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В работе обсуждается модель, связывающая урожайность яровых зерновых и зернобобовых культур юга 9 
Западной Сибири с потоками флуоресцентного излучения, которые испускаются в диапазоне 600–800 нм и 10 
представляют собой побочный продукт световой фазы фотосинтеза. Основным источником информации о 11 
потоках флуоресцентного излучения служит спектрометр TROPOMI, установленный на спутнике Sentinel-5 12 
Precursor. Разработанная методология объединяет данные о флуоресцентном излучении с информацией о 13 
распределении посевных площадей (спутниковый продукт MCD12Q1/MODIS) и официальными данными 14 
Росстата по урожайности. Ключевая гипотеза основывается на линейной зависимости между региональными 15 
уровнями флуоресцентного излучения и валовой первичной продукцией, определяющими процесс 16 
формирования биомассы зерновых и зернобобовых культур. Проведенный анализ данных TROPOMI за 17 
период 2020–2024 годов выявил устойчивую корреляционную связь между максимумами значений 18 
флуоресценции и показателями урожайности. Установлено, что включение в модель функции потерь, которая 19 
опирается на гидротермический коэффициент Селянинова 𝑃 для периода август-сентябрь, позволило лучшим 20 
образом согласовать максимум флуоресцентного излучения и удельную урожайность, полученную по данным 21 
Росстата. Оценка 𝑃 выполнялась с использованием результатов субсезонной климатической модели SEAS5, 22 
скорректированных методом EQM. Для прогноза урожайности в Новосибирской, Омской, Кемеровской 23 
областях и Алтайском крае коэффициент детерминации 𝑅2 для случая без учета потерь равен 0,17, 0,79, 0,53, 24 
0,90, а для модели с потерями – 0,89, 0,88, 0,86, 0,97, соответственно. Результаты исследования подтверждают 25 
перспективность использования информации о флуоресцентном излучении для мониторинга и 26 
прогнозирования урожайности яровых сельскохозяйственных культур в зонах рискованного земледелия. 27 
 28 
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Введение 33 

 34 

Наблюдаемое изменение климата оказывает значительное воздействие на 35 

стабильность урожайности сельскохозяйственных культур, увеличивая показатели 36 

дисперсии и обостряя проблему неопределенности рисков в агропромышленном секторе 37 

(Proctor et al., 2025). В наибольшей степени это отражается на территориях рискованного 38 

земледелия, которым свойственны существенные аномалии приземной температуры 39 

воздуха и увлажненности почвы. Это создаёт дополнительные финансовые риски для 40 

сельхозпроизводителей, влияет на внутренний рынок продуктов питания, экспортные 41 

возможности и может приводить к ухудшению продовольственной безопасности для 42 

регионов с ограниченным запасом ресурсов (Tanaka et al., 2023). 43 

Характерным представителем таких территорий является юг Западной Сибири — 44 

регион с развитым агропромышленным комплексом, где основная часть 45 

сельскохозяйственных угодий отведена под зерновые и кормовые культуры. Территория 46 

классифицируется как зона рискованного земледелия (Безруких и др., 2024), что требует 47 

внедрения инновационных методов контроля посевов и прогнозирования урожайности для 48 

снижения экономических рисков (Шмидт и др., 2022). 49 
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Качество ранних прогнозов урожайности играет важную роль в управлении 50 

агропромышленным комплексом, в частности на финальных этапах производственного 51 

цикла, включающих выбор оптимальных сроков начала уборочной кампании, и 52 

организации процессов транспортировки и хранения продукции (Peng et al., 2018). 53 

Несмотря на успехи существующих прогностических моделей, основанных на анализе 54 

исторических данных, климатических переменных и состоянии посевов, сохраняется 55 

необходимость в совершенствовании упрощенных подходов прогнозирования на 56 

региональном уровне, опирающихся на оперативные наблюдения (Lungu et al., 2020).  57 

Традиционно для решения этой задачи используются вегетационные индексы, 58 

получаемые по данным дистанционного зондирования (Ерошенко и др., 2016; Илларионова 59 

