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Abstract

In the segment of electronic sales of do-it-yourself (DIY) repair products, search
quality significantly depends on correctly accounting for regional assortment restric-
tions and differences between client types. Traditional search solutions apply these
restrictions at the post-search filtering stage, leading to additional computational
costs, unstable response times, and inconsistencies between search, suggestions, and
the catalog.

This work proposes an architecture where the search query is first classified into
the most probable product category, taking into account regional and user context.
The obtained category is used to select a precomputed catalog index bucket (ĉ, r, u),
within which full-text search is then performed. This order shifts the assortment
availability check to offline indexing, eliminating resource-intensive online filtering
and ensuring predictable processing delays under high loads.

The architecture’s efficiency was evaluated offline by comparing users’ actual
purchases with the positions of the same products obtained through simulated re-
production of historical contexts. The results show that the context-oriented recon-
struction of the search pipeline improves the quality of catalog ranking by nDCG@12
by 3 percentage points and simultaneously reduces service latency to around 2 ms,
confirming the practical applicability of the proposed approach.

Keywords: Information Retrieval, E-Commerce Search, Contextual Search Architec-
ture, Offline Validation, Predictive Query Categorization, Search Latency Optimization,
Contextual Indexing

1 Introduction

Evaluation of information retrieval quality in e-commerce is traditionally conducted using
two main methods [1]. The first approach relies on offline metrics computed on expert-
labeled data, while the second uses online metrics obtained through A/B testing. However,
in dynamic e-commerce environments, especially in the B2B DIY segment, where product
assortment varies depending on geolocation, seasonality, and stock availability, manual
labeling becomes costly, quickly outdated, and fails to reflect the real variability of user
behavior [2]. In such conditions, traditional evaluation methods may underestimate the
complexity of intents and the frequency of rare scenarios, which is particularly critical
for segments with long decision-making cycles (45–60 days) and low levels of impulse
purchases.
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To calculate the relevance of search results, Learning to Rank (LTR) methods based on
click data have become widespread [3; 4]. The use of click signals has enabled a shift from
costly manual labeling to scalable training data, and subsequent works have developed
these models by incorporating contextual signals and user behavior dynamics [5; 6].

Despite successes, most click models (Position-Based [7], Cascade [8], UBM [9]) are
trained on historical logs and inherit their biases, limiting their applicability for studying
structural changes in the search pipeline or evaluating behavior with emerging regional
restrictions [10; 11].

In recent years, the main methodological limitation has shifted from click modeling
to the issue of service architecture. The traditional separation of the search system into
isolated subsystems (catalog, search, search suggestions) inevitably leads to fragmentation
of the user experience and the need for resource-intensive real-time post-search filtering
to account for region and client type. This approach, resulting in complexity O(logN)
or O(N), is critically non-scalable for catalogs with tens of millions of items [12; 13].
Therefore, a relevant task is the development of architectures capable of providing constant
latency (O(1)) while accounting for the complex context of the search query.

The central hypothesis of this work is the assertion that the full-text search task can
be reduced to contextual navigation by implementing a layer of predictive query cate-
gorization [14]. The proposed architecture assumes that each search query is mapped
early on to the most probable product category, allowing localization of the search within
precomputed contextual indexes [15]. This approach eliminates the need for heavy online
filtering, shifting region and client type checks to the offline indexing stage. This ensures
guaranteed consistency of results between search and catalog subsystems, as they begin
to operate on unified precomputed data structures. As a result, the computational com-
plexity of the online stage is reduced from linear dependence on index volume to constant
time access to category products.

For evaluating the correctness of the context-oriented search architecture reconstruc-
tion, classical online experiment methods prove to be limitedly applicable. Direct A/B
testing requires significant resources and carries operational risks, while using historical
logs in ”raw” form leads to selection bias [16]: recorded interactions are formed under the
existing architecture and do not reflect how users would behave under a different search
pipeline configuration. This phenomenon is discussed in detail in works on counterfac-
tual evaluation [17; 18]. This is particularly relevant for ”cold start” scenarios when it is
necessary to evaluate user behavior in a new region or with a new client type.

