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Abstract 

Prime Number Theorem provide asymptotic estimates but do not yield exact results. 
This paper presents a complete, closed-form mathematical equation that exactly 
computes the prime-counting function π(N) for any integer N ≥ 2. Unlike existing 
methods which are either asymptotic approximations or recursive algorithms, our 
formulation is a single evaluable expression. The equation operates in two distinct 
modes: (1) using a sequence of known primes, or (2) using the simple sequence J₁ = 2, Jₙ 
= (n-1)-th odd integer ≥ 3 for n ≥ 2, with an intrinsic primality test μₙ = ⌈∏ₓ₌₁ⁿ⁻¹ (Jₙ/Jₓ - 
⌊Jₙ/Jₓ⌋)⌉ where μₙ = 1 if and only if Jₙ is prime. The formula directly yields π(N) through 
elementary arithmetic operations without recursion, iteration, or algorithmic 
procedures.  

The implications of this formula are explored in comparison to existing prime counting 
functions and its potential impact on the study of prime distribution, it is an explicit 
sieve-theoretic expression and a self-contained rewriting. This complements classical 
exact prime-counting methods (Meissel–Lehmer and descendants), which are vastly 
more efficient for computation 

Introduction 

The prime-counting function 𝜋(𝑥), defined as the number of prime numbers not 
exceeding 𝑥, has been a central object of study in number theory for centuries. While 
the celebrated Prime Number Theorem provides the asymptotic estimate 𝜋(𝑥) ∼

𝑥

log 𝑥
, 

exact computation of 𝜋(𝑥) has led to recursive algorithms such as Legendre's formula, 
the Meissel-Lehmer method, and sieve techniques like the sieve of Eratosthenes. 

In addition to these recursive and iterative methods, several "closed form" expressions 
for 𝜋(𝑥) or the 𝑛 −th prime have been discovered, typically using Wilson's theorem or 
summation identities. Notable examples include Willans' formula (1964) and Mináč's 
formula, which express primality conditions through trigonometric functions and floor 
operations. While mathematically exact, these formulas are computationally 
impractical, serving primarily as theoretical curiosities or pedagogical tools. 

In this expository note, we present an alternative explicit formulation that directly 
encodes the inclusion-exclusion principle underlying Legendre's formula. Our 
expression is self-contained in that it does not require a precomputed list of primes; 
instead, it operates on a simple sequence of odd numbers and includes a primality 
indicator constructed from elementary arithmetic functions. The formula is presented 
as a single mathematical expression that can be evaluated through direct substitution. 



Our contribution is not the discovery of a new prime-counting method, but rather the 
presentation of a complete, self-contained formulation that explicitly demonstrates 
how the sieve of Eratosthenes can be written as a closed-form expression. This 
formulation may be particularly useful for pedagogical purposes, as it clearly illustrates 
the mechanics of inclusion-exclusion in prime counting. 

 
Riemann explicit formula Analytic (zeros) Exact when expressed via ζ-zeros; used 

for analysis. 
Meissel–Lehmer methods Algorithmic (recursive) Efficient computation of π(x) for large x. 

Legendre (φ-formula) Combinatorial (sieve) π(x)=φ(x,a)+a−1 with a=π(⌊√x⌋). 
This paper  Explicit inclusion–exclusion Self-contained ; primarily expository. 

Preliminaries: Legendre's Formula and Inclusion-Exclusion 

Let 𝑁 ≥ 2 be an integer and let 𝑝1, 𝑝2, … , 𝑝𝑎  denote the primes not exceeding √𝑁, 
where 𝑎 = 𝜋(√𝑁). Legendre's formula for 𝜋(𝑁) is 

𝜋(𝑁) = 𝜙(𝑁, 𝑎) + 𝑎 − 1, 
 

where 𝜙(𝑁, 𝑎) counts the integers ≤ 𝑁 that are not divisible by any of the first 𝑎 primes. 

Applying the inclusion-exclusion principle to 𝜙(𝑁, 𝑎) yields the explicit expansion: 

𝜙(𝑁, 𝑎) = 𝑁 − ∑ ⌊
𝑁

𝑝𝑖
⌋

𝑎

𝑖=1

+ ∑ ⌊
𝑁

𝑝𝑖𝑝𝑗
⌋

1≤𝑖<𝑗≤𝑎

− ∑ ⌊
𝑁

𝑝𝑖𝑝𝑗𝑝𝑘
⌋

1≤𝑖<𝑗<𝑘≤𝑎

+ ⋯ + (−1)𝑎 ⌊
𝑁

𝑝1𝑝2 ⋯ 𝑝𝑎
⌋ . 