и др., 2023; Лупян и др., 2017; Береза и др., 2015), среди которых выделяется 60 

нормализованный разностный вегетационный индекс (Normalized difference vegetation 61 

index, NDVI) (Rouse et al., 1974; Tucker, 1979). Однако в ряде работ отмечается низкая 62 

чувствительность NDVI к суточным и сезонным вариациям интенсивности фотосинтеза, 63 

которые обусловлены реакцией растений на неблагоприятные погодные условия (Fang et 64 

al., 2023).  65 

Ряд моделей, описывающих жизненный цикл с.-х. культур, связывают урожайность 66 

с приростом зелёной биомассы (Reeves et al., 2005; Marshall et al., 2018), которую принято 67 

называть «общей первичной продукцией растения» (от английского gross primary production 68 

— GPP). GPP эквивалентно количеству диоксида углерода (𝐶𝑂2), поглощаемого 69 

растениями на единице площади за определённый промежуток времени, и выражается в 70 

граммах на квадратный метр в день (гр/(м²·день)).  71 

В настоящее время установлена линейная связь GPP с флуоресцентным излучением 72 

хлорофилла, индуцированным солнечным светом (SIF, англ. sun-induced chlorophyll 73 

fluorescence) (Li et al., 2022). В частности в (Magney et al., 2019) отмечается, что данные о 74 

SIF, получаемые с использованием метеорологических вышек (Flux Tower), хорошо 75 

согласуются со спутниковыми наблюдениями. Это указывает на перспективность 76 

использования SIF для мониторинга состояния растительного покрова, а также оценки его 77 

изменений под воздействием меняющихся условий окружающей среды (Liu et al., 2022; 78 

Шокин и др., 2023).  79 

 Целью данной работы является разработка и верификация прогностической модели, 80 

связывающей урожайность яровых зерновых и зернобобовых культур юга Западной 81 

Сибири с потоками флуоресцентного излучения, которые регистрируются спутниковым 82 

спектрометром TROPOMI (Butz et al., 2012). 83 

 84 



 85 

Приборы и методы 86 

 87 

 88 

Связь флуоресценции хлорофилла и GPP 89 

 90 

 Рассмотрим некоторые аспекты процесса фотосинтеза и газообмена. Атмосферный 91 

углекислый газ попадает в растение через устьица — поры на листьях, которые регулируют 92 

интенсивность обмена с окружающей средой посредством устьичной щели (Xiao et al., 93 

2021). На рис. 1 качественно представлен суточный ход интенсивности фотосинтеза и 94 

транспирации (дыхания) растений. Изображение устьиц получено авторами работы на 95 

кафедре ботаники института биологии и биотехнологии Алтайского государственного 96 

университета. Зелёная часть линии указывает на беспрепятственный газообмен, в то время 97 

как красная обозначает закрытие устьичной щели, что может происходить при 98 

переувлажнении, недостатке влаги или перегреве (Xiao et al., 2021). В связи с этим, как 99 

правило, в полуденное время наблюдается спад интенсивности фотосинтеза, что хорошо 100 

иллюстрируется линией на рисунке. Увеличение водного и теплового стресса приводит к 101 

изменениям в функционировании растений, что проявляется в более частом закрытии 102 

устьиц, известном как полуденная депрессия (Xiao et al., 2021). 103 

 104 

 105 

Рис. 1. Изменение интенсивности фотосинтеза и транспирации растений в 106 

течение светового дня.  107 

 108 

 Газообмен сопровождается не только регуляцией водного баланса, но и захватом 109 

углекислого газа из атмосферы, часть которого усваивается в процессе фотосинтеза (Tucker 110 

et al., 1986). Фотосинтетические пигменты поглощают солнечное излучение в 111 

определённом спектральном диапазоне, интенсивность которого обозначается как PAR 112 



(англ. Photosynthetically Active Radiation). Эта фаза называется светозависимой или 113 

световой. Дальнейшая реакция по преобразованию углекислого газа и воды в строительные 114 

материалы может происходить без участия солнечного излучения; однако она использует 115 

