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Abstract

Prime Number Theorem provide asymptotic estimates but do not yield exact results.
This paper presents a complete, closed-form mathematical equation that exactly
computes the prime-counting function 1t(N) for any integer N = 2. Unlike existing
methods which are either asymptotic approximations or recursive algorithms, our
formulation is a single evaluable expression. The equation operates in two distinct
modes: (1) using a sequence of known primes, or (2) using the simple sequence J, =2, J,,
= (n-1)-th odd integer = 3 for n = 2, with an intrinsic primality test y, = [|'|X=1“‘1 (Jnfx -
[Jn/)x|)] where p, =1 if and only if J, is prime. The formula directly yields 1t(N) through
elementary arithmetic operations without recursion, iteration, or algorithmic
procedures.

The implications of this formula are explored in comparison to existing prime counting
functions and its potential impact on the study of prime distribution, itis an explicit
sieve-theoretic expression and a self-contained rewriting. This complements classical
exact prime-counting methods (Meissel-Lehmer and descendants), which are vastly
more efficient for computation

Introduction

The prime-counting function (x), defined as the number of prime numbers not
exceeding x, has been a central object of study in number theory for centuries. While

the celebrated Prime Number Theorem provides the asymptotic estimate w(x) ~

logx’
exact computation of m(x) has led to recursive algorithms such as Legendre's formula,
the Meissel-Lehmer method, and sieve techniques like the sieve of Eratosthenes.

In addition to these recursive and iterative methods, several "closed form" expressions
for m(x) or the n —th prime have been discovered, typically using Wilson's theorem or
summation identities. Notable examples include Willans' formula (1964) and Minac's
formula, which express primality conditions through trigonometric functions and floor
operations. While mathematically exact, these formulas are computationally
impractical, serving primarily as theoretical curiosities or pedagogical tools.

In this expository note, we present an alternative explicit formulation that directly
encodes the inclusion-exclusion principle underlying Legendre's formula. Our
expression is self-contained in that it does not require a precomputed list of primes;
instead, it operates on a simple sequence of odd numbers and includes a primality
indicator constructed from elementary arithmetic functions. The formula is presented
as a single mathematical expression that can be evaluated through direct substitution.



Our contribution is not the discovery of a new prime-counting method, but rather the
presentation of a complete, self-contained formulation that explicitly demonstrates
how the sieve of Eratosthenes can be written as a closed-form expression. This
formulation may be particularly useful for pedagogical purposes, as it clearly illustrates
the mechanics of inclusion-exclusion in prime counting.

Riemann explicit formula  Analytic (zeros) Exact when expressed via {-zeros; used
for analysis.

Meissel-Lehmer methods Algorithmic (recursive) Efficient computation of 1t(x) for large x.

Legendre (¢-formula) Combinatorial (sieve) n(x)=¢(x,a)+a-1 with a=m(|Vx]).

This paper Explicitinclusion-exclusion  Self-contained ; primarily expository.

Preliminaries: Legendre's Formula and Inclusion-Exclusion

Let N > 2 be an integer and let py, p,, ..., P, denote the primes not exceeding \/N,
where a = m(V/N). Legendre's formula for m(N) is

n(N) =¢(N,a) +a—1,

where ¢ (N, a) counts the integers < N that are not divisible by any of the first a primes.

Applying the inclusion-exclusion principle to ¢ (N, a) yields the explicit expansion:
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The formula requires knowing the primes py, ..., p, < VN. In the next section, we show
how to modify this expression so that it can operate without a precomputed prime list.

Self-Contained Formulation

The Sequence J,, and Primality Indicator p,,

We define a sequence J,, forn = 1 as follows:

J1=2
Forn = 2:
J. = the (n — 1)-th odd integer > 3
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ThUS,]Z = 3,]3 = 5,]4 = 7,]5 = 9,]6 = 11, ee

Forn = 2, we define a primality indicator u,, by:

We also set yu; = 1, since J; = 2 is prime.

Proposition 1 (Primality Indicator Theorem). Forn > 2, u,, = 1ifand onlyif J,, is
prime.

Proof. If J,, is composite, then it has a divisor J, with 1 < x < n. For that x, we have J,. |

Jn, SO ;—” is an integer, and thus
b

Ja n
Je JxJ

Hence the productin (2) is zero, and u,, = [0] = 0.

If J,, is prime, then for every x < n, J,, does not divide J,;, so ;—” is not an integer.
X

Therefore,

The product of finitely many numbers in (0 1) also lies in (0’ 1), so the ceiling of the
productis 1.