On the other hand, interaction history contains rich signal material about users’ real
preferences and can be used to build context-dependent ranking benchmarks if structural
bias is correctly eliminated.

Several studies have shown that reconstructing user preferences based on successful
signals (view, cart, purchase) allows validating new search and recommendation algo-
rithms in an offline environment, but does not solve the ”cold start” problem with new
regions, categories, or client types [19]. Thus, reliance on behavioral logs is justified but
requires strict formalization of their reuse methods.

Based on these limitations, this work proposes a method for offline reconfiguration of
user behavior, in which real sessions are rebuilt under the assumed search architecture.

From user interaction logs with search, context-dependent indexes I(c, u, r) are formed
— ranked lists of products within a specific category, region, and client type. Matching
item positions in different architectures allows evaluating the impact of contextual re-
duction on ranking quality and potential performance gains — without interfering with
production traffic.

This approach creates a controlled offline environment consistent with users’ real pref-
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erences and serves as a link between architectural premises and quantitative hypothesis
testing. It ensures a smooth transition from problem statement to research methodol-
ogy, formally describing procedures for index construction, session transformation, and
ranking result comparison.

2 Formalization of the Search System Architecture

The considered search system S consists of several subsystems activated by different user
actions:

S = {scat, ssug, ssearch},
where:

� S — The overall information retrieval system on the e-commerce platform.

� scat —Catalog navigation subsystem. Activated when selecting a category (category
ctrue is predefined), corresponding to search with an empty query q = ∅. The output
fully depends on context C and catalog structure.

� ssug — Search suggestions subsystem (autosuggestion). Activated when input query
q′ is incomplete (q′ — partial query, without pressing Enter).

� ssearch — Full-text product search subsystem. Activated after entering a complete
query q (user pressed Enter).

Each subsystem si ∈ S returns a ranked list of products L in response to query q (or
its absence) and given context C.

� L — Ranked list of products.

� q — User’s search query.

A key requirement for a unified architecture is maintaining contextual consistency
between these subsystems. The absence of such consistency (e.g., low relevance of snow
removal products when navigating the catalog in the ”South” region, but suggesting
snow shovels in suggestions) leads to frustration and reduced user trust in the system.
When multiple subsystems operate on similar intents and context C, ranking should show
minimal deviation in relevance level for similar candidate sets.

For evaluating consistency between two subsystems si and sj by their ranking for a
given context C, the inconsistency function D is used:

D(si, sj, C) = 1− SpearmanCorr(Scores(si, C), Scores(sj, C)), (1)

where D should approach zero for relevant subsets of products.
Here, Scores(si, C) is defined as the vector of candidate scores computed on the inter-

section of sets Li ∩ Lj, ensuring correct computation of rank correlation.

2.1 Formalization of the Two-Phase Search Architecture

The search architecture used on e-commerce platforms for high-speed output is built as
two-phase [20]: offline indexing (candidate stage) and online query servicing.

This separation is fundamentally important for meeting two main requirements: (1)
ensuring high response speed by offloading computationally intensive operations to the
offline loop and (2) maintaining result relevance through uniform application of contextual
restrictions. Let us consider how this approach allows incorporating context (region, client
type) into the data structure.
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Stage 1: Offline Indexing

In the offline indexing stage, each product p ∈ P is indexed for two access types: cat-
alog navigation and full-text search. This allows creating a hybrid context-dependent
candidate index I.

Indexing for Catalog Navigation (scat). For catalog navigation, where the product
category c is known in advance, the context (c, r, u) is the primary indexing key. We create
a structured catalog index Icat, where each product p is indexed across all permissible
triples (c, r, u):

Acat(p) = {(c, r, u) ∈ C ×R× U | availability(p, r) = 1 ∧ assigned(p, c) = 1}. (2)

Here, assigned(p, c) — binary function of product p belonging to category c. In the
online servicing stage, accessing Icat allows obtaining the full set of candidates Pc,r,u

corresponding to the context without additional online filtering.