продукты, полученные на предыдущей светозависимой стадии. 116 

Доля PAR (англ. fPAR, fraction PAR), усвоенная растением, переводит хлорофилл в 117 

первое возбуждённое состояние E1 (при поглощении фотона из красной области видимого 118 

спектра) или второе состояние Е2 (при поглощении фотона из синей области видимого 119 

спектра). В состоянии Е2 молекула быстро переходит на первый энергетический уровень 120 

E1 с выделением тепла (Штирбет и др., 2014). Состояние Е1 обеспечивает энергией 121 

фотохимические процессы, когда система не испытывает стресса. В противном случае 122 

излишки fPAR могут приводить к перегреву растения. Обратный переход молекулы в 123 

основное энергетическое состояние сопровождается образованием кванта света (~ 0,5–2% 124 

от энергии первого возбуждённого состояния) в виде флуоресцентного излучения в 125 

диапазоне от 600 до 800 нм во время световой фазы (Liu et al., 2022). 126 

 127 

 128 

Спектрорадиометр MODIS 129 

 130 

Спектрорадиометр MODIS (Moderate Resolution Imaging Spectroradiometer) 131 

(Salomonson et al., 1989) установлен на спутниках Terra и Aqua, запущенных в рамках 132 

программы NASA (National Aeronautics and Space Administration) EOS (Earth Observing 133 

System). MODIS регистрирует излучение в диапазоне 0,4 — 14,4 мкм с использованием 36 134 

спектральных каналов шириной от 0,01 до 0,5 мкм. Спектрорадиометр обеспечивает обзор 135 

поверхности Земли c пространственным разрешением от 250 м до 1000 м в надире (в 136 

зависимости от канала), охватывая полосу шириной 2330 км, что позволяет осуществлять 137 

мониторинг почти всей поверхности планеты в течение суток. 138 

Продукт MCD12Q1 (Friedl, Sulla-Menashe, 2022) представляет собой результаты 139 

совместной обработки наблюдений приборов MODIS, установленных на спутниках Terra и 140 

Aqua. Он содержит наборы данных, которые отображают информацию о типах 141 

подстилающей поверхности Земли с пространственным разрешением 500 метров. Данный 142 

продукт создан на основе классификаций спектрально–временных характеристик, 143 

полученных с использованием измерений спектрорадиометров MODIS в течение одного 144 

года. Используемый алгоритм выполняет классификацию объектов, опираясь на годовые 145 

сигнатуры коэффициентов спектральной яркости поверхности (см. например, Friedl et al., 146 

2002, 2010). В результате выделяются различные типы подстилающей поверхности, такие 147 

как лесные массивы (лиственные/хвойные), кустарники, травянистая растительность, 148 



сельскохозяйственные культуры, пустынные территории, городская застройка, снег, лёд и 149 

водные объекты. Кроме того, MCD12Q1 включает оценку состояния здоровья 150 

растительности с использованием индекса NDVI.  151 

 152 

 153 

Спектрометр TROPOMI/S5P 154 

 155 

Спутник Sentinel-5 Precursor был запущен 13 октября 2017 года Европейским 156 

космическим агентством в рамках программы Copernicus (Berger et al., 2012). Основным 157 

инструментом Sentinel-5 Precursor является спектрометр TROPOMI, измеряющий уходящее 158 

из атмосферы Земли излучение в ультрафиолетовом (UV), видимом (VIS), ближнем (NIR) 159 

и среднем инфракрасном (SWIR) диапазонах. Спектрометр TROPOMI выполняет 160 

мониторинг содержания озона, диоксида серы, монооксида углерода, аэрозоля, метана, 161 

формальдегида и оксида азота в атмосфере (Friedl, Sulla-Menashe, 2022). Прибор обладает 162 

широкой полосой сканирования, составляющей примерно 2670 км с пространственным 163 

разрешением 5,5 × 3,5км (Veefkind et al., 2012), что позволяет осуществлять ежедневные 164 

наблюдения на глобальном уровне.  165 

Продукт TROPOSIF (S5P-TROPOMI SIF Data Product), разработанный в 166 

Политехническом университете Валенсии, содержит данные о флуоресценции хлорофилла, 167 