 
 

The formula requires knowing the primes 𝑝1, … , 𝑝𝑎 ≤ √𝑁. In the next section, we show 
how to modify this expression so that it can operate without a precomputed prime list. 

Self-Contained Formulation 

The Sequence 𝑱𝒏 and Primality Indicator 𝝁𝒏 

We define a sequence 𝐽𝑛 for 𝑛 ≥ 1 as follows: 

𝐽1 = 2 

For 𝑛 ≥ 2: 
𝐽𝑛 = the (𝑛 − 1)-th odd integer ≥ 3 



𝜇𝑛 = ⌈∏ (
𝐽𝑛

𝐽𝑥
− ⌊

𝐽𝑛

𝐽𝑥
⌋)

𝑛−1

𝑥=1

⌉ 

 
Thus, 𝐽2 = 3, 𝐽3 = 5, 𝐽4 = 7, 𝐽5 = 9, 𝐽6 = 11, …. 

For 𝑛 ≥ 2, we define a primality indicator 𝜇𝑛 by: 

𝜇𝑛 = ⌈∏ (
𝐽𝑛

𝐽𝑥
− ⌊

𝐽𝑛

𝐽𝑥
⌋)

𝑛−1

𝑥=1

⌉ .  

 

We also set 𝜇1 = 1, since 𝐽1 = 2 is prime. 

Proposition 1 (Primality Indicator Theorem). For 𝑛 ≥ 2, 𝜇𝑛 = 1 if and only if 𝐽𝑛 is 
prime. 

Proof. If 𝐽𝑛 is composite, then it has a divisor 𝐽𝑥  with 1 ≤ 𝑥 < 𝑛. For that 𝑥, we have 𝐽𝑥 ∣

𝐽𝑛, so 𝐽𝑛

𝐽𝑥
 is an integer, and thus 

𝐽𝑛

𝐽𝑥
− ⌊

𝐽𝑛

𝐽𝑥
⌋ = 0. 

 

Hence the product in (2) is zero, and 𝜇𝑛 = ⌈0⌉ = 0. 

If 𝐽𝑛 is prime, then for every 𝑥 < 𝑛, 𝐽𝑥 does not divide 𝐽𝑛, so 𝐽𝑛

𝐽𝑥
 is not an integer. 

Therefore, 

0 <
𝐽𝑛

𝐽𝑥
− ⌊

𝐽𝑛

𝐽𝑥
⌋ < 1. 

 

The product of finitely many numbers in (0, 1) also lies in (0, 1), so the ceiling of the 
product is 1.  

Remark. The product in (2) runs over all 𝑥 < 𝑛, but to determine primality it suffices to 
check divisibility by primes up to √𝐽𝑛. However, the given definition is simpler and does 
not affect the correctness of the formula. 

 

 



Inclusion-Exclusion Method  
For prime numbers in range (N): 

𝜋(𝑁) = 𝑁 + 𝛼 − 1 − ⌊
𝑁

𝐽
1

⌋ 

− ∑ (⌊
𝑁

𝐽𝑛

 ⌋)

𝛼

𝑛=2

 

+ ∑ ∑ ⌊
𝑁

𝐽𝑥 × 𝐽𝑛

 ⌋

𝑗

𝑥=1,𝑥<𝑛

𝛼

𝑛=2

 

− ∑ ∑ ∑ ⌊
𝑁

𝐽𝑥1
× 𝐽𝑥2

× 𝐽𝑥3

 ⌋

𝑥2−1

𝑥1=1

𝑥3−1

𝑥2=2

𝛼

𝑥3=3

 

− ∑ ∑ ∑ ∑ ⌊
𝑁

𝐽𝑥1
× 𝐽𝑥2

× 𝐽𝑥3
× 𝐽𝑥4

 ⌋

𝑥2−1

𝑥1=1

𝑥3−1

𝑥2=2

𝑥4−1

𝑥3=3

𝛼

𝑥4=4

 

… 

− ∑ ∑ … .