Indexing for Full-Text Search (ssearch, ssug). For full-text search, where the category
is unknown, building an inverted index by tokens for each context combination (r, u) is
not scalable. Therefore, a non-contextual inverted index Isearch is usually created, where
product p is indexed only by its text tokens.

Formally, for each product p, the index Isearch contains:

A(p) = {(r, u) ∈ R× U | availability(p, r) = 1}. (3)

A(p) can be used to build structured buckets in Icat, but is not used directly to increase
output completeness. Since the context in which full-text search will be performed is
unknown in advance, building A(p) for each context (c, r, u) would lead to exponential
growth in index volume.

2.1.1 Hypothesis of Full-Text Search Reduction

To overcome the problem of exponential index volume growth in full-text search, a hypoth-
esis is put forward that this task can be transformed into an equivalent but significantly
more structured and optimized catalog navigation task.

A key element of the proposed pipeline is the implementation of a query classification
model M , which at an early query processing stage determines the most probable product
category for the entered query.

This model M transforms the input query q, region r, and user type u into a predicted
category ĉ, acting as a bridge between unstructured input and structured index.

Formally, the category determination process is written as maximization of conditional
probability:

ĉ = argmax
c∈C

P (c | q, r, u), (4)

where C — set of all catalog categories.
Determining the predicted category ĉ allows enriching the full-text search context

(r, u) to a strict tuple (ĉ, r, u), which is already used for sampling from Icat. This allows
formalizing the process of obtaining search candidates Psearch as inverted index search
localized in the catalog candidate subset Icat(ĉ, r, u):

Psearch(q, r, u) ≈ {d ∈ Icat(ĉ, r, u) | text match(p, q) ≥ τ}. (5)
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Such reduction allows reusing existing indexing mechanisms by region and user type
developed for the catalog, ensuring guaranteed output consistency and high response
speed without duplicating full-text indexes for all context combinations.

The main advantage is that the inverted index search task, requiring high computa-
tional power, is shifted from the full set of products D to a significantly limited subset
Icat(ĉ, r, u).

This not only guarantees high query processing speed O(log |Icat|) due to reduced
search space but also increases ranking precision, as local relevance within a clearly defined
category, region, and client type becomes higher.

In accordance with the reduction hypothesis, all ranking complexity shifts to the LTR
model level, which must operate within predefined contextual ”buckets” (c, r, u).

It should be emphasized separately that the function text match(p, q), applied to
products in a given context (c, r, u), eliminates the ordering problem in binary search, as
candidate ranking is performed at the offline index formation stage.

Stage 2: Unified Online Servicing through Predictive Categorization

Implementing the query classification modelM fundamentally changes the online servicing
paradigm. Instead of supporting two separate pipelines, both scenarios reduce to a single
operation of sampling from the context-dependent index Icat.

1. Catalog (scat): Upon user transition, the true category ctrue is known. The system
performs direct access by key (ctrue, r, u) to index Icat.

2. Full-Text Search (ssearch):

� Context Determination: For query q, the predicted category ĉ = M(q), region
r, and user type u are determined.

� Contextual Sampling: Text match search is performed exclusively within the
category Icat(ĉ, r, u).

Psearch = {p ∈ Icat(ĉ, r, u) | match(p, q) ≥ τ} (6)

Thus, the advantage of the proposed approach lies in inverting the data flow: instead
of filtering the full list of found products by context, search with context is performed
first, followed by full-text search of products.

This reduces the computational complexity of the online stage from O(|Pmatch|) (fil-
tering all found) to O(1) (sampling from prepared bucket), while ensuring guaranteed
consistency of output between search and catalog.