полученные с использованием спектрометра TROPOMI (Guanter et al., 2021). На рис. 2а. 168 

пунктиром обозначены спектральные диапазоны в 5-й и 6-й группе каналов TROPOMI 169 

(FW–1, 743–758 нм и FW–2, 735–758 нм), которые используются для извлечения 170 

информации о SIF. Синей кривой на данном рисунке представлена интенсивность 171 

излучения на верхней границе атмосферы, которая зависит от оптических свойств среды.  172 

 173 

а)       б) 174 

Рис. 2. Интенсивность излучения на верхней границе атмосферы и интенсивность SIF в 175 

спектральном диапазоне 665–785 нм, регистрируемые группами каналов 5 и 6 TROPOMI 176 

(по данным Guanter et al., 2021). 177 

 178 



Спектр, характерный для SIF, показан на рис. 2б зелёной кривой: наблюдается два 179 

максимума при длинах волн 685 нм и 740 нм. Первый максимум связан с флуоресценцией 180 

хлорофилла b, второй – с хлорофиллом a (Ayudhya et al., 2015). Продукт TROPOSIF также 181 

включает оценку суточного интеграла SIF, обозначенного как SIF_Corr (Guanter et al., 2021). 182 

 183 

 184 

Результаты 185 

 186 

На начальном этапе исследования была построена маска с.-х. земель юга Западной 187 

Сибири, выделенных под возделывание сельскохозяйственных культур. Рассматривались 188 

территории Алтайского края, Новосибирской, Омской и Кемеровской областей. Поскольку 189 

в исследуемом регионе преобладает культивация зерновых и зернобобовых культур, для 190 

решения поставленной задачи в первом приближении достаточно использовать 191 

обобщенную карту возделываемых земель. В работе для этой цели использовался продукт 192 

MCD12Q1 версии 6.1. Так как план землепользования региона менялся незначительно в 193 

течение последнего десятилетия, данные MCD12Q1 за 2020 год послужили шаблоном для 194 

маскирования. 195 

 196 

Рис. 3. Классификация типов подстилающей поверхности по данным продукта 197 

MCD12Q1 (Friedl, Sulla-Menashe, 2022) за 2020 год для территории Алтайского края 198 

 199 

В качестве примера на рис. 3 представлены результаты MCD12Q1 за 2020 год для 200 

Алтайского края. На рисунке видно, что большую часть территории составляют площади, 201 

используемые для возделывания с.-х. культур, которые обозначены как «зерновые», а 202 

согласно классификации MCD12Q1 — «crops cereal». Эти результаты послужили основой 203 



для маскирования данных о SIF_Corr на длине волны 743 нм (далее SIF), полученных с 204 

помощью алгоритма TROPOSIF. Данная процедура применялась для каждого снимка 205 

TROPOMI. Таким образом, была создана база наблюдений SIF для с.-х. земель 206 

исследуемого региона для периода 2020-2024 гг.  207 

 Следует отметить, что существует несколько химических схем фотосинтеза. 208 

Большинство растений исследуемого региона относятся к типу 𝐶3, который описывается 209 

циклом Кальвина (Федулов, 2019). Интенсивность развития таких систем напрямую связана 210 

с доступностью влаги, т.к. цикл Кальвина сопровождается большими потерями воды в 211 

процессе транспирации. Альтернативная схема 𝐶4 описывается циклом Хэтча-Слэка, 212 

который является менее влагозатрантым по сравнению с 𝐶3, однако требует большей 213 

интенсивности PAR для поддержания фотохимических процессов (Федулов, 2019). К 214 

растениям 𝐶4 относятся кукуруза, сахарный тростник, просо и сорго. Таким образом, при 215 

ассимиляции 1 грамма 𝐶𝑂2 в схемах 𝐶3 и 𝐶4 количество энергетических переходов 216 

хлорофилла остается неэквивалентным, что приводит к различиям в интенсивности SIF. 217 

 218 

 219 

Рис. 4. Максимум в наблюдениях SIF для пахотных земель Алтайского края по данным S5P 220 