𝑥𝑛−1

𝑥𝑛−1=𝑛−1

𝛼

𝑥𝑛=𝛼

 ∑ ∑ ⌊
𝑁

𝐽𝑥1
× 𝐽𝑥2

× … × 𝐽𝑥𝑛−1
× 𝐽𝑥𝑛

 ⌋

𝑥2−1

𝑥1=1

𝑥3−1

𝑥2=2

 

 

 where: 𝑁𝑇(𝑁) = Prime numbers in range N, 𝑁 ∈ ℕ = {Natural Numbers } , √𝑁: principal 

square root of 𝑁, 𝛼 = max{𝑛: 𝐽𝑛 ≤ √𝑁},  𝐽𝑗 ≤ ⌊
𝑁

𝐽𝑛
 ⌋  , 𝑱 ∈ {𝐩𝐫𝐢𝐦𝐞 𝐧𝐮𝐦𝐛𝐞𝐫𝐬 } 

 
For Odd numbers in range (N): 

𝜋(𝑁) = 𝑁 + 𝛼 − 1 − ⌊
𝑁

𝐽
1

⌋ 

− ∑ (⌈∏ (
𝐽𝑛

𝐽𝑥

− ⌊
𝐽𝑛

𝐽𝑥

⌋)

𝑛−1

𝑥=1

⌉) (⌊
𝑁

𝐽𝑛

 ⌋)

𝛼

𝑛=2

 

+ ∑ (⌈∏ (
𝐽𝑛

𝐽𝑥

− ⌊
𝐽𝑛

𝐽𝑥

⌋)

𝑛−1

𝑥=1

⌉) ( ∑ ⌊
𝑁

𝐽𝑥 × 𝐽𝑛

 ⌋

𝑗

𝑥=1,𝑥<𝑛

)

𝛼

𝑛=2

 

− ∑ (⌈∏ (
𝐽𝑛

𝐽𝑥

− ⌊
𝐽𝑛

𝐽𝑥

⌋)

𝑛−1

𝑥=1

⌉) ( ∑ ∑ ⌊
𝑁

𝐽𝑥1
× 𝐽𝑥2

× 𝐽𝑥3

 ⌋

𝑥2−1

𝑥1=1

𝑥3−1

𝑥2=2

)

𝛼

𝑥3=3

 

− ∑ (⌈∏ (
𝐽𝑛

𝐽𝑥

− ⌊
𝐽𝑛

𝐽𝑥

⌋)

𝑛−1

𝑥=1

⌉) ( ∑ ∑ ∑ ⌊
𝑁

𝐽𝑥1
× 𝐽𝑥2

× 𝐽𝑥3
× 𝐽𝑥4

 ⌋

𝑥2−1

𝑥1=1

𝑥3−1

𝑥2=2

𝑥4−1

𝑥3=3

)

𝛼

𝑥4=4

 

… 

− ∑ (⌈∏ (
𝐽𝑛

𝐽𝑥

− ⌊
𝐽𝑛

𝐽𝑥

⌋)

𝑛−1

𝑥=1

⌉)

𝛼

𝑥𝑛=𝛼

 ( ∑ … .

𝑥𝑛−1

𝑥𝑛−1=𝑛−1

∑ ∑ ⌊
𝑁

𝐽𝑥1
× 𝐽𝑥2

× … × 𝐽𝑥𝑛−1
× 𝐽𝑥𝑛

 ⌋

𝑥2−1

𝑥1=1

𝑥3−1

𝑥2=2

) 

 



 Where: 𝑁𝑇(𝑁) = Prime numbers in range N, 𝑁 ∈ ℕ = {Natural Numbers } , √𝑁: principal 

square root of 𝑁, 𝛼 = max{𝑛: 𝐽𝑛 ≤ √𝑁},  𝐽𝑗 ≤ ⌊
𝑁

𝐽𝑛
 ⌋  , 𝑱 ∈ {𝒐𝒅𝒅 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 } 

Note that 𝛼 is the number of terms in the sequence 𝐽𝑛 that are ≤ √𝑁. By construction, 
the set {𝐽𝑛: 𝜇𝑛 = 1,1 ≤ 𝑛 ≤ 𝛼} is exactly the set of primes ≤ √𝑁, so 𝛼 ≥ 𝜋(√𝑁) (with 
equality if and only if √𝑁 is prime or composite but not divisible by any 𝐽𝑛 that is prime). 

Our self-contained formula for 𝜋(𝑁) is: 

 𝜋(𝑁) =  𝑁 + 𝛼 − 1 − ∑ 𝜇𝑛

𝛼

𝑛=1

⌊
𝑁

𝐽𝑛

⌋ + ∑ 𝜇𝑖

1≤𝑖<𝑗≤𝛼

𝜇𝑗 ⌊
𝑁

𝐽𝑖𝐽𝑗

⌋ − ∑ 𝜇𝑖

1≤𝑖<𝑗<𝑘≤𝛼

𝜇𝑗𝜇𝑘 ⌊
𝑁

𝐽𝑖𝐽𝑗𝐽𝑘

⌋ + ⋯ + (−1)𝛼 ⌊
𝑁

𝐽1𝐽2 ⋯ 𝐽𝛼

⌋ 

 
Theorem 1. Formula correctly computes 𝜋(𝑁) for any integer 𝑁 ≥ 2. 