The complexity O(1) refers to the bucket selection operation. The subsequent pro-
cedure match(p, q) within the bucket has complexity O(log n), but size n is significantly
smaller than the full document space |Pmatch|, so actual execution time remains practically
constant.

2.2 Context Formalization

The context is given by the tuple (c, r, u), where c denotes the product category, which
can be either true or predicted.

� c ∈ C — Product category. This is a key parameter that takes value ctrue (for scat)
or ĉ (for ssearch). C — full set of catalog categories.
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� r ∈ R—Macroregion identifier. The set of regions is defined asR = {Center,West, South,North,East}.
Region affects the assortment matrix and is a key for hard filtering A(p).

� u ∈ U — Client type. The set of client types U includes retail clients and granulated
B2B segmentation:

U = {B2C} ∪ {B2BA,B2BB,B2BC ,B2BD}

Here, B2C — retail buyers, and from B2BA to B2BD represent B2B segments with
different needs.

2.3 Engineering Implementation

Catalog Search Suggestions

Selection of Products Based on Context 𝐼(𝑐, 𝑟,𝑢),
Filtering Products by Query

classification
model (M)

Search
query (q)

Query 
Fragment (q)

с

Session Context
user type (u), 

region (r)

Category (с)

List of Products in the Context, Sorted by Relevance, 
Filtered by Query

Figure 1: Online servicing scheme through predictive categorization

In the engineering plane, each unique tuple (c, r, u) corresponds to a logical or physical
bucket, which is a pre-calculated, context-optimized subset of the main catalog index Icat

(Fig. 1).
Contextual sharding assumes that instead of indexing product p by all its tokens in a

global index, it is indexed by a composite key including context variables: [c, r, u]. This
process fully shifts the computational complexity of filtering (availability check r and
relevance u) from the online query execution stage to the offline index building stage.
Thus, in the online servicing stage, the system accesses bucket Icat(c, r, u), which by
definition contains only available and relevant products.

Logical bucketing serves as the basis for physical index sharding, which is critical for
horizontal scaling:
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1. Data Locality: All data (tokens, LTR features) for a specific context are stored
together. This ensures high Recall speed by minimizing accesses to external storages.

2. Processing Parallelism: Queries from users in different contexts (e.g., different re-
gions r1 and r2) are automatically routed to different shards, allowing parallel pro-
cessing without resource competition.

3. ”Cold Start” Isolation: Introducing a new context (e.g., rnew or unew) requires
creating a new, isolated shard (or bucket), preventing potential issues of the new
context from affecting the stability and performance of the main system.

Using contextual buckets (c, r, u) ensures high performance and maintains strict con-
textual consistency, regardless of user interaction mode.

To transform the user’s text query q into a product category, a classification model
is used. The training sample is formed from historical sessions and contains triples
(q, titlepurchased, c), where q — actual search query, titlepurchased — name of the actually
purchased product in the session, and c — target category label (class label).

The dataset is pre-cleaned: text normalization, removal of service characters, tok-
enization; additionally, context signals (region, user type) and temporal features (time
slot, seasonality) are computed.

The input vector is formed as concatenation of three components: (1) query embedding
Eq, (2) embedding of purchased product name Etitle, and (3) context feature vector xctx =
(r, u, . . .). The model has an architecture of the form

ŷ = softmax
(
W · ϕ([Eq;Etitle;xctx]) + b

)
,

where ϕ(·) — fusion and projection block, and W, b — classifier parameters. Weighted
cross-entropy is used as the loss function to compensate for class imbalance; weights are
set inversely proportional to class frequencies or computed using focal loss technique to
reduce the influence of ”tail” categories.

Focal loss is a modification of the standard cross-entropy function designed for working
under strong class imbalance conditions. The loss function is given by

Lfocal = −(1− pt)
γ log(pt), (7)

where pt — model-predicted probability of the correct class, and γ > 0 — focusing
parameter.

The multiplier (1−pt)
γ suppresses the contribution of ”easy” examples (for which the

model confidently predicts the class, pt ≈ 1), and conversely, enhances the contribution
of ”hard” and rarely occurring examples for which the model errs or is uncertain.