за период июнь–июль 2020 года 221 

 222 

На рис. 4 представлено распределение максимальных значений флуоресценции 223 

хлорофилла в Алтайском крае за период июнь-июль 2020 года, которые варьируются в 224 



диапазоне от 0.3 до 1.7 Вт  (м2 · ср · мкм)⁄ . Наибольшей интенсивности флуоресцентного 225 

излучения соответствует красный цвет, наименьшей — синий. Такой градиент в масштабах 226 

региона обусловлен различным уровнем водного стресса, испытываемого растениями в 227 

период вегетации. В восточной части региона наблюдается более высокая 228 

влагообеспеченность, что способствует быстрому восполнению потерь воды, 229 

происходящих в процессе фотосинтеза и транспирации (Mordvin et al., 2024). Следствием 230 

этого является высокая интенсивность фотосинтетических процессов. В западной части 231 

края доступность влаги и влажность воздуха ниже, что способствует переходу растений в 232 

режим экономии водных ресурсов. При этом газообмен через устьичную щель сокращается, 233 

что приводит к снижению интенсивности фотосинтеза. 234 

На рис. 5а представлена межгодовая изменчивость SIF на территории Алтайского 235 

края для периода активной вегетации (15 апреля–30 сентября) в 2020–2024 гг. Показанный 236 

временной ряд отражает межгодовые вариации в динамике развития растений и может 237 

зависеть как от климатических, так и от инфекционных (грибы, бактерии, вирусы и т.д.) 238 

факторов. Максимум флуоресценции хлорофилла характерен для середины летнего 239 

периода, при этом в разные годы высота этого максимума варьируется от 0.6 до 1 240 

Вт (м2 · ср · мкм)⁄ . 241 

 242 

Рис. 5.а Годовой ход и межгодовые вариации SIF для 

земель с/x на территории Алтайского края в 2020–

2024 гг годах по данным TROPOMI/Sentinel-5 

Precursor  

Рис. 5.б Сезонный ход SIF для 

земель с/x назначения 

Алтайского края в 2020 и 2023  

 243 

Дополнительно был проведён сравнительный анализ годового хода флуоресценции 244 

хлорофилла в 2020 и 2023 годах, когда наблюдался низкий уровень SIF. На рис. 5.б показана 245 

динамика SIF для этих сезонов. Линией на рисунке обозначена аппроксимация, 246 

выполненная кривыми Безье (Elber, 1997). Хорошо видно, что начало вегетационного 247 

периода в 2020 году смещено относительно 2023 года приблизительно на 2 недели, а высота 248 

максимума на ~ 15% ниже. Следует отметить, что сопутствующие неблагоприятные 249 



погодные условия в летнем периоде 2020 года характеризовались низкими температурами, 250 

тогда как июнь 2023 года был отмечен засухой. Несмотря на климатические различия этих 251 

сезонов, для региона в целом наблюдалась низкая урожайность яровых зерновых культур, 252 

что зафиксировано в отчете Федеральной службы государственной статистики (Росстат) 253 

(https://rosstat.gov.ru/compendium/document/13277). 254 

 255 

 256 

Связь урожайности и SIF 257 

 258 

Существующая функциональная зависимость между GPP и удельной 259 

продуктивностью «полезной» биомассы 𝑊 в виде зерна (далее удельная урожайность) 260 

(Marshall et al., 2018), свидетельствует о наличии корреляции между максимумом SIF (далее 261 

𝑆𝐼𝐹𝑚𝑎𝑥) и 𝑊. Это является следствием того, что 𝑆𝐼𝐹𝑚𝑎𝑥 наблюдается во время фаз 262 

колошения и цветения зерновых культур.  263 

В работе поиск 𝑆𝐼𝐹𝑚𝑎𝑥 выполнялся с помощью метода скользящего среднего на 264 

временном ряде SIF с окном 5 дней для каждого пикселя серии изображений TROPOMI. 265 

После этого находилось среднее значение по всей области исследования. Оценка удельной 266 

урожайности зерновых и зернобобовых культур 𝑊 была сделана на основе данных Росстата 267 