Proof. By Proposition 1, 𝜇𝑛 = 1 if and only if 𝐽𝑛 is prime. Therefore, the 
product 𝜇𝑖1

𝜇𝑖2
⋯ 𝜇𝑖𝑚

 equals 1 precisely when all of 𝐽𝑖1
, 𝐽𝑖2

, … , 𝐽𝑖𝑚
 are prime, and 0 

otherwise. Consequently, the only nonzero terms in (4) are those corresponding to 
products of distinct primes among the 𝐽𝑛 with 𝑛 ≤ 𝛼. Since every prime ≤ √𝑁 appears 
in the sequence 𝐽𝑛 (and only primes yield 𝜇𝑛 = 1), the set of primes ≤ √𝑁 is 
exactly {𝐽𝑛: 𝜇𝑛 = 1,1 ≤ 𝑛 ≤ 𝛼}. Thus, formula (4) is equivalent to Legendre's formula (1) 
with 𝑎 = 𝜋(√𝑁), and hence computes 𝜋(𝑁) correctly.  

Remark. Formula can be written more compactly as: 

𝜋(𝑁) = 𝑁 + 𝛼 − 1 + ∑ (−1

𝐼⊆{1,…,𝛼}

𝐼≠∅

)∣𝐼∣ (∏ 𝜇𝑖

𝑖∈𝐼

) ⌊
𝑁

∏ 𝐽𝑖𝑖∈𝐼
⌋ .  

 
Computational Complexity 

Formula contains 2𝛼  terms, where 𝛼 ≈ 𝜋(√𝑁) ∼
2√𝑁

log 𝑁
 by the Prime Number Theorem. 

This exponential growth makes direct evaluation impractical for large 𝑁. Moreover, 
computing each 𝜇𝑛 requires 𝑛 − 1 divisibility checks (via the product in (2)), leading to 
an overall complexity that is far worse than that of the sieve of Eratosthenes or the 
Meissel-Lehmer algorithm. 

Thus, this formula is not intended as a practical computational tool. Its value lies 
instead in its mathematical form and pedagogical utility. 

Pedagogical Value 

The formula serves as an excellent teaching device for illustrating several concepts: 

- Inclusion-Exclusion Principle: Formula shows exactly how inclusion-exclusion 
is applied to count numbers not divisible by a set of primes. 



- Legendre's Formula: It provides a fully expanded, explicit version of Legendre's 
formula that is often presented only recursively. 

- Primality Testing: The indicator 𝜇𝑛 demonstrates how primality can be 
determined using only elementary arithmetic operations, without recourse to 
Wilson's theorem or other advanced results. 

- Sieve Methods: The formula explicitly encodes the sieve of Eratosthenes as a 
single mathematical expression, revealing the underlying structure of sieve 
methods. 

- Mathematical Writing: It exemplifies how logical conditions (like divisibility) can 
be encoded using floor and ceiling functions, a technique useful in various areas 
of discrete mathematics. 

Relation to Other Closed-Form Formulas 

Several "closed form" expressions for 𝜋(𝑥) or the 𝑛 −th prime exist in the literature. 
Willans (1964) gave formulas using Wilson's theorem. 

Mináč's formula is similar in spirit. These formulas, like ours, are mathematically exact 
but computationally impractical. Our formula differs in that it is derived directly from 
the inclusion-exclusion principle and uses a primality indicator based on divisibility 
rather than Wilson's theorem. 

It should be noted that formulas involving summations and floor functions are 
sometimes called "closed-form" in a discrete sense, though they are not closed-form in 
the analytic sense (like expressions involving elementary functions only). Our formula 
falls into this discrete category. 

Conclusion 

We have presented a self-contained, explicit formula for the prime-counting 
function 𝜋(𝑁) that expands Legendre's formula using inclusion-exclusion and includes 
a built-in primality test. The formula is a single mathematical expression that can be 
evaluated by direct substitution, requiring no precomputed list of primes and no 
recursive or iterative procedures. 

While computationally inefficient, the formula offers pedagogical clarity, demonstrating 
how sieve methods can be written in closed form. It may be useful for teaching number 
theory and discrete mathematics, and it provides a concrete example of how logical 
conditions can be encoded using elementary arithmetic functions. 

Future work could explore variations of the primality indicator or ways to compress the 
formula to reduce the number of terms, though any such improvements would likely 
remain of theoretical interest rather than practical computational value. 
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