Thanks to this, focal loss reduces the dominance of frequent classes in gradients and
improves classification quality on ”tail” categories by increasing their weight during train-
ing.

Special attention is paid to correcting bias in labels: since labels are formed based
on purchased products, they reflect business outcomes rather than direct semantic query
category. To mitigate this effect, post-filtering of training examples and regularization
are performed, as well as using an additional validation sample selected by semantic
unambiguity criterion.

3 Validation Methodology

This methodology describes the procedure for offline validation of the proposed search
architecture based on real catalog data and historical user sessions. At the center of
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validation is a strict comparison of product rankings within context-dependent indexes
and positions output by the standard architecture. Evaluation is performed through user
interaction signals: view, cart, and purchase.

3.1 Source Data and Preprocessing

� Catalog: full set of products with attributes (category, availability by regions, prices,
product matrices).

� User sessions: time sequences of events (t, user id, region, query, item id, event type)
with labels event type ∈ {view, cart, purchase}.

� Contextual features: category c, region r, and user type u, created based on RFM
segmentation.

� Session filtering: from the entire session corpus, only successful sessions containing
target signals are selected: adding to cart or purchase. This allows focusing on
relevant business outcomes.

3.2 Building Contextual Index

For each context triple (c, u, r), a contextual index I(c, u, r) is determined — an ordered
list of products obtained through training a ranking model on the sample of sessions
related to this context.

Denote the set of filtered sessions related to (c, u, r) as Sc,u,r. For each pair (session,
product), interaction features are computed (view frequency, CTR, rate cart, rate purchase,

positional features, etc.). The ranking model is trained to predict score s
(c,u,r)
i for product

i in context (c, u, r). Then the index is defined as

I(c, u, r) = sort desc
{
i | s(c,u,r)i

}
.

Possible formulations for s
(c,u,r)
i :

s
(c,u,r)
i = fθ

(
featuresi,Sc,u,r

)
, (8)

where fθ — ranking model trained on labels formed from target signals (cart/purchase),
and featuresi,Sc,u,r — aggregated product features across sessions Sc,u,r.

The reference catalog output is formed from the existing catalog ranking applied in
production baseline architecture. For each pair (context, query), product positions in
the reference output are extracted — these positions will be compared with positions in
I(c, u, r).

3.3 Validation Procedure

The main idea is to compare, for the same sessions and contexts, what positions products
occupy in the reference output and in I(c, u, r), and measure metrics related to interaction
signals. The validation procedure is divided into the following stages according to the
principle of data processing isolation in a directed acyclic graph (DAG).

1. Selection of contexts and sessions. For each existing triple (c, u, r), all historical
sessions and queries corresponding to this triple are selected. Sessions are filtered
by the presence of target signals (cart or purchase).
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2. Building index I(c, u, r). For selected sessions, a ranking model is trained and
I(c, u, r) is built according to (8).

3. Reproduction of outputs. For each historical query q in the session, extract:

� product positions in reference output P ref
q = (pref1 , pref2 , . . . );

� product positions in contextual index P I
q = (pI1, p

I
2, . . . ).

4. Collection of positioned signals. For each position k in the output and for each event
type e ∈ {view, cart, purchase}, aggregated metrics are computed:

rateek,ref =
#{events e for product at position k in P ref}

#{impressions of position k in P ref}
,

similarly rateek,I for output P I .

5. Comparative analysis. For each position k and signal type e, differences are com-
puted:

∆e
k = rateek,I − rateek,ref.

The set {∆e
k} shows at which positions and by which signals the new architecture

wins or loses relative to the reference.

4 Experiment

The experimental part is aimed at verifying the reproducibility of the methodology results
and evaluating key architecture components on historical user session data, including the
search query classification module by product categories.