(https://rosstat.gov.ru/compendium/document/13277) с использованием выражения (1) 268 

𝑊 = 𝑀/𝑆 .    (1) 269 

Здесь 𝑀 – фактическая урожайность (в млн. тонн); 𝑆 – обрабатываемая площадь (в млн.га). 270 

Для перехода от 𝑆𝐼𝐹𝑚𝑎𝑥 к удельной урожайности 𝑊 был найден коэффициент 𝐶 согласно 271 

следующему выражению: 272 

𝑊 = 𝐶 × 𝑆𝐼𝐹𝑚𝑎𝑥 .    (2) 273 

Как правило, прогностические оценки удельной урожайности 𝑊̃ расходятся с 274 

фактическими данными 𝑊, их существенная разница может указывать на неучтенные в 275 

модели эффекты. В ряде работ отмечается (см. например, Амирова, 2023; Симоненко, 2019), 276 

что ключевым фактором, влияющим на снижение прогнозируемой урожайности, является 277 

комплекс неблагоприятных погодных условий в начале вегетационного периода, 278 

включающий дефицит влаги и температурные аномалии. 279 

Также следует учитывать потери во время уборочной кампании, которые 280 

обусловлены климатическими факторами. В этом случае 𝑊 является долей от 𝑊̃, что можно 281 

выразить через введение функции потерь 𝑙 согласно (3): 282 

𝑊 = 𝑊̃(1 − 𝑙).      (3) 283 

В работе предполагается, что основная часть потерь в модели, основанной на 284 

наблюдениях 𝑆𝐼𝐹𝑚𝑎𝑥, обусловлена избыточной увлажненностью в период уборочной 285 



кампании (август-сентябрь), которая приводит к затруднениям в механизированной 286 

обработке. В силу этого в работе предлагается выразить функцию потерь 𝑙 через 287 

гидротермический коэффициент Селянинова 𝑃 (см/°С) для периода август-сентябрь 288 

𝑙 = (𝑃 − 𝑡) × 𝜀,     (4) 289 

где 𝑡 – пороговое значение 𝑃, при котором возможны потери, 𝜀 (°С/cм) – масштабирующий 290 

множитель. 291 

Согласно (Кельчевская, 1971), гидротермический коэффициент определяется как 292 

𝑃 = 10 ∑ 𝑅𝑛

365

𝑛=1

∑ 𝑇𝑛

365

𝑛=1

⁄  , 293 

где 𝑅𝑛 – суммарное суточное количество осадков (мм) для дня 𝑛, 𝑇𝑛 – среднесуточная 294 

температура приземного слоя воздуха (°С). Суммирование выполняется при условии 𝑇 >295 

𝑇𝑘, где 𝑇𝑘 – пороговое значение температуры, которое зависит от с.-х. культуры. 296 

Общепринятым значением является 𝑇𝑘 = +10 °С,  297 

На заключительном этапе работы для 2020-2024 гг. был найден коэффициент 298 

перехода 𝐶 для двух случаев: без учета потерь 𝐶1 и с учетом потерь – 𝐶2. Поиск этих 299 

параметров выполнялся согласно зависимости (2) нелинейным методом наименьших 300 

квадратов (алгоритм Левенберга–Марквардта). Параметры 𝑡 и 𝜀 также были получены в 301 

результате выше обозначенной процедуры фитирования, согласно выражениям (3) и (4). 302 

Оценка 𝑃 выполнялась с использованием данных субсезонной климатической 303 

модели SEAS5 версии 5.1 (Johnson et al., 2019), где для коррекции элементов ансамбля 304 

SEAS5 применялись данные реанализа ERA-5 land (Muñoz-Sabater et al., 2021) и метод EQM 305 

(Equidistant Quantile Mapping) (Cannon et al., 2015). Здесь обучающая выборка задавалась 306 

для периода 1981-2016 гг, в которую вошли среднемесячная температура приземного слоя 307 

воздуха и суммарные осадки с разрешением 0.1° для области 56.5°-50.5° с.ш., 70°-90° в.д. 308 

