts the
state of background processes in response to current workload
demands, thereby enhancing stability and freeing up system
resources.

Our development approach is influenced by recent break-
throughs in algorithmic efficiency and robust software genera-
tion. We specifically adopt resource optimization frameworks
similar to those analyzed by Usupova and Khan [1] to ensure
low-overhead operation. Furthermore, to ensure the safety
of automated command execution, we incorporate structural
logic inspired by the ablation and code generation studies of
Rakimbekuulu et al. [2].

II. METHODOLOGY

The developed tool functions as an intermediary layer,
bridging the gap between high-level user requirements and
low-level kernel operations.

A. System Architecture

The Bot consists of three main modules:

¢ Observer Module: Continuously polls the state of sys-
tem services (e.g., Active, Inactive, Suspended).

o Logic Engine: Analyzes collected data against resource
thresholds (CPU/RAM usage) to determine necessary
state transitions.

« Command Dispatcher: Translates decisions into system-
specific directives (utilizing tools like systemctl or
sc.exe) for execution.

B. Optimization and Logic

To prevent the automation tool from becoming a resource
burden itself, we implement strict efficiency protocols. Draw-
ing parallels to the equation optimization in machine learning
training [1[], our system evaluates the computational “cost” of
restarting a service versus keeping it idle.

Moreover, dynamic command generation carries inherent
risks. To mitigate potential system failures, we employ a
modular design strategy. This approach, informed by modular
code generation techniques [2], ensures that a failure in
the command syntax generation remains isolated, preventing
critical OS crashes.

III. IMPLEMENTATION

The prototype is implemented in Python, leveraging native
OS APIs for service enumeration and control.

o Adaptive Profiles: The system supports user-defined
usage scenarios, such as “Performance Mode” or ”Office
Mode.” For instance, activating ’Performance Mode” trig-
gers the immediate suspension of non-essential utilities
like the Print Spooler or Telemetry services.

« Fail-safe Mechanism: A strict whitelist protocol is hard-
coded to prevent the accidental termination of essential
kernel processes, ensuring system integrity.

IV. CONCLUSION

This paper outlined the design and implementation of an
automated agent for OS service management. By delegating
routine maintenance to an intelligent script, users can expe-
rience improved system responsiveness and reduced manual
workload. Future iterations of this project aims to incorporate
predictive maintenance using deep learning algorithms to
preemptively identify failing services.



[1]

[2]

REFERENCES

E. Usupova and A. Khan, "Optimizing ML Training with Perturbed
Equations,” 2025 6th International Conference on Problems of Cyber-
netics and Informatics (PCI), Baku, Azerbaijan, 2025, pp. 1-6, doi:
10.1109/PCI166488.2025.11219819.

S. Rakimbekuulu, K. Shambetaliev, G. Esenalieva and A. Khan, "Code
Generation for Ablation Technique,” 2024 IEEE East-West Design
& Test Symposium (EWDTS), Yerevan, Armenia, 2024, pp. 1-7, doi:
10.1109/EWDTS63723.2024.10873640.



	Introduction
	Methodology
	System Architecture
	Optimization and Logic

	Implementation
	Conclusion
	References