The classification model was trained on data of the form (q, t, y), where q — original
search query, t — name of the purchased product, and y — actual product category
acting as class label. This setup allows forming stable correspondence signals between
user intent and final choice but is sensitive to catalog structure changes and evolution of
client segments.

Within the experiment, it is evaluated how the two-phase architecture maintains pre-
dictive consistency under dynamic context C = (c, r, u), characterized by fluctuations in
regional restrictions, updates to product trees, and variability in user behavior. Since
such changes effectively bring the model to a partial ”cold start” mode, the main check
is performed on historical data reflecting real trajectories and distribution shifts.

This experimental design allows quantitative assessment of: (1) the trained classifica-
tion model’s stability to distribution drift, (2) the impact of query categorization quality
on subsequent stages of context-oriented ranking, and (3) the entire architecture’s ability
to adapt to new or underrepresented contexts.

4.1 Formation of Context-Dependent Feature Space for LTR

In accordance with the reduction hypothesis, the second query processing phase is as-
signed to a context-adaptive LTR model. Although ensemble methods (GBDT) or neural
networks are often used in industrial systems, at the PoC stage, it is critical to isolate
the contribution of architectural changes from algorithm complexity. Therefore, linear
regression with L2-regularization was chosen as the baseline ranker.

The choice of linear model is driven by two factors:
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1. Interpretability of contextual contribution: Linear weights allow explicit evaluation
of region and client type influence on final score.

2. Latency minimization: Computing scalar product ⟨w,x⟩ is done in constant time
and easily vectorized, critical for meeting strict SLA (< 10 ms).

The feature vector X is formed so that the model can learn the specifics of each
contextual bucket. In addition to standard features (stock dynamics, price freshness,
popularity), the feature interaction mechanism plays a key role.

Contextual variables (region r, user type u) are encoded via One-Hot Encoding (OHE).
This allows the model to effectively train independent biases for each context within a
single weight vector:

Score(p, C) = wbase · xitem +
∑
k∈C

wk · I(context = k) + ϵ (9)

Such feature space structure allows a single model to approximate the behavior of
multiple local models without the need for their physical separation and maintenance,
fully aligning with the stated goal of pipeline unification.

4.2 Positional Conversions
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Figure 2: Positional conversions (purchase and cart) by positions for reference catalog
output and for contextual index I(c, u, r).

The graph in Fig. 2 shows positional shares of purchase and cart addition events for
the reference output and for output formed by index I(c, u, r). The observed increase in
purchase share at top positions (especially positions 1 and 2) for I(c, u, r) indicates that
context-dependent ranking better concentrates product offers leading to target business
signals. Similar dynamics for cart confirms improvement in intermediate conversion. For
statistical validation, confidence intervals should be computed and paired tests conducted
across sessions.

4.3 Ranking Metrics

The graph in Fig. 3 shows the behavior of two types of aggregated metrics with increasing
ranking depth K: search nDCG@K and business-oriented position-weighted conversion
(PWC): nDCG@10 improved by 3–5%, PWC@10 — by 4–6%. Improvement in nDCG@K
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Figure 3: Ranking metrics nDCG@K and PWC@K depending on output depth K for
reference (ref) and proposed architectures.

for I(c, u, r) compared to the reference indicates increased ranking quality in terms of
relevance (based on historical cart/purchase signals). Simultaneously, noticeable PWC@K
gain points to expected positive business effect — more target events will be concentrated
in early positions when applying contextual indexes. For final confirmation of the effect,
it is recommended to additionally evaluate ∆Revenue magnitude and conduct sensitivity
analysis by categories and regions.

4.4 Quality of Predictive Categorization Model

The histogram in Fig. 4 shows that most categories have very high F1 (¿0.96).
In the context of the proposed architecture, this means that predictive categorization

provides a sufficiently high level of correct query mappings to categories (with minimal
error share leading to significant ranking degradation), while inference optimization allows
maintaining required SLA for latency, ensuring expected speed gain for subsequent access
to precomputed indexes I(c, u, r).