Прогноз составлялся для августа и сентября. Дата старта модели соответствовала июлю 309 

исследуемого года. Сопоставление скорректированного прогноза среднемесячной 310 

температуры приземного слоя воздуха и суммарных осадков для периода 2017-2024 гг с 311 

данными ERA-5 land показало их удовлетворительное согласие, где 𝑅2 равен 0.82 и 0.47, 312 

соответственно. При этом MAE обозначенных климатических параметров равно 0.4 °С и 1 313 

мм/день, что несколько меньше среднего по ансамблю – 0.6 °С и 2 мм/день.  314 

В табл. 1 представлены значения всех компонентов, входящих в модель. Рис. 6 315 

демонстрирует диаграммы рассеяния удельной урожайности 𝑊, основанные на данных 316 

Росстата и восстановленные с использованием наблюдений TROPOMI/Sentinel-5 Precursor. 317 

Хорошо видно, что включение функции потерь в модель улучшило согласование 318 



прогностических оценок 𝑊 и фактических значений (Росстат). В частности, значительно 319 

увеличился коэффициент детерминации 𝑅2 для более влажных регионов, таких как 320 

Новосибирская и Кемеровская области. Аналогичные улучшения статистических метрик 321 

зафиксированы для степных биомов. Следует отметить, что для условно влажных регионов 322 

наблюдаются наиболее высокие значения 𝐶, что может свидетельствовать о более 323 

благоприятных метеорологических условиях во время фаз колошения и цветения зерновых 324 

культур. 325 

Таким образом, в отсутствии информации о 𝑃, предварительный прогноз 326 

урожайности может быть сформирован с использованием коэффициента 𝐶1 во второй 327 

половине июля. Однако в условиях высокой увлажненности в августе-сентябре (𝑃 > 0.75) 328 

ошибка прогноза может достигать 25%, что, например, наблюдается в 2024 году.  329 

 330 

Таблица 1. Компоненты модели связывающей урожайность яровых зерновых и 331 

зернобобовых культур юга Западной Сибири с потоками флуоресцентного излучения 332 

Регион 
Год 

𝑺𝑰𝑭𝒎𝒂𝒙, 

Вт (м𝟐 · ср · мкм⁄ ) 

𝑺, 

млн. га 

𝑴, млн. 

тонн 
𝑷, см/°С 

Алтайский 

край 

2020 0.734 3.289 3.913 0.786 

2021 0.958 3.235 5.529 0.692 

2022 0.900 3.353 5.597 0.704 

2023 0.773 3.353 4.431 0.703 

2024 1.074 3.115 5.469 0.826 

Омская область 2020 0.686 2.028 3.034 0.763 

2021 0.711 1.998 2.934 0.684 

2022 0.645 2.010 2.916 0.716 

2023 0.597 2.128 2.511 0.737 

2024 0.957 2.029 3.803 0.890 

Новосибирская 

область 

2020 0.759 1.483 2.491 0.822 

2021 0.959 1.505 3.348 0.737 

2022 0.879 1.535 3.336 0.749 

2023 0.690 1.569 2.254 0.777 

2024 1.022 1.420 2.379 0.905 

Кемеровская 

область 

2020 0.996 0.576 1.289 1.125 

2021 1.134 0.610 1.550 0.991 

2022 1.183 0.626 1.833 0.952 

2023 0.862 0.635 1.147 1.070 



2024 1.121 0.576 1.131 1.156 

 333 

 334 

 335 

 336 

Рисунок 6. Диаграммы рассеяния удельной урожайности по данным SIF TROPOMI/Sentinel-337 

5 Precursor и 𝑃 для 4-х регионов юга Западной Сибири в 2020–2024 гг.: а – Алтайский край, 338 

б – Кемеровская область, в – Новосибирская область, г – Омская область 339 

 340 

Следует отметить несколько ограничений, которые могут повлиять на точность 341 

обсуждаемой модели. Во-первых, предполагается наличие неточностей в данных Росстата, 342 

вызванных различными факторами. С другой стороны, оценки 𝑆𝐼𝐹𝑚𝑎𝑥, полученные с 343 