Remark. The productin (2) runs over all x < n, but to determine primality it suffices to

check divisibility by primes up to \/]—n However, the given definition is simpler and does
not affect the correctness of the formula.



Inclusion-Exclusion Method

For prime numbers in range (N):

(N)=nN 1 [ﬁ|
T =N+a- —]1
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where: N;.(N) = Prime numbers in range N, N € N = {Natural Numbers } ,vN: principal

square rootof N,a = max{n:]n < \/N} Ji < l}ﬂl ,J € {prime numbers }

For Odd numbers in range (N):

T(N)=N+a-1- [ﬁ|
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Where: N;(N) = Prime numbers in range N, N € N = {Natural Numbers } ,v/N: principal
square rootof N,a = max{n:]n < \/N} Ji < l/ﬂl ,J € {odd numbers }

Note that a is the number of terms in the sequence J,, that are < v/N. By construction,
the set {/,: 44, = 1,1 < n < a}is exactly the set of primes < VN, so @ > n(v/N) (with
equality if and only if VN is prime or composite but not divisible by any J,, thatis prime).

Our self-contained formula for m(N) is:

1<i<jsa

Theorem 1. Formula correctly computes m(N) for any integer N > 2.

Proof. By Proposition 1, u,, = 1if and only if J,, is prime. Therefore, the

product u; u;, -+ K;, equals 1 precisely when allof J; , J;,, ..., J;,, are prime, and 0
otherwise. Consequently, the only nonzero terms in (4) are those corresponding to
products of distinct primes among the J,, with n < a. Since every prime < VN appears
in the sequence J,, (and only primes yield u,, = 1), the set of primes < VN is

exactly {/,: up = 1,1 < n < a}. Thus, formula (4) is equivalent to Legendre's formula (1)
with a = (v/N), and hence computes m(N) correctly.

Remark. Formula can be written more compactly as:

nN)=N+a-1+ z (_1)|1|<n#i>l%J.
1c{1,...a} LElJ1
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Computational Complexity

Formula contains 2% terms, where a ~ n(\/ﬁ) ~ % by the Prime Number Theorem.

This exponential growth makes direct evaluation impractical for large N. Moreover,
computing each u, requires n — 1 divisibility checks (via the productin (2)), leading to
an overall complexity that is far worse than that of the sieve of Eratosthenes or the
Meissel-Lehmer algorithm.

Thus, this formula is not intended as a practical computational tool. Its value lies
instead in its mathematical form and pedagogical utility.

Pedagogical Value
The formula serves as an excellent teaching device for illustrating several concepts:

- Inclusion-Exclusion Principle: Formula shows exactly how inclusion-exclusion
is applied to count numbers not divisible by a set of primes.



- Legendre's Formula: It provides a fully expanded, explicit version of Legendre's
formula that is often presented only recursively.

- Primality Testing: The indicator u,, demonstrates how primality can be
determined using only elementary arithmetic operations, without recourse to
Wilson's theorem or other advanced results.

- Sieve Methods: The formula explicitly encodes the sieve of Eratosthenes as a
single mathematical expression, revealing the underlying structure of sieve
methods.

- Mathematical Writing: It exemplifies how logical conditions (like divisibility) can
be encoded using floor and ceiling functions, a technique useful in various areas
of discrete mathematics.

Relation to Other Closed-Form Formulas

Several "closed form" expressions for m(x) or the n —th prime exist in the literature.
Willans (1964) gave formulas using Wilson's theorem.

Minac's formula is similar in spirit. These formulas, like ours, are mathematically exact
but computationally impractical. Our formula differs in that it is derived directly from
the inclusion-exclusion principle and uses a primality indicator based on divisibility
rather than Wilson's theorem.

It should be noted that formulas involving summations and floor functions are
sometimes called "closed-form" in a discrete sense, though they are not closed-form in
the analytic sense (like expressions involving elementary functions only). Our formula
falls into this discrete category.

Conclusion

We have presented a self-contained, explicit formula for the prime-counting

function m(N) that expands Legendre's formula using inclusion-exclusion and includes
a built-in primality test. The formula is a single mathematical expression that can be
evaluated by direct substitution, requiring no precomputed list of primes and no
recursive or iterative procedures.

While computationally inefficient, the formula offers pedagogical clarity, demonstrating
how sieve methods can be written in closed form. It may be useful for teaching number
theory and discrete mathematics, and it provides a concrete example of how logical
conditions can be encoded using elementary arithmetic functions.

Future work could explore variations of the primality indicator or ways to compress the
formula to reduce the number of terms, though any such improvements would likely
remain of theoretical interest rather than practical computational value.
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