4.5 Evaluation of Search Subsystem Consistency

To test the hypothesis that the context-oriented architecture increases the consistency
of search subsystems, the inconsistency measure D(si, sj, C) was computed between two
most important pipeline components: catalog ranking subsystem and search suggestions
output subsystem.

Fig. 5 demonstratesD values on a set of typical regional-user contexts Ck (professional/non-
professional client, climate zone, regional product availability). The baseline monolithic
architecture shows inconsistency level in the range 0.36–0.47, indicating significant dis-
crepancies in preferences formed by different subsystems when working with intersecting
identical candidates. Such gap leads to users receiving mutually contradictory signals in
different interface parts.

After transitioning to the proposed (c, r, u) reduction architecture, inconsistency de-
creases almost twofold — to the range 0.14–0.22. This means that candidate ranks com-
puted by the two subsystems are significantly better aligned, and Spearman correlation
between them increases, confirming fulfillment of the key unified architecture requirement:
minimizing relevance discrepancies with the same query context.
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Figure 4: F1 by classes for the best model (rank 1).

Thus, the proposed reconstruction ensures not only latency reduction but also struc-
tural improvement in subsystem consistency, directly affecting user experience stability.

4.6 Evaluation of Online Servicing Latency

Key observations can be formulated as follows:

� System performance. The target query processing latency indicator < 10 ms was
not only achieved but significantly exceeded: actual values were in the range 1.7–3.7
ms. This improvement is explained by using a pre-built catalog index and ensuring
O(1)-access to structured product features (Fig. 6).

� Contextual sensitivity. The model demonstrated stable ability to distinguish user
cohorts. The influence of user type u on ranking order manifested systematically,
indicating correct operation of the predictive categorization mechanism and validity
of context factorization.

� Support for hybrid sorting. The implemented two-phase architecture showed high
flexibility: experimentally confirmed the possibility of instant result resorting by
price or popularity without significant overhead. This property is critical for the DIY
e-commerce platform segment, where contextual preferences often change during
decision-making.

In aggregate, the presented results confirm that the model ensures guaranteed low
latency, stably accounts for contextual differences between users, and supports hybrid
sorting, overall demonstrating its stability when transferred to new conditions and justi-
fying the use of simulation as a reliable tool for analyzing contextual search architectures
in a dynamically changing e-commerce environment. (Fig. ??).
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105 106 107 108
0

5

10

15

20

O(logN)

O(1)

Main index size (number of products)

L
at
en
cy
,
m
s

Comparison of computational complexity

Traditional architecture, O(logN)

New architecture, O(1)

Measured Latency

Target SLA (10 ms)

Figure 6: Comparison of online servicing latency dependence on main index size growth
for traditional architecture and proposed unified architecture.

5 Discussion of Results

The presented experimental results confirm that the context-oriented reconstruction of
the search architecture allows achieving significant performance gains while maintaining
ranking quality and consistency between subsystems. Key experimental observations
are compared with methodological decisions, and limitations defining the applicability
boundaries of the approach are formulated.

5.1 Consistency of Search Subsystems

Evaluation of consistency between subsystems — suggestions, catalog ranking, and con-
textual indexes I(c, u, r) — showed that the proposed architecture ensures stable reduction
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in inconsistency D relative to the baseline system. In most contexts, error decreased by
12–18%, and in professional segments (B2B) — up to 22%.

This result aligns with the methodology, according to which reconstructed context-
dependent indexes are formed based on real interactions and, unlike the classical archi-
tecture, explicitly account for regions and client types.

Nevertheless, the experiment revealed several limitations:

� Incompleteness of rare category coverage. For narrow product groups (less than
0.05% of catalog), correlation decrease by 4–7 p.p. is observed, related to insufficient
volume of historical signals.

� Border regions. In regions with small data volumes, reconstructed indexes show
greater variability, and consistency drops to baseline architecture level.

� These effects emphasize that the behavior reconstruction method does not fully
solve the cold start problem, although it allows significantly mitigating bias arising
from direct use of historical logs.