использованием наблюдений TROPOMI, имеют значительную погрешность (~25%) и 344 

грубое пространственное разрешение 5,5 × 3,5км, что также негативно сказывается на 345 

точности модели. В-третьих, большая площадь исследуемых регионов затрудняет учет 346 

локальных климатических и технологических особенностей. Кроме того, предложенная 347 

модель не отделяет полезную биомассу от сопутствующей сорной растительности. Учет 348 



этого фактора в ряде случаев может привести к улучшению точности прогноза урожайности 349 

(Спиридонов и др., 2019). 350 

Заключение. В работе предложена модель, связывающая урожайность яровых 351 

зерновых и зернобобовых культур юга Западной Сибири с потоками флуоресцентного 352 

излучения, регистрируемыми спектрометром TROPOMI/Sentinel–5 Precursor. Установлена 353 

устойчивая корреляционная связь между максимумом в спутниковых наблюдениях 354 

флуоресцентного излучения и урожайностью зерновых и зернобобовых культур для 355 

периода 2020-2024 гг. Показано, что включение в модель функции потерь, основанной на 356 

гидротермическом коэффициенте Селянинова 𝑃 для периода август-сентябрь, позволяет 357 

более точно согласовать максимальное значение флуоресценции и удельную урожайность, 358 

полученную по данным Росстата. Оценка 𝑃 выполнялась с использованием результатов 359 

субсезонной климатической модели SEAS5, скорректированных методом EQM. Фактор 360 

увлажненности в августе-сентябре, при котором неизбежны потери, следует учитывать для 361 

𝑃 > 0.75. Показано, что для прогноза урожайности в Новосибирской, Омской, 362 

Кемеровской областях и Алтайском крае коэффициент детерминации 𝑅2 для случая без 363 

учета потерь составляет 0,17, 0,79, 0,53, 0,90, тогда как в модели с учетом потерь он равен 364 

0,89, 0,88, 0,86, 0,97. Следующий этап предполагает работу с другими методами коррекции 365 

данных SEAS5 с целью улучшения точности долгосрочного прогнозирования 366 

метеорологических условий. 367 

 368 
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 537 
This work discusses a model linking the yield of spring cereals and legumes crops in the south of West Siberia with 538 
fluorescent emission fluxes, which are emitted in the 600–800 nm range and represent a byproduct of the light phase 539 
of photosynthesis. The primary source of information on fluorescent emission fluxes is the TROPOMI spectrometer, 540 
installed onboard the Sentinel-5 Precursor satellite. The developed methodology combines fluorescence data with 541 
information on sown area distribution (MCD12Q1/MODIS satellite product) and official Rosstat yield data. The key 542 
hypothesis is based on a linear relationship between regional fluorescent emission levels and gross primary production, 543 
which determines the biomass formation process of grain and legume crops. Analysis of TROPOMI data for the period 544 
2020–2024 revealed a stable correlational between fluorescence maxima and yield indicators. It was found that 545 
incorporating a loss function into the model, based on the Selyaninov hydrothermal coefficient 𝑃 for the August-546 
September period, allowed for a better agreement between the maximum fluorescent emission and the specific yield 547 
obtained from Rosstat data. The estimation of 𝑃 was performed using results from the SEAS5 sub-seasonal climate 548 
model, corrected using the Empirical Quantile Mapping (EQM). For yield forecasting in the Novosibirsk, Omsk, 549 
Kemerovo regions, and Altai Krai, the coefficient of determination R² was 0.17, 0.79, 0.53, and 0.90, respectively, for 550 
the case without accounting for losses, and 0.89, 0.88, 0.86, and 0.97, respectively, for the model with losses. The 551 
research results confirm the promise of using fluorescent radiation information for monitoring and forecasting the 552 
yield of spring agricultural crops in areas with risky farming. 553 
 554 
Keywords: SIF, GPP, chlorophyll fluorescence, photosynthesis, yield, Sentinel-5 Precursor, TROPOMI, Remote 555 
Sensing, SEAS5, south of Western Siberia. 556 
 557 
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