5.2 Quality of Query Classification and Impact of Errors on
Ranking

The description of the trainable classification model in the methodology assumes mini-
mization of categorization errors, as categories serve as input for forming search indexes.
The experiment showed:

� average query classification accuracy is (F1) 0.95–0.98,

� classification errors lead to deviation in rank correlation between subsystems within
1.5–3 p.p.,

� error impact is significantly below the threshold at which degradation becomes no-
ticeable to the user.

It was also shown that classification errors are stably compensated due to intersection
of candidate lists Li ∩ Lj: even with incorrect category, many relevant products remain
in the common sample.

Thus, the methodology of training on sessions (q, tbuy, cat) demonstrates sufficient
stability: despite noise in data (ambiguous queries, polysemy), classification does not
become a bottleneck of the architecture.

5.3 Impact of Architectural Reduction on Performance

Experimental graphs show that transition to two-phase architecture with precomputed
contextual indexes leads to:

� stable latency reduction to 3–4 ms level,

� no latency growth with catalog size increase by two orders,

� latency gain 2.5–3Ö compared to traditional scheme using online scoring computa-
tion.
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Importantly, no ranking quality degradation is observed: nDCG@K indicators and con-
sistency D are improved.

This confirms the methodological hypothesis that offloading early ranking stages to
offline phase and their contextual parametrization allow simultaneously reducing compu-
tational complexity and decreasing sensitivity to noise in user queries.

5.4 Applicability Boundaries of Offline Behavior Reconstruc-
tion

Although behavior reconstruction based on historical sessions provides reliable ranking
quality estimates, the experiment revealed several methodological limitations:

� New regions and categories. In the absence of actual interactions, indexes are formed
based on aggregated segment statistics, leading to consistency deterioration and
increased metric variance.

� Scenarios sensitive to fine filters. For categories with large attribute trees, underes-
timation of rare cases is observed, which can lead to optimistic quality bias by 1–2
p.p.

� Aggregation of multi-step scenarios. Reconstruction relies on oriented mapping of
events to new ranks but does not reproduce long-term behavioral dynamics within
a session.

� In aggregate, this means the method is most reliable in stable contextual space
scenarios but requires extension when analyzing new regions, products with rapid
updates, and categories heavily dependent on user attributes.

5.5 Conclusions and Future Work

The experiments confirm that the proposed architecture ensures:

� significant performance gain without quality loss,

� improvement in inter-subsystem consistency,

� stability to categorization errors and variability of user queries,

� applicability to offline evaluation of complex architectures where classical A/B ap-
proaches are difficult.

At the same time, analysis revealed limitations related to cold start, shortage of rare cat-
egory data, and inability to fully reconstruct multi-step dynamics of user sessions. These
aspects form the basis for further model development and deepening the experimental
base.

6 Conclusion

In the work, a context-oriented two-phase search architecture is proposed and formally
justified, based on reducing full-text search to navigation through a precomputed cate-
gorical index. A key component is the predictive categorization model of search queries,
allowing unification of search and navigation modes through a single sampling operator.
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Experimental validation showed that such reduction ensures stable computational ef-
ficiency: online servicing latency is stably in the range 1.7–3.7 ms, which is significantly
better than target SLA 10 ms and substantially outperforms traditional O(logN) archi-
tecture.

User session modeling and offline evaluation of ranking consistency confirmed the
reliability of the proposed methodology under dynamic context evolution.

Additionally, it is shown that inconsistency between search subsystems decreases al-
most twofold, confirming the correctness of architecture unification.

The obtained results demonstrate that predictive categorization can serve as a foun-
dation for unifying search architecture in e-commerce platforms.

The architecture demonstrates stable operation in partial cold start scenarios (limited
context changes), but full solution to this problem remains a subject of further research.

Further development of the work is related to integrating more flexible user behavior
models and expanding contextual simulation scenarios.
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